/*
- * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <kern/cpu_data.h>
#include <kern/cpu_number.h>
#include <kern/thread.h>
+#include <kern/thread_call.h>
#include <i386/machine_cpu.h>
#include <i386/lapic.h>
#include <i386/lock.h>
#include <i386/pmap.h>
#include <i386/pmap_internal.h>
#include <i386/misc_protos.h>
+#include <kern/timer_queue.h>
+#if KPC
+#include <kern/kpc.h>
+#endif
#if DEBUG
#define DBG(x...) kprintf("DBG: " x)
boolean_t virtualized = FALSE;
+decl_simple_lock_data(static, ml_timer_evaluation_slock);
+uint32_t ml_timer_eager_evaluations;
+uint64_t ml_timer_eager_evaluation_max;
+static boolean_t ml_timer_evaluation_in_progress = FALSE;
+
+
#define MAX_CPUS_SET 0x1
#define MAX_CPUS_WAIT 0x2
return nbytes;
}
+/*
+ * Routine: ml_validate_nofault
+ * Function: Validate that ths address range has a valid translations
+ * in the kernel pmap. If translations are present, they are
+ * assumed to be wired; i.e. no attempt is made to guarantee
+ * that the translation persist after the check.
+ * Returns: TRUE if the range is mapped and will not cause a fault,
+ * FALSE otherwise.
+ */
+
+boolean_t ml_validate_nofault(
+ vm_offset_t virtsrc, vm_size_t size)
+{
+ addr64_t cur_phys_src;
+ uint32_t count;
+
+ while (size > 0) {
+ if (!(cur_phys_src = kvtophys(virtsrc)))
+ return FALSE;
+ if (!pmap_valid_page(i386_btop(cur_phys_src)))
+ return FALSE;
+ count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
+ if (count > size)
+ count = (uint32_t)size;
+
+ virtsrc += count;
+ size -= count;
+ }
+
+ return TRUE;
+}
+
/* Interrupt handling */
/* Initialize Interrupts */
__asm__ volatile("pushf; pop %0" : "=r" (flags));
+ assert(get_interrupt_level() ? (enable == FALSE) : TRUE);
+
istate = ((flags & EFL_IF) != 0);
if (enable) {
return get_interrupt_level() != 0;
}
+void ml_get_power_state(boolean_t *icp, boolean_t *pidlep) {
+ *icp = (get_interrupt_level() != 0);
+ /* These will be technically inaccurate for interrupts that occur
+ * successively within a single "idle exit" event, but shouldn't
+ * matter statistically.
+ */
+ *pidlep = (current_cpu_datap()->lcpu.package->num_idle == topoParms.nLThreadsPerPackage);
+}
+
/* Generate a fake interrupt */
void ml_cause_interrupt(void)
{
if (this_cpu_datap->cpu_chud == NULL)
goto failed;
+#if KPC
+ this_cpu_datap->cpu_kpc_buf[0] = kpc_counterbuf_alloc();
+ if(this_cpu_datap->cpu_kpc_buf[0] == NULL )
+ goto failed;
+ this_cpu_datap->cpu_kpc_buf[1] = kpc_counterbuf_alloc();
+ if(this_cpu_datap->cpu_kpc_buf[1] == NULL )
+ goto failed;
+
+ this_cpu_datap->cpu_kpc_shadow = kpc_counterbuf_alloc();
+ if(this_cpu_datap->cpu_kpc_shadow == NULL )
+ goto failed;
+
+ this_cpu_datap->cpu_kpc_reload = kpc_counterbuf_alloc();
+ if(this_cpu_datap->cpu_kpc_reload == NULL )
+ goto failed;
+#endif
+
if (!boot_cpu) {
cpu_thread_alloc(this_cpu_datap->cpu_number);
if (this_cpu_datap->lcpu.core == NULL)
#endif
chudxnu_cpu_free(this_cpu_datap->cpu_chud);
console_cpu_free(this_cpu_datap->cpu_console_buf);
+#if KPC
+ kpc_counterbuf_free(this_cpu_datap->cpu_kpc_buf[0]);
+ kpc_counterbuf_free(this_cpu_datap->cpu_kpc_buf[1]);
+ kpc_counterbuf_free(this_cpu_datap->cpu_kpc_shadow);
+ kpc_counterbuf_free(this_cpu_datap->cpu_kpc_reload);
+#endif
+
return KERN_FAILURE;
}
nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout);
virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0);
interrupt_latency_tracker_setup();
+ simple_lock_init(&ml_timer_evaluation_slock, 0);
}
/*
* Threshold above which we should attempt to block
* instead of spinning for clock_delay_until().
*/
+
void
-ml_init_delay_spin_threshold(void)
+ml_init_delay_spin_threshold(int threshold_us)
{
- nanoseconds_to_absolutetime(10ULL * NSEC_PER_USEC, &delay_spin_threshold);
+ nanoseconds_to_absolutetime(threshold_us * NSEC_PER_USEC, &delay_spin_threshold);
}
boolean_t
}
/*
- * This is called from the machine-independent routine cpu_up()
+ * This is called from the machine-independent layer
* to perform machine-dependent info updates. Defer to cpu_thread_init().
*/
void
}
/*
- * This is called from the machine-independent routine cpu_down()
+ * This is called from the machine-independent layer
* to perform machine-dependent info updates.
*/
void
ml_cpu_down(void)
{
+ i386_deactivate_cpu();
+
return;
}
current_cpu_datap()->cpu_ldt == KERNEL_LDT)
return;
-#if defined(__i386__)
- /*
- * If 64bit this requires a mode switch (and back).
- */
- if (cpu_mode_is64bit())
- ml_64bit_lldt(selector);
- else
- lldt(selector);
-#else
lldt(selector);
-#endif
current_cpu_datap()->cpu_ldt = selector;
}
boolean_t machine_timeout_suspended(void) {
return (virtualized || pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity());
}
+
+/* Eagerly evaluate all pending timer and thread callouts
+ */
+void ml_timer_evaluate(void) {
+ KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_START, 0, 0, 0, 0, 0);
+
+ uint64_t te_end, te_start = mach_absolute_time();
+ simple_lock(&ml_timer_evaluation_slock);
+ ml_timer_evaluation_in_progress = TRUE;
+ thread_call_delayed_timer_rescan_all();
+ mp_cpus_call(CPUMASK_ALL, ASYNC, timer_queue_expire_rescan, NULL);
+ ml_timer_evaluation_in_progress = FALSE;
+ ml_timer_eager_evaluations++;
+ te_end = mach_absolute_time();
+ ml_timer_eager_evaluation_max = MAX(ml_timer_eager_evaluation_max, (te_end - te_start));
+ simple_unlock(&ml_timer_evaluation_slock);
+
+ KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_END, 0, 0, 0, 0, 0);
+}
+
+boolean_t
+ml_timer_forced_evaluation(void) {
+ return ml_timer_evaluation_in_progress;
+}