* Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
*
*/
-#ifndef _MACH_VM_PARAM_H_
+#ifndef _MACH_VM_PARAM_H_
#define _MACH_VM_PARAM_H_
#include <mach/machine/vm_param.h>
-#ifdef KERNEL
+#ifdef KERNEL
-#ifndef ASSEMBLER
+#ifndef ASSEMBLER
#include <mach/vm_types.h>
-#endif /* ASSEMBLER */
+#endif /* ASSEMBLER */
+
+#include <os/base.h>
+#include <os/overflow.h>
/*
* The machine independent pages are refered to as PAGES. A page
* is some number of hardware pages, depending on the target machine.
*/
-#ifndef ASSEMBLER
+#ifndef ASSEMBLER
-#define PAGE_SIZE_64 (unsigned long long)PAGE_SIZE /* pagesize in addr units */
-#define PAGE_MASK_64 (unsigned long long)PAGE_MASK /* mask for off in page */
+#define PAGE_SIZE_64 (unsigned long long)PAGE_SIZE /* pagesize in addr units */
+#define PAGE_MASK_64 (unsigned long long)PAGE_MASK /* mask for off in page */
/*
* Convert addresses to pages and vice versa. No rounding is used.
#define atop_64(x) ((uint64_t)(x) >> PAGE_SHIFT)
#define ptoa_64(x) ((uint64_t)(x) << PAGE_SHIFT)
+#define atop_kernel(x) ((vm_address_t)(x) >> PAGE_SHIFT)
+#define ptoa_kernel(x) ((vm_address_t)(x) << PAGE_SHIFT)
+
/*
* While the following block is enabled, the legacy atop and ptoa
* macros will behave correctly. If not, they will generate
*/
#if 1
-#define atop(x) ((uint32_t)(x) >> PAGE_SHIFT)
-#define ptoa(x) ((uint32_t)(x) << PAGE_SHIFT)
+#define atop(x) ((vm_address_t)(x) >> PAGE_SHIFT)
+#define ptoa(x) ((vm_address_t)(x) << PAGE_SHIFT)
#else
#define atop(x) (0UL = 0)
#define ptoa(x) (0UL = 0)
#define mach_vm_round_page(x) (((mach_vm_offset_t)(x) + PAGE_MASK) & ~((signed)PAGE_MASK))
#define mach_vm_trunc_page(x) ((mach_vm_offset_t)(x) & ~((signed)PAGE_MASK))
+#define round_page_overflow(in, out) __os_warn_unused(({ \
+ bool __ovr = os_add_overflow(in, (__typeof__(*out))PAGE_MASK, out); \
+ *out &= ~((__typeof__(*out))PAGE_MASK); \
+ __ovr; \
+ }))
+
+static inline int OS_WARN_RESULT
+mach_vm_round_page_overflow(mach_vm_offset_t in, mach_vm_offset_t *out)
+{
+ return round_page_overflow(in, out);
+}
+
#define memory_object_round_page(x) (((memory_object_offset_t)(x) + PAGE_MASK) & ~((signed)PAGE_MASK))
#define memory_object_trunc_page(x) ((memory_object_offset_t)(x) & ~((signed)PAGE_MASK))
* address space size) VM types.
*/
-#define round_page(x) (((vm_offset_t)(x) + PAGE_MASK) & ~((signed)PAGE_MASK))
-#define trunc_page(x) ((vm_offset_t)(x) & ~((signed)PAGE_MASK))
+#define round_page(x) (((vm_offset_t)(x) + PAGE_MASK) & ~((vm_offset_t)PAGE_MASK))
+#define trunc_page(x) ((vm_offset_t)(x) & ~((vm_offset_t)PAGE_MASK))
/*
* Round off or truncate to the nearest page. These will work
* associated with the specific VM type should be used.
*/
-#define round_page_32(x) (((uint32_t)(x) + PAGE_MASK) & ~((signed)PAGE_MASK))
-#define trunc_page_32(x) ((uint32_t)(x) & ~((signed)PAGE_MASK))
-#define round_page_64(x) (((uint64_t)(x) + PAGE_MASK_64) & ~((signed)PAGE_MASK_64))
-#define trunc_page_64(x) ((uint64_t)(x) & ~((signed)PAGE_MASK_64))
-
+#define round_page_32(x) (((uint32_t)(x) + PAGE_MASK) & ~((uint32_t)PAGE_MASK))
+#define trunc_page_32(x) ((uint32_t)(x) & ~((uint32_t)PAGE_MASK))
+#define round_page_64(x) (((uint64_t)(x) + PAGE_MASK_64) & ~((uint64_t)PAGE_MASK_64))
+#define trunc_page_64(x) ((uint64_t)(x) & ~((uint64_t)PAGE_MASK_64))
/*
* Enable the following block to find uses of xxx_32 macros that should
#define atop_32(x) \
(__builtin_choose_expr (sizeof(x) != sizeof(uint64_t), \
- (*(long *)0), \
- (0UL)) = 0)
+ (*(long *)0), \
+ (0UL)) = 0)
#define ptoa_32(x) \
(__builtin_choose_expr (sizeof(x) != sizeof(uint64_t), \
- (*(long *)0), \
- (0UL)) = 0)
+ (*(long *)0), \
+ (0UL)) = 0)
#define round_page_32(x) \
(__builtin_choose_expr (sizeof(x) != sizeof(uint64_t), \
- (*(long *)0), \
- (0UL)) = 0)
+ (*(long *)0), \
+ (0UL)) = 0)
#define trunc_page_32(x) \
(__builtin_choose_expr (sizeof(x) != sizeof(uint64_t), \
- (*(long *)0), \
- (0UL)) = 0)
+ (*(long *)0), \
+ (0UL)) = 0)
#else
#define atop_32(x) (0)
* an exact page multiple.
*/
-#define page_aligned(x) ((((vm_object_offset_t) (x)) & PAGE_MASK) == 0)
+#define page_aligned(x) (((x) & PAGE_MASK) == 0)
-extern vm_size_t mem_size; /* 32-bit size of memory - limited by maxmem - deprecated */
-extern uint64_t max_mem; /* 64-bit size of memory - limited by maxmem */
+extern vm_size_t mem_size; /* 32-bit size of memory - limited by maxmem - deprecated */
+extern uint64_t max_mem; /* 64-bit size of memory - limited by maxmem */
-#ifdef XNU_KERNEL_PRIVATE
+/*
+ * The default pager does not handle 64-bit offsets inside its objects,
+ * so this limits the size of anonymous memory objects to 4GB minus 1 page.
+ * When we need to allocate a chunk of anonymous memory over that size,
+ * we have to allocate more than one chunk.
+ */
+#define ANON_MAX_SIZE 0xFFFFF000ULL
+/*
+ * Work-around for <rdar://problem/6626493>
+ * Break large anonymous memory areas into 128MB chunks to alleviate
+ * the cost of copying when copy-on-write is not possible because a small
+ * portion of it being wired.
+ */
+#define ANON_CHUNK_SIZE (128ULL * 1024 * 1024) /* 128MB */
-extern uint64_t mem_actual; /* 64-bit size of memory - not limited by maxmem */
-extern uint64_t sane_size; /* Memory size to use for defaults calculations */
-extern addr64_t vm_last_addr; /* Highest kernel virtual address known to the VM system */
+/*
+ * The 'medium' malloc allocator would like its regions
+ * to be chunked up into MALLOC_MEDIUM_CHUNK_SIZE chunks
+ * and backed by different objects. This avoids contention
+ * on a single large object and showed solid improvements on high
+ * core machines with workloads involving video and graphics processing.
+ */
+#define MALLOC_MEDIUM_CHUNK_SIZE (8ULL * 1024 * 1024) /* 8 MB */
-extern const vm_offset_t vm_min_kernel_address;
-extern const vm_offset_t vm_max_kernel_address;
+#ifdef XNU_KERNEL_PRIVATE
-#endif /* XNU_KERNEL_PRIVATE */
+#include <kern/debug.h>
-extern vm_size_t page_size;
-extern vm_size_t page_mask;
-extern int page_shift;
+extern uint64_t mem_actual; /* 64-bit size of memory - not limited by maxmem */
+extern uint64_t sane_size; /* Memory size to use for defaults calculations */
+extern addr64_t vm_last_addr; /* Highest kernel virtual address known to the VM system */
+
+extern const vm_offset_t vm_min_kernel_address;
+extern const vm_offset_t vm_max_kernel_address;
+
+extern vm_offset_t vm_kernel_stext;
+extern vm_offset_t vm_kernel_etext;
+extern vm_offset_t vm_kernel_slid_base;
+extern vm_offset_t vm_kernel_slid_top;
+extern vm_offset_t vm_kernel_slide;
+extern vm_offset_t vm_kernel_addrperm;
+extern vm_offset_t vm_kext_base;
+extern vm_offset_t vm_kext_top;
+extern vm_offset_t vm_kernel_base;
+extern vm_offset_t vm_kernel_top;
+extern vm_offset_t vm_hib_base;
+
+extern vm_offset_t vm_kernel_builtinkmod_text;
+extern vm_offset_t vm_kernel_builtinkmod_text_end;
+
+#define VM_KERNEL_IS_SLID(_o) \
+ (((vm_offset_t)VM_KERNEL_STRIP_PTR(_o) >= vm_kernel_slid_base) && \
+ ((vm_offset_t)VM_KERNEL_STRIP_PTR(_o) < vm_kernel_slid_top))
+
+#define VM_KERNEL_SLIDE(_u) ((vm_offset_t)(_u) + vm_kernel_slide)
+
+/*
+ * The following macros are to be used when exposing kernel addresses to
+ * userspace via any of the various debug or info facilities that might exist
+ * (e.g. stackshot, proc_info syscall, etc.). It is important to understand
+ * the goal of each macro and choose the right one depending on what you are
+ * trying to do. Misuse of these macros can result in critical data leaks
+ * which in turn lead to all sorts of system vulnerabilities. It is invalid to
+ * call these macros on a non-kernel address (NULL is allowed).
+ *
+ * VM_KERNEL_UNSLIDE:
+ * Use this macro when you are exposing an address to userspace which is
+ * *guaranteed* to be a "static" kernel or kext address (i.e. coming from text
+ * or data sections). These are the addresses which get "slid" via ASLR on
+ * kernel or kext load, and it's precisely the slide value we are trying to
+ * protect from userspace.
+ *
+ * VM_KERNEL_ADDRHIDE:
+ * Use when exposing an address for internal purposes: debugging, tracing,
+ * etc. The address will be unslid if necessary. Other addresses will be
+ * hidden on customer builds, and unmodified on internal builds.
+ *
+ * VM_KERNEL_ADDRHASH:
+ * Use this macro when exposing a kernel address to userspace on customer
+ * builds. The address can be from the static kernel or kext regions, or the
+ * kernel heap. The address will be unslid or hashed as appropriate.
+ *
+ *
+ * ** SECURITY WARNING: The following macros can leak kernel secrets.
+ * Use *only* in performance *critical* code.
+ *
+ * VM_KERNEL_ADDRPERM:
+ * VM_KERNEL_UNSLIDE_OR_PERM:
+ * Use these macros when exposing a kernel address to userspace on customer
+ * builds. The address can be from the static kernel or kext regions, or the
+ * kernel heap. The address will be unslid or permuted as appropriate.
+ *
+ * Nesting of these macros should be considered invalid.
+ */
+
+__BEGIN_DECLS
+#if XNU_KERNEL_PRIVATE
+extern vm_offset_t vm_kernel_addrhash(vm_offset_t addr)
+__XNU_INTERNAL(vm_kernel_addrhash);
+#else
+extern vm_offset_t vm_kernel_addrhash(vm_offset_t addr);
+#endif
+__END_DECLS
+
+#define __DO_UNSLIDE(_v) ((vm_offset_t)VM_KERNEL_STRIP_PTR(_v) - vm_kernel_slide)
+
+#if DEBUG || DEVELOPMENT
+#define VM_KERNEL_ADDRHIDE(_v) (VM_KERNEL_IS_SLID(_v) ? __DO_UNSLIDE(_v) : (vm_address_t)VM_KERNEL_STRIP_PTR(_v))
+#else
+#define VM_KERNEL_ADDRHIDE(_v) (VM_KERNEL_IS_SLID(_v) ? __DO_UNSLIDE(_v) : (vm_address_t)0)
+#endif /* DEBUG || DEVELOPMENT */
+
+#define VM_KERNEL_ADDRHASH(_v) vm_kernel_addrhash((vm_offset_t)(_v))
+
+#define VM_KERNEL_UNSLIDE_OR_PERM(_v) ({ \
+ VM_KERNEL_IS_SLID(_v) ? __DO_UNSLIDE(_v) : \
+ VM_KERNEL_ADDRESS(_v) ? ((vm_offset_t)VM_KERNEL_STRIP_PTR(_v) + vm_kernel_addrperm) : \
+ (vm_offset_t)VM_KERNEL_STRIP_PTR(_v); \
+ })
+
+#define VM_KERNEL_UNSLIDE(_v) ({ \
+ VM_KERNEL_IS_SLID(_v) ? __DO_UNSLIDE(_v) : (vm_offset_t)0; \
+ })
+
+#define VM_KERNEL_ADDRPERM(_v) VM_KERNEL_UNSLIDE_OR_PERM(_v)
+
+#undef mach_vm_round_page
+#undef round_page
+#undef round_page_32
+#undef round_page_64
+
+static inline mach_vm_offset_t
+mach_vm_round_page(mach_vm_offset_t x)
+{
+ if (round_page_overflow(x, &x)) {
+ panic("overflow detected");
+ }
+ return x;
+}
+
+static inline vm_offset_t
+round_page(vm_offset_t x)
+{
+ if (round_page_overflow(x, &x)) {
+ panic("overflow detected");
+ }
+ return x;
+}
+
+static inline mach_vm_offset_t
+round_page_64(mach_vm_offset_t x)
+{
+ if (round_page_overflow(x, &x)) {
+ panic("overflow detected");
+ }
+ return x;
+}
+
+static inline uint32_t
+round_page_32(uint32_t x)
+{
+ if (round_page_overflow(x, &x)) {
+ panic("overflow detected");
+ }
+ return x;
+}
+
+#endif /* XNU_KERNEL_PRIVATE */
+
+extern vm_size_t page_size;
+extern vm_size_t page_mask;
+extern int page_shift;
/* We need a way to get rid of compiler warnings when we cast from */
-/* a 64 bit value to an address that is 32 bits. */
-/* We know at this point the cast is harmless but sometime in */
-/* the future it may not be. */
-/* When size of an int is no longer equal to size of uintptr_t then */
-/* the compile will fail and we know we need to fix our cast. */
+/* a 64 bit value to an address (which may be 32 bits or 64-bits). */
+/* An intptr_t is used convert the value to the right precision, and */
+/* then to an address. This macro is also used to convert addresses */
+/* to 32-bit integers, which is a hard failure for a 64-bit kernel */
#include <stdint.h>
#ifndef __CAST_DOWN_CHECK
#define __CAST_DOWN_CHECK
-typedef char __NEED_TO_CHANGE_CAST_DOWN[ sizeof(uintptr_t) == sizeof(int) ? 0 : -1 ];
-#define CAST_DOWN( type, addr ) ( ((type)((uintptr_t) (addr))) )
+
+#define CAST_DOWN( type, addr ) \
+ ( ((type)((uintptr_t) (addr)/(sizeof(type) < sizeof(uintptr_t) ? 0 : 1))) )
+
+#define CAST_DOWN_EXPLICIT( type, addr ) ( ((type)((uintptr_t) (addr))) )
+
#endif /* __CAST_DOWN_CHECK */
-#endif /* ASSEMBLER */
+#endif /* ASSEMBLER */
-#endif /* KERNEL */
+#endif /* KERNEL */
-#endif /* _MACH_VM_PARAM_H_ */
+#endif /* _MACH_VM_PARAM_H_ */