queue_head_t tasks;
queue_head_t terminated_tasks; /* To be used ONLY for stackshot. */
int tasks_count;
+int terminated_tasks_count;
queue_head_t threads;
int threads_count;
decl_lck_mtx_data(,tasks_threads_lock)
int cpu_id,
processor_set_t pset)
{
+ spl_t s;
+
if (processor != master_processor) {
/* Scheduler state deferred until sched_init() */
SCHED(processor_init)(processor);
processor_data_init(processor);
processor->processor_list = NULL;
+ s = splsched();
pset_lock(pset);
if (pset->cpu_set_count++ == 0)
pset->cpu_set_low = pset->cpu_set_hi = cpu_id;
pset->cpu_set_hi = (cpu_id > pset->cpu_set_hi)? cpu_id: pset->cpu_set_hi;
}
pset_unlock(pset);
+ splx(s);
simple_lock(&processor_list_lock);
if (processor_list == NULL)
pset_count_init_hint(pset, PROCESSOR_NULL);
pset->cpu_set_low = pset->cpu_set_hi = 0;
pset->cpu_set_count = 0;
+ pset->pending_AST_cpu_mask = 0;
pset_lock_init(pset);
pset->pset_self = IP_NULL;
pset->pset_name_self = IP_NULL;
case PROCESSOR_CPU_LOAD_INFO:
{
processor_cpu_load_info_t cpu_load_info;
- timer_data_t idle_temp;
timer_t idle_state;
+ uint64_t idle_time_snapshot1, idle_time_snapshot2;
+ uint64_t idle_time_tstamp1, idle_time_tstamp2;
+
+ /*
+ * We capture the accumulated idle time twice over
+ * the course of this function, as well as the timestamps
+ * when each were last updated. Since these are
+ * all done using non-atomic racy mechanisms, the
+ * most we can infer is whether values are stable.
+ * timer_grab() is the only function that can be
+ * used reliably on another processor's per-processor
+ * data.
+ */
if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT)
return (KERN_FAILURE);
}
idle_state = &PROCESSOR_DATA(processor, idle_state);
- idle_temp = *idle_state;
-
- if (PROCESSOR_DATA(processor, current_state) != idle_state ||
- timer_grab(&idle_temp) != timer_grab(idle_state)) {
+ idle_time_snapshot1 = timer_grab(idle_state);
+ idle_time_tstamp1 = idle_state->tstamp;
+
+ /*
+ * Idle processors are not continually updating their
+ * per-processor idle timer, so it may be extremely
+ * out of date, resulting in an over-representation
+ * of non-idle time between two measurement
+ * intervals by e.g. top(1). If we are non-idle, or
+ * have evidence that the timer is being updated
+ * concurrently, we consider its value up-to-date.
+ */
+ if (PROCESSOR_DATA(processor, current_state) != idle_state) {
+ cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
+ (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
+ } else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) ||
+ (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))){
+ /* Idle timer is being updated concurrently, second stamp is good enough */
cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
- (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, idle_state)) / hz_tick_interval);
+ (uint32_t)(idle_time_snapshot2 / hz_tick_interval);
} else {
- timer_advance(&idle_temp, mach_absolute_time() - idle_temp.tstamp);
+ /*
+ * Idle timer may be very stale. Fortunately we have established
+ * that idle_time_snapshot1 and idle_time_tstamp1 are unchanging
+ */
+ idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1;
cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
- (uint32_t)(timer_grab(&idle_temp) / hz_tick_interval);
+ (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
}
cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
{
return KERN_FAILURE;
}
-#elif defined(CONFIG_EMBEDDED)
-kern_return_t
-processor_set_threads(
- __unused processor_set_t pset,
- __unused thread_array_t *thread_list,
- __unused mach_msg_type_number_t *count)
-{
- return KERN_NOT_SUPPORTED;
-}
#else
kern_return_t
processor_set_threads(