/*
- * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
*/
#include <debug.h>
-#include <mach_kdb.h>
-
-#include <ddb/db_output.h>
#include <mach/mach_types.h>
#include <mach/machine.h>
#include <mach/policy.h>
#include <mach/sync_policy.h>
+#include <mach/thread_act.h>
#include <machine/machine_routines.h>
#include <machine/sched_param.h>
#include <machine/machine_cpu.h>
+#include <machine/machlimits.h>
+
+#ifdef CONFIG_MACH_APPROXIMATE_TIME
+#include <machine/commpage.h>
+#endif
#include <kern/kern_types.h>
+#include <kern/backtrace.h>
#include <kern/clock.h>
#include <kern/counters.h>
#include <kern/cpu_number.h>
#include <kern/cpu_data.h>
+#include <kern/smp.h>
#include <kern/debug.h>
-#include <kern/lock.h>
#include <kern/macro_help.h>
#include <kern/machine.h>
#include <kern/misc_protos.h>
#include <kern/queue.h>
#include <kern/sched.h>
#include <kern/sched_prim.h>
+#include <kern/sfi.h>
#include <kern/syscall_subr.h>
#include <kern/task.h>
#include <kern/thread.h>
-#include <kern/wait_queue.h>
+#include <kern/ledger.h>
+#include <kern/timer_queue.h>
+#include <kern/waitq.h>
+#include <kern/policy_internal.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
+#include <mach/sdt.h>
+
#include <sys/kdebug.h>
+#include <kperf/kperf.h>
+#include <kern/kpc.h>
#include <kern/pms.h>
-struct run_queue rt_runq;
-#define RT_RUNQ ((processor_t)-1)
+struct rt_queue rt_runq;
+
+uintptr_t sched_thread_on_rt_queue = (uintptr_t)0xDEAFBEE0;
+
+/* Lock RT runq, must be done with interrupts disabled (under splsched()) */
+#if __SMP__
decl_simple_lock_data(static,rt_lock);
+#define rt_lock_init() simple_lock_init(&rt_lock, 0)
+#define rt_lock_lock() simple_lock(&rt_lock)
+#define rt_lock_unlock() simple_unlock(&rt_lock)
+#else
+#define rt_lock_init() do { } while(0)
+#define rt_lock_lock() do { } while(0)
+#define rt_lock_unlock() do { } while(0)
+#endif
#define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */
int default_preemption_rate = DEFAULT_PREEMPTION_RATE;
+#define DEFAULT_BG_PREEMPTION_RATE 400 /* (1/s) */
+int default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE;
+
#define MAX_UNSAFE_QUANTA 800
int max_unsafe_quanta = MAX_UNSAFE_QUANTA;
#define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */
int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT;
-uint64_t max_unsafe_computation;
-uint32_t sched_safe_duration;
uint64_t max_poll_computation;
+uint64_t max_unsafe_computation;
+uint64_t sched_safe_duration;
+
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+
uint32_t std_quantum;
uint32_t min_std_quantum;
+uint32_t bg_quantum;
uint32_t std_quantum_us;
+uint32_t bg_quantum_us;
+
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
+uint32_t thread_depress_time;
+uint32_t default_timeshare_computation;
+uint32_t default_timeshare_constraint;
uint32_t max_rt_quantum;
uint32_t min_rt_quantum;
-uint32_t sched_cswtime;
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
unsigned sched_tick;
uint32_t sched_tick_interval;
-uint32_t sched_pri_shift = INT8_MAX;
+uint32_t sched_pri_shifts[TH_BUCKET_MAX];
uint32_t sched_fixed_shift;
-uint32_t sched_run_count, sched_share_count;
-uint32_t sched_load_average, sched_mach_factor;
+uint32_t sched_decay_usage_age_factor = 1; /* accelerate 5/8^n usage aging */
+
+/* Allow foreground to decay past default to resolve inversions */
+#define DEFAULT_DECAY_BAND_LIMIT ((BASEPRI_FOREGROUND - BASEPRI_DEFAULT) + 2)
+int sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT;
-void (*pm_tick_callout)(void) = NULL;
+/* Defaults for timer deadline profiling */
+#define TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT 2000000 /* Timers with deadlines <=
+ * 2ms */
+#define TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT 5000000 /* Timers with deadlines
+ <= 5ms */
+
+uint64_t timer_deadline_tracking_bin_1;
+uint64_t timer_deadline_tracking_bin_2;
+
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
+thread_t sched_maintenance_thread;
+
+
+uint64_t sched_one_second_interval;
/* Forwards */
-void wait_queues_init(void) __attribute__((section("__TEXT, initcode")));
-static void load_shift_init(void) __attribute__((section("__TEXT, initcode")));
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+
+static void load_shift_init(void);
+static void preempt_pri_init(void);
+
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
+static thread_t thread_select(
+ thread_t thread,
+ processor_t processor,
+ ast_t reason);
+#if CONFIG_SCHED_IDLE_IN_PLACE
static thread_t thread_select_idle(
thread_t thread,
processor_t processor);
+#endif
-static thread_t processor_idle(
+thread_t processor_idle(
thread_t thread,
processor_t processor);
-static thread_t choose_thread(
- processor_t processor);
+ast_t
+csw_check_locked( processor_t processor,
+ processor_set_t pset,
+ ast_t check_reason);
-static thread_t steal_thread(
- processor_t processor);
+static void processor_setrun(
+ processor_t processor,
+ thread_t thread,
+ integer_t options);
+
+static void
+sched_realtime_init(void);
+
+static void
+sched_realtime_timebase_init(void);
-static void thread_update_scan(void);
+static void
+sched_timer_deadline_tracking_init(void);
#if DEBUG
extern int debug_task;
#define TLOG(a, fmt, args...) do {} while (0)
#endif
-#if DEBUG
-static
-boolean_t thread_runnable(
- thread_t thread);
+static processor_t
+thread_bind_internal(
+ thread_t thread,
+ processor_t processor);
-#endif /*DEBUG*/
+static void
+sched_vm_group_maintenance(void);
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+int8_t sched_load_shifts[NRQS];
+bitmap_t sched_preempt_pri[BITMAP_LEN(NRQS)];
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+const struct sched_dispatch_table *sched_current_dispatch = NULL;
/*
- * State machine
- *
- * states are combinations of:
- * R running
- * W waiting (or on wait queue)
- * N non-interruptible
- * O swapped out
- * I being swapped in
- *
- * init action
- * assert_wait thread_block clear_wait swapout swapin
- *
- * R RW, RWN R; setrun - -
- * RN RWN RN; setrun - -
- *
- * RW W R -
- * RWN WN RN -
- *
- * W R; setrun WO
- * WN RN; setrun -
- *
- * RO - - R
+ * Statically allocate a buffer to hold the longest possible
+ * scheduler description string, as currently implemented.
+ * bsd/kern/kern_sysctl.c has a corresponding definition in bsd/
+ * to export to userspace via sysctl(3). If either version
+ * changes, update the other.
*
+ * Note that in addition to being an upper bound on the strings
+ * in the kernel, it's also an exact parameter to PE_get_default(),
+ * which interrogates the device tree on some platforms. That
+ * API requires the caller know the exact size of the device tree
+ * property, so we need both a legacy size (32) and the current size
+ * (48) to deal with old and new device trees. The device tree property
+ * is similarly padded to a fixed size so that the same kernel image
+ * can run on multiple devices with different schedulers configured
+ * in the device tree.
*/
+char sched_string[SCHED_STRING_MAX_LENGTH];
-/*
- * Waiting protocols and implementation:
- *
- * Each thread may be waiting for exactly one event; this event
- * is set using assert_wait(). That thread may be awakened either
- * by performing a thread_wakeup_prim() on its event,
- * or by directly waking that thread up with clear_wait().
- *
- * The implementation of wait events uses a hash table. Each
- * bucket is queue of threads having the same hash function
- * value; the chain for the queue (linked list) is the run queue
- * field. [It is not possible to be waiting and runnable at the
- * same time.]
- *
- * Locks on both the thread and on the hash buckets govern the
- * wait event field and the queue chain field. Because wakeup
- * operations only have the event as an argument, the event hash
- * bucket must be locked before any thread.
- *
- * Scheduling operations may also occur at interrupt level; therefore,
- * interrupts below splsched() must be prevented when holding
- * thread or hash bucket locks.
- *
- * The wait event hash table declarations are as follows:
- */
+uint32_t sched_debug_flags;
-#define NUMQUEUES 59
+/* Global flag which indicates whether Background Stepper Context is enabled */
+static int cpu_throttle_enabled = 1;
+
+void
+sched_init(void)
+{
+ char sched_arg[SCHED_STRING_MAX_LENGTH] = { '\0' };
+
+ /* Check for runtime selection of the scheduler algorithm */
+ if (!PE_parse_boot_argn("sched", sched_arg, sizeof (sched_arg))) {
+ /* If no boot-args override, look in device tree */
+ if (!PE_get_default("kern.sched", sched_arg,
+ SCHED_STRING_MAX_LENGTH)) {
+ sched_arg[0] = '\0';
+ }
+ }
-struct wait_queue wait_queues[NUMQUEUES];
+
+ if (!PE_parse_boot_argn("sched_pri_decay_limit", &sched_pri_decay_band_limit, sizeof(sched_pri_decay_band_limit))) {
+ /* No boot-args, check in device tree */
+ if (!PE_get_default("kern.sched_pri_decay_limit",
+ &sched_pri_decay_band_limit,
+ sizeof(sched_pri_decay_band_limit))) {
+ /* Allow decay all the way to normal limits */
+ sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT;
+ }
+ }
-#define wait_hash(event) \
- ((((int)(event) < 0)? ~(int)(event): (int)(event)) % NUMQUEUES)
+ kprintf("Setting scheduler priority decay band limit %d\n", sched_pri_decay_band_limit);
-int8_t sched_load_shifts[NRQS];
+ if (strlen(sched_arg) > 0) {
+ if (0) {
+ /* Allow pattern below */
+#if defined(CONFIG_SCHED_TRADITIONAL)
+ } else if (0 == strcmp(sched_arg, sched_traditional_dispatch.sched_name)) {
+ sched_current_dispatch = &sched_traditional_dispatch;
+ } else if (0 == strcmp(sched_arg, sched_traditional_with_pset_runqueue_dispatch.sched_name)) {
+ sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
+#endif
+#if defined(CONFIG_SCHED_PROTO)
+ } else if (0 == strcmp(sched_arg, sched_proto_dispatch.sched_name)) {
+ sched_current_dispatch = &sched_proto_dispatch;
+#endif
+#if defined(CONFIG_SCHED_GRRR)
+ } else if (0 == strcmp(sched_arg, sched_grrr_dispatch.sched_name)) {
+ sched_current_dispatch = &sched_grrr_dispatch;
+#endif
+#if defined(CONFIG_SCHED_MULTIQ)
+ } else if (0 == strcmp(sched_arg, sched_multiq_dispatch.sched_name)) {
+ sched_current_dispatch = &sched_multiq_dispatch;
+ } else if (0 == strcmp(sched_arg, sched_dualq_dispatch.sched_name)) {
+ sched_current_dispatch = &sched_dualq_dispatch;
+#endif
+ } else {
+#if defined(CONFIG_SCHED_TRADITIONAL)
+ printf("Unrecognized scheduler algorithm: %s\n", sched_arg);
+ printf("Scheduler: Using instead: %s\n", sched_traditional_with_pset_runqueue_dispatch.sched_name);
+ sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
+#else
+ panic("Unrecognized scheduler algorithm: %s", sched_arg);
+#endif
+ }
+ kprintf("Scheduler: Runtime selection of %s\n", SCHED(sched_name));
+ } else {
+#if defined(CONFIG_SCHED_MULTIQ)
+ sched_current_dispatch = &sched_multiq_dispatch;
+#elif defined(CONFIG_SCHED_TRADITIONAL)
+ sched_current_dispatch = &sched_traditional_with_pset_runqueue_dispatch;
+#elif defined(CONFIG_SCHED_PROTO)
+ sched_current_dispatch = &sched_proto_dispatch;
+#elif defined(CONFIG_SCHED_GRRR)
+ sched_current_dispatch = &sched_grrr_dispatch;
+#else
+#error No default scheduler implementation
+#endif
+ kprintf("Scheduler: Default of %s\n", SCHED(sched_name));
+ }
+
+ strlcpy(sched_string, SCHED(sched_name), sizeof(sched_string));
+
+ if (PE_parse_boot_argn("sched_debug", &sched_debug_flags, sizeof(sched_debug_flags))) {
+ kprintf("Scheduler: Debug flags 0x%08x\n", sched_debug_flags);
+ }
+
+ SCHED(init)();
+ sched_realtime_init();
+ ast_init();
+ sched_timer_deadline_tracking_init();
+
+ SCHED(pset_init)(&pset0);
+ SCHED(processor_init)(master_processor);
+}
void
-sched_init(void)
+sched_timebase_init(void)
+{
+ uint64_t abstime;
+
+ clock_interval_to_absolutetime_interval(1, NSEC_PER_SEC, &abstime);
+ sched_one_second_interval = abstime;
+
+ SCHED(timebase_init)();
+ sched_realtime_timebase_init();
+}
+
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+
+void
+sched_timeshare_init(void)
{
/*
* Calculate the timeslicing quantum
printf("standard timeslicing quantum is %d us\n", std_quantum_us);
- sched_safe_duration = (2 * max_unsafe_quanta / default_preemption_rate) *
- (1 << SCHED_TICK_SHIFT);
+ if (default_bg_preemption_rate < 1)
+ default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE;
+ bg_quantum_us = (1000 * 1000) / default_bg_preemption_rate;
+
+ printf("standard background quantum is %d us\n", bg_quantum_us);
- wait_queues_init();
load_shift_init();
- simple_lock_init(&rt_lock, 0);
- run_queue_init(&rt_runq);
+ preempt_pri_init();
sched_tick = 0;
- ast_init();
}
void
-sched_timebase_init(void)
+sched_timeshare_timebase_init(void)
{
uint64_t abstime;
uint32_t shift;
clock_interval_to_absolutetime_interval(
std_quantum_us, NSEC_PER_USEC, &abstime);
assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- std_quantum = abstime;
+ std_quantum = (uint32_t)abstime;
/* smallest remaining quantum (250 us) */
clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC, &abstime);
assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- min_std_quantum = abstime;
-
- /* smallest rt computaton (50 us) */
- clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime);
- assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- min_rt_quantum = abstime;
+ min_std_quantum = (uint32_t)abstime;
- /* maximum rt computation (50 ms) */
+ /* quantum for background tasks */
clock_interval_to_absolutetime_interval(
- 50, 1000*NSEC_PER_USEC, &abstime);
+ bg_quantum_us, NSEC_PER_USEC, &abstime);
assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- max_rt_quantum = abstime;
+ bg_quantum = (uint32_t)abstime;
/* scheduler tick interval */
clock_interval_to_absolutetime_interval(USEC_PER_SEC >> SCHED_TICK_SHIFT,
NSEC_PER_USEC, &abstime);
assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- sched_tick_interval = abstime;
+ sched_tick_interval = (uint32_t)abstime;
/*
* Compute conversion factor from usage to
abstime >>= 1;
sched_fixed_shift = shift;
- max_unsafe_computation = max_unsafe_quanta * std_quantum;
- max_poll_computation = max_poll_quanta * std_quantum;
+ for (uint32_t i = 0 ; i < TH_BUCKET_MAX ; i++)
+ sched_pri_shifts[i] = INT8_MAX;
+
+ max_unsafe_computation = ((uint64_t)max_unsafe_quanta) * std_quantum;
+ sched_safe_duration = 2 * ((uint64_t)max_unsafe_quanta) * std_quantum;
+
+ max_poll_computation = ((uint64_t)max_poll_quanta) * std_quantum;
+ thread_depress_time = 1 * std_quantum;
+ default_timeshare_computation = std_quantum / 2;
+ default_timeshare_constraint = std_quantum;
+
}
-void
-wait_queues_init(void)
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
+static void
+sched_realtime_init(void)
{
- register int i;
+ rt_lock_init();
+
+ rt_runq.count = 0;
+ queue_init(&rt_runq.queue);
+}
+
+static void
+sched_realtime_timebase_init(void)
+{
+ uint64_t abstime;
+
+ /* smallest rt computaton (50 us) */
+ clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC, &abstime);
+ assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
+ min_rt_quantum = (uint32_t)abstime;
+
+ /* maximum rt computation (50 ms) */
+ clock_interval_to_absolutetime_interval(
+ 50, 1000*NSEC_PER_USEC, &abstime);
+ assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
+ max_rt_quantum = (uint32_t)abstime;
- for (i = 0; i < NUMQUEUES; i++) {
- wait_queue_init(&wait_queues[i], SYNC_POLICY_FIFO);
- }
}
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+
/*
* Set up values for timeshare
* loading factors.
int8_t k, *p = sched_load_shifts;
uint32_t i, j;
+ uint32_t sched_decay_penalty = 1;
+
+ if (PE_parse_boot_argn("sched_decay_penalty", &sched_decay_penalty, sizeof (sched_decay_penalty))) {
+ kprintf("Overriding scheduler decay penalty %u\n", sched_decay_penalty);
+ }
+
+ if (PE_parse_boot_argn("sched_decay_usage_age_factor", &sched_decay_usage_age_factor, sizeof (sched_decay_usage_age_factor))) {
+ kprintf("Overriding scheduler decay usage age factor %u\n", sched_decay_usage_age_factor);
+ }
+
+ if (sched_decay_penalty == 0) {
+ /*
+ * There is no penalty for timeshare threads for using too much
+ * CPU, so set all load shifts to INT8_MIN. Even under high load,
+ * sched_pri_shift will be >INT8_MAX, and there will be no
+ * penalty applied to threads (nor will sched_usage be updated per
+ * thread).
+ */
+ for (i = 0; i < NRQS; i++) {
+ sched_load_shifts[i] = INT8_MIN;
+ }
+
+ return;
+ }
+
*p++ = INT8_MIN; *p++ = 0;
- for (i = j = 2, k = 1; i < NRQS; ++k) {
- for (j <<= 1; i < j; ++i)
+ /*
+ * For a given system load "i", the per-thread priority
+ * penalty per quantum of CPU usage is ~2^k priority
+ * levels. "sched_decay_penalty" can cause more
+ * array entries to be filled with smaller "k" values
+ */
+ for (i = 2, j = 1 << sched_decay_penalty, k = 1; i < NRQS; ++k) {
+ for (j <<= 1; (i < j) && (i < NRQS); ++i)
*p++ = k;
}
}
+static void
+preempt_pri_init(void)
+{
+ bitmap_t *p = sched_preempt_pri;
+
+ for (int i = BASEPRI_FOREGROUND; i < MINPRI_KERNEL; ++i)
+ bitmap_set(p, i);
+
+ for (int i = BASEPRI_PREEMPT; i <= MAXPRI; ++i)
+ bitmap_set(p, i);
+}
+
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
/*
* Thread wait timer expiration.
*/
thread_t thread = p0;
spl_t s;
+ assert_thread_magic(thread);
+
s = splsched();
thread_lock(thread);
if (--thread->wait_timer_active == 0) {
splx(s);
}
-/*
- * thread_set_timer:
- *
- * Set a timer for the current thread, if the thread
- * is ready to wait. Must be called between assert_wait()
- * and thread_block().
- */
-void
-thread_set_timer(
- uint32_t interval,
- uint32_t scale_factor)
-{
- thread_t thread = current_thread();
- uint64_t deadline;
- spl_t s;
-
- s = splsched();
- thread_lock(thread);
- if ((thread->state & TH_WAIT) != 0) {
- clock_interval_to_deadline(interval, scale_factor, &deadline);
- if (!timer_call_enter(&thread->wait_timer, deadline))
- thread->wait_timer_active++;
- thread->wait_timer_is_set = TRUE;
- }
- thread_unlock(thread);
- splx(s);
-}
-
-void
-thread_set_timer_deadline(
- uint64_t deadline)
-{
- thread_t thread = current_thread();
- spl_t s;
-
- s = splsched();
- thread_lock(thread);
- if ((thread->state & TH_WAIT) != 0) {
- if (!timer_call_enter(&thread->wait_timer, deadline))
- thread->wait_timer_active++;
- thread->wait_timer_is_set = TRUE;
- }
- thread_unlock(thread);
- splx(s);
-}
-
-void
-thread_cancel_timer(void)
-{
- thread_t thread = current_thread();
- spl_t s;
-
- s = splsched();
- thread_lock(thread);
- if (thread->wait_timer_is_set) {
- if (timer_call_cancel(&thread->wait_timer))
- thread->wait_timer_active--;
- thread->wait_timer_is_set = FALSE;
- }
- thread_unlock(thread);
- splx(s);
-}
-
/*
* thread_unblock:
*
* Unblock thread on wake up.
*
- * Returns TRUE if the thread is still running.
+ * Returns TRUE if the thread should now be placed on the runqueue.
*
* Thread must be locked.
+ *
+ * Called at splsched().
*/
boolean_t
thread_unblock(
thread_t thread,
wait_result_t wresult)
{
- boolean_t result = FALSE;
+ boolean_t ready_for_runq = FALSE;
+ thread_t cthread = current_thread();
+ uint32_t new_run_count;
/*
* Set wait_result.
if (!(thread->state & TH_RUN)) {
thread->state |= TH_RUN;
+ thread->last_made_runnable_time = mach_approximate_time();
+
+ ready_for_runq = TRUE;
(*thread->sched_call)(SCHED_CALL_UNBLOCK, thread);
+ /* Update the runnable thread count */
+ new_run_count = sched_run_incr(thread);
+ } else {
/*
- * Update run counts.
- */
- sched_run_incr();
- if (thread->sched_mode & TH_MODE_TIMESHARE)
- sched_share_incr();
- }
- else {
- /*
- * Signal if idling on another processor.
+ * Either the thread is idling in place on another processor,
+ * or it hasn't finished context switching yet.
*/
+#if CONFIG_SCHED_IDLE_IN_PLACE
if (thread->state & TH_IDLE) {
processor_t processor = thread->last_processor;
if (processor != current_processor())
machine_signal_idle(processor);
}
-
- result = TRUE;
+#else
+ assert((thread->state & TH_IDLE) == 0);
+#endif
+ /*
+ * The run count is only dropped after the context switch completes
+ * and the thread is still waiting, so we should not run_incr here
+ */
+ new_run_count = sched_run_buckets[TH_BUCKET_RUN];
}
+
/*
* Calculate deadline for real-time threads.
*/
- if (thread->sched_mode & TH_MODE_REALTIME) {
- thread->realtime.deadline = mach_absolute_time();
- thread->realtime.deadline += thread->realtime.constraint;
+ if (thread->sched_mode == TH_MODE_REALTIME) {
+ uint64_t ctime;
+
+ ctime = mach_absolute_time();
+ thread->realtime.deadline = thread->realtime.constraint + ctime;
}
/*
* Clear old quantum, fail-safe computation, etc.
*/
- thread->current_quantum = 0;
+ thread->quantum_remaining = 0;
thread->computation_metered = 0;
thread->reason = AST_NONE;
- KERNEL_DEBUG_CONSTANT(
+ /* Obtain power-relevant interrupt and "platform-idle exit" statistics.
+ * We also account for "double hop" thread signaling via
+ * the thread callout infrastructure.
+ * DRK: consider removing the callout wakeup counters in the future
+ * they're present for verification at the moment.
+ */
+ boolean_t aticontext, pidle;
+ ml_get_power_state(&aticontext, &pidle);
+
+ if (__improbable(aticontext && !(thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT))) {
+ ledger_credit(thread->t_ledger, task_ledgers.interrupt_wakeups, 1);
+ DTRACE_SCHED2(iwakeup, struct thread *, thread, struct proc *, thread->task->bsd_info);
+
+ uint64_t ttd = PROCESSOR_DATA(current_processor(), timer_call_ttd);
+
+ if (ttd) {
+ if (ttd <= timer_deadline_tracking_bin_1)
+ thread->thread_timer_wakeups_bin_1++;
+ else
+ if (ttd <= timer_deadline_tracking_bin_2)
+ thread->thread_timer_wakeups_bin_2++;
+ }
+
+ if (pidle) {
+ ledger_credit(thread->t_ledger, task_ledgers.platform_idle_wakeups, 1);
+ }
+
+ } else if (thread_get_tag_internal(cthread) & THREAD_TAG_CALLOUT) {
+ if (cthread->callout_woken_from_icontext) {
+ ledger_credit(thread->t_ledger, task_ledgers.interrupt_wakeups, 1);
+ thread->thread_callout_interrupt_wakeups++;
+ if (cthread->callout_woken_from_platform_idle) {
+ ledger_credit(thread->t_ledger, task_ledgers.platform_idle_wakeups, 1);
+ thread->thread_callout_platform_idle_wakeups++;
+ }
+
+ cthread->callout_woke_thread = TRUE;
+ }
+ }
+
+ if (thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT) {
+ thread->callout_woken_from_icontext = aticontext;
+ thread->callout_woken_from_platform_idle = pidle;
+ thread->callout_woke_thread = FALSE;
+ }
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
MACHDBG_CODE(DBG_MACH_SCHED,MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE,
- (int)thread, (int)thread->sched_pri, 0, 0, 0);
+ (uintptr_t)thread_tid(thread), thread->sched_pri, thread->wait_result,
+ sched_run_buckets[TH_BUCKET_RUN], 0);
- return (result);
+ DTRACE_SCHED2(wakeup, struct thread *, thread, struct proc *, thread->task->bsd_info);
+
+ return (ready_for_runq);
}
/*
* Conditions:
* thread lock held, IPC locks may be held.
* thread must have been pulled from wait queue under same lock hold.
- * Returns:
+ * thread must have been waiting
+ * Returns:
* KERN_SUCCESS - Thread was set running
- * KERN_NOT_WAITING - Thread was not waiting
+ *
+ * TODO: This should return void
*/
kern_return_t
thread_go(
- thread_t thread,
- wait_result_t wresult)
+ thread_t thread,
+ wait_result_t wresult)
{
+ assert_thread_magic(thread);
+
assert(thread->at_safe_point == FALSE);
assert(thread->wait_event == NO_EVENT64);
- assert(thread->wait_queue == WAIT_QUEUE_NULL);
+ assert(thread->waitq == NULL);
+
+ assert(!(thread->state & (TH_TERMINATE|TH_TERMINATE2)));
+ assert(thread->state & TH_WAIT);
- if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT) {
- if (!thread_unblock(thread, wresult))
- thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
- return (KERN_SUCCESS);
+ if (thread_unblock(thread, wresult)) {
+#if SCHED_TRACE_THREAD_WAKEUPS
+ backtrace(&thread->thread_wakeup_bt[0],
+ (sizeof(thread->thread_wakeup_bt)/sizeof(uintptr_t)));
+#endif
+ thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
}
- return (KERN_NOT_WAITING);
+ return (KERN_SUCCESS);
}
/*
{
boolean_t at_safe_point;
+ assert(!(thread->state & (TH_WAIT|TH_IDLE|TH_UNINT|TH_TERMINATE2)));
+
/*
* The thread may have certain types of interrupts/aborts masked
* off. Even if the wait location says these types of interrupts
at_safe_point = (interruptible == THREAD_ABORTSAFE);
if ( interruptible == THREAD_UNINT ||
- !(thread->sched_mode & TH_MODE_ABORT) ||
+ !(thread->sched_flags & TH_SFLAG_ABORT) ||
(!at_safe_point &&
- (thread->sched_mode & TH_MODE_ABORTSAFELY))) {
+ (thread->sched_flags & TH_SFLAG_ABORTSAFELY))) {
+
+ if ( !(thread->state & TH_TERMINATE))
+ DTRACE_SCHED(sleep);
+
thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT);
thread->at_safe_point = at_safe_point;
return (thread->wait_result = THREAD_WAITING);
}
else
- if (thread->sched_mode & TH_MODE_ABORTSAFELY)
- thread->sched_mode &= ~TH_MODE_ISABORTED;
+ if (thread->sched_flags & TH_SFLAG_ABORTSAFELY)
+ thread->sched_flags &= ~TH_SFLAG_ABORTED_MASK;
return (thread->wait_result = THREAD_INTERRUPTED);
}
thread = current_thread();
- return (thread == NULL || wait_queue_assert_possible(thread));
+ return (thread == NULL || waitq_wait_possible(thread));
}
/*
event_t event,
wait_interrupt_t interruptible)
{
- register wait_queue_t wq;
- register int index;
+ if (__improbable(event == NO_EVENT))
+ panic("%s() called with NO_EVENT", __func__);
- assert(event != NO_EVENT);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
+ VM_KERNEL_UNSLIDE_OR_PERM(event), 0, 0, 0, 0);
+
+ struct waitq *waitq;
+ waitq = global_eventq(event);
+ return waitq_assert_wait64(waitq, CAST_EVENT64_T(event), interruptible, TIMEOUT_WAIT_FOREVER);
+}
- index = wait_hash(event);
- wq = &wait_queues[index];
- return wait_queue_assert_wait(wq, event, interruptible, 0);
+/*
+ * assert_wait_queue:
+ *
+ * Return the global waitq for the specified event
+ */
+struct waitq *
+assert_wait_queue(
+ event_t event)
+{
+ return global_eventq(event);
}
wait_result_t
{
thread_t thread = current_thread();
wait_result_t wresult;
- wait_queue_t wqueue;
uint64_t deadline;
spl_t s;
- assert(event != NO_EVENT);
- wqueue = &wait_queues[wait_hash(event)];
+ if (__improbable(event == NO_EVENT))
+ panic("%s() called with NO_EVENT", __func__);
+
+ struct waitq *waitq;
+ waitq = global_eventq(event);
s = splsched();
- wait_queue_lock(wqueue);
- thread_lock(thread);
+ waitq_lock(waitq);
clock_interval_to_deadline(interval, scale_factor, &deadline);
- wresult = wait_queue_assert_wait64_locked(wqueue, (uint32_t)event,
- interruptible, deadline, thread);
- thread_unlock(thread);
- wait_queue_unlock(wqueue);
- splx(s);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
+ VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0);
- return (wresult);
+ wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event),
+ interruptible,
+ TIMEOUT_URGENCY_SYS_NORMAL,
+ deadline, TIMEOUT_NO_LEEWAY,
+ thread);
+
+ waitq_unlock(waitq);
+ splx(s);
+ return wresult;
}
wait_result_t
-assert_wait_deadline(
+assert_wait_timeout_with_leeway(
event_t event,
wait_interrupt_t interruptible,
- uint64_t deadline)
+ wait_timeout_urgency_t urgency,
+ uint32_t interval,
+ uint32_t leeway,
+ uint32_t scale_factor)
{
thread_t thread = current_thread();
wait_result_t wresult;
- wait_queue_t wqueue;
+ uint64_t deadline;
+ uint64_t abstime;
+ uint64_t slop;
+ uint64_t now;
spl_t s;
- assert(event != NO_EVENT);
- wqueue = &wait_queues[wait_hash(event)];
+ if (__improbable(event == NO_EVENT))
+ panic("%s() called with NO_EVENT", __func__);
- s = splsched();
- wait_queue_lock(wqueue);
- thread_lock(thread);
+ now = mach_absolute_time();
+ clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
+ deadline = now + abstime;
- wresult = wait_queue_assert_wait64_locked(wqueue, (uint32_t)event,
- interruptible, deadline, thread);
+ clock_interval_to_absolutetime_interval(leeway, scale_factor, &slop);
- thread_unlock(thread);
- wait_queue_unlock(wqueue);
- splx(s);
+ struct waitq *waitq;
+ waitq = global_eventq(event);
- return (wresult);
-}
+ s = splsched();
+ waitq_lock(waitq);
-/*
- * thread_sleep_fast_usimple_lock:
- *
- * Cause the current thread to wait until the specified event
- * occurs. The specified simple_lock is unlocked before releasing
- * the cpu and re-acquired as part of waking up.
- *
- * This is the simple lock sleep interface for components that use a
- * faster version of simple_lock() than is provided by usimple_lock().
- */
-__private_extern__ wait_result_t
-thread_sleep_fast_usimple_lock(
- event_t event,
- simple_lock_t lock,
- wait_interrupt_t interruptible)
-{
- wait_result_t res;
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
+ VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0);
- res = assert_wait(event, interruptible);
- if (res == THREAD_WAITING) {
- simple_unlock(lock);
- res = thread_block(THREAD_CONTINUE_NULL);
- simple_lock(lock);
- }
- return res;
-}
+ wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event),
+ interruptible,
+ urgency, deadline, slop,
+ thread);
+ waitq_unlock(waitq);
+ splx(s);
+ return wresult;
+}
-/*
- * thread_sleep_usimple_lock:
- *
- * Cause the current thread to wait until the specified event
- * occurs. The specified usimple_lock is unlocked before releasing
- * the cpu and re-acquired as part of waking up.
- *
- * This is the simple lock sleep interface for components where
- * simple_lock() is defined in terms of usimple_lock().
- */
wait_result_t
-thread_sleep_usimple_lock(
- event_t event,
- usimple_lock_t lock,
- wait_interrupt_t interruptible)
+assert_wait_deadline(
+ event_t event,
+ wait_interrupt_t interruptible,
+ uint64_t deadline)
{
- wait_result_t res;
+ thread_t thread = current_thread();
+ wait_result_t wresult;
+ spl_t s;
- res = assert_wait(event, interruptible);
- if (res == THREAD_WAITING) {
- usimple_unlock(lock);
- res = thread_block(THREAD_CONTINUE_NULL);
- usimple_lock(lock);
- }
- return res;
-}
+ if (__improbable(event == NO_EVENT))
+ panic("%s() called with NO_EVENT", __func__);
-/*
- * thread_sleep_mutex:
- *
- * Cause the current thread to wait until the specified event
- * occurs. The specified mutex is unlocked before releasing
- * the cpu. The mutex will be re-acquired before returning.
- *
- * JMM - Add hint to make sure mutex is available before rousting
- */
-wait_result_t
-thread_sleep_mutex(
- event_t event,
- mutex_t *mutex,
- wait_interrupt_t interruptible)
-{
- wait_result_t res;
+ struct waitq *waitq;
+ waitq = global_eventq(event);
- res = assert_wait(event, interruptible);
- if (res == THREAD_WAITING) {
- mutex_unlock(mutex);
- res = thread_block(THREAD_CONTINUE_NULL);
- mutex_lock(mutex);
- }
- return res;
+ s = splsched();
+ waitq_lock(waitq);
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
+ VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0);
+
+ wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event),
+ interruptible,
+ TIMEOUT_URGENCY_SYS_NORMAL, deadline,
+ TIMEOUT_NO_LEEWAY, thread);
+ waitq_unlock(waitq);
+ splx(s);
+ return wresult;
}
-
-/*
- * thread_sleep_mutex_deadline:
- *
- * Cause the current thread to wait until the specified event
- * (or deadline) occurs. The specified mutex is unlocked before
- * releasing the cpu. The mutex will be re-acquired before returning.
- */
+
wait_result_t
-thread_sleep_mutex_deadline(
- event_t event,
- mutex_t *mutex,
- uint64_t deadline,
- wait_interrupt_t interruptible)
+assert_wait_deadline_with_leeway(
+ event_t event,
+ wait_interrupt_t interruptible,
+ wait_timeout_urgency_t urgency,
+ uint64_t deadline,
+ uint64_t leeway)
{
- wait_result_t res;
+ thread_t thread = current_thread();
+ wait_result_t wresult;
+ spl_t s;
- res = assert_wait_deadline(event, interruptible, deadline);
- if (res == THREAD_WAITING) {
- mutex_unlock(mutex);
- res = thread_block(THREAD_CONTINUE_NULL);
- mutex_lock(mutex);
- }
- return res;
+ if (__improbable(event == NO_EVENT))
+ panic("%s() called with NO_EVENT", __func__);
+
+ struct waitq *waitq;
+ waitq = global_eventq(event);
+
+ s = splsched();
+ waitq_lock(waitq);
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT)|DBG_FUNC_NONE,
+ VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0);
+
+ wresult = waitq_assert_wait64_locked(waitq, CAST_EVENT64_T(event),
+ interruptible,
+ urgency, deadline, leeway,
+ thread);
+ waitq_unlock(waitq);
+ splx(s);
+ return wresult;
}
/*
- * thread_sleep_lock_write:
+ * thread_isoncpu:
*
- * Cause the current thread to wait until the specified event
- * occurs. The specified (write) lock is unlocked before releasing
- * the cpu. The (write) lock will be re-acquired before returning.
+ * Return TRUE if a thread is running on a processor such that an AST
+ * is needed to pull it out of userspace execution, or if executing in
+ * the kernel, bring to a context switch boundary that would cause
+ * thread state to be serialized in the thread PCB.
+ *
+ * Thread locked, returns the same way. While locked, fields
+ * like "state" cannot change. "runq" can change only from set to unset.
*/
-wait_result_t
-thread_sleep_lock_write(
- event_t event,
- lock_t *lock,
- wait_interrupt_t interruptible)
+static inline boolean_t
+thread_isoncpu(thread_t thread)
{
- wait_result_t res;
+ /* Not running or runnable */
+ if (!(thread->state & TH_RUN))
+ return (FALSE);
- res = assert_wait(event, interruptible);
- if (res == THREAD_WAITING) {
- lock_write_done(lock);
- res = thread_block(THREAD_CONTINUE_NULL);
- lock_write(lock);
- }
- return res;
+ /* Waiting on a runqueue, not currently running */
+ /* TODO: This is invalid - it can get dequeued without thread lock, but not context switched. */
+ if (thread->runq != PROCESSOR_NULL)
+ return (FALSE);
+
+ /*
+ * Thread does not have a stack yet
+ * It could be on the stack alloc queue or preparing to be invoked
+ */
+ if (!thread->kernel_stack)
+ return (FALSE);
+
+ /*
+ * Thread must be running on a processor, or
+ * about to run, or just did run. In all these
+ * cases, an AST to the processor is needed
+ * to guarantee that the thread is kicked out
+ * of userspace and the processor has
+ * context switched (and saved register state).
+ */
+ return (TRUE);
}
/*
* thread_stop:
*
* Force a preemption point for a thread and wait
- * for it to stop running. Arbitrates access among
+ * for it to stop running on a CPU. If a stronger
+ * guarantee is requested, wait until no longer
+ * runnable. Arbitrates access among
* multiple stop requests. (released by unstop)
*
* The thread must enter a wait state and stop via a
*/
boolean_t
thread_stop(
- thread_t thread)
+ thread_t thread,
+ boolean_t until_not_runnable)
{
wait_result_t wresult;
spl_t s = splsched();
+ boolean_t oncpu;
wake_lock(thread);
thread_lock(thread);
thread->state |= TH_SUSP;
- while (thread->state & TH_RUN) {
- processor_t processor = thread->last_processor;
-
- if (processor != PROCESSOR_NULL && processor->active_thread == thread)
+ while ((oncpu = thread_isoncpu(thread)) ||
+ (until_not_runnable && (thread->state & TH_RUN))) {
+ processor_t processor;
+
+ if (oncpu) {
+ assert(thread->state & TH_RUN);
+ processor = thread->chosen_processor;
cause_ast_check(processor);
+ }
thread->wake_active = TRUE;
thread_unlock(thread);
thread_unlock(thread);
wake_unlock(thread);
splx(s);
+
+ /*
+ * We return with the thread unlocked. To prevent it from
+ * transitioning to a runnable state (or from TH_RUN to
+ * being on the CPU), the caller must ensure the thread
+ * is stopped via an external means (such as an AST)
+ */
return (TRUE);
}
wake_lock(thread);
thread_lock(thread);
- if ((thread->state & (TH_RUN|TH_WAIT|TH_SUSP)) == TH_SUSP) {
- thread->state &= ~TH_SUSP;
- thread_unblock(thread, THREAD_AWAKENED);
+ assert((thread->state & (TH_RUN|TH_WAIT|TH_SUSP)) != TH_SUSP);
- thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
- }
- else
if (thread->state & TH_SUSP) {
thread->state &= ~TH_SUSP;
*/
void
thread_wait(
- thread_t thread)
+ thread_t thread,
+ boolean_t until_not_runnable)
{
wait_result_t wresult;
- spl_t s = splsched();
+ boolean_t oncpu;
+ processor_t processor;
+ spl_t s = splsched();
wake_lock(thread);
thread_lock(thread);
- while (thread->state & TH_RUN) {
- processor_t processor = thread->last_processor;
+ /*
+ * Wait until not running on a CPU. If stronger requirement
+ * desired, wait until not runnable. Assumption: if thread is
+ * on CPU, then TH_RUN is set, so we're not waiting in any case
+ * where the original, pure "TH_RUN" check would have let us
+ * finish.
+ */
+ while ((oncpu = thread_isoncpu(thread)) ||
+ (until_not_runnable && (thread->state & TH_RUN))) {
- if (processor != PROCESSOR_NULL && processor->active_thread == thread)
+ if (oncpu) {
+ assert(thread->state & TH_RUN);
+ processor = thread->chosen_processor;
cause_ast_check(processor);
+ }
thread->wake_active = TRUE;
thread_unlock(thread);
thread_t thread,
wait_result_t wresult)
{
- wait_queue_t wq = thread->wait_queue;
- int i = LockTimeOut;
-
+ uint32_t i = LockTimeOutUsec;
+ struct waitq *waitq = thread->waitq;
+
do {
if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT))
return (KERN_FAILURE);
- if (wq != WAIT_QUEUE_NULL) {
- if (wait_queue_lock_try(wq)) {
- wait_queue_pull_thread_locked(wq, thread, TRUE);
- /* wait queue unlocked, thread still locked */
- }
- else {
+ if (waitq != NULL) {
+ if (!waitq_pull_thread_locked(waitq, thread)) {
thread_unlock(thread);
delay(1);
-
+ if (i > 0 && !machine_timeout_suspended())
+ i--;
thread_lock(thread);
- if (wq != thread->wait_queue)
- return (KERN_NOT_WAITING);
-
+ if (waitq != thread->waitq)
+ return KERN_NOT_WAITING;
continue;
}
}
- return (thread_go(thread, wresult));
- } while (--i > 0);
+ /* TODO: Can we instead assert TH_TERMINATE is not set? */
+ if ((thread->state & (TH_WAIT|TH_TERMINATE)) == TH_WAIT)
+ return (thread_go(thread, wresult));
+ else
+ return (KERN_NOT_WAITING);
+ } while (i > 0);
panic("clear_wait_internal: deadlock: thread=%p, wq=%p, cpu=%d\n",
- thread, wq, cpu_number());
+ thread, waitq, cpu_number());
return (KERN_FAILURE);
}
*/
kern_return_t
thread_wakeup_prim(
- event_t event,
- boolean_t one_thread,
- wait_result_t result)
+ event_t event,
+ boolean_t one_thread,
+ wait_result_t result)
{
- register wait_queue_t wq;
- register int index;
+ if (__improbable(event == NO_EVENT))
+ panic("%s() called with NO_EVENT", __func__);
+
+ struct waitq *wq = global_eventq(event);
- index = wait_hash(event);
- wq = &wait_queues[index];
if (one_thread)
- return (wait_queue_wakeup_one(wq, event, result));
+ return waitq_wakeup64_one(wq, CAST_EVENT64_T(event), result, WAITQ_ALL_PRIORITIES);
else
- return (wait_queue_wakeup_all(wq, event, result));
+ return waitq_wakeup64_all(wq, CAST_EVENT64_T(event), result, WAITQ_ALL_PRIORITIES);
+}
+
+/*
+ * Wakeup a specified thread if and only if it's waiting for this event
+ */
+kern_return_t
+thread_wakeup_thread(
+ event_t event,
+ thread_t thread)
+{
+ if (__improbable(event == NO_EVENT))
+ panic("%s() called with NO_EVENT", __func__);
+
+ struct waitq *wq = global_eventq(event);
+
+ return waitq_wakeup64_thread(wq, CAST_EVENT64_T(event), thread, THREAD_AWAKENED);
+}
+
+/*
+ * Wakeup a thread waiting on an event and promote it to a priority.
+ *
+ * Requires woken thread to un-promote itself when done.
+ */
+kern_return_t
+thread_wakeup_one_with_pri(
+ event_t event,
+ int priority)
+{
+ if (__improbable(event == NO_EVENT))
+ panic("%s() called with NO_EVENT", __func__);
+
+ struct waitq *wq = global_eventq(event);
+
+ return waitq_wakeup64_one(wq, CAST_EVENT64_T(event), THREAD_AWAKENED, priority);
+}
+
+/*
+ * Wakeup a thread waiting on an event,
+ * promote it to a priority,
+ * and return a reference to the woken thread.
+ *
+ * Requires woken thread to un-promote itself when done.
+ */
+thread_t
+thread_wakeup_identify(event_t event,
+ int priority)
+{
+ if (__improbable(event == NO_EVENT))
+ panic("%s() called with NO_EVENT", __func__);
+
+ struct waitq *wq = global_eventq(event);
+
+ return waitq_wakeup64_identify(wq, CAST_EVENT64_T(event), THREAD_AWAKENED, priority);
}
/*
* thread_bind:
*
* Force the current thread to execute on the specified processor.
+ * Takes effect after the next thread_block().
*
* Returns the previous binding. PROCESSOR_NULL means
* not bound.
s = splsched();
thread_lock(self);
- prev = self->bound_processor;
- self->bound_processor = processor;
+ prev = thread_bind_internal(self, processor);
thread_unlock(self);
splx(s);
return (prev);
}
+/*
+ * thread_bind_internal:
+ *
+ * If the specified thread is not the current thread, and it is currently
+ * running on another CPU, a remote AST must be sent to that CPU to cause
+ * the thread to migrate to its bound processor. Otherwise, the migration
+ * will occur at the next quantum expiration or blocking point.
+ *
+ * When the thread is the current thread, and explicit thread_block() should
+ * be used to force the current processor to context switch away and
+ * let the thread migrate to the bound processor.
+ *
+ * Thread must be locked, and at splsched.
+ */
+
+static processor_t
+thread_bind_internal(
+ thread_t thread,
+ processor_t processor)
+{
+ processor_t prev;
+
+ /* <rdar://problem/15102234> */
+ assert(thread->sched_pri < BASEPRI_RTQUEUES);
+ /* A thread can't be bound if it's sitting on a (potentially incorrect) runqueue */
+ assert(thread->runq == PROCESSOR_NULL);
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_THREAD_BIND), thread_tid(thread), processor ? (uintptr_t)processor->cpu_id : (uintptr_t)-1, 0, 0, 0);
+
+ prev = thread->bound_processor;
+ thread->bound_processor = processor;
+
+ return (prev);
+}
+
+/*
+ * thread_vm_bind_group_add:
+ *
+ * The "VM bind group" is a special mechanism to mark a collection
+ * of threads from the VM subsystem that, in general, should be scheduled
+ * with only one CPU of parallelism. To accomplish this, we initially
+ * bind all the threads to the master processor, which has the effect
+ * that only one of the threads in the group can execute at once, including
+ * preempting threads in the group that are a lower priority. Future
+ * mechanisms may use more dynamic mechanisms to prevent the collection
+ * of VM threads from using more CPU time than desired.
+ *
+ * The current implementation can result in priority inversions where
+ * compute-bound priority 95 or realtime threads that happen to have
+ * landed on the master processor prevent the VM threads from running.
+ * When this situation is detected, we unbind the threads for one
+ * scheduler tick to allow the scheduler to run the threads an
+ * additional CPUs, before restoring the binding (assuming high latency
+ * is no longer a problem).
+ */
+
+/*
+ * The current max is provisioned for:
+ * vm_compressor_swap_trigger_thread (92)
+ * 2 x vm_pageout_iothread_internal (92) when vm_restricted_to_single_processor==TRUE
+ * vm_pageout_continue (92)
+ * memorystatus_thread (95)
+ */
+#define MAX_VM_BIND_GROUP_COUNT (5)
+decl_simple_lock_data(static,sched_vm_group_list_lock);
+static thread_t sched_vm_group_thread_list[MAX_VM_BIND_GROUP_COUNT];
+static int sched_vm_group_thread_count;
+static boolean_t sched_vm_group_temporarily_unbound = FALSE;
+
+void
+thread_vm_bind_group_add(void)
+{
+ thread_t self = current_thread();
+
+ thread_reference_internal(self);
+ self->options |= TH_OPT_SCHED_VM_GROUP;
+
+ simple_lock(&sched_vm_group_list_lock);
+ assert(sched_vm_group_thread_count < MAX_VM_BIND_GROUP_COUNT);
+ sched_vm_group_thread_list[sched_vm_group_thread_count++] = self;
+ simple_unlock(&sched_vm_group_list_lock);
+
+ thread_bind(master_processor);
+
+ /* Switch to bound processor if not already there */
+ thread_block(THREAD_CONTINUE_NULL);
+}
+
+static void
+sched_vm_group_maintenance(void)
+{
+ uint64_t ctime = mach_absolute_time();
+ uint64_t longtime = ctime - sched_tick_interval;
+ int i;
+ spl_t s;
+ boolean_t high_latency_observed = FALSE;
+ boolean_t runnable_and_not_on_runq_observed = FALSE;
+ boolean_t bind_target_changed = FALSE;
+ processor_t bind_target = PROCESSOR_NULL;
+
+ /* Make sure nobody attempts to add new threads while we are enumerating them */
+ simple_lock(&sched_vm_group_list_lock);
+
+ s = splsched();
+
+ for (i=0; i < sched_vm_group_thread_count; i++) {
+ thread_t thread = sched_vm_group_thread_list[i];
+ assert(thread != THREAD_NULL);
+ thread_lock(thread);
+ if ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN) {
+ if (thread->runq != PROCESSOR_NULL && thread->last_made_runnable_time < longtime) {
+ high_latency_observed = TRUE;
+ } else if (thread->runq == PROCESSOR_NULL) {
+ /* There are some cases where a thread be transitiong that also fall into this case */
+ runnable_and_not_on_runq_observed = TRUE;
+ }
+ }
+ thread_unlock(thread);
+
+ if (high_latency_observed && runnable_and_not_on_runq_observed) {
+ /* All the things we are looking for are true, stop looking */
+ break;
+ }
+ }
+
+ splx(s);
+
+ if (sched_vm_group_temporarily_unbound) {
+ /* If we turned off binding, make sure everything is OK before rebinding */
+ if (!high_latency_observed) {
+ /* rebind */
+ bind_target_changed = TRUE;
+ bind_target = master_processor;
+ sched_vm_group_temporarily_unbound = FALSE; /* might be reset to TRUE if change cannot be completed */
+ }
+ } else {
+ /*
+ * Check if we're in a bad state, which is defined by high
+ * latency with no core currently executing a thread. If a
+ * single thread is making progress on a CPU, that means the
+ * binding concept to reduce parallelism is working as
+ * designed.
+ */
+ if (high_latency_observed && !runnable_and_not_on_runq_observed) {
+ /* unbind */
+ bind_target_changed = TRUE;
+ bind_target = PROCESSOR_NULL;
+ sched_vm_group_temporarily_unbound = TRUE;
+ }
+ }
+
+ if (bind_target_changed) {
+ s = splsched();
+ for (i=0; i < sched_vm_group_thread_count; i++) {
+ thread_t thread = sched_vm_group_thread_list[i];
+ boolean_t removed;
+ assert(thread != THREAD_NULL);
+
+ thread_lock(thread);
+ removed = thread_run_queue_remove(thread);
+ if (removed || ((thread->state & (TH_RUN | TH_WAIT)) == TH_WAIT)) {
+ thread_bind_internal(thread, bind_target);
+ } else {
+ /*
+ * Thread was in the middle of being context-switched-to,
+ * or was in the process of blocking. To avoid switching the bind
+ * state out mid-flight, defer the change if possible.
+ */
+ if (bind_target == PROCESSOR_NULL) {
+ thread_bind_internal(thread, bind_target);
+ } else {
+ sched_vm_group_temporarily_unbound = TRUE; /* next pass will try again */
+ }
+ }
+
+ if (removed) {
+ thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ);
+ }
+ thread_unlock(thread);
+ }
+ splx(s);
+ }
+
+ simple_unlock(&sched_vm_group_list_lock);
+}
+
+/* Invoked prior to idle entry to determine if, on SMT capable processors, an SMT
+ * rebalancing opportunity exists when a core is (instantaneously) idle, but
+ * other SMT-capable cores may be over-committed. TODO: some possible negatives:
+ * IPI thrash if this core does not remain idle following the load balancing ASTs
+ * Idle "thrash", when IPI issue is followed by idle entry/core power down
+ * followed by a wakeup shortly thereafter.
+ */
+
+#if (DEVELOPMENT || DEBUG)
+int sched_smt_balance = 1;
+#endif
+
+#if __SMP__
+/* Invoked with pset locked, returns with pset unlocked */
+static void
+sched_SMT_balance(processor_t cprocessor, processor_set_t cpset) {
+ processor_t ast_processor = NULL;
+
+#if (DEVELOPMENT || DEBUG)
+ if (__improbable(sched_smt_balance == 0))
+ goto smt_balance_exit;
+#endif
+
+ assert(cprocessor == current_processor());
+ if (cprocessor->is_SMT == FALSE)
+ goto smt_balance_exit;
+
+ processor_t sib_processor = cprocessor->processor_secondary ? cprocessor->processor_secondary : cprocessor->processor_primary;
+
+ /* Determine if both this processor and its sibling are idle,
+ * indicating an SMT rebalancing opportunity.
+ */
+ if (sib_processor->state != PROCESSOR_IDLE)
+ goto smt_balance_exit;
+
+ processor_t sprocessor;
+
+ qe_foreach_element(sprocessor, &cpset->active_queue, processor_queue) {
+ if ((sprocessor->state == PROCESSOR_RUNNING) &&
+ (sprocessor->processor_primary != sprocessor) &&
+ (sprocessor->processor_primary->state == PROCESSOR_RUNNING) &&
+ (sprocessor->current_pri < BASEPRI_RTQUEUES) &&
+ ((cpset->pending_AST_cpu_mask & (1ULL << sprocessor->cpu_id)) == 0)) {
+ assert(sprocessor != cprocessor);
+ ast_processor = sprocessor;
+ break;
+ }
+ }
+
+smt_balance_exit:
+ pset_unlock(cpset);
+
+ if (ast_processor) {
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_SMT_BALANCE), ast_processor->cpu_id, ast_processor->state, ast_processor->processor_primary->state, 0, 0);
+ cause_ast_check(ast_processor);
+ }
+}
+#endif /* __SMP__ */
+
/*
* thread_select:
*
static thread_t
thread_select(
thread_t thread,
- processor_t processor)
+ processor_t processor,
+ ast_t reason)
{
processor_set_t pset = processor->processor_set;
- thread_t new_thread;
- boolean_t other_runnable;
+ thread_t new_thread = THREAD_NULL;
+
+ assert(processor == current_processor());
+ assert((thread->state & (TH_RUN|TH_TERMINATE2)) == TH_RUN);
do {
/*
* Update the priority.
*/
- if (thread->sched_stamp != sched_tick)
- update_priority(thread);
-
+ if (SCHED(can_update_priority)(thread))
+ SCHED(update_priority)(thread);
+
processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
pset_lock(pset);
- simple_lock(&rt_lock);
+ assert(processor->state != PROCESSOR_OFF_LINE);
- /*
- * Check for other runnable threads.
- */
- other_runnable = processor->runq.count > 0 || rt_runq.count > 0;
+ if (!processor->is_recommended) {
+ /*
+ * The performance controller has provided a hint to not dispatch more threads,
+ * unless they are bound to us (and thus we are the only option
+ */
+ if (!SCHED(processor_bound_count)(processor)) {
+ goto idle;
+ }
+ } else if (processor->processor_primary != processor) {
+ /*
+ * Should this secondary SMT processor attempt to find work? For pset runqueue systems,
+ * we should look for work only under the same conditions that choose_processor()
+ * would have assigned work, which is when all primary processors have been assigned work.
+ *
+ * An exception is that bound threads are dispatched to a processor without going through
+ * choose_processor(), so in those cases we should continue trying to dequeue work.
+ */
+ if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue) && !rt_runq.count) {
+ goto idle;
+ }
+ }
+
+ rt_lock_lock();
/*
* Test to see if the current thread should continue
- * to run on this processor. Must be runnable, and not
+ * to run on this processor. Must not be attempting to wait, and not
* bound to a different processor, nor be in the wrong
- * processor set.
+ * processor set, nor be forced to context switch by TH_SUSP.
+ *
+ * Note that there are never any RT threads in the regular runqueue.
+ *
+ * This code is very insanely tricky.
*/
- if ( thread->state == TH_RUN &&
- (thread->bound_processor == PROCESSOR_NULL ||
- thread->bound_processor == processor) &&
- (thread->affinity_set == AFFINITY_SET_NULL ||
- thread->affinity_set->aset_pset == pset) ) {
- if ( thread->sched_pri >= BASEPRI_RTQUEUES &&
- first_timeslice(processor) ) {
- if (rt_runq.highq >= BASEPRI_RTQUEUES) {
- register run_queue_t runq = &rt_runq;
- register queue_t q;
-
- q = runq->queues + runq->highq;
- if (((thread_t)q->next)->realtime.deadline <
- processor->deadline) {
- thread = (thread_t)q->next;
- ((queue_entry_t)thread)->next->prev = q;
- q->next = ((queue_entry_t)thread)->next;
- thread->runq = PROCESSOR_NULL;
- assert(thread->sched_mode & TH_MODE_PREEMPT);
- runq->count--; runq->urgency--;
- if (queue_empty(q)) {
- if (runq->highq != IDLEPRI)
- clrbit(MAXPRI - runq->highq, runq->bitmap);
- runq->highq = MAXPRI - ffsbit(runq->bitmap);
- }
+
+ if (((thread->state & (TH_TERMINATE|TH_IDLE|TH_WAIT|TH_RUN|TH_SUSP)) == TH_RUN) &&
+ (thread->sched_pri >= BASEPRI_RTQUEUES || processor->processor_primary == processor) &&
+ (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor) &&
+ (thread->affinity_set == AFFINITY_SET_NULL || thread->affinity_set->aset_pset == pset)) {
+ /*
+ * RT threads with un-expired quantum stay on processor,
+ * unless there's a valid RT thread with an earlier deadline.
+ */
+ if (thread->sched_pri >= BASEPRI_RTQUEUES && processor->first_timeslice) {
+ if (rt_runq.count > 0) {
+ thread_t next_rt = qe_queue_first(&rt_runq.queue, struct thread, runq_links);
+
+ assert(next_rt->runq == THREAD_ON_RT_RUNQ);
+
+ if (next_rt->realtime.deadline < processor->deadline &&
+ (next_rt->bound_processor == PROCESSOR_NULL ||
+ next_rt->bound_processor == processor)) {
+ /* The next RT thread is better, so pick it off the runqueue. */
+ goto pick_new_rt_thread;
}
}
- simple_unlock(&rt_lock);
-
+ /* This is still the best RT thread to run. */
processor->deadline = thread->realtime.deadline;
+ rt_lock_unlock();
pset_unlock(pset);
return (thread);
}
- if ( (!other_runnable ||
- (processor->runq.highq < thread->sched_pri &&
- rt_runq.highq < thread->sched_pri)) ) {
+ if ((rt_runq.count == 0) &&
+ SCHED(processor_queue_has_priority)(processor, thread->sched_pri, TRUE) == FALSE) {
+ /* This thread is still the highest priority runnable (non-idle) thread */
+ processor->deadline = UINT64_MAX;
- simple_unlock(&rt_lock);
+ rt_lock_unlock();
+ pset_unlock(pset);
- /* I am the highest priority runnable (non-idle) thread */
+ return (thread);
+ }
+ }
- pset_hint_low(pset, processor);
- pset_hint_high(pset, processor);
+ /* OK, so we're not going to run the current thread. Look at the RT queue. */
+ if (rt_runq.count > 0) {
+ thread_t next_rt = qe_queue_first(&rt_runq.queue, struct thread, runq_links);
- processor->deadline = UINT64_MAX;
+ assert(next_rt->runq == THREAD_ON_RT_RUNQ);
+ if (__probable((next_rt->bound_processor == PROCESSOR_NULL ||
+ (next_rt->bound_processor == processor)))) {
+pick_new_rt_thread:
+ new_thread = qe_dequeue_head(&rt_runq.queue, struct thread, runq_links);
+
+ new_thread->runq = PROCESSOR_NULL;
+ SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
+ rt_runq.count--;
+
+ processor->deadline = new_thread->realtime.deadline;
+
+ rt_lock_unlock();
pset_unlock(pset);
- return (thread);
+ return (new_thread);
}
}
- if (other_runnable)
- return choose_thread(processor);
+ processor->deadline = UINT64_MAX;
+ rt_lock_unlock();
- simple_unlock(&rt_lock);
+ /* No RT threads, so let's look at the regular threads. */
+ if ((new_thread = SCHED(choose_thread)(processor, MINPRI, reason)) != THREAD_NULL) {
+ pset_unlock(pset);
+ return (new_thread);
+ }
- /*
- * No runnable threads, attempt to steal
- * from other processors.
- */
- if (pset->high_hint != PROCESSOR_NULL && pset->high_hint->runq.count > 0) {
- new_thread = steal_thread(pset->high_hint);
- if (new_thread != THREAD_NULL) {
- pset_unlock(pset);
+#if __SMP__
+ if (SCHED(steal_thread_enabled)) {
+ /*
+ * No runnable threads, attempt to steal
+ * from other processors. Returns with pset lock dropped.
+ */
+ if ((new_thread = SCHED(steal_thread)(pset)) != THREAD_NULL) {
return (new_thread);
}
+
+ /*
+ * If other threads have appeared, shortcut
+ * around again.
+ */
+ if (!SCHED(processor_queue_empty)(processor) || rt_runq.count > 0)
+ continue;
+
+ pset_lock(pset);
}
+#endif
+ idle:
/*
* Nothing is runnable, so set this processor idle if it
* was running.
*/
if (processor->state == PROCESSOR_RUNNING) {
- remqueue(&pset->active_queue, (queue_entry_t)processor);
processor->state = PROCESSOR_IDLE;
- enqueue_head(&pset->idle_queue, (queue_entry_t)processor);
- pset->low_hint = processor;
- pset->idle_count++;
+ if (processor->processor_primary == processor) {
+ re_queue_head(&pset->idle_queue, &processor->processor_queue);
+ } else {
+ re_queue_head(&pset->idle_secondary_queue, &processor->processor_queue);
+ }
}
- processor->deadline = UINT64_MAX;
-
+#if __SMP__
+ /* Invoked with pset locked, returns with pset unlocked */
+ sched_SMT_balance(processor, pset);
+#else
pset_unlock(pset);
+#endif
+#if CONFIG_SCHED_IDLE_IN_PLACE
/*
* Choose idle thread if fast idle is not possible.
*/
- if ((thread->state & (TH_IDLE|TH_TERMINATE|TH_SUSP)) || !(thread->state & TH_WAIT) || thread->wake_active)
+ if (processor->processor_primary != processor)
+ return (processor->idle_thread);
+
+ if ((thread->state & (TH_IDLE|TH_TERMINATE|TH_SUSP)) || !(thread->state & TH_WAIT) || thread->wake_active || thread->sched_pri >= BASEPRI_RTQUEUES)
return (processor->idle_thread);
/*
*/
new_thread = thread_select_idle(thread, processor);
+#else /* !CONFIG_SCHED_IDLE_IN_PLACE */
+
+ /*
+ * Do a full context switch to idle so that the current
+ * thread can start running on another processor without
+ * waiting for the fast-idled processor to wake up.
+ */
+ new_thread = processor->idle_thread;
+
+#endif /* !CONFIG_SCHED_IDLE_IN_PLACE */
+
} while (new_thread == THREAD_NULL);
return (new_thread);
}
+#if CONFIG_SCHED_IDLE_IN_PLACE
/*
* thread_select_idle:
*
processor_t processor)
{
thread_t new_thread;
+ uint64_t arg1, arg2;
+ int urgency;
- if (thread->sched_mode & TH_MODE_TIMESHARE)
- sched_share_decr();
- sched_run_decr();
+ sched_run_decr(thread);
thread->state |= TH_IDLE;
processor->current_pri = IDLEPRI;
+ processor->current_thmode = TH_MODE_NONE;
+ processor->current_sfi_class = SFI_CLASS_KERNEL;
+ /* Reload precise timing global policy to thread-local policy */
+ thread->precise_user_kernel_time = use_precise_user_kernel_time(thread);
+
thread_unlock(thread);
/*
* Switch execution timing to processor idle thread.
*/
processor->last_dispatch = mach_absolute_time();
+
+#ifdef CONFIG_MACH_APPROXIMATE_TIME
+ commpage_update_mach_approximate_time(processor->last_dispatch);
+#endif
+
+ thread->last_run_time = processor->last_dispatch;
thread_timer_event(processor->last_dispatch, &processor->idle_thread->system_timer);
PROCESSOR_DATA(processor, kernel_timer) = &processor->idle_thread->system_timer;
* Cancel the quantum timer while idling.
*/
timer_call_cancel(&processor->quantum_timer);
- processor->timeslice = 0;
+ processor->first_timeslice = FALSE;
(*thread->sched_call)(SCHED_CALL_BLOCK, thread);
+ thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, NULL);
+
/*
* Enable interrupts and perform idling activities. No
* preemption due to TH_IDLE being set.
*/
spllo(); new_thread = processor_idle(thread, processor);
+ /*
+ * Return at splsched.
+ */
(*thread->sched_call)(SCHED_CALL_UNBLOCK, thread);
thread_lock(thread);
PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
thread_quantum_init(thread);
-
- processor->quantum_end = processor->last_dispatch + thread->current_quantum;
- timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end);
- processor->timeslice = 1;
+ processor->quantum_end = processor->last_dispatch + thread->quantum_remaining;
+ timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
+ processor->first_timeslice = TRUE;
thread->computation_epoch = processor->last_dispatch;
}
thread->state &= ~TH_IDLE;
- sched_run_incr();
- if (thread->sched_mode & TH_MODE_TIMESHARE)
- sched_share_incr();
+ urgency = thread_get_urgency(thread, &arg1, &arg2);
+
+ thread_tell_urgency(urgency, arg1, arg2, 0, new_thread);
+
+ sched_run_incr(thread);
return (new_thread);
}
+#endif /* CONFIG_SCHED_IDLE_IN_PLACE */
/*
- * Perform a context switch and start executing the new thread.
+ * thread_invoke
*
- * Returns FALSE on failure, and the thread is re-dispatched.
+ * Called at splsched with neither thread locked.
*
- * Called at splsched.
+ * Perform a context switch and start executing the new thread.
+ *
+ * Returns FALSE when the context switch didn't happen.
+ * The reference to the new thread is still consumed.
+ *
+ * "self" is what is currently running on the processor,
+ * "thread" is the new thread to context switch to
+ * (which may be the same thread in some cases)
*/
-
-#define funnel_release_check(thread, debug) \
-MACRO_BEGIN \
- if ((thread)->funnel_state & TH_FN_OWNED) { \
- (thread)->funnel_state = TH_FN_REFUNNEL; \
- KERNEL_DEBUG(0x603242c | DBG_FUNC_NONE, \
- (thread)->funnel_lock, (debug), 0, 0, 0); \
- funnel_unlock((thread)->funnel_lock); \
- } \
-MACRO_END
-
-#define funnel_refunnel_check(thread, debug) \
-MACRO_BEGIN \
- if ((thread)->funnel_state & TH_FN_REFUNNEL) { \
- kern_return_t result = (thread)->wait_result; \
- \
- (thread)->funnel_state = 0; \
- KERNEL_DEBUG(0x6032428 | DBG_FUNC_NONE, \
- (thread)->funnel_lock, (debug), 0, 0, 0); \
- funnel_lock((thread)->funnel_lock); \
- KERNEL_DEBUG(0x6032430 | DBG_FUNC_NONE, \
- (thread)->funnel_lock, (debug), 0, 0, 0); \
- (thread)->funnel_state = TH_FN_OWNED; \
- (thread)->wait_result = result; \
- } \
-MACRO_END
-
static boolean_t
thread_invoke(
- register thread_t self,
- register thread_t thread,
+ thread_t self,
+ thread_t thread,
ast_t reason)
{
- thread_continue_t continuation = self->continuation;
- void *parameter = self->parameter;
- processor_t processor;
+ if (__improbable(get_preemption_level() != 0)) {
+ int pl = get_preemption_level();
+ panic("thread_invoke: preemption_level %d, possible cause: %s",
+ pl, (pl < 0 ? "unlocking an unlocked mutex or spinlock" :
+ "blocking while holding a spinlock, or within interrupt context"));
+ }
+
+ thread_continue_t continuation = self->continuation;
+ void *parameter = self->parameter;
+ processor_t processor;
- if (get_preemption_level() != 0)
- panic("thread_invoke: preemption_level %d\n",
- get_preemption_level());
+ uint64_t ctime = mach_absolute_time();
+
+#ifdef CONFIG_MACH_APPROXIMATE_TIME
+ commpage_update_mach_approximate_time(ctime);
+#endif
+
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+ sched_timeshare_consider_maintenance(ctime);
+#endif
+ assert_thread_magic(self);
assert(self == current_thread());
+ assert(self->runq == PROCESSOR_NULL);
+ assert((self->state & (TH_RUN|TH_TERMINATE2)) == TH_RUN);
- /*
- * Mark thread interruptible.
- */
thread_lock(thread);
- thread->state &= ~TH_UNINT;
-#if DEBUG
- assert(thread_runnable(thread));
-#endif
+ assert_thread_magic(thread);
+ assert((thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_TERMINATE|TH_TERMINATE2)) == TH_RUN);
+ assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == current_processor());
+ assert(thread->runq == PROCESSOR_NULL);
- /*
- * Allow time constraint threads to hang onto
- * a stack.
- */
- if ((self->sched_mode & TH_MODE_REALTIME) && !self->reserved_stack)
+ /* Reload precise timing global policy to thread-local policy */
+ thread->precise_user_kernel_time = use_precise_user_kernel_time(thread);
+
+ /* Update SFI class based on other factors */
+ thread->sfi_class = sfi_thread_classify(thread);
+
+ /* Allow realtime threads to hang onto a stack. */
+ if ((self->sched_mode == TH_MODE_REALTIME) && !self->reserved_stack)
self->reserved_stack = self->kernel_stack;
if (continuation != NULL) {
processor = current_processor();
processor->active_thread = thread;
processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
if (thread->last_processor != processor && thread->last_processor != NULL) {
if (thread->last_processor->processor_set != processor->processor_set)
thread->ps_switch++;
thread->last_processor = processor;
thread->c_switch++;
ast_context(thread);
+
thread_unlock(thread);
self->reason = reason;
- processor->last_dispatch = mach_absolute_time();
- thread_timer_event(processor->last_dispatch, &thread->system_timer);
+ processor->last_dispatch = ctime;
+ self->last_run_time = ctime;
+ thread_timer_event(ctime, &thread->system_timer);
PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
+
+ /*
+ * Since non-precise user/kernel time doesn't update the state timer
+ * during privilege transitions, synthesize an event now.
+ */
+ if (!thread->precise_user_kernel_time) {
+ timer_switch(PROCESSOR_DATA(processor, current_state),
+ ctime,
+ PROCESSOR_DATA(processor, current_state));
+ }
- KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF)|DBG_FUNC_NONE,
- self->reason, (int)thread, self->sched_pri, thread->sched_pri, 0);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF)|DBG_FUNC_NONE,
+ self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
+
+ if ((thread->chosen_processor != processor) && (thread->chosen_processor != PROCESSOR_NULL)) {
+ SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0);
+ }
-TLOG(1, "thread_invoke: calling machine_stack_handoff\n");
- machine_stack_handoff(self, thread);
+ DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info);
+
+ SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri);
+
+ TLOG(1, "thread_invoke: calling stack_handoff\n");
+ stack_handoff(self, thread);
+
+ /* 'self' is now off core */
+ assert(thread == current_thread());
+
+ DTRACE_SCHED(on__cpu);
+
+#if KPERF
+ kperf_on_cpu(thread, continuation, NULL);
+#endif /* KPERF */
thread_dispatch(self, thread);
counter(c_thread_invoke_hits++);
- funnel_refunnel_check(thread, 2);
(void) spllo();
assert(continuation);
/* same thread but with continuation */
ast_context(self);
counter(++c_thread_invoke_same);
+
thread_unlock(self);
+#if KPERF
+ kperf_on_cpu(thread, continuation, NULL);
+#endif /* KPERF */
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
+ self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
+
self->continuation = self->parameter = NULL;
- funnel_refunnel_check(self, 3);
(void) spllo();
call_continuation(continuation, parameter, self->wait_result);
/*NOTREACHED*/
}
- }
- else {
+ } else {
/*
* Check that the other thread has a stack
*/
thread_stack_enqueue(thread);
return (FALSE);
}
- }
- else if (thread == self) {
+ } else if (thread == self) {
ast_context(self);
counter(++c_thread_invoke_same);
thread_unlock(self);
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
+ self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
+
return (TRUE);
}
}
processor = current_processor();
processor->active_thread = thread;
processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
if (thread->last_processor != processor && thread->last_processor != NULL) {
if (thread->last_processor->processor_set != processor->processor_set)
thread->ps_switch++;
thread->last_processor = processor;
thread->c_switch++;
ast_context(thread);
+
thread_unlock(thread);
counter(c_thread_invoke_csw++);
- assert(self->runq == PROCESSOR_NULL);
self->reason = reason;
- processor->last_dispatch = mach_absolute_time();
- thread_timer_event(processor->last_dispatch, &thread->system_timer);
+ processor->last_dispatch = ctime;
+ self->last_run_time = ctime;
+ thread_timer_event(ctime, &thread->system_timer);
PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
- KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
- (int)self->reason, (int)thread, self->sched_pri, thread->sched_pri, 0);
+ /*
+ * Since non-precise user/kernel time doesn't update the state timer
+ * during privilege transitions, synthesize an event now.
+ */
+ if (!thread->precise_user_kernel_time) {
+ timer_switch(PROCESSOR_DATA(processor, current_state),
+ ctime,
+ PROCESSOR_DATA(processor, current_state));
+ }
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
+ self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0);
+
+ if ((thread->chosen_processor != processor) && (thread->chosen_processor != NULL)) {
+ SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED)|DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0);
+ }
+
+ DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, thread->task->bsd_info);
+
+ SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri);
/*
* This is where we actually switch register context,
* and address space if required. We will next run
* as a result of a subsequent context switch.
+ *
+ * Once registers are switched and the processor is running "thread",
+ * the stack variables and non-volatile registers will contain whatever
+ * was there the last time that thread blocked. No local variables should
+ * be used after this point, except for the special case of "thread", which
+ * the platform layer returns as the previous thread running on the processor
+ * via the function call ABI as a return register, and "self", which may have
+ * been stored on the stack or a non-volatile register, but a stale idea of
+ * what was on the CPU is newly-accurate because that thread is again
+ * running on the CPU.
*/
+ assert(continuation == self->continuation);
thread = machine_switch_context(self, continuation, thread);
-TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self, continuation, thread);
+ assert(self == current_thread());
+ TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self, continuation, thread);
+
+ DTRACE_SCHED(on__cpu);
+
+#if KPERF
+ kperf_on_cpu(self, NULL, __builtin_frame_address(0));
+#endif /* KPERF */
/*
* We have been resumed and are set to run.
if (continuation) {
self->continuation = self->parameter = NULL;
- funnel_refunnel_check(self, 3);
(void) spllo();
call_continuation(continuation, parameter, self->wait_result);
return (TRUE);
}
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+/*
+ * pset_cancel_deferred_dispatch:
+ *
+ * Cancels all ASTs that we can cancel for the given processor set
+ * if the current processor is running the last runnable thread in the
+ * system.
+ *
+ * This function assumes the current thread is runnable. This must
+ * be called with the pset unlocked.
+ */
+static void
+pset_cancel_deferred_dispatch(
+ processor_set_t pset,
+ processor_t processor)
+{
+ processor_t active_processor = NULL;
+ uint32_t sampled_sched_run_count;
+
+ pset_lock(pset);
+ sampled_sched_run_count = (volatile uint32_t) sched_run_buckets[TH_BUCKET_RUN];
+
+ /*
+ * If we have emptied the run queue, and our current thread is runnable, we
+ * should tell any processors that are still DISPATCHING that they will
+ * probably not have any work to do. In the event that there are no
+ * pending signals that we can cancel, this is also uninteresting.
+ *
+ * In the unlikely event that another thread becomes runnable while we are
+ * doing this (sched_run_count is atomically updated, not guarded), the
+ * codepath making it runnable SHOULD (a dangerous word) need the pset lock
+ * in order to dispatch it to a processor in our pset. So, the other
+ * codepath will wait while we squash all cancelable ASTs, get the pset
+ * lock, and then dispatch the freshly runnable thread. So this should be
+ * correct (we won't accidentally have a runnable thread that hasn't been
+ * dispatched to an idle processor), if not ideal (we may be restarting the
+ * dispatch process, which could have some overhead).
+ *
+ */
+ if ((sampled_sched_run_count == 1) &&
+ (pset->pending_deferred_AST_cpu_mask)) {
+ qe_foreach_element_safe(active_processor, &pset->active_queue, processor_queue) {
+ /*
+ * If a processor is DISPATCHING, it could be because of
+ * a cancelable signal.
+ *
+ * IF the processor is not our
+ * current processor (the current processor should not
+ * be DISPATCHING, so this is a bit paranoid), AND there
+ * is a cancelable signal pending on the processor, AND
+ * there is no non-cancelable signal pending (as there is
+ * no point trying to backtrack on bringing the processor
+ * up if a signal we cannot cancel is outstanding), THEN
+ * it should make sense to roll back the processor state
+ * to the IDLE state.
+ *
+ * If the racey nature of this approach (as the signal
+ * will be arbitrated by hardware, and can fire as we
+ * roll back state) results in the core responding
+ * despite being pushed back to the IDLE state, it
+ * should be no different than if the core took some
+ * interrupt while IDLE.
+ */
+ if ((active_processor->state == PROCESSOR_DISPATCHING) &&
+ (pset->pending_deferred_AST_cpu_mask & (1ULL << active_processor->cpu_id)) &&
+ (!(pset->pending_AST_cpu_mask & (1ULL << active_processor->cpu_id))) &&
+ (active_processor != processor)) {
+ /*
+ * Squash all of the processor state back to some
+ * reasonable facsimile of PROCESSOR_IDLE.
+ *
+ * TODO: What queue policy do we actually want here?
+ * We want to promote selection of a good processor
+ * to run on. Do we want to enqueue at the head?
+ * The tail? At the (relative) old position in the
+ * queue? Or something else entirely?
+ */
+ re_queue_head(&pset->idle_queue, &active_processor->processor_queue);
+
+ assert(active_processor->next_thread == THREAD_NULL);
+
+ active_processor->current_pri = IDLEPRI;
+ active_processor->current_thmode = TH_MODE_FIXED;
+ active_processor->current_sfi_class = SFI_CLASS_KERNEL;
+ active_processor->deadline = UINT64_MAX;
+ active_processor->state = PROCESSOR_IDLE;
+ pset->pending_deferred_AST_cpu_mask &= ~(1U << active_processor->cpu_id);
+ machine_signal_idle_cancel(active_processor);
+ }
+
+ }
+ }
+
+ pset_unlock(pset);
+}
+#else
+/* We don't support deferred ASTs; everything is candycanes and sunshine. */
+#endif
+
/*
* thread_dispatch:
*
* special actions. Update quantum for other thread and begin
* the quantum for ourselves.
*
+ * "thread" is the old thread that we have switched away from.
+ * "self" is the new current thread that we have context switched to
+ *
* Called at splsched.
*/
void
{
processor_t processor = self->last_processor;
+ assert(processor == current_processor());
+ assert(self == current_thread());
+ assert(thread != self);
+
if (thread != THREAD_NULL) {
/*
* If blocked at a continuation, discard
if (thread->continuation != NULL && thread->kernel_stack != 0)
stack_free(thread);
- if (!(thread->state & TH_IDLE)) {
+ if (thread->state & TH_IDLE) {
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), 0, thread->state,
+ sched_run_buckets[TH_BUCKET_RUN], 0);
+ } else {
+ int64_t consumed;
+ int64_t remainder = 0;
+
+ if (processor->quantum_end > processor->last_dispatch)
+ remainder = processor->quantum_end -
+ processor->last_dispatch;
+
+ consumed = thread->quantum_remaining - remainder;
+
+ if ((thread->reason & AST_LEDGER) == 0) {
+ /*
+ * Bill CPU time to both the task and
+ * the individual thread.
+ */
+ ledger_credit(thread->t_ledger,
+ task_ledgers.cpu_time, consumed);
+ ledger_credit(thread->t_threadledger,
+ thread_ledgers.cpu_time, consumed);
+#ifdef CONFIG_BANK
+ if (thread->t_bankledger) {
+ ledger_credit(thread->t_bankledger,
+ bank_ledgers.cpu_time,
+ (consumed - thread->t_deduct_bank_ledger_time));
+
+ }
+ thread->t_deduct_bank_ledger_time =0;
+#endif
+ }
+
wake_lock(thread);
thread_lock(thread);
/*
- * Compute remainder of current quantum.
+ * Apply a priority floor if the thread holds a kernel resource
+ * Do this before checking starting_pri to avoid overpenalizing
+ * repeated rwlock blockers.
+ */
+ if (__improbable(thread->rwlock_count != 0))
+ lck_rw_set_promotion_locked(thread);
+
+ boolean_t keep_quantum = processor->first_timeslice;
+
+ /*
+ * Treat a thread which has dropped priority since it got on core
+ * as having expired its quantum.
*/
- if ( first_timeslice(processor) &&
- processor->quantum_end > processor->last_dispatch )
- thread->current_quantum = (processor->quantum_end - processor->last_dispatch);
+ if (processor->starting_pri > thread->sched_pri)
+ keep_quantum = FALSE;
+
+ /* Compute remainder of current quantum. */
+ if (keep_quantum &&
+ processor->quantum_end > processor->last_dispatch)
+ thread->quantum_remaining = (uint32_t)remainder;
else
- thread->current_quantum = 0;
+ thread->quantum_remaining = 0;
- if (thread->sched_mode & TH_MODE_REALTIME) {
+ if (thread->sched_mode == TH_MODE_REALTIME) {
/*
* Cancel the deadline if the thread has
* consumed the entire quantum.
*/
- if (thread->current_quantum == 0) {
+ if (thread->quantum_remaining == 0) {
thread->realtime.deadline = UINT64_MAX;
- thread->reason |= AST_QUANTUM;
}
- }
- else {
+ } else {
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
/*
* For non-realtime threads treat a tiny
* remaining quantum as an expired quantum
* but include what's left next time.
*/
- if (thread->current_quantum < min_std_quantum) {
+ if (thread->quantum_remaining < min_std_quantum) {
thread->reason |= AST_QUANTUM;
- thread->current_quantum += std_quantum;
+ thread->quantum_remaining += SCHED(initial_quantum_size)(thread);
}
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
}
/*
* take the remainder of the quantum.
*/
if ((thread->reason & (AST_HANDOFF|AST_QUANTUM)) == AST_HANDOFF) {
- self->current_quantum = thread->current_quantum;
+ self->quantum_remaining = thread->quantum_remaining;
thread->reason |= AST_QUANTUM;
- thread->current_quantum = 0;
+ thread->quantum_remaining = 0;
+ } else {
+#if defined(CONFIG_SCHED_MULTIQ)
+ if (SCHED(sched_groups_enabled) &&
+ thread->sched_group == self->sched_group) {
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED, MACH_QUANTUM_HANDOFF),
+ self->reason, (uintptr_t)thread_tid(thread),
+ self->quantum_remaining, thread->quantum_remaining, 0);
+
+ self->quantum_remaining = thread->quantum_remaining;
+ thread->quantum_remaining = 0;
+ /* Don't set AST_QUANTUM here - old thread might still want to preempt someone else */
+ }
+#endif /* defined(CONFIG_SCHED_MULTIQ) */
}
- thread->last_switch = processor->last_dispatch;
-
- thread->computation_metered += (thread->last_switch - thread->computation_epoch);
+ thread->computation_metered += (processor->last_dispatch - thread->computation_epoch);
if (!(thread->state & TH_WAIT)) {
/*
- * Still running.
+ * Still runnable.
*/
+ thread->last_made_runnable_time = mach_approximate_time();
+
+ machine_thread_going_off_core(thread, FALSE);
+
if (thread->reason & AST_QUANTUM)
thread_setrun(thread, SCHED_TAILQ);
- else
- if (thread->reason & AST_PREEMPT)
+ else if (thread->reason & AST_PREEMPT)
thread_setrun(thread, SCHED_HEADQ);
else
thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
- thread->reason = AST_NONE;
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), thread->reason, thread->state,
+ sched_run_buckets[TH_BUCKET_RUN], 0);
+
+ if (thread->wake_active) {
+ thread->wake_active = FALSE;
+ thread_unlock(thread);
+
+ thread_wakeup(&thread->wake_active);
+ } else {
+ thread_unlock(thread);
+ }
- thread_unlock(thread);
wake_unlock(thread);
- }
- else {
+ } else {
/*
* Waiting.
*/
+ boolean_t should_terminate = FALSE;
+ uint32_t new_run_count;
+
+ /* Only the first call to thread_dispatch
+ * after explicit termination should add
+ * the thread to the termination queue
+ */
+ if ((thread->state & (TH_TERMINATE|TH_TERMINATE2)) == TH_TERMINATE) {
+ should_terminate = TRUE;
+ thread->state |= TH_TERMINATE2;
+ }
+
thread->state &= ~TH_RUN;
+ thread->last_made_runnable_time = ~0ULL;
+ thread->chosen_processor = PROCESSOR_NULL;
+
+ new_run_count = sched_run_decr(thread);
+
+#if CONFIG_SCHED_SFI
+ if ((thread->state & (TH_WAIT | TH_TERMINATE)) == TH_WAIT) {
+ if (thread->reason & AST_SFI) {
+ thread->wait_sfi_begin_time = processor->last_dispatch;
+ }
+ }
+#endif
+
+ machine_thread_going_off_core(thread, should_terminate);
- if (thread->sched_mode & TH_MODE_TIMESHARE)
- sched_share_decr();
- sched_run_decr();
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_DISPATCH) | DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), thread->reason, thread->state,
+ new_run_count, 0);
+
+ (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
if (thread->wake_active) {
thread->wake_active = FALSE;
thread_unlock(thread);
thread_wakeup(&thread->wake_active);
- }
- else
+ } else {
thread_unlock(thread);
+ }
wake_unlock(thread);
- (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
-
- if (thread->state & TH_TERMINATE)
+ if (should_terminate)
thread_terminate_enqueue(thread);
}
}
}
+ /* Update (new) current thread and reprogram quantum timer */
+ thread_lock(self);
if (!(self->state & TH_IDLE)) {
+ uint64_t arg1, arg2;
+ int urgency;
+ uint64_t latency;
+
+#if CONFIG_SCHED_SFI
+ ast_t new_ast;
+
+ new_ast = sfi_thread_needs_ast(self, NULL);
+
+ if (new_ast != AST_NONE) {
+ ast_on(new_ast);
+ }
+#endif
+
+ assertf(processor->last_dispatch >= self->last_made_runnable_time, "Non-monotonic time? dispatch at 0x%llx, runnable at 0x%llx", processor->last_dispatch, self->last_made_runnable_time);
+ latency = processor->last_dispatch - self->last_made_runnable_time;
+
+ urgency = thread_get_urgency(self, &arg1, &arg2);
+
+ thread_tell_urgency(urgency, arg1, arg2, latency, self);
+
+ machine_thread_going_on_core(self, urgency, latency);
+
/*
* Get a new quantum if none remaining.
*/
- if (self->current_quantum == 0)
+ if (self->quantum_remaining == 0) {
thread_quantum_init(self);
+ }
/*
* Set up quantum timer and timeslice.
*/
- processor->quantum_end = (processor->last_dispatch + self->current_quantum);
- timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end);
-
- processor->timeslice = 1;
+ processor->quantum_end = processor->last_dispatch + self->quantum_remaining;
+ timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
- self->last_switch = processor->last_dispatch;
+ processor->first_timeslice = TRUE;
+ } else {
+ timer_call_cancel(&processor->quantum_timer);
+ processor->first_timeslice = FALSE;
- self->computation_epoch = self->last_switch;
+ thread_tell_urgency(THREAD_URGENCY_NONE, 0, 0, 0, self);
+ machine_thread_going_on_core(self, THREAD_URGENCY_NONE, 0);
}
- else {
- timer_call_cancel(&processor->quantum_timer);
- processor->timeslice = 0;
+
+ self->computation_epoch = processor->last_dispatch;
+ self->reason = AST_NONE;
+ processor->starting_pri = self->sched_pri;
+
+ thread_unlock(self);
+
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ /*
+ * TODO: Can we state that redispatching our old thread is also
+ * uninteresting?
+ */
+ if ((((volatile uint32_t)sched_run_buckets[TH_BUCKET_RUN]) == 1) &&
+ !(self->state & TH_IDLE)) {
+ pset_cancel_deferred_dispatch(processor->processor_set, processor);
}
+#endif
+
}
/*
void *parameter,
ast_t reason)
{
- register thread_t self = current_thread();
- register processor_t processor;
- register thread_t new_thread;
- spl_t s;
+ thread_t self = current_thread();
+ processor_t processor;
+ thread_t new_thread;
+ spl_t s;
counter(++c_thread_block_calls);
s = splsched();
- if (!(reason & AST_PREEMPT))
- funnel_release_check(self, 2);
-
processor = current_processor();
/* If we're explicitly yielding, force a subsequent quantum */
if (reason & AST_YIELD)
- processor->timeslice = 0;
+ processor->first_timeslice = FALSE;
/* We're handling all scheduling AST's */
ast_off(AST_SCHEDULING);
+#if PROC_REF_DEBUG
+ if ((continuation != NULL) && (self->task != kernel_task)) {
+ if (uthread_get_proc_refcount(self->uthread) != 0) {
+ panic("thread_block_reason with continuation uthread %p with uu_proc_refcount != 0", self->uthread);
+ }
+ }
+#endif
+
self->continuation = continuation;
self->parameter = parameter;
+ if (self->state & ~(TH_RUN | TH_IDLE)) {
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_BLOCK),
+ reason, VM_KERNEL_UNSLIDE(continuation), 0, 0, 0);
+ }
+
do {
thread_lock(self);
- new_thread = thread_select(self, processor);
+ new_thread = thread_select(self, processor, reason);
thread_unlock(self);
} while (!thread_invoke(self, new_thread, reason));
- funnel_refunnel_check(self, 5);
splx(s);
return (self->wait_result);
{
ast_t handoff = AST_HANDOFF;
- funnel_release_check(self, 3);
-
self->continuation = continuation;
self->parameter = parameter;
processor_t processor = current_processor();
thread_lock(self);
- new_thread = thread_select(self, processor);
+ new_thread = thread_select(self, processor, AST_NONE);
thread_unlock(self);
handoff = AST_NONE;
}
- funnel_refunnel_check(self, 6);
-
return (self->wait_result);
}
*/
void
thread_continue(
- register thread_t thread)
+ thread_t thread)
{
- register thread_t self = current_thread();
- register thread_continue_t continuation;
- register void *parameter;
-
+ thread_t self = current_thread();
+ thread_continue_t continuation;
+ void *parameter;
+
+ DTRACE_SCHED(on__cpu);
+
continuation = self->continuation;
parameter = self->parameter;
+#if KPERF
+ kperf_on_cpu(self, continuation, NULL);
+#endif
+
thread_dispatch(thread, self);
self->continuation = self->parameter = NULL;
- funnel_refunnel_check(self, 4);
-
if (thread != THREAD_NULL)
(void)spllo();
/*NOTREACHED*/
}
+void
+thread_quantum_init(thread_t thread)
+{
+ if (thread->sched_mode == TH_MODE_REALTIME) {
+ thread->quantum_remaining = thread->realtime.computation;
+ } else {
+ thread->quantum_remaining = SCHED(initial_quantum_size)(thread);
+ }
+}
+
+uint32_t
+sched_timeshare_initial_quantum_size(thread_t thread)
+{
+ if ((thread != THREAD_NULL) && thread->th_sched_bucket == TH_BUCKET_SHARE_BG)
+ return bg_quantum;
+ else
+ return std_quantum;
+}
+
/*
* run_queue_init:
*
run_queue_init(
run_queue_t rq)
{
- int i;
-
- rq->highq = IDLEPRI;
- for (i = 0; i < NRQBM; i++)
+ rq->highq = NOPRI;
+ for (u_int i = 0; i < BITMAP_LEN(NRQS); i++)
rq->bitmap[i] = 0;
- setbit(MAXPRI - IDLEPRI, rq->bitmap);
rq->urgency = rq->count = 0;
- for (i = 0; i < NRQS; i++)
+ for (int i = 0; i < NRQS; i++)
queue_init(&rq->queues[i]);
}
* Perform a dequeue operation on a run queue,
* and return the resulting thread.
*
- * The run queue must be locked (see run_queue_remove()
+ * The run queue must be locked (see thread_run_queue_remove()
* for more info), and not empty.
*/
-static thread_t
+thread_t
run_queue_dequeue(
- run_queue_t rq,
- integer_t options)
+ run_queue_t rq,
+ integer_t options)
{
- thread_t thread;
- queue_t queue = rq->queues + rq->highq;
+ thread_t thread;
+ queue_t queue = &rq->queues[rq->highq];
if (options & SCHED_HEADQ) {
- thread = (thread_t)queue->next;
- ((queue_entry_t)thread)->next->prev = queue;
- queue->next = ((queue_entry_t)thread)->next;
- }
- else {
- thread = (thread_t)queue->prev;
- ((queue_entry_t)thread)->prev->next = queue;
- queue->prev = ((queue_entry_t)thread)->prev;
+ thread = qe_dequeue_head(queue, struct thread, runq_links);
+ } else {
+ thread = qe_dequeue_tail(queue, struct thread, runq_links);
}
+ assert(thread != THREAD_NULL);
+ assert_thread_magic(thread);
+
thread->runq = PROCESSOR_NULL;
+ SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
rq->count--;
- if (thread->sched_mode & TH_MODE_PREEMPT)
- rq->urgency--;
+ if (SCHED(priority_is_urgent)(rq->highq)) {
+ rq->urgency--; assert(rq->urgency >= 0);
+ }
if (queue_empty(queue)) {
- if (rq->highq != IDLEPRI)
- clrbit(MAXPRI - rq->highq, rq->bitmap);
- rq->highq = MAXPRI - ffsbit(rq->bitmap);
+ bitmap_clear(rq->bitmap, rq->highq);
+ rq->highq = bitmap_first(rq->bitmap, NRQS);
}
- return (thread);
+ return thread;
}
/*
- * realtime_queue_insert:
+ * run_queue_enqueue:
*
- * Enqueue a thread for realtime execution.
+ * Perform a enqueue operation on a run queue.
+ *
+ * The run queue must be locked (see thread_run_queue_remove()
+ * for more info).
*/
-static boolean_t
-realtime_queue_insert(
- thread_t thread)
+boolean_t
+run_queue_enqueue(
+ run_queue_t rq,
+ thread_t thread,
+ integer_t options)
{
- run_queue_t rq = &rt_runq;
- queue_t queue = rq->queues + thread->sched_pri;
- uint64_t deadline = thread->realtime.deadline;
- boolean_t preempt = FALSE;
+ queue_t queue = &rq->queues[thread->sched_pri];
+ boolean_t result = FALSE;
- simple_lock(&rt_lock);
+ assert_thread_magic(thread);
if (queue_empty(queue)) {
- enqueue_tail(queue, (queue_entry_t)thread);
+ enqueue_tail(queue, &thread->runq_links);
- setbit(MAXPRI - thread->sched_pri, rq->bitmap);
- if (thread->sched_pri > rq->highq)
+ rq_bitmap_set(rq->bitmap, thread->sched_pri);
+ if (thread->sched_pri > rq->highq) {
rq->highq = thread->sched_pri;
- preempt = TRUE;
+ result = TRUE;
+ }
+ } else {
+ if (options & SCHED_TAILQ)
+ enqueue_tail(queue, &thread->runq_links);
+ else
+ enqueue_head(queue, &thread->runq_links);
}
- else {
- register thread_t entry = (thread_t)queue_first(queue);
+ if (SCHED(priority_is_urgent)(thread->sched_pri))
+ rq->urgency++;
+ SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
+ rq->count++;
- while (TRUE) {
- if ( queue_end(queue, (queue_entry_t)entry) ||
- deadline < entry->realtime.deadline ) {
- entry = (thread_t)queue_prev((queue_entry_t)entry);
- break;
- }
+ return (result);
+}
- entry = (thread_t)queue_next((queue_entry_t)entry);
- }
+/*
+ * run_queue_remove:
+ *
+ * Remove a specific thread from a runqueue.
+ *
+ * The run queue must be locked.
+ */
+void
+run_queue_remove(
+ run_queue_t rq,
+ thread_t thread)
+{
+ assert(thread->runq != PROCESSOR_NULL);
+ assert_thread_magic(thread);
- if ((queue_entry_t)entry == queue)
- preempt = TRUE;
+ remqueue(&thread->runq_links);
+ SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
+ rq->count--;
+ if (SCHED(priority_is_urgent)(thread->sched_pri)) {
+ rq->urgency--; assert(rq->urgency >= 0);
+ }
- insque((queue_entry_t)thread, (queue_entry_t)entry);
+ if (queue_empty(&rq->queues[thread->sched_pri])) {
+ /* update run queue status */
+ bitmap_clear(rq->bitmap, thread->sched_pri);
+ rq->highq = bitmap_first(rq->bitmap, NRQS);
}
- thread->runq = RT_RUNQ;
- assert(thread->sched_mode & TH_MODE_PREEMPT);
- rq->count++; rq->urgency++;
+ thread->runq = PROCESSOR_NULL;
+}
- simple_unlock(&rt_lock);
+/* Assumes RT lock is not held, and acquires splsched/rt_lock itself */
+void
+rt_runq_scan(sched_update_scan_context_t scan_context)
+{
+ spl_t s;
+ thread_t thread;
- return (preempt);
+ s = splsched();
+ rt_lock_lock();
+
+ qe_foreach_element_safe(thread, &rt_runq.queue, runq_links) {
+ if (thread->last_made_runnable_time < scan_context->earliest_rt_make_runnable_time) {
+ scan_context->earliest_rt_make_runnable_time = thread->last_made_runnable_time;
+ }
+ }
+
+ rt_lock_unlock();
+ splx(s);
}
+
/*
- * realtime_setrun:
+ * realtime_queue_insert:
+ *
+ * Enqueue a thread for realtime execution.
+ */
+static boolean_t
+realtime_queue_insert(thread_t thread)
+{
+ queue_t queue = &rt_runq.queue;
+ uint64_t deadline = thread->realtime.deadline;
+ boolean_t preempt = FALSE;
+
+ rt_lock_lock();
+
+ if (queue_empty(queue)) {
+ enqueue_tail(queue, &thread->runq_links);
+ preempt = TRUE;
+ } else {
+ /* Insert into rt_runq in thread deadline order */
+ queue_entry_t iter;
+ qe_foreach(iter, queue) {
+ thread_t iter_thread = qe_element(iter, struct thread, runq_links);
+ assert_thread_magic(iter_thread);
+
+ if (deadline < iter_thread->realtime.deadline) {
+ if (iter == queue_first(queue))
+ preempt = TRUE;
+ insque(&thread->runq_links, queue_prev(iter));
+ break;
+ } else if (iter == queue_last(queue)) {
+ enqueue_tail(queue, &thread->runq_links);
+ break;
+ }
+ }
+ }
+
+ thread->runq = THREAD_ON_RT_RUNQ;
+ SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
+ rt_runq.count++;
+
+ rt_lock_unlock();
+
+ return (preempt);
+}
+
+/*
+ * realtime_setrun:
*
* Dispatch a thread for realtime execution.
*
thread_t thread)
{
processor_set_t pset = processor->processor_set;
+ ast_t preempt;
+
+ boolean_t do_signal_idle = FALSE, do_cause_ast = FALSE;
+
+ thread->chosen_processor = processor;
+
+ /* <rdar://problem/15102234> */
+ assert(thread->bound_processor == PROCESSOR_NULL);
/*
* Dispatch directly onto idle processor.
*/
- if (processor->state == PROCESSOR_IDLE) {
- remqueue(&pset->idle_queue, (queue_entry_t)processor);
- pset->idle_count--;
- enqueue_head(&pset->active_queue, (queue_entry_t)processor);
+ if ( (thread->bound_processor == processor)
+ && processor->state == PROCESSOR_IDLE) {
+ re_queue_tail(&pset->active_queue, &processor->processor_queue);
processor->next_thread = thread;
+ processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
processor->deadline = thread->realtime.deadline;
processor->state = PROCESSOR_DISPATCHING;
+
+ if (processor != current_processor()) {
+ if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
+ /* cleared on exit from main processor_idle() loop */
+ pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
+ do_signal_idle = TRUE;
+ }
+ }
pset_unlock(pset);
- if (processor != current_processor())
+ if (do_signal_idle) {
machine_signal_idle(processor);
+ }
return;
}
- if (realtime_queue_insert(thread)) {
- if (processor == current_processor())
- ast_on(AST_PREEMPT | AST_URGENT);
- else
- cause_ast_check(processor);
- }
+ if (processor->current_pri < BASEPRI_RTQUEUES)
+ preempt = (AST_PREEMPT | AST_URGENT);
+ else if (thread->realtime.deadline < processor->deadline)
+ preempt = (AST_PREEMPT | AST_URGENT);
+ else
+ preempt = AST_NONE;
- pset_unlock(pset);
-}
+ realtime_queue_insert(thread);
-/*
- * processor_enqueue:
- *
- * Enqueue thread on a processor run queue. Thread must be locked,
- * and not already be on a run queue.
- *
- * Returns TRUE if a preemption is indicated based on the state
- * of the run queue.
- *
- * The run queue must be locked (see run_queue_remove()
- * for more info).
- */
-static boolean_t
-processor_enqueue(
- processor_t processor,
- thread_t thread,
- integer_t options)
-{
- run_queue_t rq = &processor->runq;
- queue_t queue = rq->queues + thread->sched_pri;
- boolean_t result = FALSE;
-
- if (queue_empty(queue)) {
- enqueue_tail(queue, (queue_entry_t)thread);
+ if (preempt != AST_NONE) {
+ if (processor->state == PROCESSOR_IDLE) {
+ re_queue_tail(&pset->active_queue, &processor->processor_queue);
- setbit(MAXPRI - thread->sched_pri, rq->bitmap);
- if (thread->sched_pri > rq->highq) {
- rq->highq = thread->sched_pri;
- result = TRUE;
+ processor->next_thread = THREAD_NULL;
+ processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
+ processor->deadline = thread->realtime.deadline;
+ processor->state = PROCESSOR_DISPATCHING;
+ if (processor == current_processor()) {
+ ast_on(preempt);
+ } else {
+ if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
+ /* cleared on exit from main processor_idle() loop */
+ pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
+ do_signal_idle = TRUE;
+ }
+ }
+ } else if (processor->state == PROCESSOR_DISPATCHING) {
+ if ((processor->next_thread == THREAD_NULL) && ((processor->current_pri < thread->sched_pri) || (processor->deadline > thread->realtime.deadline))) {
+ processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
+ processor->deadline = thread->realtime.deadline;
+ }
+ } else {
+ if (processor == current_processor()) {
+ ast_on(preempt);
+ } else {
+ if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
+ /* cleared after IPI causes csw_check() to be called */
+ pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
+ do_cause_ast = TRUE;
+ }
+ }
}
+ } else {
+ /* Selected processor was too busy, just keep thread enqueued and let other processors drain it naturally. */
}
- else
- if (options & SCHED_TAILQ)
- enqueue_tail(queue, (queue_entry_t)thread);
- else
- enqueue_head(queue, (queue_entry_t)thread);
- thread->runq = processor;
- if (thread->sched_mode & TH_MODE_PREEMPT)
- rq->urgency++;
- rq->count++;
+ pset_unlock(pset);
- return (result);
+ if (do_signal_idle) {
+ machine_signal_idle(processor);
+ } else if (do_cause_ast) {
+ cause_ast_check(processor);
+ }
+}
+
+
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+
+boolean_t
+priority_is_urgent(int priority)
+{
+ return bitmap_test(sched_preempt_pri, priority) ? TRUE : FALSE;
}
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
/*
* processor_setrun:
*
{
processor_set_t pset = processor->processor_set;
ast_t preempt;
+ enum { eExitIdle, eInterruptRunning, eDoNothing } ipi_action = eDoNothing;
+ enum { eNoSignal, eDoSignal, eDoDeferredSignal } do_signal_idle = eNoSignal;
+
+ boolean_t do_cause_ast = FALSE;
+
+ thread->chosen_processor = processor;
/*
* Dispatch directly onto idle processor.
*/
- if (processor->state == PROCESSOR_IDLE) {
- remqueue(&pset->idle_queue, (queue_entry_t)processor);
- pset->idle_count--;
- enqueue_head(&pset->active_queue, (queue_entry_t)processor);
+ if ( (SCHED(direct_dispatch_to_idle_processors) ||
+ thread->bound_processor == processor)
+ && processor->state == PROCESSOR_IDLE) {
+
+ re_queue_tail(&pset->active_queue, &processor->processor_queue);
processor->next_thread = thread;
+ processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
processor->deadline = UINT64_MAX;
processor->state = PROCESSOR_DISPATCHING;
+
+ if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
+ /* cleared on exit from main processor_idle() loop */
+ pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
+ do_signal_idle = eDoSignal;
+ }
+
pset_unlock(pset);
- if (processor != current_processor())
+ if (do_signal_idle == eDoSignal) {
machine_signal_idle(processor);
+ }
+
return;
}
/*
* Set preemption mode.
*/
- if (thread->sched_mode & TH_MODE_PREEMPT)
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ /* TODO: Do we need to care about urgency (see rdar://problem/20136239)? */
+#endif
+ if (SCHED(priority_is_urgent)(thread->sched_pri) && thread->sched_pri > processor->current_pri)
preempt = (AST_PREEMPT | AST_URGENT);
- else
- if (thread->sched_mode & TH_MODE_TIMESHARE && thread->priority < BASEPRI_BACKGROUND)
- preempt = AST_NONE;
- else
+ else if(processor->active_thread && thread_eager_preemption(processor->active_thread))
+ preempt = (AST_PREEMPT | AST_URGENT);
+ else if ((thread->sched_mode == TH_MODE_TIMESHARE) && (thread->sched_pri < thread->base_pri)) {
+ if(SCHED(priority_is_urgent)(thread->base_pri) && thread->sched_pri > processor->current_pri) {
+ preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE;
+ } else {
+ preempt = AST_NONE;
+ }
+ } else
preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE;
- if (!processor_enqueue(processor, thread, options))
- preempt = AST_NONE;
-
- pset_hint_high(pset, processor);
+ SCHED(processor_enqueue)(processor, thread, options);
if (preempt != AST_NONE) {
- if (processor == current_processor()) {
- thread_t self = processor->active_thread;
+ if (processor->state == PROCESSOR_IDLE) {
+ re_queue_tail(&pset->active_queue, &processor->processor_queue);
- if (csw_needed(self, processor))
- ast_on(preempt);
- }
- else
- if ( (processor->state == PROCESSOR_RUNNING ||
+ processor->next_thread = THREAD_NULL;
+ processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
+ processor->deadline = UINT64_MAX;
+ processor->state = PROCESSOR_DISPATCHING;
+
+ ipi_action = eExitIdle;
+ } else if ( processor->state == PROCESSOR_DISPATCHING) {
+ if ((processor->next_thread == THREAD_NULL) && (processor->current_pri < thread->sched_pri)) {
+ processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
+ processor->deadline = UINT64_MAX;
+ }
+ } else if ( (processor->state == PROCESSOR_RUNNING ||
processor->state == PROCESSOR_SHUTDOWN) &&
- thread->sched_pri >= processor->current_pri ) {
- cause_ast_check(processor);
+ (thread->sched_pri >= processor->current_pri)) {
+ ipi_action = eInterruptRunning;
}
- }
- else
- if ( processor->state == PROCESSOR_SHUTDOWN &&
+ } else {
+ /*
+ * New thread is not important enough to preempt what is running, but
+ * special processor states may need special handling
+ */
+ if (processor->state == PROCESSOR_SHUTDOWN &&
thread->sched_pri >= processor->current_pri ) {
- cause_ast_check(processor);
+ ipi_action = eInterruptRunning;
+ } else if ( processor->state == PROCESSOR_IDLE &&
+ processor != current_processor() ) {
+ re_queue_tail(&pset->active_queue, &processor->processor_queue);
+
+ processor->next_thread = THREAD_NULL;
+ processor->current_pri = thread->sched_pri;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class;
+ processor->deadline = UINT64_MAX;
+ processor->state = PROCESSOR_DISPATCHING;
+
+ ipi_action = eExitIdle;
+ }
+ }
+
+ switch (ipi_action) {
+ case eDoNothing:
+ break;
+ case eExitIdle:
+ if (processor == current_processor()) {
+ if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE)
+ ast_on(preempt);
+ } else {
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ if (!(pset->pending_deferred_AST_cpu_mask & (1ULL << processor->cpu_id)) &&
+ !(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
+ /* cleared on exit from main processor_idle() loop */
+ pset->pending_deferred_AST_cpu_mask |= (1ULL << processor->cpu_id);
+ do_signal_idle = eDoDeferredSignal;
+ }
+#else
+ if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
+ /* cleared on exit from main processor_idle() loop */
+ pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
+ do_signal_idle = eDoSignal;
+ }
+#endif
+ }
+ break;
+ case eInterruptRunning:
+ if (processor == current_processor()) {
+ if (csw_check_locked(processor, pset, AST_NONE) != AST_NONE)
+ ast_on(preempt);
+ } else {
+ if (!(pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))) {
+ /* cleared after IPI causes csw_check() to be called */
+ pset->pending_AST_cpu_mask |= (1ULL << processor->cpu_id);
+ do_cause_ast = TRUE;
+ }
+ }
+ break;
}
pset_unlock(pset);
-}
-#define next_pset(p) (((p)->pset_list != PROCESSOR_SET_NULL)? (p)->pset_list: (p)->node->psets)
+ if (do_signal_idle == eDoSignal) {
+ machine_signal_idle(processor);
+ }
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ else if (do_signal_idle == eDoDeferredSignal) {
+ /*
+ * TODO: The ability to cancel this signal could make
+ * sending it outside of the pset lock an issue. Do
+ * we need to address this? Or would the only fallout
+ * be that the core takes a signal? As long as we do
+ * not run the risk of having a core marked as signal
+ * outstanding, with no real signal outstanding, the
+ * only result should be that we fail to cancel some
+ * signals.
+ */
+ machine_signal_idle_deferred(processor);
+ }
+#endif
+ else if (do_cause_ast) {
+ cause_ast_check(processor);
+ }
+}
/*
* choose_next_pset:
do {
nset = next_pset(nset);
- } while (nset->processor_count < 1 && nset != pset);
+ } while (nset->online_processor_count < 1 && nset != pset);
- return ((nset != pset)? nset: pset);
+ return (nset);
}
/*
* choose_processor:
*
* Choose a processor for the thread, beginning at
+ * the pset. Accepts an optional processor hint in
* the pset.
*
* Returns a processor, possibly from a different pset.
* The thread must be locked. The pset must be locked,
* and the resulting pset is locked on return.
*/
-static processor_t
+processor_t
choose_processor(
processor_set_t pset,
+ processor_t processor,
thread_t thread)
{
processor_set_t nset, cset = pset;
- processor_t processor;
+
+ assert(thread->sched_pri <= BASEPRI_RTQUEUES);
+
+ /*
+ * Prefer the hinted processor, when appropriate.
+ */
+
+ /* Fold last processor hint from secondary processor to its primary */
+ if (processor != PROCESSOR_NULL) {
+ processor = processor->processor_primary;
+ }
+
+ /*
+ * Only consult platform layer if pset is active, which
+ * it may not be in some cases when a multi-set system
+ * is going to sleep.
+ */
+ if (pset->online_processor_count) {
+ if ((processor == PROCESSOR_NULL) || (processor->processor_set == pset && processor->state == PROCESSOR_IDLE)) {
+ processor_t mc_processor = machine_choose_processor(pset, processor);
+ if (mc_processor != PROCESSOR_NULL)
+ processor = mc_processor->processor_primary;
+ }
+ }
+
+ /*
+ * At this point, we may have a processor hint, and we may have
+ * an initial starting pset. If the hint is not in the pset, or
+ * if the hint is for a processor in an invalid state, discard
+ * the hint.
+ */
+ if (processor != PROCESSOR_NULL) {
+ if (processor->processor_set != pset) {
+ processor = PROCESSOR_NULL;
+ } else if (!processor->is_recommended) {
+ processor = PROCESSOR_NULL;
+ } else {
+ switch (processor->state) {
+ case PROCESSOR_START:
+ case PROCESSOR_SHUTDOWN:
+ case PROCESSOR_OFF_LINE:
+ /*
+ * Hint is for a processor that cannot support running new threads.
+ */
+ processor = PROCESSOR_NULL;
+ break;
+ case PROCESSOR_IDLE:
+ /*
+ * Hint is for an idle processor. Assume it is no worse than any other
+ * idle processor. The platform layer had an opportunity to provide
+ * the "least cost idle" processor above.
+ */
+ return (processor);
+ case PROCESSOR_RUNNING:
+ case PROCESSOR_DISPATCHING:
+ /*
+ * Hint is for an active CPU. This fast-path allows
+ * realtime threads to preempt non-realtime threads
+ * to regain their previous executing processor.
+ */
+ if ((thread->sched_pri >= BASEPRI_RTQUEUES) &&
+ (processor->current_pri < BASEPRI_RTQUEUES))
+ return (processor);
+
+ /* Otherwise, use hint as part of search below */
+ break;
+ default:
+ processor = PROCESSOR_NULL;
+ break;
+ }
+ }
+ }
/*
- * Iterate through the processor sets to locate
- * an appropriate processor.
+ * Iterate through the processor sets to locate
+ * an appropriate processor. Seed results with
+ * a last-processor hint, if available, so that
+ * a search must find something strictly better
+ * to replace it.
+ *
+ * A primary/secondary pair of SMT processors are
+ * "unpaired" if the primary is busy but its
+ * corresponding secondary is idle (so the physical
+ * core has full use of its resources).
*/
+
+ integer_t lowest_priority = MAXPRI + 1;
+ integer_t lowest_unpaired_primary_priority = MAXPRI + 1;
+ integer_t lowest_count = INT_MAX;
+ uint64_t furthest_deadline = 1;
+ processor_t lp_processor = PROCESSOR_NULL;
+ processor_t lp_unpaired_primary_processor = PROCESSOR_NULL;
+ processor_t lp_unpaired_secondary_processor = PROCESSOR_NULL;
+ processor_t lc_processor = PROCESSOR_NULL;
+ processor_t fd_processor = PROCESSOR_NULL;
+
+ if (processor != PROCESSOR_NULL) {
+ /* All other states should be enumerated above. */
+ assert(processor->state == PROCESSOR_RUNNING || processor->state == PROCESSOR_DISPATCHING);
+
+ lowest_priority = processor->current_pri;
+ lp_processor = processor;
+
+ if (processor->current_pri >= BASEPRI_RTQUEUES) {
+ furthest_deadline = processor->deadline;
+ fd_processor = processor;
+ }
+
+ lowest_count = SCHED(processor_runq_count)(processor);
+ lc_processor = processor;
+ }
+
do {
+
+ /*
+ * Choose an idle processor, in pset traversal order
+ */
+ qe_foreach_element(processor, &cset->idle_queue, processor_queue) {
+ if (processor->is_recommended)
+ return processor;
+ }
+
/*
- * Choose an idle processor.
+ * Otherwise, enumerate active and idle processors to find candidates
+ * with lower priority/etc.
*/
- if (!queue_empty(&cset->idle_queue))
- return ((processor_t)queue_first(&cset->idle_queue));
+
+ qe_foreach_element(processor, &cset->active_queue, processor_queue) {
+
+ if (!processor->is_recommended) {
+ continue;
+ }
+
+ integer_t cpri = processor->current_pri;
+ if (cpri < lowest_priority) {
+ lowest_priority = cpri;
+ lp_processor = processor;
+ }
+
+ if ((cpri >= BASEPRI_RTQUEUES) && (processor->deadline > furthest_deadline)) {
+ furthest_deadline = processor->deadline;
+ fd_processor = processor;
+ }
+
+ integer_t ccount = SCHED(processor_runq_count)(processor);
+ if (ccount < lowest_count) {
+ lowest_count = ccount;
+ lc_processor = processor;
+ }
+ }
+
+ /*
+ * For SMT configs, these idle secondary processors must have active primary. Otherwise
+ * the idle primary would have short-circuited the loop above
+ */
+ qe_foreach_element(processor, &cset->idle_secondary_queue, processor_queue) {
+
+ if (!processor->is_recommended) {
+ continue;
+ }
+
+ processor_t cprimary = processor->processor_primary;
+
+ /* If the primary processor is offline or starting up, it's not a candidate for this path */
+ if (cprimary->state == PROCESSOR_RUNNING || cprimary->state == PROCESSOR_DISPATCHING) {
+ integer_t primary_pri = cprimary->current_pri;
+
+ if (primary_pri < lowest_unpaired_primary_priority) {
+ lowest_unpaired_primary_priority = primary_pri;
+ lp_unpaired_primary_processor = cprimary;
+ lp_unpaired_secondary_processor = processor;
+ }
+ }
+ }
+
if (thread->sched_pri >= BASEPRI_RTQUEUES) {
+
/*
- * For an RT thread, iterate through active processors, first fit.
+ * For realtime threads, the most important aspect is
+ * scheduling latency, so we attempt to assign threads
+ * to good preemption candidates (assuming an idle primary
+ * processor was not available above).
*/
- processor = (processor_t)queue_first(&cset->active_queue);
- while (!queue_end(&cset->active_queue, (queue_entry_t)processor)) {
- if (thread->sched_pri > processor->current_pri ||
- thread->realtime.deadline < processor->deadline)
- return (processor);
- processor = (processor_t)queue_next((queue_entry_t)processor);
+ if (thread->sched_pri > lowest_unpaired_primary_priority) {
+ /* Move to end of active queue so that the next thread doesn't also pick it */
+ re_queue_tail(&cset->active_queue, &lp_unpaired_primary_processor->processor_queue);
+ return lp_unpaired_primary_processor;
}
- }
- else {
+ if (thread->sched_pri > lowest_priority) {
+ /* Move to end of active queue so that the next thread doesn't also pick it */
+ re_queue_tail(&cset->active_queue, &lp_processor->processor_queue);
+ return lp_processor;
+ }
+ if (thread->realtime.deadline < furthest_deadline)
+ return fd_processor;
+
/*
- * Choose the low hint processor in the processor set if available.
+ * If all primary and secondary CPUs are busy with realtime
+ * threads with deadlines earlier than us, move on to next
+ * pset.
*/
- processor = cset->low_hint;
- if (processor != PROCESSOR_NULL &&
- processor->state != PROCESSOR_SHUTDOWN && processor->state != PROCESSOR_OFF_LINE)
- return (processor);
+ }
+ else {
+
+ if (thread->sched_pri > lowest_unpaired_primary_priority) {
+ /* Move to end of active queue so that the next thread doesn't also pick it */
+ re_queue_tail(&cset->active_queue, &lp_unpaired_primary_processor->processor_queue);
+ return lp_unpaired_primary_processor;
+ }
+ if (thread->sched_pri > lowest_priority) {
+ /* Move to end of active queue so that the next thread doesn't also pick it */
+ re_queue_tail(&cset->active_queue, &lp_processor->processor_queue);
+ return lp_processor;
+ }
/*
- * Choose any active processor if the hint was invalid.
+ * If all primary processor in this pset are running a higher
+ * priority thread, move on to next pset. Only when we have
+ * exhausted this search do we fall back to other heuristics.
*/
- processor = (processor_t)dequeue_head(&cset->active_queue);
- if (processor != PROCESSOR_NULL) {
- enqueue_tail(&cset->active_queue, (queue_entry_t)processor);
- return (processor);
- }
}
/*
- * Move onto the next processor set.
+ * Move onto the next processor set.
*/
nset = next_pset(cset);
} while (nset != pset);
/*
- * If all else fails choose the current processor,
- * this routine must return a running processor.
+ * Make sure that we pick a running processor,
+ * and that the correct processor set is locked.
+ * Since we may have unlock the candidate processor's
+ * pset, it may have changed state.
+ *
+ * All primary processors are running a higher priority
+ * thread, so the only options left are enqueuing on
+ * the secondary processor that would perturb the least priority
+ * primary, or the least busy primary.
*/
- processor = current_processor();
- if (cset != processor->processor_set) {
- pset_unlock(cset);
+ do {
- cset = processor->processor_set;
- pset_lock(cset);
- }
+ /* lowest_priority is evaluated in the main loops above */
+ if (lp_unpaired_secondary_processor != PROCESSOR_NULL) {
+ processor = lp_unpaired_secondary_processor;
+ lp_unpaired_secondary_processor = PROCESSOR_NULL;
+ } else if (lc_processor != PROCESSOR_NULL) {
+ processor = lc_processor;
+ lc_processor = PROCESSOR_NULL;
+ } else {
+ /*
+ * All processors are executing higher
+ * priority threads, and the lowest_count
+ * candidate was not usable
+ */
+ processor = master_processor;
+ }
+
+ /*
+ * Check that the correct processor set is
+ * returned locked.
+ */
+ if (cset != processor->processor_set) {
+ pset_unlock(cset);
+ cset = processor->processor_set;
+ pset_lock(cset);
+ }
+
+ /*
+ * We must verify that the chosen processor is still available.
+ * master_processor is an exception, since we may need to preempt
+ * a running thread on it during processor shutdown (for sleep),
+ * and that thread needs to be enqueued on its runqueue to run
+ * when the processor is restarted.
+ */
+ if (processor != master_processor && (processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE))
+ processor = PROCESSOR_NULL;
+
+ } while (processor == PROCESSOR_NULL);
return (processor);
}
processor_t processor;
processor_set_t pset;
-#if DEBUG
- assert(thread_runnable(thread));
-#endif
-
+ assert((thread->state & (TH_RUN|TH_WAIT|TH_UNINT|TH_TERMINATE|TH_TERMINATE2)) == TH_RUN);
+ assert(thread->runq == PROCESSOR_NULL);
+
/*
* Update priority if needed.
*/
- if (thread->sched_stamp != sched_tick)
- update_priority(thread);
+ if (SCHED(can_update_priority)(thread))
+ SCHED(update_priority)(thread);
+
+ thread->sfi_class = sfi_thread_classify(thread);
assert(thread->runq == PROCESSOR_NULL);
+#if __SMP__
if (thread->bound_processor == PROCESSOR_NULL) {
/*
* Unbound case.
pset = thread->affinity_set->aset_pset;
pset_lock(pset);
- processor = choose_processor(pset, thread);
- }
- else
- if (thread->last_processor != PROCESSOR_NULL) {
+ processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread);
+
+ SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0);
+ } else if (thread->last_processor != PROCESSOR_NULL) {
/*
* Simple (last processor) affinity case.
*/
processor = thread->last_processor;
pset = processor->processor_set;
pset_lock(pset);
+ processor = SCHED(choose_processor)(pset, processor, thread);
- /*
- * Choose a different processor in certain cases.
- */
- if (processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE)
- processor = choose_processor(pset, thread);
- else
- if (thread->sched_pri >= BASEPRI_RTQUEUES) {
- /*
- * If the processor is executing an RT thread with
- * an earlier deadline, choose another.
- */
- if (thread->sched_pri <= processor->current_pri ||
- thread->realtime.deadline >= processor->deadline)
- processor = choose_processor(pset, thread);
- }
- else
- if (processor->state != PROCESSOR_IDLE && pset->idle_count > 0) {
- processor = choose_processor(pset, thread);
- }
- else {
- processor_set_t nset = choose_next_pset(pset);
-
- /*
- * Bump into a lesser loaded processor set if appropriate.
- */
- if (pset != nset && (nset->low_hint == PROCESSOR_NULL ||
- (pset->idle_count == 0 && nset->idle_count > 0) ||
- processor->runq.count > nset->low_hint->runq.count)) {
- pset_unlock(pset);
-
- pset = nset;
- pset_lock(pset);
-
- processor = choose_processor(pset, thread);
- }
- }
- }
- else {
+ SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), thread->last_processor->cpu_id, processor->cpu_id, processor->state, 0);
+ } else {
/*
* No Affinity case:
*
- * Choose a processor from the current processor set.
+ * Utilitize a per task hint to spread threads
+ * among the available processor sets.
*/
- processor = current_processor();
- pset = processor->processor_set;
+ task_t task = thread->task;
+
+ pset = task->pset_hint;
+ if (pset == PROCESSOR_SET_NULL)
+ pset = current_processor()->processor_set;
+
+ pset = choose_next_pset(pset);
pset_lock(pset);
- processor = choose_processor(pset, thread);
+ processor = SCHED(choose_processor)(pset, PROCESSOR_NULL, thread);
+ task->pset_hint = processor->processor_set;
+
+ SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0);
}
- }
- else {
+ } else {
/*
* Bound case:
*
processor = thread->bound_processor;
pset = processor->processor_set;
pset_lock(pset);
+
+ SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR)|DBG_FUNC_NONE,
+ (uintptr_t)thread_tid(thread), (uintptr_t)-2, processor->cpu_id, processor->state, 0);
}
+#else /* !__SMP__ */
+ /* Only one processor to choose */
+ assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == master_processor);
+ processor = master_processor;
+ pset = processor->processor_set;
+ pset_lock(pset);
+#endif /* !__SMP__ */
/*
- * Dispatch the thread on the choosen processor.
+ * Dispatch the thread on the chosen processor.
+ * TODO: This should be based on sched_mode, not sched_pri
*/
if (thread->sched_pri >= BASEPRI_RTQUEUES)
realtime_setrun(processor, thread);
processor_setrun(processor, thread, options);
}
+processor_set_t
+task_choose_pset(
+ task_t task)
+{
+ processor_set_t pset = task->pset_hint;
+
+ if (pset != PROCESSOR_SET_NULL)
+ pset = choose_next_pset(pset);
+
+ return (pset);
+}
+
/*
- * processor_queue_shutdown:
+ * Check for a preemption point in
+ * the current context.
*
- * Shutdown a processor run queue by moving
- * non-bound threads to the current processor.
- *
- * Associated pset must be locked, and is
- * returned unlocked.
+ * Called at splsched with thread locked.
*/
-void
-processor_queue_shutdown(
- processor_t processor)
+ast_t
+csw_check(
+ processor_t processor,
+ ast_t check_reason)
{
- processor_set_t pset = processor->processor_set;
- run_queue_t rq = &processor->runq;
- queue_t queue = rq->queues + rq->highq;
- int pri = rq->highq, count = rq->count;
- thread_t next, thread;
- queue_head_t tqueue;
-
- queue_init(&tqueue);
-
- while (count > 0) {
- thread = (thread_t)queue_first(queue);
- while (!queue_end(queue, (queue_entry_t)thread)) {
- next = (thread_t)queue_next((queue_entry_t)thread);
-
- if (thread->bound_processor != processor) {
- remqueue(queue, (queue_entry_t)thread);
-
- thread->runq = PROCESSOR_NULL;
- rq->count--;
- if (thread->sched_mode & TH_MODE_PREEMPT)
- rq->urgency--;
- if (queue_empty(queue)) {
- if (pri != IDLEPRI)
- clrbit(MAXPRI - pri, rq->bitmap);
- rq->highq = MAXPRI - ffsbit(rq->bitmap);
- }
+ processor_set_t pset = processor->processor_set;
+ ast_t result;
- enqueue_tail(&tqueue, (queue_entry_t)thread);
- }
- count--;
+ pset_lock(pset);
- thread = next;
- }
+ /* If we were sent a remote AST and interrupted a running processor, acknowledge it here with pset lock held */
+ pset->pending_AST_cpu_mask &= ~(1ULL << processor->cpu_id);
- queue--; pri--;
- }
+ result = csw_check_locked(processor, pset, check_reason);
pset_unlock(pset);
- processor = current_processor();
- pset = processor->processor_set;
-
- while ((thread = (thread_t)dequeue_head(&tqueue)) != THREAD_NULL) {
- thread_lock(thread);
- thread->last_processor = PROCESSOR_NULL;
-
- pset_lock(pset);
-
- processor_enqueue(processor, thread, SCHED_TAILQ);
-
- pset_unlock(pset);
-
- thread_unlock(thread);
- }
+ return result;
}
/*
- * Check for a possible preemption point in
- * the (current) thread.
- *
- * Called at splsched.
+ * Check for preemption at splsched with
+ * pset and thread locked
*/
ast_t
-csw_check(
- thread_t thread,
- processor_t processor)
+csw_check_locked(
+ processor_t processor,
+ processor_set_t pset __unused,
+ ast_t check_reason)
{
- int current_pri = thread->sched_pri;
- ast_t result = AST_NONE;
- run_queue_t runq;
-
- if (first_timeslice(processor)) {
- runq = &rt_runq;
- if (runq->highq >= BASEPRI_RTQUEUES)
- return (AST_PREEMPT | AST_URGENT);
-
- if (runq->highq > current_pri) {
- if (runq->urgency > 0)
- return (AST_PREEMPT | AST_URGENT);
+ ast_t result;
+ thread_t thread = processor->active_thread;
- result |= AST_PREEMPT;
- }
-
- runq = &processor->runq;
- if (runq->highq > current_pri) {
- if (runq->urgency > 0)
- return (AST_PREEMPT | AST_URGENT);
-
- result |= AST_PREEMPT;
- }
+ if (processor->first_timeslice) {
+ if (rt_runq.count > 0)
+ return (check_reason | AST_PREEMPT | AST_URGENT);
}
else {
- runq = &rt_runq;
- if (runq->highq >= current_pri) {
- if (runq->urgency > 0)
- return (AST_PREEMPT | AST_URGENT);
-
- result |= AST_PREEMPT;
- }
-
- runq = &processor->runq;
- if (runq->highq >= current_pri) {
- if (runq->urgency > 0)
- return (AST_PREEMPT | AST_URGENT);
-
- result |= AST_PREEMPT;
+ if (rt_runq.count > 0) {
+ if (BASEPRI_RTQUEUES > processor->current_pri)
+ return (check_reason | AST_PREEMPT | AST_URGENT);
+ else
+ return (check_reason | AST_PREEMPT);
}
}
+ result = SCHED(processor_csw_check)(processor);
if (result != AST_NONE)
- return (result);
+ return (check_reason | result | (thread_eager_preemption(thread) ? AST_URGENT : AST_NONE));
+
+#if __SMP__
+
+ /*
+ * If the current thread is running on a processor that is no longer recommended, gently
+ * (non-urgently) get to a point and then block, and which point thread_select() should
+ * try to idle the processor and re-dispatch the thread to a recommended processor.
+ */
+ if (!processor->is_recommended)
+ return (check_reason | AST_PREEMPT);
+
+ /*
+ * Even though we could continue executing on this processor, a
+ * secondary SMT core should try to shed load to another primary core.
+ *
+ * TODO: Should this do the same check that thread_select does? i.e.
+ * if no bound threads target this processor, and idle primaries exist, preempt
+ * The case of RT threads existing is already taken care of above
+ * Consider Capri in this scenario.
+ *
+ * if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue))
+ *
+ * TODO: Alternatively - check if only primary is idle, or check if primary's pri is lower than mine.
+ */
+
+ if (processor->current_pri < BASEPRI_RTQUEUES &&
+ processor->processor_primary != processor)
+ return (check_reason | AST_PREEMPT);
+#endif
if (thread->state & TH_SUSP)
- result |= AST_PREEMPT;
+ return (check_reason | AST_PREEMPT);
- return (result);
+#if CONFIG_SCHED_SFI
+ /*
+ * Current thread may not need to be preempted, but maybe needs
+ * an SFI wait?
+ */
+ result = sfi_thread_needs_ast(thread, NULL);
+ if (result != AST_NONE)
+ return (check_reason | result);
+#endif
+
+ return (AST_NONE);
}
/*
*/
void
set_sched_pri(
- thread_t thread,
- int priority)
+ thread_t thread,
+ int priority)
{
- boolean_t removed = run_queue_remove(thread);
+ thread_t cthread = current_thread();
+ boolean_t is_current_thread = (thread == cthread) ? TRUE : FALSE;
+ int curgency, nurgency;
+ uint64_t urgency_param1, urgency_param2;
+ boolean_t removed_from_runq = FALSE;
+
+ /* If we're already at this priority, no need to mess with the runqueue */
+ if (priority == thread->sched_pri)
+ return;
- if ( !(thread->sched_mode & TH_MODE_TIMESHARE) &&
- (priority >= BASEPRI_PREEMPT ||
- (thread->task_priority < MINPRI_KERNEL &&
- thread->task_priority >= BASEPRI_BACKGROUND &&
- priority > thread->task_priority) ) )
- thread->sched_mode |= TH_MODE_PREEMPT;
- else
- thread->sched_mode &= ~TH_MODE_PREEMPT;
+ if (is_current_thread) {
+ assert(thread->runq == PROCESSOR_NULL);
+ curgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2);
+ } else {
+ removed_from_runq = thread_run_queue_remove(thread);
+ }
thread->sched_pri = priority;
- if (removed)
- thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
- else
- if (thread->state & TH_RUN) {
- processor_t processor = thread->last_processor;
- if (thread == current_thread()) {
- ast_t preempt = csw_check(thread, processor);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHANGE_PRIORITY),
+ (uintptr_t)thread_tid(thread),
+ thread->base_pri,
+ thread->sched_pri,
+ 0, /* eventually, 'reason' */
+ 0);
- if (preempt != AST_NONE)
- ast_on(preempt);
- processor->current_pri = priority;
+ if (is_current_thread) {
+ nurgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2);
+ /*
+ * set_sched_pri doesn't alter RT params. We expect direct base priority/QoS
+ * class alterations from user space to occur relatively infrequently, hence
+ * those are lazily handled. QoS classes have distinct priority bands, and QoS
+ * inheritance is expected to involve priority changes.
+ */
+ if (nurgency != curgency) {
+ thread_tell_urgency(nurgency, urgency_param1, urgency_param2, 0, thread);
+ machine_thread_going_on_core(thread, nurgency, 0);
}
- else
- if ( processor != PROCESSOR_NULL &&
- processor->active_thread == thread )
- cause_ast_check(processor);
}
-}
-
-#if 0
-static void
-run_queue_check(
- run_queue_t rq,
- thread_t thread)
-{
- queue_t q;
- queue_entry_t qe;
-
- if (rq != thread->runq)
- panic("run_queue_check: thread runq");
+ /* TODO: Should this be TAILQ if it went down, HEADQ if it went up? */
+ if (removed_from_runq)
+ thread_run_queue_reinsert(thread, SCHED_PREEMPT | SCHED_TAILQ);
+ else if (thread->state & TH_RUN) {
+ processor_t processor = thread->last_processor;
- if (thread->sched_pri > MAXPRI || thread->sched_pri < MINPRI)
- panic("run_queue_check: thread sched_pri");
+ if (is_current_thread) {
+ ast_t preempt;
- q = &rq->queues[thread->sched_pri];
- qe = queue_first(q);
- while (!queue_end(q, qe)) {
- if (qe == (queue_entry_t)thread)
- return;
-
- qe = queue_next(qe);
+ processor->current_pri = priority;
+ processor->current_thmode = thread->sched_mode;
+ processor->current_sfi_class = thread->sfi_class = sfi_thread_classify(thread);
+ if ((preempt = csw_check(processor, AST_NONE)) != AST_NONE)
+ ast_on(preempt);
+ } else if (processor != PROCESSOR_NULL && processor->active_thread == thread)
+ cause_ast_check(processor);
}
-
- panic("run_queue_check: end");
}
-#endif /* DEBUG */
-
/*
- * run_queue_remove:
+ * thread_run_queue_remove_for_handoff
*
- * Remove a thread from a current run queue and
- * return TRUE if successful.
+ * Pull a thread or its (recursive) push target out of the runqueue
+ * so that it is ready for thread_run()
*
- * Thread must be locked.
+ * Called at splsched
+ *
+ * Returns the thread that was pulled or THREAD_NULL if no thread could be pulled.
+ * This may be different than the thread that was passed in.
*/
-boolean_t
-run_queue_remove(
- thread_t thread)
-{
- processor_t processor = thread->runq;
-
- /*
- * If processor is PROCESSOR_NULL, the thread will stay out of the
- * run queues because the caller locked the thread. Otherwise
- * the thread is on a run queue, but could be chosen for dispatch
- * and removed.
- */
- if (processor != PROCESSOR_NULL) {
- void * rqlock;
- run_queue_t rq;
+thread_t
+thread_run_queue_remove_for_handoff(thread_t thread) {
- /*
- * The processor run queues are locked by the
- * processor set. Real-time priorities use a
- * global queue with a dedicated lock.
- */
- if (thread->sched_pri < BASEPRI_RTQUEUES) {
- rqlock = &processor->processor_set->sched_lock;
- rq = &processor->runq;
- }
- else {
- rqlock = &rt_lock; rq = &rt_runq;
- }
+ thread_t pulled_thread = THREAD_NULL;
- simple_lock(rqlock);
+ thread_lock(thread);
- if (processor == thread->runq) {
- /*
- * Thread is on a run queue and we have a lock on
- * that run queue.
- */
- remqueue(&rq->queues[0], (queue_entry_t)thread);
- rq->count--;
- if (thread->sched_mode & TH_MODE_PREEMPT)
- rq->urgency--;
- assert(rq->urgency >= 0);
-
- if (queue_empty(rq->queues + thread->sched_pri)) {
- /* update run queue status */
- if (thread->sched_pri != IDLEPRI)
- clrbit(MAXPRI - thread->sched_pri, rq->bitmap);
- rq->highq = MAXPRI - ffsbit(rq->bitmap);
- }
+ /*
+ * Check that the thread is not bound
+ * to a different processor, and that realtime
+ * is not involved.
+ *
+ * Next, pull it off its run queue. If it
+ * doesn't come, it's not eligible.
+ */
- thread->runq = PROCESSOR_NULL;
- }
- else {
- /*
- * The thread left the run queue before we could
- * lock the run queue.
- */
- assert(thread->runq == PROCESSOR_NULL);
- processor = PROCESSOR_NULL;
- }
+ processor_t processor = current_processor();
+ if (processor->current_pri < BASEPRI_RTQUEUES && thread->sched_pri < BASEPRI_RTQUEUES &&
+ (thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor)) {
- simple_unlock(rqlock);
+ if (thread_run_queue_remove(thread))
+ pulled_thread = thread;
}
- return (processor != PROCESSOR_NULL);
+ thread_unlock(thread);
+
+ return pulled_thread;
}
/*
- * choose_thread:
+ * thread_run_queue_remove:
*
- * Choose a thread to execute from the run queues
- * and return it. May steal a thread from another
- * processor.
+ * Remove a thread from its current run queue and
+ * return TRUE if successful.
+ *
+ * Thread must be locked.
+ *
+ * If thread->runq is PROCESSOR_NULL, the thread will not re-enter the
+ * run queues because the caller locked the thread. Otherwise
+ * the thread is on a run queue, but could be chosen for dispatch
+ * and removed by another processor under a different lock, which
+ * will set thread->runq to PROCESSOR_NULL.
*
- * Called with pset scheduling lock and rt lock held,
- * released on return.
+ * Hence the thread select path must not rely on anything that could
+ * be changed under the thread lock after calling this function,
+ * most importantly thread->sched_pri.
*/
-static thread_t
-choose_thread(
- processor_t processor)
+boolean_t
+thread_run_queue_remove(
+ thread_t thread)
{
- processor_set_t pset = processor->processor_set;
- thread_t thread;
+ boolean_t removed = FALSE;
+ processor_t processor = thread->runq;
- if (processor->runq.count > 0 && processor->runq.highq >= rt_runq.highq) {
- simple_unlock(&rt_lock);
+ if ((thread->state & (TH_RUN|TH_WAIT)) == TH_WAIT) {
+ /* Thread isn't runnable */
+ assert(thread->runq == PROCESSOR_NULL);
+ return FALSE;
+ }
- pset_hint_low(pset, processor);
+ if (processor == PROCESSOR_NULL) {
+ /*
+ * The thread is either not on the runq,
+ * or is in the midst of being removed from the runq.
+ *
+ * runq is set to NULL under the pset lock, not the thread
+ * lock, so the thread may still be in the process of being dequeued
+ * from the runq. It will wait in invoke for the thread lock to be
+ * dropped.
+ */
- if (pset->high_hint != PROCESSOR_NULL) {
- if (processor != pset->high_hint) {
- if (processor->runq.count >= pset->high_hint->runq.count)
- pset->high_hint = processor;
- else
- if (pset->high_hint->runq.highq > processor->runq.highq) {
- thread = steal_thread(pset->high_hint);
- if (thread != THREAD_NULL) {
- processor->deadline = UINT64_MAX;
- pset_unlock(pset);
+ return FALSE;
+ }
- return (thread);
- }
- }
- }
- }
- else
- pset->high_hint = processor;
+ if (thread->sched_pri < BASEPRI_RTQUEUES) {
+ return SCHED(processor_queue_remove)(processor, thread);
+ }
- thread = run_queue_dequeue(&processor->runq, SCHED_HEADQ);
+ rt_lock_lock();
- processor->deadline = UINT64_MAX;
- pset_unlock(pset);
+ if (thread->runq != PROCESSOR_NULL) {
+ /*
+ * Thread is on the RT run queue and we have a lock on
+ * that run queue.
+ */
- return (thread);
- }
+ assert(thread->runq == THREAD_ON_RT_RUNQ);
- thread = run_queue_dequeue(&rt_runq, SCHED_HEADQ);
- simple_unlock(&rt_lock);
+ remqueue(&thread->runq_links);
+ SCHED_STATS_RUNQ_CHANGE(&rt_runq.runq_stats, rt_runq.count);
+ rt_runq.count--;
- processor->deadline = thread->realtime.deadline;
- pset_unlock(pset);
+ thread->runq = PROCESSOR_NULL;
+
+ removed = TRUE;
+ }
- return (thread);
+ rt_lock_unlock();
+
+ return (removed);
}
/*
- * steal_thread:
+ * Put the thread back where it goes after a thread_run_queue_remove
*
- * Steal a thread from a processor and return it.
+ * Thread must have been removed under the same thread lock hold
*
- * Associated pset must be locked. Returns THREAD_NULL
- * on failure.
+ * thread locked, at splsched
*/
-static thread_t
-steal_thread(
- processor_t processor)
+void
+thread_run_queue_reinsert(thread_t thread, integer_t options)
{
- run_queue_t rq = &processor->runq;
- queue_t queue = rq->queues + rq->highq;
- int pri = rq->highq, count = rq->count;
- thread_t thread = THREAD_NULL;
-
- while (count > 0) {
- thread = (thread_t)queue_first(queue);
- while (!queue_end(queue, (queue_entry_t)thread)) {
- if (thread->bound_processor != processor) {
- remqueue(queue, (queue_entry_t)thread);
-
- thread->runq = PROCESSOR_NULL;
- rq->count--;
- if (thread->sched_mode & TH_MODE_PREEMPT)
- rq->urgency--;
- if (queue_empty(queue)) {
- if (pri != IDLEPRI)
- clrbit(MAXPRI - pri, rq->bitmap);
- rq->highq = MAXPRI - ffsbit(rq->bitmap);
- }
+ assert(thread->runq == PROCESSOR_NULL);
- return (thread);
- }
- count--;
+ assert(thread->state & (TH_RUN));
+ thread_setrun(thread, options);
- thread = (thread_t)queue_next((queue_entry_t)thread);
- }
+}
- queue--; pri--;
- }
+void
+sys_override_cpu_throttle(int flag)
+{
+ if (flag == CPU_THROTTLE_ENABLE)
+ cpu_throttle_enabled = 1;
+ if (flag == CPU_THROTTLE_DISABLE)
+ cpu_throttle_enabled = 0;
+}
- return (THREAD_NULL);
+int
+thread_get_urgency(thread_t thread, uint64_t *arg1, uint64_t *arg2)
+{
+ if (thread == NULL || (thread->state & TH_IDLE)) {
+ *arg1 = 0;
+ *arg2 = 0;
+
+ return (THREAD_URGENCY_NONE);
+ } else if (thread->sched_mode == TH_MODE_REALTIME) {
+ *arg1 = thread->realtime.period;
+ *arg2 = thread->realtime.deadline;
+
+ return (THREAD_URGENCY_REAL_TIME);
+ } else if (cpu_throttle_enabled &&
+ ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) {
+ /*
+ * Background urgency applied when thread priority is MAXPRI_THROTTLE or lower and thread is not promoted
+ */
+ *arg1 = thread->sched_pri;
+ *arg2 = thread->base_pri;
+
+ return (THREAD_URGENCY_BACKGROUND);
+ } else {
+ /* For otherwise unclassified threads, report throughput QoS
+ * parameters
+ */
+ *arg1 = proc_get_effective_thread_policy(thread, TASK_POLICY_THROUGH_QOS);
+ *arg2 = proc_get_effective_task_policy(thread->task, TASK_POLICY_THROUGH_QOS);
+
+ return (THREAD_URGENCY_NORMAL);
+ }
}
+
/*
* This is the processor idle loop, which just looks for other threads
* to execute. Processor idle threads invoke this without supplying a
*
* Returns a the next thread to execute if dispatched directly.
*/
-static thread_t
+
+#if 0
+#define IDLE_KERNEL_DEBUG_CONSTANT(...) KERNEL_DEBUG_CONSTANT(__VA_ARGS__)
+#else
+#define IDLE_KERNEL_DEBUG_CONSTANT(...) do { } while(0)
+#endif
+
+thread_t
processor_idle(
thread_t thread,
processor_t processor)
processor_set_t pset = processor->processor_set;
thread_t new_thread;
int state;
-
(void)splsched();
-#ifdef __ppc__
- pmsDown(); /* Step power down */
-#endif
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_START,
+ (uintptr_t)thread_tid(thread), 0, 0, 0, 0);
- KERNEL_DEBUG_CONSTANT(
- MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_START, (int)thread, 0, 0, 0, 0);
+ SCHED_STATS_CPU_IDLE_START(processor);
timer_switch(&PROCESSOR_DATA(processor, system_state),
mach_absolute_time(), &PROCESSOR_DATA(processor, idle_state));
PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, idle_state);
- while (processor->next_thread == THREAD_NULL && processor->runq.count == 0 &&
- (thread == THREAD_NULL || ((thread->state & (TH_WAIT|TH_SUSP)) == TH_WAIT && !thread->wake_active))) {
- volatile processor_t hint;
+ while (1) {
+ if (processor->state != PROCESSOR_IDLE) /* unsafe, but worst case we loop around once */
+ break;
+ if (pset->pending_AST_cpu_mask & (1ULL << processor->cpu_id))
+ break;
+ if (processor->is_recommended) {
+ if (rt_runq.count)
+ break;
+ } else {
+ if (SCHED(processor_bound_count)(processor))
+ break;
+ }
+
+#if CONFIG_SCHED_IDLE_IN_PLACE
+ if (thread != THREAD_NULL) {
+ /* Did idle-in-place thread wake up */
+ if ((thread->state & (TH_WAIT|TH_SUSP)) != TH_WAIT || thread->wake_active)
+ break;
+ }
+#endif
+
+ IDLE_KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -1, 0);
+
+ machine_track_platform_idle(TRUE);
machine_idle();
+ machine_track_platform_idle(FALSE);
+
(void)splsched();
- if (pset->low_hint == PROCESSOR_NULL)
- break;
+ IDLE_KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq.count, SCHED(processor_runq_count)(processor), -2, 0);
- hint = pset->high_hint;
- if (hint != PROCESSOR_NULL && hint->runq.count > 0)
- break;
+ if (!SCHED(processor_queue_empty)(processor)) {
+ /* Secondary SMT processors respond to directed wakeups
+ * exclusively. Some platforms induce 'spurious' SMT wakeups.
+ */
+ if (processor->processor_primary == processor)
+ break;
+ }
}
- KERNEL_DEBUG_CONSTANT(
- MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, (int)thread, 0, 0, 0, 0);
-
timer_switch(&PROCESSOR_DATA(processor, idle_state),
mach_absolute_time(), &PROCESSOR_DATA(processor, system_state));
PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, system_state);
pset_lock(pset);
-#ifdef __ppc__
- pmsStep(0); /* Step up out of idle power */
+ /* If we were sent a remote AST and came out of idle, acknowledge it here with pset lock held */
+ pset->pending_AST_cpu_mask &= ~(1ULL << processor->cpu_id);
+#if defined(CONFIG_SCHED_DEFERRED_AST)
+ pset->pending_deferred_AST_cpu_mask &= ~(1ULL << processor->cpu_id);
#endif
state = processor->state;
processor->next_thread = THREAD_NULL;
processor->state = PROCESSOR_RUNNING;
- if ( processor->runq.highq > new_thread->sched_pri ||
- rt_runq.highq >= new_thread->sched_pri ) {
+ if ((new_thread != THREAD_NULL) && (SCHED(processor_queue_has_priority)(processor, new_thread->sched_pri, FALSE) ||
+ (rt_runq.count > 0)) ) {
+ /* Something higher priority has popped up on the runqueue - redispatch this thread elsewhere */
+ processor->current_pri = IDLEPRI;
+ processor->current_thmode = TH_MODE_FIXED;
+ processor->current_sfi_class = SFI_CLASS_KERNEL;
processor->deadline = UINT64_MAX;
pset_unlock(pset);
thread_lock(new_thread);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_REDISPATCH), (uintptr_t)thread_tid(new_thread), new_thread->sched_pri, rt_runq.count, 0, 0);
thread_setrun(new_thread, SCHED_HEADQ);
thread_unlock(new_thread);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END,
+ (uintptr_t)thread_tid(thread), state, 0, 0, 0);
+
return (THREAD_NULL);
}
pset_unlock(pset);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END,
+ (uintptr_t)thread_tid(thread), state, (uintptr_t)thread_tid(new_thread), 0, 0);
+
return (new_thread);
- }
- else
- if (state == PROCESSOR_IDLE) {
- remqueue(&pset->idle_queue, (queue_entry_t)processor);
- pset->idle_count--;
+
+ } else if (state == PROCESSOR_IDLE) {
+ re_queue_tail(&pset->active_queue, &processor->processor_queue);
processor->state = PROCESSOR_RUNNING;
- enqueue_head(&pset->active_queue, (queue_entry_t)processor);
- }
- else
- if (state == PROCESSOR_SHUTDOWN) {
+ processor->current_pri = IDLEPRI;
+ processor->current_thmode = TH_MODE_FIXED;
+ processor->current_sfi_class = SFI_CLASS_KERNEL;
+ processor->deadline = UINT64_MAX;
+
+ } else if (state == PROCESSOR_SHUTDOWN) {
/*
* Going off-line. Force a
* reschedule.
*/
if ((new_thread = processor->next_thread) != THREAD_NULL) {
processor->next_thread = THREAD_NULL;
+ processor->current_pri = IDLEPRI;
+ processor->current_thmode = TH_MODE_FIXED;
+ processor->current_sfi_class = SFI_CLASS_KERNEL;
processor->deadline = UINT64_MAX;
pset_unlock(pset);
thread_setrun(new_thread, SCHED_HEADQ);
thread_unlock(new_thread);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END,
+ (uintptr_t)thread_tid(thread), state, 0, 0, 0);
+
return (THREAD_NULL);
}
}
pset_unlock(pset);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END,
+ (uintptr_t)thread_tid(thread), state, 0, 0, 0);
+
return (THREAD_NULL);
}
+/*
+ * Each processor has a dedicated thread which
+ * executes the idle loop when there is no suitable
+ * previous context.
+ */
void
idle_thread(void)
{
thread_lock(thread);
thread->bound_processor = processor;
processor->idle_thread = thread;
- thread->sched_pri = thread->priority = IDLEPRI;
+ thread->sched_pri = thread->base_pri = IDLEPRI;
thread->state = (TH_RUN | TH_IDLE);
+ thread->options |= TH_OPT_IDLE_THREAD;
thread_unlock(thread);
splx(s);
return (KERN_SUCCESS);
}
-static uint64_t sched_tick_deadline;
-
/*
* sched_startup:
*
kern_return_t result;
thread_t thread;
- result = kernel_thread_start_priority((thread_continue_t)sched_tick_thread, NULL, MAXPRI_KERNEL, &thread);
+ simple_lock_init(&sched_vm_group_list_lock, 0);
+
+
+ result = kernel_thread_start_priority((thread_continue_t)sched_init_thread,
+ (void *)SCHED(maintenance_continuation), MAXPRI_KERNEL, &thread);
if (result != KERN_SUCCESS)
panic("sched_startup");
thread_deallocate(thread);
+ assert_thread_magic(thread);
+
/*
- * Yield to the sched_tick_thread while it times
- * a series of context switches back. It stores
- * the baseline value in sched_cswtime.
+ * Yield to the sched_init_thread once, to
+ * initialize our own thread after being switched
+ * back to.
*
* The current thread is the only other thread
* active at this point.
*/
- while (sched_cswtime == 0)
- thread_block(THREAD_CONTINUE_NULL);
-
- thread_daemon_init();
-
- thread_call_initialize();
+ thread_block(THREAD_CONTINUE_NULL);
}
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+
+static volatile uint64_t sched_maintenance_deadline;
+static uint64_t sched_tick_last_abstime;
+static uint64_t sched_tick_delta;
+uint64_t sched_tick_max_delta;
/*
- * sched_tick_thread:
+ * sched_init_thread:
*
* Perform periodic bookkeeping functions about ten
* times per second.
*/
-static void
-sched_tick_continue(void)
+void
+sched_timeshare_maintenance_continue(void)
{
- uint64_t abstime = mach_absolute_time();
+ uint64_t sched_tick_ctime, late_time;
+
+ struct sched_update_scan_context scan_context = {
+ .earliest_bg_make_runnable_time = UINT64_MAX,
+ .earliest_normal_make_runnable_time = UINT64_MAX,
+ .earliest_rt_make_runnable_time = UINT64_MAX
+ };
+
+ sched_tick_ctime = mach_absolute_time();
+
+ if (__improbable(sched_tick_last_abstime == 0)) {
+ sched_tick_last_abstime = sched_tick_ctime;
+ late_time = 0;
+ sched_tick_delta = 1;
+ } else {
+ late_time = sched_tick_ctime - sched_tick_last_abstime;
+ sched_tick_delta = late_time / sched_tick_interval;
+ /* Ensure a delta of 1, since the interval could be slightly
+ * smaller than the sched_tick_interval due to dispatch
+ * latencies.
+ */
+ sched_tick_delta = MAX(sched_tick_delta, 1);
+
+ /* In the event interrupt latencies or platform
+ * idle events that advanced the timebase resulted
+ * in periods where no threads were dispatched,
+ * cap the maximum "tick delta" at SCHED_TICK_MAX_DELTA
+ * iterations.
+ */
+ sched_tick_delta = MIN(sched_tick_delta, SCHED_TICK_MAX_DELTA);
+
+ sched_tick_last_abstime = sched_tick_ctime;
+ sched_tick_max_delta = MAX(sched_tick_delta, sched_tick_max_delta);
+ }
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE)|DBG_FUNC_START,
+ sched_tick_delta, late_time, 0, 0, 0);
+
+ /* Add a number of pseudo-ticks corresponding to the elapsed interval
+ * This could be greater than 1 if substantial intervals where
+ * all processors are idle occur, which rarely occurs in practice.
+ */
- sched_tick++;
+ sched_tick += sched_tick_delta;
/*
* Compute various averages.
*/
- compute_averages();
+ compute_averages(sched_tick_delta);
/*
* Scan the run queues for threads which
- * may need to be updated.
+ * may need to be updated, and find the earliest runnable thread on the runqueue
+ * to report its latency.
+ */
+ SCHED(thread_update_scan)(&scan_context);
+
+ rt_runq_scan(&scan_context);
+
+ uint64_t ctime = mach_absolute_time();
+
+ uint64_t bg_max_latency = (ctime > scan_context.earliest_bg_make_runnable_time) ?
+ ctime - scan_context.earliest_bg_make_runnable_time : 0;
+
+ uint64_t default_max_latency = (ctime > scan_context.earliest_normal_make_runnable_time) ?
+ ctime - scan_context.earliest_normal_make_runnable_time : 0;
+
+ uint64_t realtime_max_latency = (ctime > scan_context.earliest_rt_make_runnable_time) ?
+ ctime - scan_context.earliest_rt_make_runnable_time : 0;
+
+ machine_max_runnable_latency(bg_max_latency, default_max_latency, realtime_max_latency);
+
+ /*
+ * Check to see if the special sched VM group needs attention.
*/
- thread_update_scan();
+ sched_vm_group_maintenance();
- if (pm_tick_callout != NULL)
- (*pm_tick_callout)();
- clock_deadline_for_periodic_event(sched_tick_interval, abstime,
- &sched_tick_deadline);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE) | DBG_FUNC_END,
+ sched_pri_shifts[TH_BUCKET_SHARE_FG], sched_pri_shifts[TH_BUCKET_SHARE_BG],
+ sched_pri_shifts[TH_BUCKET_SHARE_UT], 0, 0);
- assert_wait_deadline((event_t)sched_tick_thread, THREAD_UNINT, sched_tick_deadline);
- thread_block((thread_continue_t)sched_tick_continue);
+ assert_wait((event_t)sched_timeshare_maintenance_continue, THREAD_UNINT);
+ thread_block((thread_continue_t)sched_timeshare_maintenance_continue);
/*NOTREACHED*/
}
+static uint64_t sched_maintenance_wakeups;
+
/*
- * Time a series of context switches to determine
- * a baseline. Toss the high and low and return
- * the one-way value.
+ * Determine if the set of routines formerly driven by a maintenance timer
+ * must be invoked, based on a deadline comparison. Signals the scheduler
+ * maintenance thread on deadline expiration. Must be invoked at an interval
+ * lower than the "sched_tick_interval", currently accomplished by
+ * invocation via the quantum expiration timer and at context switch time.
+ * Performance matters: this routine reuses a timestamp approximating the
+ * current absolute time received from the caller, and should perform
+ * no more than a comparison against the deadline in the common case.
*/
-static uint32_t
-time_cswitch(void)
-{
- uint32_t new, hi, low, accum;
- uint64_t abstime;
- int i, tries = 7;
+void
+sched_timeshare_consider_maintenance(uint64_t ctime) {
+ uint64_t ndeadline, deadline = sched_maintenance_deadline;
- accum = hi = low = 0;
- for (i = 0; i < tries; ++i) {
- abstime = mach_absolute_time();
- thread_block(THREAD_CONTINUE_NULL);
+ if (__improbable(ctime >= deadline)) {
+ if (__improbable(current_thread() == sched_maintenance_thread))
+ return;
+ OSMemoryBarrier();
- new = mach_absolute_time() - abstime;
+ ndeadline = ctime + sched_tick_interval;
- if (i == 0)
- accum = hi = low = new;
- else {
- if (new < low)
- low = new;
- else
- if (new > hi)
- hi = new;
- accum += new;
+ if (__probable(__sync_bool_compare_and_swap(&sched_maintenance_deadline, deadline, ndeadline))) {
+ thread_wakeup((event_t)sched_timeshare_maintenance_continue);
+ sched_maintenance_wakeups++;
}
}
-
- return ((accum - hi - low) / (2 * (tries - 2)));
}
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
void
-sched_tick_thread(void)
+sched_init_thread(void (*continuation)(void))
{
- sched_cswtime = time_cswitch();
+ thread_block(THREAD_CONTINUE_NULL);
+
+ thread_t thread = current_thread();
- sched_tick_deadline = mach_absolute_time();
+ thread_set_thread_name(thread, "sched_maintenance_thread");
+
+ sched_maintenance_thread = thread;
+
+ continuation();
- sched_tick_continue();
/*NOTREACHED*/
}
+#if defined(CONFIG_SCHED_TIMESHARE_CORE)
+
/*
* thread_update_scan / runq_scan:
*
#define THREAD_UPDATE_SIZE 128
-static thread_t thread_update_array[THREAD_UPDATE_SIZE];
-static int thread_update_count = 0;
+static thread_t thread_update_array[THREAD_UPDATE_SIZE];
+static uint32_t thread_update_count = 0;
+
+/* Returns TRUE if thread was added, FALSE if thread_update_array is full */
+boolean_t
+thread_update_add_thread(thread_t thread)
+{
+ if (thread_update_count == THREAD_UPDATE_SIZE)
+ return (FALSE);
+
+ thread_update_array[thread_update_count++] = thread;
+ thread_reference_internal(thread);
+ return (TRUE);
+}
+
+void
+thread_update_process_threads(void)
+{
+ assert(thread_update_count <= THREAD_UPDATE_SIZE);
+
+ for (uint32_t i = 0 ; i < thread_update_count ; i++) {
+ thread_t thread = thread_update_array[i];
+ assert_thread_magic(thread);
+ thread_update_array[i] = THREAD_NULL;
+
+ spl_t s = splsched();
+ thread_lock(thread);
+ if (!(thread->state & (TH_WAIT)) && thread->sched_stamp != sched_tick) {
+ SCHED(update_priority)(thread);
+ }
+ thread_unlock(thread);
+ splx(s);
+
+ thread_deallocate(thread);
+ }
+
+ thread_update_count = 0;
+}
/*
* Scan a runq for candidate threads.
*
* Returns TRUE if retry is needed.
*/
-static boolean_t
+boolean_t
runq_scan(
- run_queue_t runq)
-{
- register int count;
- register queue_t q;
- register thread_t thread;
-
- if ((count = runq->count) > 0) {
- q = runq->queues + runq->highq;
- while (count > 0) {
- queue_iterate(q, thread, thread_t, links) {
- if ( thread->sched_stamp != sched_tick &&
- (thread->sched_mode & TH_MODE_TIMESHARE) ) {
- if (thread_update_count == THREAD_UPDATE_SIZE)
- return (TRUE);
-
- thread_update_array[thread_update_count++] = thread;
- thread_reference_internal(thread);
- }
+ run_queue_t runq,
+ sched_update_scan_context_t scan_context)
+{
+ int count = runq->count;
+ int queue_index;
+
+ assert(count >= 0);
+
+ if (count == 0)
+ return FALSE;
- count--;
+ for (queue_index = bitmap_first(runq->bitmap, NRQS);
+ queue_index >= 0;
+ queue_index = bitmap_next(runq->bitmap, queue_index)) {
+
+ thread_t thread;
+ queue_t queue = &runq->queues[queue_index];
+
+ qe_foreach_element(thread, queue, runq_links) {
+ assert(count > 0);
+ assert_thread_magic(thread);
+
+ if (thread->sched_stamp != sched_tick &&
+ thread->sched_mode == TH_MODE_TIMESHARE) {
+ if (thread_update_add_thread(thread) == FALSE)
+ return TRUE;
}
- q--;
+ if (cpu_throttle_enabled && ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) {
+ if (thread->last_made_runnable_time < scan_context->earliest_bg_make_runnable_time) {
+ scan_context->earliest_bg_make_runnable_time = thread->last_made_runnable_time;
+ }
+ } else {
+ if (thread->last_made_runnable_time < scan_context->earliest_normal_make_runnable_time) {
+ scan_context->earliest_normal_make_runnable_time = thread->last_made_runnable_time;
+ }
+ }
+ count--;
}
}
- return (FALSE);
+ return FALSE;
}
-static void
-thread_update_scan(void)
+#endif /* CONFIG_SCHED_TIMESHARE_CORE */
+
+boolean_t
+thread_eager_preemption(thread_t thread)
{
- boolean_t restart_needed = FALSE;
- processor_t processor = processor_list;
- processor_set_t pset;
- thread_t thread;
- spl_t s;
+ return ((thread->sched_flags & TH_SFLAG_EAGERPREEMPT) != 0);
+}
- do {
- do {
- pset = processor->processor_set;
+void
+thread_set_eager_preempt(thread_t thread)
+{
+ spl_t x;
+ processor_t p;
+ ast_t ast = AST_NONE;
- s = splsched();
- pset_lock(pset);
+ x = splsched();
+ p = current_processor();
- restart_needed = runq_scan(&processor->runq);
+ thread_lock(thread);
+ thread->sched_flags |= TH_SFLAG_EAGERPREEMPT;
- pset_unlock(pset);
- splx(s);
+ if (thread == current_thread()) {
- if (restart_needed)
- break;
+ ast = csw_check(p, AST_NONE);
+ thread_unlock(thread);
+ if (ast != AST_NONE) {
+ (void) thread_block_reason(THREAD_CONTINUE_NULL, NULL, ast);
+ }
+ } else {
+ p = thread->last_processor;
- thread = processor->idle_thread;
- if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) {
- if (thread_update_count == THREAD_UPDATE_SIZE) {
- restart_needed = TRUE;
- break;
- }
+ if (p != PROCESSOR_NULL && p->state == PROCESSOR_RUNNING &&
+ p->active_thread == thread) {
+ cause_ast_check(p);
+ }
+
+ thread_unlock(thread);
+ }
- thread_update_array[thread_update_count++] = thread;
- thread_reference_internal(thread);
- }
- } while ((processor = processor->processor_list) != NULL);
+ splx(x);
+}
- /*
- * Ok, we now have a collection of candidates -- fix them.
- */
- while (thread_update_count > 0) {
- thread = thread_update_array[--thread_update_count];
- thread_update_array[thread_update_count] = THREAD_NULL;
+void
+thread_clear_eager_preempt(thread_t thread)
+{
+ spl_t x;
- s = splsched();
- thread_lock(thread);
- if ( !(thread->state & (TH_WAIT|TH_SUSP)) &&
- thread->sched_stamp != sched_tick )
- update_priority(thread);
- thread_unlock(thread);
- splx(s);
+ x = splsched();
+ thread_lock(thread);
+
+ thread->sched_flags &= ~TH_SFLAG_EAGERPREEMPT;
+
+ thread_unlock(thread);
+ splx(x);
+}
+
+/*
+ * Scheduling statistics
+ */
+void
+sched_stats_handle_csw(processor_t processor, int reasons, int selfpri, int otherpri)
+{
+ struct processor_sched_statistics *stats;
+ boolean_t to_realtime = FALSE;
+
+ stats = &processor->processor_data.sched_stats;
+ stats->csw_count++;
- thread_deallocate(thread);
- }
- } while (restart_needed);
+ if (otherpri >= BASEPRI_REALTIME) {
+ stats->rt_sched_count++;
+ to_realtime = TRUE;
+ }
+
+ if ((reasons & AST_PREEMPT) != 0) {
+ stats->preempt_count++;
+
+ if (selfpri >= BASEPRI_REALTIME) {
+ stats->preempted_rt_count++;
+ }
+
+ if (to_realtime) {
+ stats->preempted_by_rt_count++;
+ }
+
+ }
}
-
+
+void
+sched_stats_handle_runq_change(struct runq_stats *stats, int old_count)
+{
+ uint64_t timestamp = mach_absolute_time();
+
+ stats->count_sum += (timestamp - stats->last_change_timestamp) * old_count;
+ stats->last_change_timestamp = timestamp;
+}
+
/*
- * Just in case someone doesn't use the macro
+ * For calls from assembly code
*/
-#undef thread_wakeup
+#undef thread_wakeup
void
thread_wakeup(
- event_t x);
+ event_t x);
void
thread_wakeup(
- event_t x)
+ event_t x)
{
- thread_wakeup_with_result(x, THREAD_AWAKENED);
+ thread_wakeup_with_result(x, THREAD_AWAKENED);
}
boolean_t
return (get_preemption_level() == 0 && ml_get_interrupts_enabled());
}
-#if DEBUG
-static boolean_t
-thread_runnable(
- thread_t thread)
-{
- return ((thread->state & (TH_RUN|TH_WAIT)) == TH_RUN);
+static void
+sched_timer_deadline_tracking_init(void) {
+ nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT, &timer_deadline_tracking_bin_1);
+ nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT, &timer_deadline_tracking_bin_2);
}
-#endif /* DEBUG */
-
-#if MACH_KDB
-#include <ddb/db_output.h>
-#define printf kdbprintf
-void db_sched(void);
-void
-db_sched(void)
-{
- iprintf("Scheduling Statistics:\n");
- db_indent += 2;
- iprintf("Thread invocations: csw %d same %d\n",
- c_thread_invoke_csw, c_thread_invoke_same);
-#if MACH_COUNTERS
- iprintf("Thread block: calls %d\n",
- c_thread_block_calls);
- iprintf("Idle thread:\n\thandoff %d block %d\n",
- c_idle_thread_handoff,
- c_idle_thread_block);
- iprintf("Sched thread blocks: %d\n", c_sched_thread_block);
-#endif /* MACH_COUNTERS */
- db_indent -= 2;
-}
-
-#include <ddb/db_output.h>
-void db_show_thread_log(void);
-void
-db_show_thread_log(void)
+kern_return_t
+sched_work_interval_notify(thread_t thread, uint64_t work_interval_id, uint64_t start, uint64_t finish, uint64_t deadline, uint64_t next_start, uint32_t flags)
{
+ int urgency;
+ uint64_t urgency_param1, urgency_param2;
+ spl_t s;
+
+ if (work_interval_id == 0) {
+ return (KERN_INVALID_ARGUMENT);
+ }
+
+ assert(thread == current_thread());
+
+ thread_mtx_lock(thread);
+ if (thread->work_interval_id != work_interval_id) {
+ thread_mtx_unlock(thread);
+ return (KERN_INVALID_ARGUMENT);
+ }
+ thread_mtx_unlock(thread);
+
+ s = splsched();
+ thread_lock(thread);
+ urgency = thread_get_urgency(thread, &urgency_param1, &urgency_param2);
+ thread_unlock(thread);
+ splx(s);
+
+ machine_work_interval_notify(thread, work_interval_id, start, finish, deadline, next_start, urgency, flags);
+ return (KERN_SUCCESS);
+}
+
+void thread_set_options(uint32_t thopt) {
+ spl_t x;
+ thread_t t = current_thread();
+
+ x = splsched();
+ thread_lock(t);
+
+ t->options |= thopt;
+
+ thread_unlock(t);
+ splx(x);
}
-#endif /* MACH_KDB */