]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/i386/machine_routines.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / i386 / machine_routines.c
index 22eae015943d27947ef6bd4f438510ba4da5d3b3..7d0e21dac17811cc6e8ccc4250a3049a1bc94d82 100644 (file)
@@ -1,8 +1,8 @@
 /*
- * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
  *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- * 
+ *
  * This file contains Original Code and/or Modifications of Original Code
  * as defined in and that are subject to the Apple Public Source License
  * Version 2.0 (the 'License'). You may not use this file except in
  * unlawful or unlicensed copies of an Apple operating system, or to
  * circumvent, violate, or enable the circumvention or violation of, any
  * terms of an Apple operating system software license agreement.
- * 
+ *
  * Please obtain a copy of the License at
  * http://www.opensource.apple.com/apsl/ and read it before using this file.
- * 
+ *
  * The Original Code and all software distributed under the License are
  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
@@ -22,7 +22,7 @@
  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
  * Please see the License for the specific language governing rights and
  * limitations under the License.
- * 
+ *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 
 #include <mach/processor.h>
 #include <kern/processor.h>
 #include <kern/machine.h>
-#include <kern/cpu_data.h>
+
 #include <kern/cpu_number.h>
 #include <kern/thread.h>
+#include <kern/thread_call.h>
+#include <kern/policy_internal.h>
+
+#include <prng/random.h>
+#include <prng/entropy.h>
 #include <i386/machine_cpu.h>
 #include <i386/lapic.h>
-#include <i386/lock.h>
+#include <i386/bit_routines.h>
 #include <i386/mp_events.h>
 #include <i386/pmCPU.h>
 #include <i386/trap.h>
 #include <i386/pmap.h>
 #include <i386/pmap_internal.h>
 #include <i386/misc_protos.h>
-
+#include <kern/timer_queue.h>
+#include <vm/vm_map.h>
+#if KPC
+#include <kern/kpc.h>
+#endif
+#include <architecture/i386/pio.h>
+#include <i386/cpu_data.h>
 #if DEBUG
-#define DBG(x...)      kprintf("DBG: " x)
+#define DBG(x...)       kprintf("DBG: " x)
 #else
 #define DBG(x...)
 #endif
 
-extern void    wakeup(void *);
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
 
-static int max_cpus_initialized = 0;
+extern void     wakeup(void *);
 
-unsigned int   LockTimeOut;
-unsigned int   LockTimeOutTSC;
-unsigned int   MutexSpin;
-uint64_t       LastDebuggerEntryAllowance;
-uint64_t       delay_spin_threshold;
+uint64_t        LockTimeOut;
+uint64_t        TLBTimeOut;
+uint64_t        LockTimeOutTSC;
+uint32_t        LockTimeOutUsec;
+uint64_t        MutexSpin;
+uint64_t        low_MutexSpin;
+int64_t         high_MutexSpin;
+uint64_t        LastDebuggerEntryAllowance;
+uint64_t        delay_spin_threshold;
 
 extern uint64_t panic_restart_timeout;
 
 boolean_t virtualized = FALSE;
 
+decl_simple_lock_data(static, ml_timer_evaluation_slock);
+uint32_t ml_timer_eager_evaluations;
+uint64_t ml_timer_eager_evaluation_max;
+static boolean_t ml_timer_evaluation_in_progress = FALSE;
+
+LCK_GRP_DECLARE(max_cpus_grp, "max_cpus");
+LCK_MTX_DECLARE(max_cpus_lock, &max_cpus_grp);
+static int max_cpus_initialized = 0;
 #define MAX_CPUS_SET    0x1
 #define MAX_CPUS_WAIT   0x2
 
 /* IO memory map services */
 
 /* Map memory map IO space */
-vm_offset_t ml_io_map(
-       vm_offset_t phys_addr, 
+vm_offset_t
+ml_io_map(
+       vm_offset_t phys_addr,
        vm_size_t size)
 {
-       return(io_map(phys_addr,size,VM_WIMG_IO));
+       return io_map(phys_addr, size, VM_WIMG_IO);
 }
 
 /* boot memory allocation */
-vm_offset_t ml_static_malloc(
-                            __unused vm_size_t size)
+vm_offset_t
+ml_static_malloc(
+       __unused vm_size_t size)
 {
-       return((vm_offset_t)NULL);
+       return (vm_offset_t)NULL;
 }
 
 
-void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
+void
+ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
 {
-        *phys_addr = 0;
+       *phys_addr = 0;
        *size      = 0;
 }
 
@@ -107,12 +135,61 @@ ml_static_ptovirt(
 #else
        return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS);
 #endif
-} 
+}
 
+vm_offset_t
+ml_static_slide(
+       vm_offset_t vaddr)
+{
+       return VM_KERNEL_SLIDE(vaddr);
+}
 
 /*
- *     Routine:        ml_static_mfree
- *     Function:
+ * base must be page-aligned, and size must be a multiple of PAGE_SIZE
+ */
+kern_return_t
+ml_static_verify_page_protections(
+       uint64_t base, uint64_t size, vm_prot_t prot)
+{
+       vm_prot_t pageprot;
+       uint64_t offset;
+
+       DBG("ml_static_verify_page_protections: vaddr 0x%llx sz 0x%llx prot 0x%x\n", base, size, prot);
+
+       /*
+        * base must be within the static bounds, defined to be:
+        * (vm_kernel_stext, kc_highest_nonlinkedit_vmaddr)
+        */
+#if DEVELOPMENT || DEBUG || KASAN
+       assert(kc_highest_nonlinkedit_vmaddr > 0 && base > vm_kernel_stext && base < kc_highest_nonlinkedit_vmaddr);
+#else   /* On release kernels, assume this is a protection mismatch failure. */
+       if (kc_highest_nonlinkedit_vmaddr == 0 || base < vm_kernel_stext || base >= kc_highest_nonlinkedit_vmaddr) {
+               return KERN_FAILURE;
+       }
+#endif
+
+       for (offset = 0; offset < size; offset += PAGE_SIZE) {
+               if (pmap_get_prot(kernel_pmap, base + offset, &pageprot) == KERN_FAILURE) {
+                       return KERN_FAILURE;
+               }
+               if ((pageprot & prot) != prot) {
+                       return KERN_FAILURE;
+               }
+       }
+
+       return KERN_SUCCESS;
+}
+
+vm_offset_t
+ml_static_unslide(
+       vm_offset_t vaddr)
+{
+       return VM_KERNEL_UNSLIDE(vaddr);
+}
+
+/*
+ * Reclaim memory, by virtual address, that was used in early boot that is no longer needed
+ * by the kernel.
  */
 void
 ml_static_mfree(
@@ -122,42 +199,78 @@ ml_static_mfree(
        addr64_t vaddr_cur;
        ppnum_t ppn;
        uint32_t freed_pages = 0;
+       vm_size_t map_size;
+
        assert(vaddr >= VM_MIN_KERNEL_ADDRESS);
 
-       assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
+       assert((vaddr & (PAGE_SIZE - 1)) == 0); /* must be page aligned */
+
+       for (vaddr_cur = vaddr; vaddr_cur < round_page_64(vaddr + size);) {
+               map_size = pmap_query_pagesize(kernel_pmap, vaddr_cur);
+
+               /* just skip if nothing mapped here */
+               if (map_size == 0) {
+                       vaddr_cur += PAGE_SIZE;
+                       continue;
+               }
+
+               /*
+                * Can't free from the middle of a large page.
+                */
+               assert((vaddr_cur & (map_size - 1)) == 0);
 
-       for (vaddr_cur = vaddr;
-            vaddr_cur < round_page_64(vaddr+size);
-            vaddr_cur += PAGE_SIZE) {
                ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
-               if (ppn != (vm_offset_t)NULL) {
-                       kernel_pmap->stats.resident_count++;
-                       if (kernel_pmap->stats.resident_count >
-                           kernel_pmap->stats.resident_max) {
-                               kernel_pmap->stats.resident_max =
-                                       kernel_pmap->stats.resident_count;
+               assert(ppn != (ppnum_t)NULL);
+
+               pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur + map_size);
+               while (map_size > 0) {
+                       if (++kernel_pmap->stats.resident_count > kernel_pmap->stats.resident_max) {
+                               kernel_pmap->stats.resident_max = kernel_pmap->stats.resident_count;
                        }
-                       pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur+PAGE_SIZE);
-                       assert(pmap_valid_page(ppn));
 
+                       assert(pmap_valid_page(ppn));
                        if (IS_MANAGED_PAGE(ppn)) {
-                               vm_page_create(ppn,(ppn+1));
-                               vm_page_wire_count--;
+                               vm_page_create(ppn, (ppn + 1));
                                freed_pages++;
                        }
+                       map_size -= PAGE_SIZE;
+                       vaddr_cur += PAGE_SIZE;
+                       ppn++;
                }
        }
-#if    DEBUG   
+       vm_page_lockspin_queues();
+       vm_page_wire_count -= freed_pages;
+       vm_page_wire_count_initial -= freed_pages;
+       if (vm_page_wire_count_on_boot != 0) {
+               assert(vm_page_wire_count_on_boot >= freed_pages);
+               vm_page_wire_count_on_boot -= freed_pages;
+       }
+       vm_page_unlock_queues();
+
+#if     DEBUG
        kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn);
 #endif
 }
 
+/* Change page protections for addresses previously loaded by efiboot */
+kern_return_t
+ml_static_protect(vm_offset_t vmaddr, vm_size_t size, vm_prot_t prot)
+{
+       boolean_t NX = !!!(prot & VM_PROT_EXECUTE), ro = !!!(prot & VM_PROT_WRITE);
+
+       assert(prot & VM_PROT_READ);
+
+       pmap_mark_range(kernel_pmap, vmaddr, size, NX, ro);
+
+       return KERN_SUCCESS;
+}
 
 /* virtual to physical on wired pages */
-vm_offset_t ml_vtophys(
+vm_offset_t
+ml_vtophys(
        vm_offset_t vaddr)
 {
-       return  (vm_offset_t)kvtophys(vaddr);
+       return (vm_offset_t)kvtophys(vaddr);
 }
 
 /*
@@ -170,24 +283,30 @@ vm_offset_t ml_vtophys(
  *                     the duration of the copy process.
  */
 
-vm_size_t ml_nofault_copy(
+vm_size_t
+ml_nofault_copy(
        vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
 {
        addr64_t cur_phys_dst, cur_phys_src;
        uint32_t count, nbytes = 0;
 
        while (size > 0) {
-               if (!(cur_phys_src = kvtophys(virtsrc)))
+               if (!(cur_phys_src = kvtophys(virtsrc))) {
                        break;
-               if (!(cur_phys_dst = kvtophys(virtdst)))
+               }
+               if (!(cur_phys_dst = kvtophys(virtdst))) {
                        break;
-               if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src)))
+               }
+               if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src))) {
                        break;
+               }
                count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
-               if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK)))
+               if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK))) {
                        count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK));
-               if (count > size)
+               }
+               if (count > size) {
                        count = (uint32_t)size;
+               }
 
                bcopy_phys(cur_phys_src, cur_phys_dst, count);
 
@@ -200,113 +319,205 @@ vm_size_t ml_nofault_copy(
        return nbytes;
 }
 
+/*
+ *     Routine:        ml_validate_nofault
+ *     Function: Validate that ths address range has a valid translations
+ *                     in the kernel pmap.  If translations are present, they are
+ *                     assumed to be wired; i.e. no attempt is made to guarantee
+ *                     that the translation persist after the check.
+ *  Returns: TRUE if the range is mapped and will not cause a fault,
+ *                     FALSE otherwise.
+ */
+
+boolean_t
+ml_validate_nofault(
+       vm_offset_t virtsrc, vm_size_t size)
+{
+       addr64_t cur_phys_src;
+       uint32_t count;
+
+       while (size > 0) {
+               if (!(cur_phys_src = kvtophys(virtsrc))) {
+                       return FALSE;
+               }
+               if (!pmap_valid_page(i386_btop(cur_phys_src))) {
+                       return FALSE;
+               }
+               count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
+               if (count > size) {
+                       count = (uint32_t)size;
+               }
+
+               virtsrc += count;
+               size -= count;
+       }
+
+       return TRUE;
+}
+
 /* Interrupt handling */
 
 /* Initialize Interrupts */
-void ml_init_interrupt(void)
+void
+ml_init_interrupt(void)
 {
        (void) ml_set_interrupts_enabled(TRUE);
 }
 
 
 /* Get Interrupts Enabled */
-boolean_t ml_get_interrupts_enabled(void)
+boolean_t
+ml_get_interrupts_enabled(void)
 {
-  unsigned long flags;
+       unsigned long flags;
 
-  __asm__ volatile("pushf; pop %0" :  "=r" (flags));
-  return (flags & EFL_IF) != 0;
+       __asm__ volatile ("pushf; pop   %0":  "=r" (flags));
+       return (flags & EFL_IF) != 0;
 }
 
 /* Set Interrupts Enabled */
-boolean_t ml_set_interrupts_enabled(boolean_t enable)
+boolean_t
+ml_set_interrupts_enabled(boolean_t enable)
 {
        unsigned long flags;
        boolean_t istate;
-       
-       __asm__ volatile("pushf; pop    %0" :  "=r" (flags));
+
+       __asm__ volatile ("pushf; pop   %0"  :  "=r" (flags));
+
+       assert(get_interrupt_level() ? (enable == FALSE) : TRUE);
 
        istate = ((flags & EFL_IF) != 0);
 
        if (enable) {
-               __asm__ volatile("sti;nop");
+               __asm__ volatile ("sti;nop");
 
-               if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT))
-                       __asm__ volatile ("int $0xff");
-       }
-       else {
-               if (istate)
-                       __asm__ volatile("cli");
+               if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT)) {
+                       __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
+               }
+       } else {
+               if (istate) {
+                       __asm__ volatile ("cli");
+               }
        }
 
        return istate;
 }
 
+/* Early Set Interrupts Enabled */
+boolean_t
+ml_early_set_interrupts_enabled(boolean_t enable)
+{
+       if (enable == TRUE) {
+               kprintf("Caller attempted to enable interrupts too early in "
+                   "kernel startup. Halting.\n");
+               hlt();
+               /*NOTREACHED*/
+       }
+
+       /* On x86, do not allow interrupts to be enabled very early */
+       return FALSE;
+}
+
 /* Check if running at interrupt context */
-boolean_t ml_at_interrupt_context(void)
+boolean_t
+ml_at_interrupt_context(void)
 {
        return get_interrupt_level() != 0;
 }
 
+void
+ml_get_power_state(boolean_t *icp, boolean_t *pidlep)
+{
+       *icp = (get_interrupt_level() != 0);
+       /* These will be technically inaccurate for interrupts that occur
+        * successively within a single "idle exit" event, but shouldn't
+        * matter statistically.
+        */
+       *pidlep = (current_cpu_datap()->lcpu.package->num_idle == topoParms.nLThreadsPerPackage);
+}
+
 /* Generate a fake interrupt */
-void ml_cause_interrupt(void)
+__dead2
+void
+ml_cause_interrupt(void)
 {
        panic("ml_cause_interrupt not defined yet on Intel");
 }
 
-void ml_thread_policy(
+/*
+ * TODO: transition users of this to kernel_thread_start_priority
+ * ml_thread_policy is an unsupported KPI
+ */
+void
+ml_thread_policy(
        thread_t thread,
-__unused       unsigned policy_id,
+       __unused        unsigned policy_id,
        unsigned policy_info)
 {
        if (policy_info & MACHINE_NETWORK_WORKLOOP) {
-               spl_t           s = splsched();
+               thread_precedence_policy_data_t info;
+               __assert_only kern_return_t kret;
 
-               thread_lock(thread);
+               info.importance = 1;
 
-               set_priority(thread, thread->priority + 1);
-
-               thread_unlock(thread);
-               splx(s);
+               kret = thread_policy_set_internal(thread, THREAD_PRECEDENCE_POLICY,
+                   (thread_policy_t)&info,
+                   THREAD_PRECEDENCE_POLICY_COUNT);
+               assert(kret == KERN_SUCCESS);
        }
 }
 
 /* Initialize Interrupts */
-void ml_install_interrupt_handler(
+void
+ml_install_interrupt_handler(
        void *nub,
        int source,
        void *target,
        IOInterruptHandler handler,
-       void *refCon)  
+       void *refCon)
 {
        boolean_t current_state;
 
-       current_state = ml_get_interrupts_enabled();
+       current_state = ml_set_interrupts_enabled(FALSE);
 
        PE_install_interrupt_handler(nub, source, target,
-                                    (IOInterruptHandler) handler, refCon);
+           (IOInterruptHandler) handler, refCon);
 
        (void) ml_set_interrupts_enabled(current_state);
-
-       initialize_screen(NULL, kPEAcquireScreen);
 }
 
 
 void
 machine_signal_idle(
-        processor_t processor)
+       processor_t processor)
 {
        cpu_interrupt(processor->cpu_id);
 }
 
+__dead2
+void
+machine_signal_idle_deferred(
+       __unused processor_t processor)
+{
+       panic("Unimplemented");
+}
+
+__dead2
+void
+machine_signal_idle_cancel(
+       __unused processor_t processor)
+{
+       panic("Unimplemented");
+}
+
 static kern_return_t
 register_cpu(
-        uint32_t        lapic_id,
+       uint32_t        lapic_id,
        processor_t     *processor_out,
        boolean_t       boot_cpu )
 {
-       int             target_cpu;
-       cpu_data_t      *this_cpu_datap;
+       int             target_cpu;
+       cpu_data_t      *this_cpu_datap;
 
        this_cpu_datap = cpu_data_alloc(boot_cpu);
        if (this_cpu_datap == NULL) {
@@ -314,206 +525,301 @@ register_cpu(
        }
        target_cpu = this_cpu_datap->cpu_number;
        assert((boot_cpu && (target_cpu == 0)) ||
-             (!boot_cpu && (target_cpu != 0)));
+           (!boot_cpu && (target_cpu != 0)));
 
        lapic_cpu_map(lapic_id, target_cpu);
 
        /* The cpu_id is not known at registration phase. Just do
-        * lapic_id for now 
+        * lapic_id for now
         */
        this_cpu_datap->cpu_phys_number = lapic_id;
 
        this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
-       if (this_cpu_datap->cpu_console_buf == NULL)
+       if (this_cpu_datap->cpu_console_buf == NULL) {
                goto failed;
+       }
 
-       this_cpu_datap->cpu_chud = chudxnu_cpu_alloc(boot_cpu);
-       if (this_cpu_datap->cpu_chud == NULL)
+#if KPC
+       if (kpc_register_cpu(this_cpu_datap) != TRUE) {
                goto failed;
+       }
+#endif
 
        if (!boot_cpu) {
                cpu_thread_alloc(this_cpu_datap->cpu_number);
-               if (this_cpu_datap->lcpu.core == NULL)
-                       goto failed;
-
-#if NCOPY_WINDOWS > 0
-               this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
-               if (this_cpu_datap->cpu_pmap == NULL)
-                       goto failed;
-#endif
-
-               this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
-               if (this_cpu_datap->cpu_processor == NULL)
+               if (this_cpu_datap->lcpu.core == NULL) {
                        goto failed;
-               /*
-                * processor_init() deferred to topology start
-                * because "slot numbers" a.k.a. logical processor numbers
-                * are not yet finalized.
-                */
+               }
        }
 
+       /*
+        * processor_init() deferred to topology start
+        * because "slot numbers" a.k.a. logical processor numbers
+        * are not yet finalized.
+        */
        *processor_out = this_cpu_datap->cpu_processor;
 
        return KERN_SUCCESS;
 
 failed:
-       cpu_processor_free(this_cpu_datap->cpu_processor);
-#if NCOPY_WINDOWS > 0
-       pmap_cpu_free(this_cpu_datap->cpu_pmap);
-#endif
-       chudxnu_cpu_free(this_cpu_datap->cpu_chud);
        console_cpu_free(this_cpu_datap->cpu_console_buf);
+#if KPC
+       kpc_unregister_cpu(this_cpu_datap);
+#endif /* KPC */
+
        return KERN_FAILURE;
 }
 
 
 kern_return_t
 ml_processor_register(
-        cpu_id_t        cpu_id,
-        uint32_t        lapic_id,
-        processor_t     *processor_out,
-        boolean_t       boot_cpu,
+       cpu_id_t        cpu_id,
+       uint32_t        lapic_id,
+       processor_t     *processor_out,
+       boolean_t       boot_cpu,
        boolean_t       start )
 {
-    static boolean_t done_topo_sort = FALSE;
-    static uint32_t num_registered = 0;
+       static boolean_t done_topo_sort = FALSE;
+       static uint32_t num_registered = 0;
 
-    /* Register all CPUs first, and track max */
-    if( start == FALSE )
-    {
-       num_registered++;
+       /* Register all CPUs first, and track max */
+       if (start == FALSE) {
+               num_registered++;
 
-       DBG( "registering CPU lapic id %d\n", lapic_id );
+               DBG( "registering CPU lapic id %d\n", lapic_id );
 
-       return register_cpu( lapic_id, processor_out, boot_cpu );
-    }
+               return register_cpu( lapic_id, processor_out, boot_cpu );
+       }
 
-    /* Sort by topology before we start anything */
-    if( !done_topo_sort )
-    {
-       DBG( "about to start CPUs. %d registered\n", num_registered );
+       /* Sort by topology before we start anything */
+       if (!done_topo_sort) {
+               DBG( "about to start CPUs. %d registered\n", num_registered );
+
+               cpu_topology_sort( num_registered );
+               done_topo_sort = TRUE;
+       }
 
-       cpu_topology_sort( num_registered );
-       done_topo_sort = TRUE;
-    }
+       /* Assign the cpu ID */
+       uint32_t cpunum = -1;
+       cpu_data_t  *this_cpu_datap = NULL;
 
-    /* Assign the cpu ID */
-    uint32_t cpunum = -1;
-    cpu_data_t *this_cpu_datap = NULL;
+       /* find cpu num and pointer */
+       cpunum = ml_get_cpuid( lapic_id );
 
-    /* find cpu num and pointer */
-    cpunum = ml_get_cpuid( lapic_id );
+       if (cpunum == 0xFFFFFFFF) { /* never heard of it? */
+               panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
+       }
 
-    if( cpunum == 0xFFFFFFFF ) /* never heard of it? */
-       panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
+       this_cpu_datap = cpu_datap(cpunum);
 
-    this_cpu_datap = cpu_datap(cpunum);
+       /* fix the CPU id */
+       this_cpu_datap->cpu_id = cpu_id;
 
-    /* fix the CPU id */
-    this_cpu_datap->cpu_id = cpu_id;
+       /* allocate and initialize other per-cpu structures */
+       if (!boot_cpu) {
+               mp_cpus_call_cpu_init(cpunum);
+               random_cpu_init(cpunum);
+       }
 
-    /* output arg */
-    *processor_out = this_cpu_datap->cpu_processor;
+       /* output arg */
+       *processor_out = this_cpu_datap->cpu_processor;
 
-    /* OK, try and start this CPU */
-    return cpu_topology_start_cpu( cpunum );
+       /* OK, try and start this CPU */
+       return cpu_topology_start_cpu( cpunum );
 }
 
 
 void
 ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
 {
-       boolean_t       os_supports_sse;
+       boolean_t       os_supports_sse;
        i386_cpu_info_t *cpuid_infop;
 
-       if (cpu_infop == NULL)
+       if (cpu_infop == NULL) {
                return;
+       }
+
        /*
         * Are we supporting MMX/SSE/SSE2/SSE3?
         * As distinct from whether the cpu has these capabilities.
         */
        os_supports_sse = !!(get_cr4() & CR4_OSXMM);
 
-       if (ml_fpu_avx_enabled())
+       if (ml_fpu_avx_enabled()) {
                cpu_infop->vector_unit = 9;
-       else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse)
+       } else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse) {
                cpu_infop->vector_unit = 8;
-       else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse)
+       } else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse) {
                cpu_infop->vector_unit = 7;
-       else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse)
+       } else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse) {
                cpu_infop->vector_unit = 6;
-       else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
+       } else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse) {
                cpu_infop->vector_unit = 5;
-       else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
+       } else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse) {
                cpu_infop->vector_unit = 4;
-       else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
+       } else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse) {
                cpu_infop->vector_unit = 3;
-       else if (cpuid_features() & CPUID_FEATURE_MMX)
+       } else if (cpuid_features() & CPUID_FEATURE_MMX) {
                cpu_infop->vector_unit = 2;
-       else
+       } else {
                cpu_infop->vector_unit = 0;
+       }
 
        cpuid_infop  = cpuid_info();
 
-       cpu_infop->cache_line_size = cpuid_infop->cache_linesize; 
+       cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
 
        cpu_infop->l1_icache_size = cpuid_infop->cache_size[L1I];
        cpu_infop->l1_dcache_size = cpuid_infop->cache_size[L1D];
-  
-        if (cpuid_infop->cache_size[L2U] > 0) {
-            cpu_infop->l2_settings = 1;
-            cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
-        } else {
-            cpu_infop->l2_settings = 0;
-            cpu_infop->l2_cache_size = 0xFFFFFFFF;
-        }
 
-        if (cpuid_infop->cache_size[L3U] > 0) {
-            cpu_infop->l3_settings = 1;
-            cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
-        } else {
-            cpu_infop->l3_settings = 0;
-            cpu_infop->l3_cache_size = 0xFFFFFFFF;
-        }
+       if (cpuid_infop->cache_size[L2U] > 0) {
+               cpu_infop->l2_settings = 1;
+               cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
+       } else {
+               cpu_infop->l2_settings = 0;
+               cpu_infop->l2_cache_size = 0xFFFFFFFF;
+       }
+
+       if (cpuid_infop->cache_size[L3U] > 0) {
+               cpu_infop->l3_settings = 1;
+               cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
+       } else {
+               cpu_infop->l3_settings = 0;
+               cpu_infop->l3_cache_size = 0xFFFFFFFF;
+       }
 }
 
-void
-ml_init_max_cpus(unsigned long max_cpus)
+int
+ml_early_cpu_max_number(void)
 {
-        boolean_t current_state;
+       int n = max_ncpus;
 
-        current_state = ml_set_interrupts_enabled(FALSE);
-        if (max_cpus_initialized != MAX_CPUS_SET) {
-                if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
+       assert(startup_phase >= STARTUP_SUB_TUNABLES);
+       if (max_cpus_from_firmware) {
+               n = MIN(n, max_cpus_from_firmware);
+       }
+       return n - 1;
+}
+
+void
+ml_set_max_cpus(unsigned int max_cpus)
+{
+       lck_mtx_lock(&max_cpus_lock);
+       if (max_cpus_initialized != MAX_CPUS_SET) {
+               if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
                        /*
                         * Note: max_cpus is the number of enabled processors
                         * that ACPI found; max_ncpus is the maximum number
                         * that the kernel supports or that the "cpus="
                         * boot-arg has set. Here we take int minimum.
                         */
-                        machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
+                       machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
                }
-                if (max_cpus_initialized == MAX_CPUS_WAIT)
-                        wakeup((event_t)&max_cpus_initialized);
-                max_cpus_initialized = MAX_CPUS_SET;
-        }
-        (void) ml_set_interrupts_enabled(current_state);
+               if (max_cpus_initialized == MAX_CPUS_WAIT) {
+                       thread_wakeup((event_t) &max_cpus_initialized);
+               }
+               max_cpus_initialized = MAX_CPUS_SET;
+       }
+       lck_mtx_unlock(&max_cpus_lock);
 }
 
-int
-ml_get_max_cpus(void)
+unsigned int
+ml_wait_max_cpus(void)
+{
+       lck_mtx_lock(&max_cpus_lock);
+       while (max_cpus_initialized != MAX_CPUS_SET) {
+               max_cpus_initialized = MAX_CPUS_WAIT;
+               lck_mtx_sleep(&max_cpus_lock, LCK_SLEEP_DEFAULT, &max_cpus_initialized, THREAD_UNINT);
+       }
+       lck_mtx_unlock(&max_cpus_lock);
+       return machine_info.max_cpus;
+}
+
+void
+ml_panic_trap_to_debugger(__unused const char *panic_format_str,
+    __unused va_list *panic_args,
+    __unused unsigned int reason,
+    __unused void *ctx,
+    __unused uint64_t panic_options_mask,
+    __unused unsigned long panic_caller)
+{
+       return;
+}
+
+static uint64_t
+virtual_timeout_inflate64(unsigned int vti, uint64_t timeout, uint64_t max_timeout)
+{
+       if (vti >= 64) {
+               return max_timeout;
+       }
+
+       if ((timeout << vti) >> vti != timeout) {
+               return max_timeout;
+       }
+
+       if ((timeout << vti) > max_timeout) {
+               return max_timeout;
+       }
+
+       return timeout << vti;
+}
+
+static uint32_t
+virtual_timeout_inflate32(unsigned int vti, uint32_t timeout, uint32_t max_timeout)
 {
-        boolean_t current_state;
+       if (vti >= 32) {
+               return max_timeout;
+       }
 
-        current_state = ml_set_interrupts_enabled(FALSE);
-        if (max_cpus_initialized != MAX_CPUS_SET) {
-                max_cpus_initialized = MAX_CPUS_WAIT;
-                assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
-                (void)thread_block(THREAD_CONTINUE_NULL);
-        }
-        (void) ml_set_interrupts_enabled(current_state);
-        return(machine_info.max_cpus);
+       if ((timeout << vti) >> vti != timeout) {
+               return max_timeout;
+       }
+
+       return timeout << vti;
+}
+
+/*
+ * Some timeouts are later adjusted or used in calculations setting
+ * other values. In order to avoid overflow, cap the max timeout as
+ * 2^47ns (~39 hours).
+ */
+static const uint64_t max_timeout_ns = 1ULL << 47;
+
+/*
+ * Inflate a timeout in absolutetime.
+ */
+static uint64_t
+virtual_timeout_inflate_abs(unsigned int vti, uint64_t timeout)
+{
+       uint64_t max_timeout;
+       nanoseconds_to_absolutetime(max_timeout_ns, &max_timeout);
+       return virtual_timeout_inflate64(vti, timeout, max_timeout);
+}
+
+/*
+ * Inflate a value in TSC ticks.
+ */
+static uint64_t
+virtual_timeout_inflate_tsc(unsigned int vti, uint64_t timeout)
+{
+       const uint64_t max_timeout = tmrCvt(max_timeout_ns, tscFCvtn2t);
+       return virtual_timeout_inflate64(vti, timeout, max_timeout);
+}
+
+/*
+ * Inflate a timeout in microseconds.
+ */
+static uint32_t
+virtual_timeout_inflate_us(unsigned int vti, uint64_t timeout)
+{
+       const uint32_t max_timeout = ~0;
+       return virtual_timeout_inflate32(vti, timeout, max_timeout);
+}
+
+uint64_t
+ml_get_timebase_entropy(void)
+{
+       return __builtin_ia32_rdtsc();
 }
 
 /*
@@ -523,44 +829,138 @@ ml_get_max_cpus(void)
 void
 ml_init_lock_timeout(void)
 {
-       uint64_t        abstime;
-       uint32_t        mtxspin;
-       uint64_t        default_timeout_ns = NSEC_PER_SEC>>2;
-       uint32_t        slto;
-       uint32_t        prt;
+       uint64_t        abstime;
+       uint32_t        mtxspin;
+#if DEVELOPMENT || DEBUG
+       uint64_t        default_timeout_ns = NSEC_PER_SEC >> 2;
+#else
+       uint64_t        default_timeout_ns = NSEC_PER_SEC >> 1;
+#endif
+       uint32_t        slto;
+       uint32_t        prt;
 
-       if (PE_parse_boot_argn("slto_us", &slto, sizeof (slto)))
+       if (PE_parse_boot_argn("slto_us", &slto, sizeof(slto))) {
                default_timeout_ns = slto * NSEC_PER_USEC;
+       }
 
-       /* LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks */
+       /*
+        * LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks,
+        * and LockTimeOutUsec is in microseconds and it's 32-bits.
+        */
+       LockTimeOutUsec = (uint32_t) (default_timeout_ns / NSEC_PER_USEC);
        nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
-       LockTimeOut = (uint32_t) abstime;
-       LockTimeOutTSC = (uint32_t) tmrCvt(abstime, tscFCvtn2t);
+       LockTimeOut = abstime;
+       LockTimeOutTSC = tmrCvt(abstime, tscFCvtn2t);
 
-       if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof (mtxspin))) {
-               if (mtxspin > USEC_PER_SEC>>4)
-                       mtxspin =  USEC_PER_SEC>>4;
-               nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
+       /*
+        * TLBTimeOut dictates the TLB flush timeout period. It defaults to
+        * LockTimeOut but can be overriden separately. In particular, a
+        * zero value inhibits the timeout-panic and cuts a trace evnt instead
+        * - see pmap_flush_tlbs().
+        */
+       if (PE_parse_boot_argn("tlbto_us", &slto, sizeof(slto))) {
+               default_timeout_ns = slto * NSEC_PER_USEC;
+               nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+               TLBTimeOut = (uint32_t) abstime;
        } else {
-               nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
+               TLBTimeOut = LockTimeOut;
+       }
+
+#if DEVELOPMENT || DEBUG
+       reportphyreaddelayabs = LockTimeOut >> 1;
+#endif
+       if (PE_parse_boot_argn("phyreadmaxus", &slto, sizeof(slto))) {
+               default_timeout_ns = slto * NSEC_PER_USEC;
+               nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+               reportphyreaddelayabs = abstime;
+       }
+
+       if (PE_parse_boot_argn("phywritemaxus", &slto, sizeof(slto))) {
+               nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+               reportphywritedelayabs = abstime;
+       }
+
+       if (PE_parse_boot_argn("tracephyreadus", &slto, sizeof(slto))) {
+               nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+               tracephyreaddelayabs = abstime;
+       }
+
+       if (PE_parse_boot_argn("tracephywriteus", &slto, sizeof(slto))) {
+               nanoseconds_to_absolutetime((uint64_t)slto * NSEC_PER_USEC, &abstime);
+               tracephywritedelayabs = abstime;
+       }
+
+       if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof(mtxspin))) {
+               if (mtxspin > USEC_PER_SEC >> 4) {
+                       mtxspin =  USEC_PER_SEC >> 4;
+               }
+               nanoseconds_to_absolutetime(mtxspin * NSEC_PER_USEC, &abstime);
+       } else {
+               nanoseconds_to_absolutetime(10 * NSEC_PER_USEC, &abstime);
        }
        MutexSpin = (unsigned int)abstime;
+       low_MutexSpin = MutexSpin;
+       /*
+        * high_MutexSpin should be initialized as low_MutexSpin * real_ncpus, but
+        * real_ncpus is not set at this time
+        */
+       high_MutexSpin = -1;
 
        nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC, &LastDebuggerEntryAllowance);
-       if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof (prt)))
+       if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof(prt))) {
                nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout);
+       }
+
        virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0);
+       if (virtualized) {
+               unsigned int vti;
+
+               if (!PE_parse_boot_argn("vti", &vti, sizeof(vti))) {
+                       vti = 6;
+               }
+               printf("Timeouts adjusted for virtualization (<<%d)\n", vti);
+               kprintf("Timeouts adjusted for virtualization (<<%d):\n", vti);
+#define VIRTUAL_TIMEOUT_INFLATE_ABS(_timeout)              \
+MACRO_BEGIN                                                \
+       kprintf("%24s: 0x%016llx ", #_timeout, _timeout);      \
+       _timeout = virtual_timeout_inflate_abs(vti, _timeout); \
+       kprintf("-> 0x%016llx\n",  _timeout);                  \
+MACRO_END
+
+#define VIRTUAL_TIMEOUT_INFLATE_TSC(_timeout)              \
+MACRO_BEGIN                                                \
+       kprintf("%24s: 0x%016llx ", #_timeout, _timeout);      \
+       _timeout = virtual_timeout_inflate_tsc(vti, _timeout); \
+       kprintf("-> 0x%016llx\n",  _timeout);                  \
+MACRO_END
+#define VIRTUAL_TIMEOUT_INFLATE_US(_timeout)               \
+MACRO_BEGIN                                                \
+       kprintf("%24s:         0x%08x ", #_timeout, _timeout); \
+       _timeout = virtual_timeout_inflate_us(vti, _timeout);  \
+       kprintf("-> 0x%08x\n",  _timeout);                     \
+MACRO_END
+               VIRTUAL_TIMEOUT_INFLATE_US(LockTimeOutUsec);
+               VIRTUAL_TIMEOUT_INFLATE_ABS(LockTimeOut);
+               VIRTUAL_TIMEOUT_INFLATE_TSC(LockTimeOutTSC);
+               VIRTUAL_TIMEOUT_INFLATE_ABS(TLBTimeOut);
+               VIRTUAL_TIMEOUT_INFLATE_ABS(MutexSpin);
+               VIRTUAL_TIMEOUT_INFLATE_ABS(low_MutexSpin);
+               VIRTUAL_TIMEOUT_INFLATE_ABS(reportphyreaddelayabs);
+       }
+
        interrupt_latency_tracker_setup();
+       simple_lock_init(&ml_timer_evaluation_slock, 0);
 }
 
 /*
  * Threshold above which we should attempt to block
  * instead of spinning for clock_delay_until().
  */
+
 void
-ml_init_delay_spin_threshold(void)
+ml_init_delay_spin_threshold(int threshold_us)
 {
-       nanoseconds_to_absolutetime(10ULL * NSEC_PER_USEC, &delay_spin_threshold);
+       nanoseconds_to_absolutetime(threshold_us * NSEC_PER_USEC, &delay_spin_threshold);
 }
 
 boolean_t
@@ -569,8 +969,20 @@ ml_delay_should_spin(uint64_t interval)
        return (interval < delay_spin_threshold) ? TRUE : FALSE;
 }
 
+TUNABLE(uint32_t, yield_delay_us, "yield_delay_us", 0);
+
+void
+ml_delay_on_yield(void)
+{
+#if DEVELOPMENT || DEBUG
+       if (yield_delay_us) {
+               delay(yield_delay_us);
+       }
+#endif
+}
+
 /*
- * This is called from the machine-independent routine cpu_up()
+ * This is called from the machine-independent layer
  * to perform machine-dependent info updates. Defer to cpu_thread_init().
  */
 void
@@ -580,12 +992,14 @@ ml_cpu_up(void)
 }
 
 /*
- * This is called from the machine-independent routine cpu_down()
+ * This is called from the machine-independent layer
  * to perform machine-dependent info updates.
  */
 void
 ml_cpu_down(void)
 {
+       i386_deactivate_cpu();
+
        return;
 }
 
@@ -593,109 +1007,262 @@ ml_cpu_down(void)
  * The following are required for parts of the kernel
  * that cannot resolve these functions as inlines:
  */
-extern thread_t current_act(void);
+extern thread_t current_act(void) __attribute__((const));
 thread_t
 current_act(void)
 {
-  return(current_thread_fast());
+       return current_thread_fast();
 }
 
 #undef current_thread
-extern thread_t current_thread(void);
+extern thread_t current_thread(void) __attribute__((const));
 thread_t
 current_thread(void)
 {
-  return(current_thread_fast());
+       return current_thread_fast();
 }
 
 
-boolean_t ml_is64bit(void) {
-
-        return (cpu_mode_is64bit());
+boolean_t
+ml_is64bit(void)
+{
+       return cpu_mode_is64bit();
 }
 
 
-boolean_t ml_thread_is64bit(thread_t thread) {
-  
-        return (thread_is_64bit(thread));
+boolean_t
+ml_thread_is64bit(thread_t thread)
+{
+       return thread_is_64bit_addr(thread);
 }
 
 
-boolean_t ml_state_is64bit(void *saved_state) {
-
+boolean_t
+ml_state_is64bit(void *saved_state)
+{
        return is_saved_state64(saved_state);
 }
 
-void ml_cpu_set_ldt(int selector)
+void
+ml_cpu_set_ldt(int selector)
 {
        /*
         * Avoid loading the LDT
         * if we're setting the KERNEL LDT and it's already set.
         */
        if (selector == KERNEL_LDT &&
-           current_cpu_datap()->cpu_ldt == KERNEL_LDT)
+           current_cpu_datap()->cpu_ldt == KERNEL_LDT) {
                return;
+       }
 
-#if defined(__i386__)
-       /*
-        * If 64bit this requires a mode switch (and back). 
-        */
-       if (cpu_mode_is64bit())
-               ml_64bit_lldt(selector);
-       else
-               lldt(selector);
-#else
        lldt(selector);
-#endif
        current_cpu_datap()->cpu_ldt = selector;
 }
 
-void ml_fp_setvalid(boolean_t value)
+void
+ml_fp_setvalid(boolean_t value)
 {
-        fp_setvalid(value);
+       fp_setvalid(value);
 }
 
-uint64_t ml_cpu_int_event_time(void)
+uint64_t
+ml_cpu_int_event_time(void)
 {
        return current_cpu_datap()->cpu_int_event_time;
 }
 
-vm_offset_t ml_stack_remaining(void)
+vm_offset_t
+ml_stack_remaining(void)
 {
        uintptr_t local = (uintptr_t) &local;
 
        if (ml_at_interrupt_context() != 0) {
-           return (local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE));
+               return local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE);
        } else {
-           return (local - current_thread()->kernel_stack);
+               return local - current_thread()->kernel_stack;
        }
 }
 
+#if KASAN
+vm_offset_t ml_stack_base(void);
+vm_size_t ml_stack_size(void);
+
+vm_offset_t
+ml_stack_base(void)
+{
+       if (ml_at_interrupt_context()) {
+               return current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE;
+       } else {
+               return current_thread()->kernel_stack;
+       }
+}
+
+vm_size_t
+ml_stack_size(void)
+{
+       if (ml_at_interrupt_context()) {
+               return INTSTACK_SIZE;
+       } else {
+               return kernel_stack_size;
+       }
+}
+#endif
+
 void
 kernel_preempt_check(void)
 {
-       boolean_t       intr;
+       boolean_t       intr;
        unsigned long flags;
 
        assert(get_preemption_level() == 0);
 
-       __asm__ volatile("pushf; pop    %0" :  "=r" (flags));
-
-       intr = ((flags & EFL_IF) != 0);
-
-       if ((*ast_pending() & AST_URGENT) && intr == TRUE) {
+       if (__improbable(*ast_pending() & AST_URGENT)) {
                /*
-                * can handle interrupts and preemptions 
+                * can handle interrupts and preemptions
                 * at this point
                 */
+               __asm__ volatile ("pushf; pop   %0"  :  "=r" (flags));
+
+               intr = ((flags & EFL_IF) != 0);
 
                /*
                 * now cause the PRE-EMPTION trap
                 */
-               __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
+               if (intr == TRUE) {
+                       __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
+               }
        }
 }
 
-boolean_t machine_timeout_suspended(void) {
-       return (virtualized || pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity());
+boolean_t
+machine_timeout_suspended(void)
+{
+       return pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity() || ml_recent_wake();
+}
+
+/* Eagerly evaluate all pending timer and thread callouts
+ */
+void
+ml_timer_evaluate(void)
+{
+       KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN | DBG_FUNC_START, 0, 0, 0, 0, 0);
+
+       uint64_t te_end, te_start = mach_absolute_time();
+       simple_lock(&ml_timer_evaluation_slock, LCK_GRP_NULL);
+       ml_timer_evaluation_in_progress = TRUE;
+       thread_call_delayed_timer_rescan_all();
+       mp_cpus_call(CPUMASK_ALL, ASYNC, timer_queue_expire_rescan, NULL);
+       ml_timer_evaluation_in_progress = FALSE;
+       ml_timer_eager_evaluations++;
+       te_end = mach_absolute_time();
+       ml_timer_eager_evaluation_max = MAX(ml_timer_eager_evaluation_max, (te_end - te_start));
+       simple_unlock(&ml_timer_evaluation_slock);
+
+       KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN | DBG_FUNC_END, 0, 0, 0, 0, 0);
+}
+
+boolean_t
+ml_timer_forced_evaluation(void)
+{
+       return ml_timer_evaluation_in_progress;
+}
+
+uint64_t
+ml_energy_stat(__unused thread_t t)
+{
+       return 0;
+}
+
+void
+ml_gpu_stat_update(uint64_t gpu_ns_delta)
+{
+       current_thread()->machine.thread_gpu_ns += gpu_ns_delta;
+}
+
+uint64_t
+ml_gpu_stat(thread_t t)
+{
+       return t->machine.thread_gpu_ns;
+}
+
+int plctrace_enabled = 0;
+
+void
+_disable_preemption(void)
+{
+       disable_preemption_internal();
+}
+
+void
+_enable_preemption(void)
+{
+       enable_preemption_internal();
+}
+
+void
+plctrace_disable(void)
+{
+       plctrace_enabled = 0;
+}
+
+static boolean_t ml_quiescing;
+
+void
+ml_set_is_quiescing(boolean_t quiescing)
+{
+       ml_quiescing = quiescing;
+}
+
+boolean_t
+ml_is_quiescing(void)
+{
+       return ml_quiescing;
+}
+
+uint64_t
+ml_get_booter_memory_size(void)
+{
+       return 0;
+}
+
+void
+machine_lockdown(void)
+{
+       x86_64_protect_data_const();
+}
+
+bool
+ml_cpu_can_exit(__unused int cpu_id)
+{
+       return true;
+}
+
+void
+ml_cpu_begin_state_transition(__unused int cpu_id)
+{
+}
+
+void
+ml_cpu_end_state_transition(__unused int cpu_id)
+{
+}
+
+void
+ml_cpu_begin_loop(void)
+{
+}
+
+void
+ml_cpu_end_loop(void)
+{
+}
+
+size_t
+ml_get_vm_reserved_regions(bool vm_is64bit, struct vm_reserved_region **regions)
+{
+#pragma unused(vm_is64bit)
+       assert(regions != NULL);
+
+       *regions = NULL;
+       return 0;
 }