/*
- * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2011 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <sys/uio.h>
#include <sys/sysproto.h>
#include <sys/user.h>
+#include <sys/vnode_internal.h>
#include <string.h>
#include <sys/proc_info.h>
#include <kern/assert.h>
#include <libkern/libkern.h>
-#include "kpi_mbuf_internal.h"
+#include "net/net_str_id.h"
+
+#include <mach/task.h>
+
+#if VM_PRESSURE_EVENTS
+#include <kern/vm_pressure.h>
+#endif
MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
+#define KQ_EVENT NULL
+
static inline void kqlock(struct kqueue *kq);
static inline void kqunlock(struct kqueue *kq);
static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn);
static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn);
-static void kqueue_wakeup(struct kqueue *kq);
+static void kqueue_wakeup(struct kqueue *kq, int closed);
static int kqueue_read(struct fileproc *fp, struct uio *uio,
int flags, vfs_context_t ctx);
static int kqueue_write(struct fileproc *fp, struct uio *uio,
vfs_context_t ctx);
static int kqueue_select(struct fileproc *fp, int which, void *wql,
vfs_context_t ctx);
-static int kqueue_close(struct fileglob *fp, vfs_context_t ctx);
+static int kqueue_close(struct fileglob *fg, vfs_context_t ctx);
static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, vfs_context_t ctx);
+static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx);
extern int kqueue_stat(struct fileproc *fp, void *ub, int isstat64, vfs_context_t ctx);
static struct fileops kqueueops = {
- kqueue_read,
- kqueue_write,
- kqueue_ioctl,
- kqueue_select,
- kqueue_close,
- kqueue_kqfilter,
- 0
+ .fo_read = kqueue_read,
+ .fo_write = kqueue_write,
+ .fo_ioctl = kqueue_ioctl,
+ .fo_select = kqueue_select,
+ .fo_close = kqueue_close,
+ .fo_kqfilter = kqueue_kqfilter,
+ .fo_drain = kqueue_drain,
};
-static int kevent_copyin(user_addr_t *addrp, struct kevent *kevp, struct proc *p);
-static int kevent_copyout(struct kevent *kevp, user_addr_t *addrp, struct proc *p);
+static int kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
+ int nchanges, user_addr_t eventlist, int nevents, int fd,
+ user_addr_t utimeout, unsigned int flags, int32_t *retval);
+static int kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, int iskev64);
+static int kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, int iskev64);
+char * kevent_description(struct kevent64_s *kevp, char *s, size_t n);
-static int kevent_callback(struct kqueue *kq, struct kevent *kevp, void *data);
+static int kevent_callback(struct kqueue *kq, struct kevent64_s *kevp, void *data);
static void kevent_continue(struct kqueue *kq, void *data, int error);
-static void kevent_scan_continue(void *contp, wait_result_t wait_result);
-static int kevent_process(struct kqueue *kq, kevent_callback_t callback,
+static void kqueue_scan_continue(void *contp, wait_result_t wait_result);
+static int kqueue_process(struct kqueue *kq, kevent_callback_t callback,
void *data, int *countp, struct proc *p);
+static int kqueue_begin_processing(struct kqueue *kq);
+static void kqueue_end_processing(struct kqueue *kq);
+static int knote_process(struct knote *kn, kevent_callback_t callback,
+ void *data, struct kqtailq *inprocessp, struct proc *p);
static void knote_put(struct knote *kn);
static int knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p);
static void knote_drop(struct knote *kn, struct proc *p);
-static void knote_activate(struct knote *kn);
+static void knote_activate(struct knote *kn, int);
static void knote_deactivate(struct knote *kn);
static void knote_enqueue(struct knote *kn);
static void knote_dequeue(struct knote *kn);
static void knote_free(struct knote *kn);
static int filt_fileattach(struct knote *kn);
-static struct filterops file_filtops =
- { 1, filt_fileattach, NULL, NULL };
+static struct filterops file_filtops = {
+ .f_isfd = 1,
+ .f_attach = filt_fileattach,
+};
static void filt_kqdetach(struct knote *kn);
static int filt_kqueue(struct knote *kn, long hint);
-static struct filterops kqread_filtops =
- { 1, NULL, filt_kqdetach, filt_kqueue };
+static struct filterops kqread_filtops = {
+ .f_isfd = 1,
+ .f_detach = filt_kqdetach,
+ .f_event = filt_kqueue,
+};
/*
* placeholder for not-yet-implemented filters
*/
static int filt_badattach(struct knote *kn);
-static struct filterops bad_filtops =
- { 0, filt_badattach, 0 , 0 };
+static struct filterops bad_filtops = {
+ .f_attach = filt_badattach,
+};
static int filt_procattach(struct knote *kn);
static void filt_procdetach(struct knote *kn);
static int filt_proc(struct knote *kn, long hint);
+static struct filterops proc_filtops = {
+ .f_attach = filt_procattach,
+ .f_detach = filt_procdetach,
+ .f_event = filt_proc,
+};
-static struct filterops proc_filtops =
- { 0, filt_procattach, filt_procdetach, filt_proc };
+#if VM_PRESSURE_EVENTS
+static int filt_vmattach(struct knote *kn);
+static void filt_vmdetach(struct knote *kn);
+static int filt_vm(struct knote *kn, long hint);
+static struct filterops vm_filtops = {
+ .f_attach = filt_vmattach,
+ .f_detach = filt_vmdetach,
+ .f_event = filt_vm,
+};
+#endif /* VM_PRESSURE_EVENTS */
extern struct filterops fs_filtops;
extern struct filterops sig_filtops;
-
/* Timer filter */
-static int filt_timercompute(struct knote *kn, uint64_t *abs_time);
-static void filt_timerexpire(void *knx, void *param1);
static int filt_timerattach(struct knote *kn);
static void filt_timerdetach(struct knote *kn);
static int filt_timer(struct knote *kn, long hint);
+static void filt_timertouch(struct knote *kn, struct kevent64_s *kev,
+ long type);
+static struct filterops timer_filtops = {
+ .f_attach = filt_timerattach,
+ .f_detach = filt_timerdetach,
+ .f_event = filt_timer,
+ .f_touch = filt_timertouch,
+};
-static struct filterops timer_filtops =
- { 0, filt_timerattach, filt_timerdetach, filt_timer };
+/* Helpers */
+
+static void filt_timerexpire(void *knx, void *param1);
+static int filt_timervalidate(struct knote *kn);
+static void filt_timerupdate(struct knote *kn);
+static void filt_timercancel(struct knote *kn);
-/* to avoid arming timers that fire quicker than we can handle */
-static uint64_t filt_timerfloor = 0;
+#define TIMER_RUNNING 0x1
+#define TIMER_CANCELWAIT 0x2
static lck_mtx_t _filt_timerlock;
static void filt_timerlock(void);
extern struct filterops aio_filtops;
#endif
+/* Mach portset filter */
+extern struct filterops machport_filtops;
+
+/* User filter */
+static int filt_userattach(struct knote *kn);
+static void filt_userdetach(struct knote *kn);
+static int filt_user(struct knote *kn, long hint);
+static void filt_usertouch(struct knote *kn, struct kevent64_s *kev,
+ long type);
+static struct filterops user_filtops = {
+ .f_attach = filt_userattach,
+ .f_detach = filt_userdetach,
+ .f_event = filt_user,
+ .f_touch = filt_usertouch,
+};
+
/*
* Table for for all system-defined filters.
*/
&proc_filtops, /* EVFILT_PROC */
&sig_filtops, /* EVFILT_SIGNAL */
&timer_filtops, /* EVFILT_TIMER */
- &bad_filtops, /* EVFILT_MACHPORT */
- &fs_filtops /* EVFILT_FS */
+ &machport_filtops, /* EVFILT_MACHPORT */
+ &fs_filtops, /* EVFILT_FS */
+ &user_filtops, /* EVFILT_USER */
+ &bad_filtops, /* unused */
+#if VM_PRESSURE_EVENTS
+ &vm_filtops, /* EVFILT_VM */
+#else
+ &bad_filtops, /* EVFILT_VM */
+#endif
+ &file_filtops, /* EVFILT_SOCK */
};
/*
}
/*
- * Convert a kq lock to a knote use referece.
+ * Convert a kq lock to a knote use referece,
+ * but wait for attach and drop events to complete.
*
* If the knote is being dropped, we can't get
* a use reference, so just return with it
static int
kqlock2knoteusewait(struct kqueue *kq, struct knote *kn)
{
- if (!kqlock2knoteuse(kq, kn)) {
- kn->kn_status |= KN_DROPWAIT;
- assert_wait(&kn->kn_status, THREAD_UNINT);
+ if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) {
+ kn->kn_status |= KN_USEWAIT;
+ wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_UNINT, 0);
kqunlock(kq);
thread_block(THREAD_CONTINUE_NULL);
return 0;
}
+ kn->kn_inuse++;
+ kqunlock(kq);
return 1;
}
+
/*
* Convert from a knote use reference back to kq lock.
*
knoteuse2kqlock(struct kqueue *kq, struct knote *kn)
{
kqlock(kq);
- if ((--kn->kn_inuse == 0) &&
- (kn->kn_status & KN_USEWAIT)) {
- kn->kn_status &= ~KN_USEWAIT;
- thread_wakeup(&kn->kn_inuse);
+ if (--kn->kn_inuse == 0) {
+ if ((kn->kn_status & KN_ATTACHING) != 0) {
+ kn->kn_status &= ~KN_ATTACHING;
+ }
+ if ((kn->kn_status & KN_USEWAIT) != 0) {
+ kn->kn_status &= ~KN_USEWAIT;
+ wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
+ }
}
return ((kn->kn_status & KN_DROPPING) == 0);
}
static int
kqlock2knotedrop(struct kqueue *kq, struct knote *kn)
{
+ int oktodrop;
- if ((kn->kn_status & KN_DROPPING) == 0) {
- kn->kn_status |= KN_DROPPING;
- if (kn->kn_inuse > 0) {
- kn->kn_status |= KN_USEWAIT;
- assert_wait(&kn->kn_inuse, THREAD_UNINT);
- kqunlock(kq);
- thread_block(THREAD_CONTINUE_NULL);
- } else
+ oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0);
+ kn->kn_status |= KN_DROPPING;
+ if (oktodrop) {
+ if (kn->kn_inuse == 0) {
kqunlock(kq);
- return 1;
- } else {
- kn->kn_status |= KN_DROPWAIT;
- assert_wait(&kn->kn_status, THREAD_UNINT);
- kqunlock(kq);
- thread_block(THREAD_CONTINUE_NULL);
- return 0;
+ return oktodrop;
+ }
}
+ kn->kn_status |= KN_USEWAIT;
+ wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_UNINT, 0);
+ kqunlock(kq);
+ thread_block(THREAD_CONTINUE_NULL);
+ return oktodrop;
}
/*
struct kqueue *kq = kn->kn_kq;
kqlock(kq);
- if ((--kn->kn_inuse == 0) &&
- (kn->kn_status & KN_USEWAIT)) {
- kn->kn_status &= ~KN_USEWAIT;
- thread_wakeup(&kn->kn_inuse);
+ if (--kn->kn_inuse == 0) {
+ if ((kn->kn_status & KN_USEWAIT) != 0) {
+ kn->kn_status &= ~KN_USEWAIT;
+ wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
+ }
}
kqunlock(kq);
}
-
-
static int
filt_fileattach(struct knote *kn)
{
return (ESRCH);
}
+ const int NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS;
+
+ if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits)
+ do {
+ pid_t selfpid = proc_selfpid();
+
+ if (p->p_ppid == selfpid)
+ break; /* parent => ok */
+
+ if ((p->p_lflag & P_LTRACED) != 0 &&
+ (p->p_oppid == selfpid))
+ break; /* parent-in-waiting => ok */
+
+ proc_rele(p);
+ return (EACCES);
+ } while (0);
+
proc_klist_lock();
kn->kn_flags |= EV_CLEAR; /* automatically set */
static int
filt_proc(struct knote *kn, long hint)
{
- struct proc * p;
-
/* hint is 0 when called from above */
if (hint != 0) {
u_int event;
*/
event = (u_int)hint & NOTE_PCTRLMASK;
+ /*
+ * termination lifecycle events can happen while a debugger
+ * has reparented a process, in which case notifications
+ * should be quashed except to the tracing parent. When
+ * the debugger reaps the child (either via wait4(2) or
+ * process exit), the child will be reparented to the original
+ * parent and these knotes re-fired.
+ */
+ if (event & NOTE_EXIT) {
+ if ((kn->kn_ptr.p_proc->p_oppid != 0)
+ && (kn->kn_kq->kq_p->p_pid != kn->kn_ptr.p_proc->p_ppid)) {
+ /*
+ * This knote is not for the current ptrace(2) parent, ignore.
+ */
+ return 0;
+ }
+ }
+
/*
* if the user is interested in this event, record it.
*/
if (kn->kn_sfflags & event)
kn->kn_fflags |= event;
- /*
- * If this is the last possible event for the
- * knote, unlink this knote from the process
- * before the process goes away.
- */
if (event == NOTE_REAP || (event == NOTE_EXIT && !(kn->kn_sfflags & NOTE_REAP))) {
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
- p = kn->kn_ptr.p_proc;
- if (p != PROC_NULL) {
- kn->kn_ptr.p_proc = PROC_NULL;
- KNOTE_DETACH(&p->p_klist, kn);
- }
- return (1);
}
-
+ if ((event == NOTE_EXIT) && ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0)) {
+ kn->kn_fflags |= NOTE_EXITSTATUS;
+ kn->kn_data = (hint & NOTE_PDATAMASK);
+ }
+ if ((event == NOTE_RESOURCEEND) && ((kn->kn_sfflags & NOTE_RESOURCEEND) != 0)) {
+ kn->kn_fflags |= NOTE_RESOURCEEND;
+ kn->kn_data = (hint & NOTE_PDATAMASK);
+ }
+#if CONFIG_EMBEDDED
+ /* If the event is one of the APPSTATE events,remove the rest */
+ if (((event & NOTE_APPALLSTATES) != 0) && ((kn->kn_sfflags & NOTE_APPALLSTATES) != 0)) {
+ /* only one state at a time */
+ kn->kn_fflags &= ~NOTE_APPALLSTATES;
+ kn->kn_fflags |= event;
+ }
+#endif /* CONFIG_EMBEDDED */
}
/* atomic check, no locking need when called from above */
return (kn->kn_fflags != 0);
}
+#if VM_PRESSURE_EVENTS
/*
- * filt_timercompute - compute absolute timeout
+ * Virtual memory kevents
*
+ * author: Matt Jacobson [matthew_jacobson@apple.com]
+ */
+
+static int
+filt_vmattach(struct knote *kn)
+{
+ /*
+ * The note will be cleared once the information has been flushed to the client.
+ * If there is still pressure, we will be re-alerted.
+ */
+ kn->kn_flags |= EV_CLEAR;
+
+ return vm_knote_register(kn);
+}
+
+static void
+filt_vmdetach(struct knote *kn)
+{
+ vm_knote_unregister(kn);
+}
+
+static int
+filt_vm(struct knote *kn, long hint)
+{
+ /* hint == 0 means this is just an alive? check (always true) */
+ if (hint != 0) {
+ const pid_t pid = (pid_t)hint;
+ if ((kn->kn_sfflags & NOTE_VM_PRESSURE) && (kn->kn_kq->kq_p->p_pid == pid)) {
+ kn->kn_fflags |= NOTE_VM_PRESSURE;
+ }
+ }
+
+ return (kn->kn_fflags != 0);
+}
+#endif /* VM_PRESSURE_EVENTS */
+
+/*
+ * filt_timervalidate - process data from user
+ *
+ * Converts to either interval or deadline format.
+ *
* The saved-data field in the knote contains the
* time value. The saved filter-flags indicates
* the unit of measurement.
*
- * If the timeout is not absolute, adjust it for
- * the current time.
+ * After validation, either the saved-data field
+ * contains the interval in absolute time, or ext[0]
+ * contains the expected deadline. If that deadline
+ * is in the past, ext[0] is 0.
+ *
+ * Returns EINVAL for unrecognized units of time.
+ *
+ * Timer filter lock is held.
+ *
*/
static int
-filt_timercompute(struct knote *kn, uint64_t *abs_time)
+filt_timervalidate(struct knote *kn)
{
uint64_t multiplier;
uint64_t raw;
default:
return EINVAL;
}
+
nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw);
- if (raw <= filt_timerfloor) {
- *abs_time = 0;
- return 0;
- }
- if ((kn->kn_sfflags & NOTE_ABSOLUTE) == NOTE_ABSOLUTE) {
- uint32_t seconds, nanoseconds;
+
+ kn->kn_ext[0] = 0;
+ kn->kn_sdata = 0;
+
+ if (kn->kn_sfflags & NOTE_ABSOLUTE) {
+ clock_sec_t seconds;
+ clock_nsec_t nanoseconds;
uint64_t now;
clock_get_calendar_nanotime(&seconds, &nanoseconds);
- nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC + nanoseconds,
- &now);
- if (now >= raw + filt_timerfloor) {
- *abs_time = 0;
- return 0;
+ nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC +
+ nanoseconds, &now);
+
+ if (raw < now) {
+ /* time has already passed */
+ kn->kn_ext[0] = 0;
+ } else {
+ raw -= now;
+ clock_absolutetime_interval_to_deadline(raw,
+ &kn->kn_ext[0]);
}
- raw -= now;
- }
- clock_absolutetime_interval_to_deadline(raw, abs_time);
+ } else {
+ kn->kn_sdata = raw;
+ }
+
return 0;
}
+/*
+ * filt_timerupdate - compute the next deadline
+ *
+ * Repeating timers store their interval in kn_sdata. Absolute
+ * timers have already calculated the deadline, stored in ext[0].
+ *
+ * On return, the next deadline (or zero if no deadline is needed)
+ * is stored in kn_ext[0].
+ *
+ * Timer filter lock is held.
+ */
+static void
+filt_timerupdate(struct knote *kn)
+{
+ /* if there's no interval, deadline is just in kn_ext[0] */
+ if (kn->kn_sdata == 0)
+ return;
+
+ /* if timer hasn't fired before, fire in interval nsecs */
+ if (kn->kn_ext[0] == 0) {
+ clock_absolutetime_interval_to_deadline(kn->kn_sdata,
+ &kn->kn_ext[0]);
+ } else {
+ /*
+ * If timer has fired before, schedule the next pop
+ * relative to the last intended deadline.
+ *
+ * We could check for whether the deadline has expired,
+ * but the thread call layer can handle that.
+ */
+ kn->kn_ext[0] += kn->kn_sdata;
+ }
+}
+
/*
* filt_timerexpire - the timer callout routine
*
struct klist timer_list;
struct knote *kn = knx;
+ filt_timerlock();
+
+ kn->kn_hookid &= ~TIMER_RUNNING;
+
/* no "object" for timers, so fake a list */
SLIST_INIT(&timer_list);
SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext);
KNOTE(&timer_list, 1);
+
+ /* if someone is waiting for timer to pop */
+ if (kn->kn_hookid & TIMER_CANCELWAIT) {
+ struct kqueue *kq = kn->kn_kq;
+ wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_hook,
+ THREAD_AWAKENED);
+ }
+
+ filt_timerunlock();
}
/*
- * data contains amount of time to sleep, in milliseconds,
- * or a pointer to a timespec structure.
+ * Cancel a running timer (or wait for the pop).
+ * Timer filter lock is held.
+ */
+static void
+filt_timercancel(struct knote *kn)
+{
+ struct kqueue *kq = kn->kn_kq;
+ thread_call_t callout = kn->kn_hook;
+ boolean_t cancelled;
+
+ if (kn->kn_hookid & TIMER_RUNNING) {
+ /* cancel the callout if we can */
+ cancelled = thread_call_cancel(callout);
+ if (cancelled) {
+ kn->kn_hookid &= ~TIMER_RUNNING;
+ } else {
+ /* we have to wait for the expire routine. */
+ kn->kn_hookid |= TIMER_CANCELWAIT;
+ wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
+ &kn->kn_hook, THREAD_UNINT, 0);
+ filt_timerunlock();
+ thread_block(THREAD_CONTINUE_NULL);
+ filt_timerlock();
+ assert((kn->kn_hookid & TIMER_RUNNING) == 0);
+ }
+ }
+}
+
+/*
+ * Allocate a thread call for the knote's lifetime, and kick off the timer.
*/
static int
filt_timerattach(struct knote *kn)
{
thread_call_t callout;
- uint64_t deadline;
int error;
- error = filt_timercompute(kn, &deadline);
- if (error)
- return (error);
+ callout = thread_call_allocate(filt_timerexpire, kn);
+ if (NULL == callout)
+ return (ENOMEM);
- if (deadline) {
- callout = thread_call_allocate(filt_timerexpire, kn);
- if (NULL == callout)
- return (ENOMEM);
- } else {
- /* handle as immediate */
- kn->kn_sdata = 0;
- callout = NULL;
+ filt_timerlock();
+ error = filt_timervalidate(kn);
+ if (error) {
+ filt_timerunlock();
+ return (error);
}
- filt_timerlock();
- kn->kn_hook = (caddr_t)callout;
+ kn->kn_hook = (void*)callout;
+ kn->kn_hookid = 0;
/* absolute=EV_ONESHOT */
if (kn->kn_sfflags & NOTE_ABSOLUTE)
kn->kn_flags |= EV_ONESHOT;
- if (deadline) {
- /* all others - if not faking immediate */
+ filt_timerupdate(kn);
+ if (kn->kn_ext[0]) {
kn->kn_flags |= EV_CLEAR;
- thread_call_enter_delayed(callout, deadline);
- kn->kn_hookid = 0;
+ thread_call_enter_delayed(callout, kn->kn_ext[0]);
+ kn->kn_hookid |= TIMER_RUNNING;
} else {
/* fake immediate */
- kn->kn_hookid = 1;
+ kn->kn_data = 1;
}
+
filt_timerunlock();
return (0);
}
+/*
+ * Shut down the timer if it's running, and free the callout.
+ */
static void
filt_timerdetach(struct knote *kn)
{
thread_call_t callout;
filt_timerlock();
- callout = (thread_call_t)kn->kn_hook;
- if (callout != NULL) {
- boolean_t cancelled;
- /* cancel the callout if we can */
- cancelled = thread_call_cancel(callout);
- if (cancelled) {
- /* got it, just free it */
- kn->kn_hook = NULL;
- filt_timerunlock();
- thread_call_free(callout);
- return;
- }
- /* we have to wait for the expire routine. */
- kn->kn_hookid = -1; /* we are detaching */
- assert_wait(&kn->kn_hook, THREAD_UNINT);
- filt_timerunlock();
- thread_block(THREAD_CONTINUE_NULL);
- assert(kn->kn_hook == NULL);
- return;
- }
- /* nothing to do */
+ callout = (thread_call_t)kn->kn_hook;
+ filt_timercancel(kn);
+
filt_timerunlock();
+
+ thread_call_free(callout);
}
static int
-filt_timer(struct knote *kn, __unused long hint)
+filt_timer(struct knote *kn, long hint)
{
int result;
if (hint) {
- /* real timer pop */
- thread_call_t callout;
- boolean_t detaching;
+ /* real timer pop -- timer lock held by filt_timerexpire */
- filt_timerlock();
-
kn->kn_data++;
- detaching = (kn->kn_hookid < 0);
- callout = (thread_call_t)kn->kn_hook;
+ if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) &&
+ ((kn->kn_flags & EV_ONESHOT) == 0)) {
- if (!detaching && (kn->kn_flags & EV_ONESHOT) == 0) {
- uint64_t deadline;
- int error;
+ /* evaluate next time to fire */
+ filt_timerupdate(kn);
- /* user input data may have changed - deal */
- error = filt_timercompute(kn, &deadline);
- if (error) {
- kn->kn_flags |= EV_ERROR;
- kn->kn_data = error;
- } else if (deadline == 0) {
- /* revert to fake immediate */
- kn->kn_flags &= ~EV_CLEAR;
- kn->kn_sdata = 0;
- kn->kn_hookid = 1;
- } else {
+ if (kn->kn_ext[0]) {
/* keep the callout and re-arm */
- thread_call_enter_delayed(callout, deadline);
- filt_timerunlock();
- return 1;
+ thread_call_enter_delayed(kn->kn_hook,
+ kn->kn_ext[0]);
+ kn->kn_hookid |= TIMER_RUNNING;
}
}
- kn->kn_hook = NULL;
- filt_timerunlock();
- thread_call_free(callout);
-
- /* if someone is waiting for timer to pop */
- if (detaching)
- thread_wakeup(&kn->kn_hook);
return 1;
}
/* user-query */
filt_timerlock();
- /* change fake timer to real if needed */
- while (kn->kn_hookid > 0 && kn->kn_sdata > 0) {
- int error;
+ result = (kn->kn_data != 0);
+
+ filt_timerunlock();
+ return result;
+}
+
+
+/*
+ * filt_timertouch - update knote with new user input
+ *
+ * Cancel and restart the timer based on new user data. When
+ * the user picks up a knote, clear the count of how many timer
+ * pops have gone off (in kn_data).
+ */
+static void
+filt_timertouch(struct knote *kn, struct kevent64_s *kev, long type)
+{
+ int error;
+ filt_timerlock();
+
+ switch (type) {
+ case EVENT_REGISTER:
+ /* cancel current call */
+ filt_timercancel(kn);
- /* update the fake timer (make real) */
- kn->kn_hookid = 0;
- kn->kn_data = 0;
- filt_timerunlock();
- error = filt_timerattach(kn);
- filt_timerlock();
+ /* recalculate deadline */
+ kn->kn_sdata = kev->data;
+ kn->kn_sfflags = kev->fflags;
+
+ error = filt_timervalidate(kn);
if (error) {
+ /* no way to report error, so mark it in the knote */
kn->kn_flags |= EV_ERROR;
kn->kn_data = error;
- filt_timerunlock();
- return 1;
+ break;
+ }
+
+ /* start timer if necessary */
+ filt_timerupdate(kn);
+ if (kn->kn_ext[0]) {
+ thread_call_enter_delayed(kn->kn_hook, kn->kn_ext[0]);
+ kn->kn_hookid |= TIMER_RUNNING;
+ } else {
+ /* pretend the timer has fired */
+ kn->kn_data = 1;
}
- }
- /* if still fake, pretend it fired */
- if (kn->kn_hookid > 0)
- kn->kn_data = 1;
+ break;
+
+ case EVENT_PROCESS:
+ /* reset the timer pop count in kn_data */
+ *kev = kn->kn_kevent;
+ kev->ext[0] = 0;
+ kn->kn_data = 0;
+ if (kn->kn_flags & EV_CLEAR)
+ kn->kn_fflags = 0;
+ break;
+ default:
+ panic("filt_timertouch() - invalid type (%ld)", type);
+ break;
+ }
- result = (kn->kn_data != 0);
filt_timerunlock();
- return result;
}
static void
lck_mtx_unlock(&_filt_timerlock);
}
+static int
+filt_userattach(struct knote *kn)
+{
+ /* EVFILT_USER knotes are not attached to anything in the kernel */
+ kn->kn_hook = NULL;
+ if (kn->kn_fflags & NOTE_TRIGGER) {
+ kn->kn_hookid = 1;
+ } else {
+ kn->kn_hookid = 0;
+ }
+ return 0;
+}
+
+static void
+filt_userdetach(__unused struct knote *kn)
+{
+ /* EVFILT_USER knotes are not attached to anything in the kernel */
+}
+
+static int
+filt_user(struct knote *kn, __unused long hint)
+{
+ return kn->kn_hookid;
+}
+
+static void
+filt_usertouch(struct knote *kn, struct kevent64_s *kev, long type)
+{
+ uint32_t ffctrl;
+ switch (type) {
+ case EVENT_REGISTER:
+ if (kev->fflags & NOTE_TRIGGER) {
+ kn->kn_hookid = 1;
+ }
+
+ ffctrl = kev->fflags & NOTE_FFCTRLMASK;
+ kev->fflags &= NOTE_FFLAGSMASK;
+ switch (ffctrl) {
+ case NOTE_FFNOP:
+ break;
+ case NOTE_FFAND:
+ OSBitAndAtomic(kev->fflags, &kn->kn_sfflags);
+ break;
+ case NOTE_FFOR:
+ OSBitOrAtomic(kev->fflags, &kn->kn_sfflags);
+ break;
+ case NOTE_FFCOPY:
+ kn->kn_sfflags = kev->fflags;
+ break;
+ }
+ kn->kn_sdata = kev->data;
+ break;
+ case EVENT_PROCESS:
+ *kev = kn->kn_kevent;
+ kev->fflags = (volatile UInt32)kn->kn_sfflags;
+ kev->data = kn->kn_sdata;
+ if (kn->kn_flags & EV_CLEAR) {
+ kn->kn_hookid = 0;
+ kn->kn_data = 0;
+ kn->kn_fflags = 0;
+ }
+ break;
+ default:
+ panic("filt_usertouch() - invalid type (%ld)", type);
+ break;
+ }
+}
+
/*
* JMM - placeholder for not-yet-implemented filters
*/
MALLOC_ZONE(kq, struct kqueue *, sizeof(struct kqueue), M_KQUEUE, M_WAITOK);
if (kq != NULL) {
- bzero(kq, sizeof(struct kqueue));
- lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr);
- TAILQ_INIT(&kq->kq_head);
- TAILQ_INIT(&kq->kq_inprocess);
- kq->kq_p = p;
+ wait_queue_set_t wqs;
+
+ wqs = wait_queue_set_alloc(SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST);
+ if (wqs != NULL) {
+ bzero(kq, sizeof(struct kqueue));
+ lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr);
+ TAILQ_INIT(&kq->kq_head);
+ kq->kq_wqs = wqs;
+ kq->kq_p = p;
+ } else {
+ FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE);
+ }
}
if (fdp->fd_knlistsize < 0) {
}
}
proc_fdunlock(p);
+
+ /*
+ * before freeing the wait queue set for this kqueue,
+ * make sure it is unlinked from all its containing (select) sets.
+ */
+ wait_queue_unlink_all((wait_queue_t)kq->kq_wqs);
+ wait_queue_set_free(kq->kq_wqs);
lck_spin_destroy(&kq->kq_lock, kq_lck_grp);
FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE);
}
int
-kqueue(struct proc *p, __unused struct kqueue_args *uap, register_t *retval)
+kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval)
{
struct kqueue *kq;
struct fileproc *fp;
return (error);
}
-int
-kqueue_portset_np(__unused struct proc *p,
- __unused struct kqueue_portset_np_args *uap,
- __unused register_t *retval)
-{
- /* JMM - Placeholder for now */
- return (ENOTSUP);
-}
-
-int
-kqueue_from_portset_np(__unused struct proc *p,
- __unused struct kqueue_from_portset_np_args *uap,
- __unused register_t *retval)
-{
- /* JMM - Placeholder for now */
- return (ENOTSUP);
-}
-
static int
-kevent_copyin(user_addr_t *addrp, struct kevent *kevp, struct proc *p)
+kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, int iskev64)
{
int advance;
int error;
- if (IS_64BIT_PROCESS(p)) {
- struct user_kevent kev64;
+ if (iskev64) {
+ advance = sizeof(struct kevent64_s);
+ error = copyin(*addrp, (caddr_t)kevp, advance);
+ } else if (IS_64BIT_PROCESS(p)) {
+ struct user64_kevent kev64;
+ bzero(kevp, sizeof(struct kevent64_s));
advance = sizeof(kev64);
error = copyin(*addrp, (caddr_t)&kev64, advance);
if (error)
return error;
- kevp->ident = CAST_DOWN(uintptr_t, kev64.ident);
+ kevp->ident = kev64.ident;
kevp->filter = kev64.filter;
kevp->flags = kev64.flags;
kevp->fflags = kev64.fflags;
- kevp->data = CAST_DOWN(intptr_t, kev64.data);
+ kevp->data = kev64.data;
kevp->udata = kev64.udata;
} else {
- /*
- * compensate for legacy in-kernel kevent layout
- * where the udata field is alredy 64-bit.
- */
- advance = sizeof(*kevp) + sizeof(void *) - sizeof(user_addr_t);
- error = copyin(*addrp, (caddr_t)kevp, advance);
+ struct user32_kevent kev32;
+ bzero(kevp, sizeof(struct kevent64_s));
+
+ advance = sizeof(kev32);
+ error = copyin(*addrp, (caddr_t)&kev32, advance);
+ if (error)
+ return error;
+ kevp->ident = (uintptr_t)kev32.ident;
+ kevp->filter = kev32.filter;
+ kevp->flags = kev32.flags;
+ kevp->fflags = kev32.fflags;
+ kevp->data = (intptr_t)kev32.data;
+ kevp->udata = CAST_USER_ADDR_T(kev32.udata);
}
if (!error)
*addrp += advance;
}
static int
-kevent_copyout(struct kevent *kevp, user_addr_t *addrp, struct proc *p)
+kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, int iskev64)
{
int advance;
int error;
- if (IS_64BIT_PROCESS(p)) {
- struct user_kevent kev64;
+ if (iskev64) {
+ advance = sizeof(struct kevent64_s);
+ error = copyout((caddr_t)kevp, *addrp, advance);
+ } else if (IS_64BIT_PROCESS(p)) {
+ struct user64_kevent kev64;
/*
* deal with the special case of a user-supplied
advance = sizeof(kev64);
error = copyout((caddr_t)&kev64, *addrp, advance);
} else {
- /*
- * compensate for legacy in-kernel kevent layout
- * where the udata field is alredy 64-bit.
- */
- advance = sizeof(*kevp) + sizeof(void *) - sizeof(user_addr_t);
- error = copyout((caddr_t)kevp, *addrp, advance);
+ struct user32_kevent kev32;
+
+ kev32.ident = (uint32_t)kevp->ident;
+ kev32.filter = kevp->filter;
+ kev32.flags = kevp->flags;
+ kev32.fflags = kevp->fflags;
+ kev32.data = (int32_t)kevp->data;
+ kev32.udata = kevp->udata;
+ advance = sizeof(kev32);
+ error = copyout((caddr_t)&kev32, *addrp, advance);
}
if (!error)
*addrp += advance;
{
struct _kevent *cont_args;
struct fileproc *fp;
- register_t *retval;
+ int32_t *retval;
int noutputs;
int fd;
struct proc *p = current_proc();
* kevent - [syscall] register and wait for kernel events
*
*/
-
int
-kevent(struct proc *p, struct kevent_args *uap, register_t *retval)
-{
- user_addr_t changelist = uap->changelist;
- user_addr_t ueventlist = uap->eventlist;
- int nchanges = uap->nchanges;
- int nevents = uap->nevents;
- int fd = uap->fd;
+kevent(struct proc *p, struct kevent_args *uap, int32_t *retval)
+{
+ return kevent_internal(p,
+ 0,
+ uap->changelist,
+ uap->nchanges,
+ uap->eventlist,
+ uap->nevents,
+ uap->fd,
+ uap->timeout,
+ 0, /* no flags from old kevent() call */
+ retval);
+}
+
+int
+kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval)
+{
+ return kevent_internal(p,
+ 1,
+ uap->changelist,
+ uap->nchanges,
+ uap->eventlist,
+ uap->nevents,
+ uap->fd,
+ uap->timeout,
+ uap->flags,
+ retval);
+}
+static int
+kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
+ int nchanges, user_addr_t ueventlist, int nevents, int fd,
+ user_addr_t utimeout, __unused unsigned int flags,
+ int32_t *retval)
+{
struct _kevent *cont_args;
uthread_t ut;
struct kqueue *kq;
struct fileproc *fp;
- struct kevent kev;
+ struct kevent64_s kev;
int error, noutputs;
struct timeval atv;
/* convert timeout to absolute - if we have one */
- if (uap->timeout != USER_ADDR_NULL) {
+ if (utimeout != USER_ADDR_NULL) {
struct timeval rtv;
- if ( IS_64BIT_PROCESS(p) ) {
- struct user_timespec ts;
- error = copyin( uap->timeout, &ts, sizeof(ts) );
+ if (IS_64BIT_PROCESS(p)) {
+ struct user64_timespec ts;
+ error = copyin(utimeout, &ts, sizeof(ts));
if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0)
error = EINVAL;
else
TIMESPEC_TO_TIMEVAL(&rtv, &ts);
} else {
- struct timespec ts;
- error = copyin( uap->timeout, &ts, sizeof(ts) );
+ struct user32_timespec ts;
+ error = copyin(utimeout, &ts, sizeof(ts));
TIMESPEC_TO_TIMEVAL(&rtv, &ts);
}
if (error)
/* get a usecount for the kq itself */
if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0)
return(error);
+
+ /* each kq should only be used for events of one type */
+ kqlock(kq);
+ if (kq->kq_state & (KQ_KEV32 | KQ_KEV64)) {
+ if (((iskev64 && (kq->kq_state & KQ_KEV32)) ||
+ (!iskev64 && (kq->kq_state & KQ_KEV64)))) {
+ error = EINVAL;
+ kqunlock(kq);
+ goto errorout;
+ }
+ } else {
+ kq->kq_state |= (iskev64 ? KQ_KEV64 : KQ_KEV32);
+ }
+ kqunlock(kq);
/* register all the change requests the user provided... */
noutputs = 0;
while (nchanges > 0 && error == 0) {
- error = kevent_copyin(&changelist, &kev, p);
+ error = kevent_copyin(&changelist, &kev, p, iskev64);
if (error)
break;
if ((error || (kev.flags & EV_RECEIPT)) && nevents > 0) {
kev.flags = EV_ERROR;
kev.data = error;
- error = kevent_copyout(&kev, &ueventlist, p);
+ error = kevent_copyout(&kev, &ueventlist, p, iskev64);
if (error == 0) {
nevents--;
noutputs++;
/* store the continuation/completion data in the uthread */
ut = (uthread_t)get_bsdthread_info(current_thread());
- cont_args = (struct _kevent *)&ut->uu_kevent.ss_kevent;
+ cont_args = &ut->uu_kevent.ss_kevent;
cont_args->fp = fp;
cont_args->fd = fd;
cont_args->retval = retval;
cont_args->eventlist = ueventlist;
cont_args->eventcount = nevents;
cont_args->eventout = noutputs;
+ cont_args->eventsize = iskev64;
if (nevents > 0 && noutputs == 0 && error == 0)
- error = kevent_scan(kq, kevent_callback,
+ error = kqueue_scan(kq, kevent_callback,
kevent_continue, cont_args,
&atv, p);
kevent_continue(kq, cont_args, error);
- /* NOTREACHED */
+
+errorout:
+ fp_drop(p, fd, fp, 0);
return error;
}
*/
static int
-kevent_callback(__unused struct kqueue *kq, struct kevent *kevp, void *data)
+kevent_callback(__unused struct kqueue *kq, struct kevent64_s *kevp,
+ void *data)
{
struct _kevent *cont_args;
int error;
+ int iskev64;
cont_args = (struct _kevent *)data;
assert(cont_args->eventout < cont_args->eventcount);
+ iskev64 = cont_args->eventsize;
+
/*
* Copy out the appropriate amount of event data for this user.
*/
- error = kevent_copyout(kevp, &cont_args->eventlist, current_proc());
+ error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(), iskev64);
/*
* If there isn't space for additional events, return
return error;
}
+/*
+ * kevent_description - format a description of a kevent for diagnostic output
+ *
+ * called with a 128-byte string buffer
+ */
+
+char *
+kevent_description(struct kevent64_s *kevp, char *s, size_t n)
+{
+ snprintf(s, n,
+ "kevent="
+ "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
+ kevp->ident,
+ kevp->filter,
+ kevp->flags,
+ kevp->fflags,
+ kevp->data,
+ kevp->udata,
+ kevp->ext[0],
+ kevp->ext[1]);
+ return s;
+}
+
/*
* kevent_register - add a new event to a kqueue
*
*/
int
-kevent_register(struct kqueue *kq, struct kevent *kev, __unused struct proc *ctxp)
+kevent_register(struct kqueue *kq, struct kevent64_s *kev, __unused struct proc *ctxp)
{
struct proc *p = kq->kq_p;
struct filedesc *fdp = p->p_fd;
return (EINVAL);
}
+ restart:
/* this iocount needs to be dropped if it is not registered */
- if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 0)) != 0)
+ proc_fdlock(p);
+ if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 1)) != 0) {
+ proc_fdunlock(p);
return(error);
+ }
- restart:
- proc_fdlock(p);
if (fops->f_isfd) {
/* fd-based knotes are linked off the fd table */
if (kev->ident < (u_int)fdp->fd_knlistsize) {
kev->data = 0;
kn->kn_kevent = *kev;
kn->kn_inuse = 1; /* for f_attach() */
- kn->kn_status = 0;
+ kn->kn_status = KN_ATTACHING;
/* before anyone can find it */
if (kev->flags & EV_DISABLE)
*/
fp = NULL;
- /*
- * If the attach fails here, we can drop it knowing
- * that nobody else has a reference to the knote.
- */
- if ((error = fops->f_attach(kn)) != 0) {
+ error = fops->f_attach(kn);
+
+ kqlock(kq);
+
+ if (error != 0) {
+ /*
+ * Failed to attach correctly, so drop.
+ * All other possible users/droppers
+ * have deferred to us.
+ */
+ kn->kn_status |= KN_DROPPING;
+ kqunlock(kq);
+ knote_drop(kn, p);
+ goto done;
+ } else if (kn->kn_status & KN_DROPPING) {
+ /*
+ * Attach succeeded, but someone else
+ * deferred their drop - now we have
+ * to do it for them (after detaching).
+ */
+ kqunlock(kq);
+ kn->kn_fop->f_detach(kn);
knote_drop(kn, p);
goto done;
}
+ kn->kn_status &= ~KN_ATTACHING;
+ kqunlock(kq);
} else {
proc_fdunlock(p);
error = ENOENT;
knote_enqueue(kn);
}
+ /*
+ * The user may change some filter values after the
+ * initial EV_ADD, but doing so will not reset any
+ * filter which have already been triggered.
+ */
+ kn->kn_kevent.udata = kev->udata;
+ if (fops->f_isfd || fops->f_touch == NULL) {
+ kn->kn_sfflags = kev->fflags;
+ kn->kn_sdata = kev->data;
+ }
+
/*
* If somebody is in the middle of dropping this
* knote - go find/insert a new one. But we have
- * wait for this one to go away first.
+ * wait for this one to go away first. Attaches
+ * running in parallel may also drop/modify the
+ * knote. Wait for those to complete as well and
+ * then start over if we encounter one.
*/
- if (!kqlock2knoteusewait(kq, kn))
- /* kqueue unlocked */
+ if (!kqlock2knoteusewait(kq, kn)) {
+ /* kqueue, proc_fdlock both unlocked */
goto restart;
+ }
/*
- * The user may change some filter values after the
- * initial EV_ADD, but doing so will not reset any
- * filter which have already been triggered.
+ * Call touch routine to notify filter of changes
+ * in filter values.
*/
- kn->kn_sfflags = kev->fflags;
- kn->kn_sdata = kev->data;
- kn->kn_kevent.udata = kev->udata;
+ if (!fops->f_isfd && fops->f_touch != NULL)
+ fops->f_touch(kn, kev, EVENT_REGISTER);
}
-
/* still have use ref on knote */
- if (kn->kn_fop->f_event(kn, 0)) {
+
+ /*
+ * If the knote is not marked to always stay enqueued,
+ * invoke the filter routine to see if it should be
+ * enqueued now.
+ */
+ if ((kn->kn_status & KN_STAYQUEUED) == 0 && kn->kn_fop->f_event(kn, 0)) {
if (knoteuse2kqlock(kq, kn))
- knote_activate(kn);
+ knote_activate(kn, 1);
kqunlock(kq);
} else {
knote_put(kn);
return (error);
}
+
+/*
+ * knote_process - process a triggered event
+ *
+ * Validate that it is really still a triggered event
+ * by calling the filter routines (if necessary). Hold
+ * a use reference on the knote to avoid it being detached.
+ * If it is still considered triggered, invoke the callback
+ * routine provided and move it to the provided inprocess
+ * queue.
+ *
+ * caller holds a reference on the kqueue.
+ * kqueue locked on entry and exit - but may be dropped
+ */
+static int
+knote_process(struct knote *kn,
+ kevent_callback_t callback,
+ void *data,
+ struct kqtailq *inprocessp,
+ struct proc *p)
+{
+ struct kqueue *kq = kn->kn_kq;
+ struct kevent64_s kev;
+ int touch;
+ int result;
+ int error;
+
+ /*
+ * Determine the kevent state we want to return.
+ *
+ * Some event states need to be revalidated before returning
+ * them, others we take the snapshot at the time the event
+ * was enqueued.
+ *
+ * Events with non-NULL f_touch operations must be touched.
+ * Triggered events must fill in kev for the callback.
+ *
+ * Convert our lock to a use-count and call the event's
+ * filter routine(s) to update.
+ */
+ if ((kn->kn_status & KN_DISABLED) != 0) {
+ result = 0;
+ touch = 0;
+ } else {
+ int revalidate;
+
+ result = 1;
+ revalidate = ((kn->kn_status & KN_STAYQUEUED) != 0 ||
+ (kn->kn_flags & EV_ONESHOT) == 0);
+ touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL);
+
+ if (revalidate || touch) {
+ if (revalidate)
+ knote_deactivate(kn);
+
+ /* call the filter/touch routines with just a ref */
+ if (kqlock2knoteuse(kq, kn)) {
+
+ /* if we have to revalidate, call the filter */
+ if (revalidate) {
+ result = kn->kn_fop->f_event(kn, 0);
+ }
+
+ /* capture the kevent data - using touch if specified */
+ if (result && touch) {
+ kn->kn_fop->f_touch(kn, &kev, EVENT_PROCESS);
+ }
+
+ /* convert back to a kqlock - bail if the knote went away */
+ if (!knoteuse2kqlock(kq, kn)) {
+ return EJUSTRETURN;
+ } else if (result) {
+ /* if revalidated as alive, make sure it's active */
+ if (!(kn->kn_status & KN_ACTIVE)) {
+ knote_activate(kn, 0);
+ }
+
+ /* capture all events that occurred during filter */
+ if (!touch) {
+ kev = kn->kn_kevent;
+ }
+
+ } else if ((kn->kn_status & KN_STAYQUEUED) == 0) {
+ /* was already dequeued, so just bail on this one */
+ return EJUSTRETURN;
+ }
+ } else {
+ return EJUSTRETURN;
+ }
+ } else {
+ kev = kn->kn_kevent;
+ }
+ }
+
+ /* move knote onto inprocess queue */
+ assert(kn->kn_tq == &kq->kq_head);
+ TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
+ kn->kn_tq = inprocessp;
+ TAILQ_INSERT_TAIL(inprocessp, kn, kn_tqe);
+
+ /*
+ * Determine how to dispatch the knote for future event handling.
+ * not-fired: just return (do not callout).
+ * One-shot: deactivate it.
+ * Clear: deactivate and clear the state.
+ * Dispatch: don't clear state, just deactivate it and mark it disabled.
+ * All others: just leave where they are.
+ */
+
+ if (result == 0) {
+ return EJUSTRETURN;
+ } else if ((kn->kn_flags & EV_ONESHOT) != 0) {
+ knote_deactivate(kn);
+ if (kqlock2knotedrop(kq, kn)) {
+ kn->kn_fop->f_detach(kn);
+ knote_drop(kn, p);
+ }
+ } else if ((kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) != 0) {
+ if ((kn->kn_flags & EV_DISPATCH) != 0) {
+ /* deactivate and disable all dispatch knotes */
+ knote_deactivate(kn);
+ kn->kn_status |= KN_DISABLED;
+ } else if (!touch || kn->kn_fflags == 0) {
+ /* only deactivate if nothing since the touch */
+ knote_deactivate(kn);
+ }
+ if (!touch && (kn->kn_flags & EV_CLEAR) != 0) {
+ /* manually clear non-touch knotes */
+ kn->kn_data = 0;
+ kn->kn_fflags = 0;
+ }
+ kqunlock(kq);
+ } else {
+ /*
+ * leave on inprocess queue. We'll
+ * move all the remaining ones back
+ * the kq queue and wakeup any
+ * waiters when we are done.
+ */
+ kqunlock(kq);
+ }
+
+ /* callback to handle each event as we find it */
+ error = (callback)(kq, &kev, data);
+
+ kqlock(kq);
+ return error;
+}
+
+/*
+ * Return 0 to indicate that processing should proceed,
+ * -1 if there is nothing to process.
+ *
+ * Called with kqueue locked and returns the same way,
+ * but may drop lock temporarily.
+ */
+static int
+kqueue_begin_processing(struct kqueue *kq)
+{
+ for (;;) {
+ if (kq->kq_count == 0) {
+ return -1;
+ }
+
+ /* if someone else is processing the queue, wait */
+ if (kq->kq_nprocess != 0) {
+ wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kq->kq_nprocess, THREAD_UNINT, 0);
+ kq->kq_state |= KQ_PROCWAIT;
+ kqunlock(kq);
+ thread_block(THREAD_CONTINUE_NULL);
+ kqlock(kq);
+ } else {
+ kq->kq_nprocess = 1;
+ return 0;
+ }
+ }
+}
+
+/*
+ * Called with kqueue lock held.
+ */
+static void
+kqueue_end_processing(struct kqueue *kq)
+{
+ kq->kq_nprocess = 0;
+ if (kq->kq_state & KQ_PROCWAIT) {
+ kq->kq_state &= ~KQ_PROCWAIT;
+ wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kq->kq_nprocess, THREAD_AWAKENED);
+ }
+}
+
/*
- * kevent_process - process the triggered events in a kqueue
+ * kqueue_process - process the triggered events in a kqueue
*
* Walk the queued knotes and validate that they are
* really still triggered events by calling the filter
*
* caller holds a reference on the kqueue.
* kqueue locked on entry and exit - but may be dropped
+ * kqueue list locked (held for duration of call)
*/
static int
-kevent_process(struct kqueue *kq,
+kqueue_process(struct kqueue *kq,
kevent_callback_t callback,
void *data,
int *countp,
struct proc *p)
{
+ struct kqtailq inprocess;
struct knote *kn;
- struct kevent kev;
int nevents;
int error;
- restart:
- if (kq->kq_count == 0) {
+ TAILQ_INIT(&inprocess);
+
+ if (kqueue_begin_processing(kq) == -1) {
*countp = 0;
+ /* Nothing to process */
return 0;
}
- /* if someone else is processing the queue, wait */
- if (!TAILQ_EMPTY(&kq->kq_inprocess)) {
- assert_wait(&kq->kq_inprocess, THREAD_UNINT);
- kq->kq_state |= KQ_PROCWAIT;
- kqunlock(kq);
- thread_block(THREAD_CONTINUE_NULL);
- kqlock(kq);
- goto restart;
- }
+ /*
+ * Clear any pre-posted status from previous runs, so we only
+ * detect events that occur during this run.
+ */
+ wait_queue_sub_clearrefs(kq->kq_wqs);
+ /*
+ * loop through the enqueued knotes, processing each one and
+ * revalidating those that need it. As they are processed,
+ * they get moved to the inprocess queue (so the loop can end).
+ */
error = 0;
nevents = 0;
+
while (error == 0 &&
(kn = TAILQ_FIRST(&kq->kq_head)) != NULL) {
-
- /*
- * Take note off the active queue.
- *
- * Non-EV_ONESHOT events must be re-validated.
- *
- * Convert our lock to a use-count and call the event's
- * filter routine to update.
- *
- * If the event is valid, or triggered while the kq
- * is unlocked, move to the inprocess queue for processing.
- */
-
- if ((kn->kn_flags & EV_ONESHOT) == 0) {
- int result;
- knote_deactivate(kn);
-
- if (kqlock2knoteuse(kq, kn)) {
-
- /* call the filter with just a ref */
- result = kn->kn_fop->f_event(kn, 0);
-
- /* if it's still alive, make sure it's active */
- if (knoteuse2kqlock(kq, kn) && result) {
- /* may have been reactivated in filter*/
- if (!(kn->kn_status & KN_ACTIVE)) {
- knote_activate(kn);
- }
- } else {
- continue;
- }
- } else {
- continue;
- }
- }
-
- /* knote is active: move onto inprocess queue */
- assert(kn->kn_tq == &kq->kq_head);
- TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
- kn->kn_tq = &kq->kq_inprocess;
- TAILQ_INSERT_TAIL(&kq->kq_inprocess, kn, kn_tqe);
-
- /*
- * Got a valid triggered knote with the kqueue
- * still locked. Snapshot the data, and determine
- * how to dispatch the knote for future events.
- */
- kev = kn->kn_kevent;
-
- /* now what happens to it? */
- if (kn->kn_flags & EV_ONESHOT) {
- knote_deactivate(kn);
- if (kqlock2knotedrop(kq, kn)) {
- kn->kn_fop->f_detach(kn);
- knote_drop(kn, p);
- }
- } else if (kn->kn_flags & EV_CLEAR) {
- knote_deactivate(kn);
- kn->kn_data = 0;
- kn->kn_fflags = 0;
- kqunlock(kq);
- } else {
- /*
- * leave on in-process queue. We'll
- * move all the remaining ones back
- * the kq queue and wakeup any
- * waiters when we are done.
- */
- kqunlock(kq);
- }
-
- /* callback to handle each event as we find it */
- error = (callback)(kq, &kev, data);
- nevents++;
-
- kqlock(kq);
+ error = knote_process(kn, callback, data, &inprocess, p);
+ if (error == EJUSTRETURN)
+ error = 0;
+ else
+ nevents++;
}
/*
* With the kqueue still locked, move any knotes
- * remaining on the in-process queue back to the
+ * remaining on the inprocess queue back to the
* kq's queue and wake up any waiters.
*/
- while ((kn = TAILQ_FIRST(&kq->kq_inprocess)) != NULL) {
- assert(kn->kn_tq == &kq->kq_inprocess);
- TAILQ_REMOVE(&kq->kq_inprocess, kn, kn_tqe);
+ while ((kn = TAILQ_FIRST(&inprocess)) != NULL) {
+ assert(kn->kn_tq == &inprocess);
+ TAILQ_REMOVE(&inprocess, kn, kn_tqe);
kn->kn_tq = &kq->kq_head;
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
}
- if (kq->kq_state & KQ_PROCWAIT) {
- kq->kq_state &= ~KQ_PROCWAIT;
- thread_wakeup(&kq->kq_inprocess);
- }
+
+ kqueue_end_processing(kq);
*countp = nevents;
return error;
static void
-kevent_scan_continue(void *data, wait_result_t wait_result)
+kqueue_scan_continue(void *data, wait_result_t wait_result)
{
- uthread_t ut = (uthread_t)get_bsdthread_info(current_thread());
- struct _kevent_scan * cont_args = &ut->uu_kevent.ss_kevent_scan;
+ thread_t self = current_thread();
+ uthread_t ut = (uthread_t)get_bsdthread_info(self);
+ struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan;
struct kqueue *kq = (struct kqueue *)data;
int error;
int count;
switch (wait_result) {
case THREAD_AWAKENED:
kqlock(kq);
- error = kevent_process(kq, cont_args->call, cont_args, &count, current_proc());
+ error = kqueue_process(kq, cont_args->call, cont_args, &count, current_proc());
if (error == 0 && count == 0) {
- assert_wait_deadline(kq, THREAD_ABORTSAFE, cont_args->deadline);
+ wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, KQ_EVENT,
+ THREAD_ABORTSAFE, cont_args->deadline);
kq->kq_state |= KQ_SLEEP;
kqunlock(kq);
- thread_block_parameter(kevent_scan_continue, kq);
+ thread_block_parameter(kqueue_scan_continue, kq);
/* NOTREACHED */
}
kqunlock(kq);
/*
- * kevent_scan - scan and wait for events in a kqueue
+ * kqueue_scan - scan and wait for events in a kqueue
*
* Process the triggered events in a kqueue.
*
*/
int
-kevent_scan(struct kqueue *kq,
+kqueue_scan(struct kqueue *kq,
kevent_callback_t callback,
- kevent_continue_t continuation,
+ kqueue_continue_t continuation,
void *data,
struct timeval *atvp,
struct proc *p)
/*
* Make a pass through the kq to find events already
- * triggered.
+ * triggered.
*/
kqlock(kq);
- error = kevent_process(kq, callback, data, &count, p);
+ error = kqueue_process(kq, callback, data, &count, p);
if (error || count)
break; /* lock still held */
if (continuation) {
uthread_t ut = (uthread_t)get_bsdthread_info(current_thread());
- struct _kevent_scan *cont_args = &ut->uu_kevent.ss_kevent_scan;
+ struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan;
cont_args->call = callback;
cont_args->cont = continuation;
cont_args->deadline = deadline;
cont_args->data = data;
- cont = kevent_scan_continue;
+ cont = kqueue_scan_continue;
}
}
/* go ahead and wait */
- assert_wait_deadline(kq, THREAD_ABORTSAFE, deadline);
+ wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, KQ_EVENT, THREAD_ABORTSAFE, deadline);
kq->kq_state |= KQ_SLEEP;
kqunlock(kq);
wait_result = thread_block_parameter(cont, kq);
/*ARGSUSED*/
static int
-kqueue_select(struct fileproc *fp, int which, void *wql, vfs_context_t ctx)
+kqueue_select(struct fileproc *fp, int which, void *wql, __unused vfs_context_t ctx)
{
struct kqueue *kq = (struct kqueue *)fp->f_data;
+ struct knote *kn;
+ struct kqtailq inprocessq;
int retnum = 0;
+
+ if (which != FREAD)
+ return 0;
- if (which == FREAD) {
- kqlock(kq);
- if (kq->kq_count) {
- retnum = 1;
- } else {
- selrecord(vfs_context_proc(ctx), &kq->kq_sel, wql);
- kq->kq_state |= KQ_SEL;
- }
+ TAILQ_INIT(&inprocessq);
+
+ kqlock(kq);
+ /*
+ * If this is the first pass, link the wait queue associated with the
+ * the kqueue onto the wait queue set for the select(). Normally we
+ * use selrecord() for this, but it uses the wait queue within the
+ * selinfo structure and we need to use the main one for the kqueue to
+ * catch events from KN_STAYQUEUED sources. So we do the linkage manually.
+ * (The select() call will unlink them when it ends).
+ */
+ if (wql != NULL) {
+ thread_t cur_act = current_thread();
+ struct uthread * ut = get_bsdthread_info(cur_act);
+
+ kq->kq_state |= KQ_SEL;
+ wait_queue_link_noalloc((wait_queue_t)kq->kq_wqs, ut->uu_wqset,
+ (wait_queue_link_t)wql);
+ }
+
+ if (kqueue_begin_processing(kq) == -1) {
kqunlock(kq);
+ return 0;
+ }
+
+ if (kq->kq_count != 0) {
+ /*
+ * there is something queued - but it might be a
+ * KN_STAYQUEUED knote, which may or may not have
+ * any events pending. So, we have to walk the
+ * list of knotes to see, and peek at the stay-
+ * queued ones to be really sure.
+ */
+ while ((kn = (struct knote*)TAILQ_FIRST(&kq->kq_head)) != NULL) {
+ if ((kn->kn_status & KN_STAYQUEUED) == 0) {
+ retnum = 1;
+ goto out;
+ }
+
+ TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
+ TAILQ_INSERT_TAIL(&inprocessq, kn, kn_tqe);
+
+ if (kqlock2knoteuse(kq, kn)) {
+ unsigned peek;
+
+ peek = kn->kn_fop->f_peek(kn);
+ if (knoteuse2kqlock(kq, kn)) {
+ if (peek > 0) {
+ retnum = 1;
+ goto out;
+ }
+ } else {
+ retnum = 0;
+ }
+ }
+ }
+ }
+
+out:
+ /* Return knotes to active queue */
+ while ((kn = TAILQ_FIRST(&inprocessq)) != NULL) {
+ TAILQ_REMOVE(&inprocessq, kn, kn_tqe);
+ kn->kn_tq = &kq->kq_head;
+ TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
}
- return (retnum);
+
+ kqueue_end_processing(kq);
+ kqunlock(kq);
+ return retnum;
}
/*
}
}
+/*
+ * kqueue_drain - called when kq is closed
+ */
+/*ARGSUSED*/
+static int
+kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx)
+{
+ struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data;
+ kqlock(kq);
+ kqueue_wakeup(kq, 1);
+ kqunlock(kq);
+ return 0;
+}
+
/*ARGSUSED*/
int
kqueue_stat(struct fileproc *fp, void *ub, int isstat64, __unused vfs_context_t ctx)
{
- struct stat *sb = (struct stat *)0; /* warning avoidance ; protected by isstat64 */
- struct stat64 * sb64 = (struct stat64 *)0; /* warning avoidance ; protected by isstat64 */
struct kqueue *kq = (struct kqueue *)fp->f_data;
if (isstat64 != 0) {
- sb64 = (struct stat64 *)ub;
+ struct stat64 *sb64 = (struct stat64 *)ub;
+
bzero((void *)sb64, sizeof(*sb64));
sb64->st_size = kq->kq_count;
- sb64->st_blksize = sizeof(struct kevent);
+ if (kq->kq_state & KQ_KEV64)
+ sb64->st_blksize = sizeof(struct kevent64_s);
+ else
+ sb64->st_blksize = sizeof(struct kevent);
sb64->st_mode = S_IFIFO;
} else {
- sb = (struct stat *)ub;
+ struct stat *sb = (struct stat *)ub;
+
bzero((void *)sb, sizeof(*sb));
sb->st_size = kq->kq_count;
- sb->st_blksize = sizeof(struct kevent);
+ if (kq->kq_state & KQ_KEV64)
+ sb->st_blksize = sizeof(struct kevent64_s);
+ else
+ sb->st_blksize = sizeof(struct kevent);
sb->st_mode = S_IFIFO;
}
* Called with the kqueue locked
*/
static void
-kqueue_wakeup(struct kqueue *kq)
+kqueue_wakeup(struct kqueue *kq, int closed)
{
-
- if (kq->kq_state & KQ_SLEEP) {
- kq->kq_state &= ~KQ_SLEEP;
- thread_wakeup(kq);
+ if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0 || kq->kq_nprocess > 0) {
+ kq->kq_state &= ~(KQ_SLEEP | KQ_SEL);
+ wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, KQ_EVENT,
+ (closed) ? THREAD_INTERRUPTED : THREAD_AWAKENED);
}
- if (kq->kq_state & KQ_SEL) {
- kq->kq_state &= ~KQ_SEL;
- selwakeup(&kq->kq_sel);
- }
- KNOTE(&kq->kq_sel.si_note, 0);
}
void
* The object lock protects the list. It is assumed
* that the filter/event routine for the object can
* determine that the object is already locked (via
- * the hind) and not deadlock itself.
+ * the hint) and not deadlock itself.
*
* The object lock should also hold off pending
* detach/drop operations. But we'll prevent it here
/* if its not going away and triggered */
if (knoteuse2kqlock(kq, kn) && result)
- knote_activate(kn);
+ knote_activate(kn, 1);
/* lock held again */
}
kqunlock(kq);
return SLIST_EMPTY(list);
}
+/*
+ * For a given knote, link a provided wait queue directly with the kqueue.
+ * Wakeups will happen via recursive wait queue support. But nothing will move
+ * the knote to the active list at wakeup (nothing calls knote()). Instead,
+ * we permanently enqueue them here.
+ *
+ * kqueue and knote references are held by caller.
+ *
+ * caller provides the wait queue link structure.
+ */
+int
+knote_link_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t wql)
+{
+ struct kqueue *kq = kn->kn_kq;
+ kern_return_t kr;
+
+ kr = wait_queue_link_noalloc(wq, kq->kq_wqs, wql);
+ if (kr == KERN_SUCCESS) {
+ knote_markstayqueued(kn);
+ return 0;
+ } else {
+ return EINVAL;
+ }
+}
+
+/*
+ * Unlink the provided wait queue from the kqueue associated with a knote.
+ * Also remove it from the magic list of directly attached knotes.
+ *
+ * Note that the unlink may have already happened from the other side, so
+ * ignore any failures to unlink and just remove it from the kqueue list.
+ *
+ * On success, caller is responsible for the link structure
+ */
+int
+knote_unlink_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t *wqlp)
+{
+ struct kqueue *kq = kn->kn_kq;
+ kern_return_t kr;
+
+ kr = wait_queue_unlink_nofree(wq, kq->kq_wqs, wqlp);
+ kqlock(kq);
+ kn->kn_status &= ~KN_STAYQUEUED;
+ knote_dequeue(kn);
+ kqunlock(kq);
+ return (kr != KERN_SUCCESS) ? EINVAL : 0;
+}
+
/*
* remove all knotes referencing a specified fd
*
/* proc_fdlock held on entry (and exit) */
static int
-knote_fdpattach(struct knote *kn, struct filedesc *fdp, __unused struct proc *p)
+knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p)
{
struct klist *list = NULL;
if ((u_int)fdp->fd_knlistsize <= kn->kn_id) {
u_int size = 0;
+ if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur
+ || kn->kn_id >= (uint64_t)maxfiles)
+ return (EINVAL);
+
/* have to grow the fd_knlist */
size = fdp->fd_knlistsize;
while (size <= kn->kn_id)
size += KQEXTENT;
+
+ if (size >= (UINT_MAX/sizeof(struct klist *)))
+ return (EINVAL);
+
MALLOC(list, struct klist *,
size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
if (list == NULL)
struct proc *p = kq->kq_p;
struct filedesc *fdp = p->p_fd;
struct klist *list;
+ int needswakeup;
proc_fdlock(p);
if (kn->kn_fop->f_isfd)
SLIST_REMOVE(list, kn, knote, kn_link);
kqlock(kq);
knote_dequeue(kn);
- if (kn->kn_status & KN_DROPWAIT)
- thread_wakeup(&kn->kn_status);
+ needswakeup = (kn->kn_status & KN_USEWAIT);
kqunlock(kq);
proc_fdunlock(p);
+ if (needswakeup)
+ wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
+
if (kn->kn_fop->f_isfd)
fp_drop(p, kn->kn_id, kn->kn_fp, 0);
/* called with kqueue lock held */
static void
-knote_activate(struct knote *kn)
+knote_activate(struct knote *kn, int propagate)
{
struct kqueue *kq = kn->kn_kq;
kn->kn_status |= KN_ACTIVE;
knote_enqueue(kn);
- kqueue_wakeup(kq);
- }
+ kqueue_wakeup(kq, 0);
+
+ /* this is a real event: wake up the parent kq, too */
+ if (propagate)
+ KNOTE(&kq->kq_sel.si_note, 0);
+}
/* called with kqueue lock held */
static void
static void
knote_enqueue(struct knote *kn)
{
- struct kqueue *kq = kn->kn_kq;
-
- if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
+ if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_STAYQUEUED ||
+ (kn->kn_status & (KN_QUEUED | KN_STAYQUEUED | KN_DISABLED)) == 0) {
struct kqtailq *tq = kn->kn_tq;
+ struct kqueue *kq = kn->kn_kq;
TAILQ_INSERT_TAIL(tq, kn, kn_tqe);
kn->kn_status |= KN_QUEUED;
{
struct kqueue *kq = kn->kn_kq;
- //assert((kn->kn_status & KN_DISABLED) == 0);
- if ((kn->kn_status & KN_QUEUED) == KN_QUEUED) {
+ if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_QUEUED) {
struct kqtailq *tq = kn->kn_tq;
TAILQ_REMOVE(tq, kn, kn_tqe);
/* Initialize the timer filter lock */
lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr);
+
+#if VM_PRESSURE_EVENTS
+ /* Initialize the vm pressure list lock */
+ vm_pressure_init(kq_lck_grp, kq_lck_attr);
+#endif
}
SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
struct protosw eventsw[] = {
{
- SOCK_RAW, &systemdomain, SYSPROTO_EVENT, PR_ATOMIC,
- 0, 0, 0, 0,
- 0,
- 0, 0, 0, 0,
-#if __APPLE__
- 0,
-#endif
- &event_usrreqs,
- 0, 0, 0,
-#if __APPLE__
- {0, 0}, 0, {0}
-#endif
+ .pr_type = SOCK_RAW,
+ .pr_domain = &systemdomain,
+ .pr_protocol = SYSPROTO_EVENT,
+ .pr_flags = PR_ATOMIC,
+ .pr_usrreqs = &event_usrreqs,
}
};
static
struct kern_event_head kern_event_head;
-static u_long static_event_id = 0;
+static u_int32_t static_event_id = 0;
struct domain *sysdom = &systemdomain;
static lck_mtx_t *sys_mtx;
if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) {
return EINVAL;
}
- return mbuf_tag_id_find_internal(string, out_vendor_code, 1);
+ return net_str_id_find_internal(string, out_vendor_code, NSI_VENDOR_CODE, 1);
}
errno_t kev_msg_post(struct kev_msg *event_msg)
{
mbuf_tag_id_t min_vendor, max_vendor;
- mbuf_tag_id_first_last(&min_vendor, &max_vendor);
+ net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE);
if (event_msg == NULL)
return EINVAL;
struct kern_event_pcb *ev_pcb;
struct kern_event_msg *ev;
char *tmp;
- unsigned long total_size;
+ u_int32_t total_size;
int i;
/* Verify the message is small enough to fit in one mbuf w/o cluster */
struct kev_request *kev_req = (struct kev_request *) data;
struct kern_event_pcb *ev_pcb;
struct kev_vendor_code *kev_vendor;
- u_long *id_value = (u_long *) data;
+ u_int32_t *id_value = (u_int32_t *) data;
switch (cmd) {
/* Make sure string is NULL terminated */
kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0;
-
- return mbuf_tag_id_find_internal(kev_vendor->vendor_string,
- &kev_vendor->vendor_code, 0);
+
+ return net_str_id_find_internal(kev_vendor->vendor_string,
+ &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0);
default:
return ENOTSUP;
st = &kinfo->kq_stat;
st->vst_size = kq->kq_count;
- st->vst_blksize = sizeof(struct kevent);
+ if (kq->kq_state & KQ_KEV64)
+ st->vst_blksize = sizeof(struct kevent64_s);
+ else
+ st->vst_blksize = sizeof(struct kevent);
st->vst_mode = S_IFIFO;
if (kq->kq_state & KQ_SEL)
kinfo->kq_state |= PROC_KQUEUE_SELECT;
return(0);
}
+
+void
+knote_markstayqueued(struct knote *kn)
+{
+ kqlock(kn->kn_kq);
+ kn->kn_status |= KN_STAYQUEUED;
+ knote_enqueue(kn);
+ kqunlock(kn->kn_kq);
+}