ret
/*
- * unint64_t _rtc_nanotime_read(rtc_nanotime_t *rntp, int slow);
+ * uint64_t _rtc_nanotime_read(rtc_nanotime_t *rntp);
*
* This is the same as the commpage nanotime routine, except that it uses the
* kernel internal "rtc_nanotime_info" data instead of the commpage data.
* These two copies of data are kept in sync by rtc_clock_napped().
*
- * Warning! There is another copy of this code in osfmk/x86_64/idt64.s.
- * These are kept in sync by both using the RTC_NANOTIME_READ() macro.
+ * Warning! There are several copies of this code in the trampolines found in
+ * osfmk/x86_64/idt64.s, coming from the various TIMER macros in rtclock_asm.h.
+ * They're all kept in sync by using the RTC_NANOTIME_READ() macro.
*
- * There are two versions of this algorithm, for "slow" and "fast" processors.
- * The more common "fast" algorithm is:
+ * The algorithm we use is:
*
- * ns = (((rdtsc - rnt_tsc_base)*rnt_tsc_scale) / 2**32) + rnt_ns_base;
+ * ns = ((((rdtsc - rnt_tsc_base)<<rnt_shift)*rnt_tsc_scale) / 2**32) + rnt_ns_base;
*
- * Of course, the divide by 2**32 is a nop. rnt_tsc_scale is a constant
- * computed during initialization:
+ * rnt_shift, a constant computed during initialization, is the smallest value for which:
*
- * rnt_tsc_scale = (10e9 * 2**32) / tscFreq;
+ * (tscFreq << rnt_shift) > SLOW_TSC_THRESHOLD
*
- * The "slow" algorithm uses long division:
+ * Where SLOW_TSC_THRESHOLD is about 10e9. Since most processor's tscFreqs are greater
+ * than 1GHz, rnt_shift is usually 0. rnt_tsc_scale is also a 32-bit constant:
*
- * ns = (((rdtsc - rnt_tsc_base) * 10e9) / tscFreq) + rnt_ns_base;
+ * rnt_tsc_scale = (10e9 * 2**32) / (tscFreq << rnt_shift);
+ *
+ * On 64-bit processors this algorithm could be simplified by doing a 64x64 bit
+ * multiply of rdtsc by tscFCvtt2n:
+ *
+ * ns = (((rdtsc - rnt_tsc_base) * tscFCvtt2n) / 2**32) + rnt_ns_base;
+ *
+ * We don't do so in order to use the same algorithm in 32- and 64-bit mode.
+ * When U32 goes away, we should reconsider.
*
* Since this routine is not synchronized and can be called in any context,
* we use a generation count to guard against seeing partially updated data.
* the generation is zero.
*
* unint64_t _rtc_nanotime_read(
- * rtc_nanotime_t *rntp, // %rdi
- * int slow); // %rsi
+ * rtc_nanotime_t *rntp); // %rdi
*
*/
ENTRY(_rtc_nanotime_read)
- test %rsi,%rsi
- jnz Lslow
-
- /*
- * Processor whose TSC frequency is faster than SLOW_TSC_THRESHOLD
- */
+
PAL_RTC_NANOTIME_READ_FAST()
ret
+
+/*
+ * extern uint64_t _rtc_tsc_to_nanoseconds(
+ * uint64_t value, // %rdi
+ * pal_rtc_nanotime_t *rntp); // %rsi
+ *
+ * Converts TSC units to nanoseconds, using an abbreviated form of the above
+ * algorithm. Note that while we could have simply used tmrCvt(value,tscFCvtt2n),
+ * which would avoid the need for this asm, doing so is a bit more risky since
+ * we'd be using a different algorithm with possibly different rounding etc.
+ */
- /*
- * Processor whose TSC frequency is not faster than SLOW_TSC_THRESHOLD
- * But K64 doesn't support this...
- */
-Lslow:
- lea 1f(%rip),%rdi
- xorb %al,%al
- call EXT(panic)
- hlt
- .data
-1: String "_rtc_nanotime_read() - slow algorithm not supported"
- .text
+ENTRY(_rtc_tsc_to_nanoseconds)
+ movq %rdi,%rax /* copy value (in TSC units) to convert */
+ movl RNT_SHIFT(%rsi),%ecx
+ movl RNT_SCALE(%rsi),%edx
+ shlq %cl,%rax /* tscUnits << shift */
+ mulq %rdx /* (tscUnits << shift) * scale */
+ shrdq $32,%rdx,%rax /* %rdx:%rax >>= 32 */
+ ret
+
+
Entry(call_continuation)
movq %rdi,%rcx /* get continuation */