/*
- * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
*/
#include <zone_debug.h>
#include <zone_alias_addr.h>
-#include <norma_vm.h>
-#include <mach_kdb.h>
#include <mach/mach_types.h>
#include <mach/vm_param.h>
#include <mach/kern_return.h>
#include <mach/mach_host_server.h>
+#include <mach/task_server.h>
#include <mach/machine/vm_types.h>
#include <mach_debug/zone_info.h>
+#include <mach/vm_map.h>
#include <kern/kern_types.h>
#include <kern/assert.h>
#include <kern/host.h>
#include <kern/macro_help.h>
#include <kern/sched.h>
-#include <kern/lock.h>
+#include <kern/locks.h>
#include <kern/sched_prim.h>
#include <kern/misc_protos.h>
#include <kern/thread_call.h>
#include <kern/zalloc.h>
#include <kern/kalloc.h>
+#include <kern/btlog.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
+#include <pexpert/pexpert.h>
+
#include <machine/machparam.h>
+#include <machine/machine_routines.h> /* ml_cpu_get_info */
#include <libkern/OSDebug.h>
+#include <libkern/OSAtomic.h>
#include <sys/kdebug.h>
-#if defined(__ppc__)
-/* for fake zone stat routines */
-#include <ppc/savearea.h>
-#include <ppc/mappings.h>
+/*
+ * ZONE_ALIAS_ADDR
+ *
+ * With this option enabled, zones with alloc_size <= PAGE_SIZE allocate
+ * a virtual page from the zone_map, but before zcram-ing the allocated memory
+ * into the zone, the page is translated to use the alias address of the page
+ * in the static kernel region. zone_gc reverses that translation when
+ * scanning the freelist to collect free pages so that it can look up the page
+ * in the zone_page_table, and free it to kmem_free.
+ *
+ * The static kernel region is a flat 1:1 mapping of physical memory passed
+ * to xnu by the booter. It is mapped to the range:
+ * [gVirtBase, gVirtBase + gPhysSize]
+ *
+ * Accessing memory via the static kernel region is faster due to the
+ * entire region being mapped via large pages, cutting down
+ * on TLB misses.
+ *
+ * zinit favors using PAGE_SIZE backing allocations for a zone unless it would
+ * waste more than 10% space to use a single page, in order to take advantage
+ * of the speed benefit for as many zones as possible.
+ *
+ * Zones with > PAGE_SIZE allocations can't take advantage of this
+ * because kernel_memory_allocate doesn't give out physically contiguous pages.
+ *
+ * zone_virtual_addr()
+ * - translates an address from the static kernel region to the zone_map
+ * - returns the same address if it's not from the static kernel region
+ * It relies on the fact that a physical page mapped to the
+ * zone_map is not mapped anywhere else (except the static kernel region).
+ *
+ * zone_alias_addr()
+ * - translates a virtual memory address from the zone_map to the
+ * corresponding address in the static kernel region
+ *
+ */
+
+#if !ZONE_ALIAS_ADDR
+#define from_zone_map(addr, size) \
+ ((vm_offset_t)(addr) >= zone_map_min_address && \
+ ((vm_offset_t)(addr) + size - 1) < zone_map_max_address )
+#else
+#define from_zone_map(addr, size) \
+ ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) >= zone_map_min_address && \
+ ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) + size -1) < zone_map_max_address )
+#endif
+
+/*
+ * Zone Corruption Debugging
+ *
+ * We use three techniques to detect modification of a zone element
+ * after it's been freed.
+ *
+ * (1) Check the freelist next pointer for sanity.
+ * (2) Store a backup of the next pointer at the end of the element,
+ * and compare it to the primary next pointer when the element is allocated
+ * to detect corruption of the freelist due to use-after-free bugs.
+ * The backup pointer is also XORed with a per-boot random cookie.
+ * (3) Poison the freed element by overwriting it with 0xdeadbeef,
+ * and check for that value when the element is being reused to make sure
+ * no part of the element has been modified while it was on the freelist.
+ * This will also help catch read-after-frees, as code will now dereference
+ * 0xdeadbeef instead of a valid but freed pointer.
+ *
+ * (1) and (2) occur for every allocation and free to a zone.
+ * This is done to make it slightly more difficult for an attacker to
+ * manipulate the freelist to behave in a specific way.
+ *
+ * Poisoning (3) occurs periodically for every N frees (counted per-zone)
+ * and on every free for zones smaller than a cacheline. If -zp
+ * is passed as a boot arg, poisoning occurs for every free.
+ *
+ * Performance slowdown is inversely proportional to the frequency of poisoning,
+ * with a 4-5% hit around N=1, down to ~0.3% at N=16 and just "noise" at N=32
+ * and higher. You can expect to find a 100% reproducible bug in an average of
+ * N tries, with a standard deviation of about N, but you will want to set
+ * "-zp" to always poison every free if you are attempting to reproduce
+ * a known bug.
+ *
+ * For a more heavyweight, but finer-grained method of detecting misuse
+ * of zone memory, look up the "Guard mode" zone allocator in gzalloc.c.
+ *
+ * Zone Corruption Logging
+ *
+ * You can also track where corruptions come from by using the boot-arguments
+ * "zlog=<zone name to log> -zc". Search for "Zone corruption logging" later
+ * in this document for more implementation and usage information.
+ *
+ * Zone Leak Detection
+ *
+ * To debug leaks of zone memory, use the zone leak detection tool 'zleaks'
+ * found later in this file via the showtopztrace and showz* macros in kgmacros,
+ * or use zlog without the -zc argument.
+ *
+ */
+
+/* Returns TRUE if we rolled over the counter at factor */
+static inline boolean_t
+sample_counter(volatile uint32_t * count_p, uint32_t factor)
+{
+ uint32_t old_count, new_count;
+ boolean_t rolled_over;
+
+ do {
+ new_count = old_count = *count_p;
+
+ if (++new_count >= factor) {
+ rolled_over = TRUE;
+ new_count = 0;
+ } else {
+ rolled_over = FALSE;
+ }
+
+ } while (!OSCompareAndSwap(old_count, new_count, count_p));
+
+ return rolled_over;
+}
+
+#if defined(__LP64__)
+#define ZP_POISON 0xdeadbeefdeadbeef
+#else
+#define ZP_POISON 0xdeadbeef
#endif
-int check_freed_element = 0;
+#define ZP_DEFAULT_SAMPLING_FACTOR 16
+#define ZP_DEFAULT_SCALE_FACTOR 4
-#if MACH_ASSERT
-/* Detect use of zone elt after freeing it by two methods:
- * (1) Range-check the free-list "next" ptr for sanity.
- * (2) Store the ptr in two different words, and compare them against
- * each other when re-using the zone elt, to detect modifications;
+/*
+ * A zp_factor of 0 indicates zone poisoning is disabled,
+ * however, we still poison zones smaller than zp_tiny_zone_limit (a cacheline).
+ * Passing the -no-zp boot-arg disables even this behavior.
+ * In all cases, we record and check the integrity of a backup pointer.
*/
-#if defined(__alpha)
+/* set by zp-factor=N boot arg, zero indicates non-tiny poisoning disabled */
+uint32_t zp_factor = 0;
-#define is_kernel_data_addr(a) \
- (!(a) || (IS_SYS_VA(a) && !((a) & (sizeof(long)-1))))
+/* set by zp-scale=N boot arg, scales zp_factor by zone size */
+uint32_t zp_scale = 0;
-#else /* !defined(__alpha) */
+/* set in zp_init, zero indicates -no-zp boot-arg */
+vm_size_t zp_tiny_zone_limit = 0;
-#define is_kernel_data_addr(a) \
- (!(a) || ((a) >= vm_min_kernel_address && !((a) & 0x3)))
+/* initialized to a per-boot random value in zp_init */
+uintptr_t zp_poisoned_cookie = 0;
+uintptr_t zp_nopoison_cookie = 0;
-#endif /* defined(__alpha) */
-/* Should we set all words of the zone element to an illegal address
- * when it is freed, to help catch usage after freeing? The down-side
- * is that this obscures the identity of the freed element.
+/*
+ * initialize zone poisoning
+ * called from zone_bootstrap before any allocations are made from zalloc
*/
-boolean_t zfree_clear = FALSE;
-
-#define ADD_TO_ZONE(zone, element) \
-MACRO_BEGIN \
- if (zfree_clear) \
- { unsigned int i; \
- for (i=1; \
- i < zone->elem_size/sizeof(vm_offset_t) - 1; \
- i++) \
- ((vm_offset_t *)(element))[i] = 0xdeadbeef; \
- } \
- ((vm_offset_t *)(element))[0] = (zone)->free_elements; \
- (zone)->free_elements = (vm_offset_t) (element); \
- (zone)->count--; \
-MACRO_END
+static inline void
+zp_init(void)
+{
+ char temp_buf[16];
-#define REMOVE_FROM_ZONE(zone, ret, type) \
-MACRO_BEGIN \
- (ret) = (type) (zone)->free_elements; \
- if ((ret) != (type) 0) { \
- if (!is_kernel_data_addr(((vm_offset_t *)(ret))[0])) { \
- panic("A freed zone element has been modified.\n"); \
- } \
- (zone)->count++; \
- (zone)->free_elements = *((vm_offset_t *)(ret)); \
- } \
-MACRO_END
-#else /* MACH_ASSERT */
-
-#define ADD_TO_ZONE(zone, element) \
-MACRO_BEGIN \
- *((vm_offset_t *)(element)) = (zone)->free_elements; \
- if (check_freed_element) { \
- if ((zone)->elem_size >= (2 * sizeof(vm_offset_t))) \
- ((vm_offset_t *)(element))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \
- (zone)->free_elements; \
- } \
- (zone)->free_elements = (vm_offset_t) (element); \
- (zone)->count--; \
-MACRO_END
+ /*
+ * Initialize backup pointer random cookie for poisoned elements
+ * Try not to call early_random() back to back, it may return
+ * the same value if mach_absolute_time doesn't have sufficient time
+ * to tick over between calls. <rdar://problem/11597395>
+ * (This is only a problem on embedded devices)
+ */
+ zp_poisoned_cookie = (uintptr_t) early_random();
-#define REMOVE_FROM_ZONE(zone, ret, type) \
-MACRO_BEGIN \
- (ret) = (type) (zone)->free_elements; \
- if ((ret) != (type) 0) { \
- if (check_freed_element) { \
- if ((zone)->elem_size >= (2 * sizeof(vm_offset_t)) && \
- ((vm_offset_t *)(ret))[((zone)->elem_size/sizeof(vm_offset_t))-1] != \
- ((vm_offset_t *)(ret))[0]) \
- panic("a freed zone element has been modified");\
- } \
- (zone)->count++; \
- (zone)->free_elements = *((vm_offset_t *)(ret)); \
- } \
-MACRO_END
+ /*
+ * Always poison zones smaller than a cacheline,
+ * because it's pretty close to free
+ */
+ ml_cpu_info_t cpu_info;
+ ml_cpu_get_info(&cpu_info);
+ zp_tiny_zone_limit = (vm_size_t) cpu_info.cache_line_size;
-#endif /* MACH_ASSERT */
+ zp_factor = ZP_DEFAULT_SAMPLING_FACTOR;
+ zp_scale = ZP_DEFAULT_SCALE_FACTOR;
-#if ZONE_DEBUG
-#define zone_debug_enabled(z) z->active_zones.next
-#define ROUNDUP(x,y) ((((x)+(y)-1)/(y))*(y))
-#define ZONE_DEBUG_OFFSET ROUNDUP(sizeof(queue_chain_t),16)
-#endif /* ZONE_DEBUG */
+ //TODO: Bigger permutation?
+ /*
+ * Permute the default factor +/- 1 to make it less predictable
+ * This adds or subtracts ~4 poisoned objects per 1000 frees.
+ */
+ if (zp_factor != 0) {
+ uint32_t rand_bits = early_random() & 0x3;
+
+ if (rand_bits == 0x1)
+ zp_factor += 1;
+ else if (rand_bits == 0x2)
+ zp_factor -= 1;
+ /* if 0x0 or 0x3, leave it alone */
+ }
+
+ /* -zp: enable poisoning for every alloc and free */
+ if (PE_parse_boot_argn("-zp", temp_buf, sizeof(temp_buf))) {
+ zp_factor = 1;
+ }
+
+ /* -no-zp: disable poisoning completely even for tiny zones */
+ if (PE_parse_boot_argn("-no-zp", temp_buf, sizeof(temp_buf))) {
+ zp_factor = 0;
+ zp_tiny_zone_limit = 0;
+ printf("Zone poisoning disabled\n");
+ }
+
+ /* zp-factor=XXXX: override how often to poison freed zone elements */
+ if (PE_parse_boot_argn("zp-factor", &zp_factor, sizeof(zp_factor))) {
+ printf("Zone poisoning factor override: %u\n", zp_factor);
+ }
+
+ /* zp-scale=XXXX: override how much zone size scales zp-factor by */
+ if (PE_parse_boot_argn("zp-scale", &zp_scale, sizeof(zp_scale))) {
+ printf("Zone poisoning scale factor override: %u\n", zp_scale);
+ }
+
+ /* Initialize backup pointer random cookie for unpoisoned elements */
+ zp_nopoison_cookie = (uintptr_t) early_random();
+
+#if MACH_ASSERT
+ if (zp_poisoned_cookie == zp_nopoison_cookie)
+ panic("early_random() is broken: %p and %p are not random\n",
+ (void *) zp_poisoned_cookie, (void *) zp_nopoison_cookie);
+#endif
+
+ /*
+ * Use the last bit in the backup pointer to hint poisoning state
+ * to backup_ptr_mismatch_panic. Valid zone pointers are aligned, so
+ * the low bits are zero.
+ */
+ zp_poisoned_cookie |= (uintptr_t)0x1ULL;
+ zp_nopoison_cookie &= ~((uintptr_t)0x1ULL);
+
+#if defined(__LP64__)
+ /*
+ * Make backup pointers more obvious in GDB for 64 bit
+ * by making OxFFFFFF... ^ cookie = 0xFACADE...
+ * (0xFACADE = 0xFFFFFF ^ 0x053521)
+ * (0xC0FFEE = 0xFFFFFF ^ 0x3f0011)
+ * The high 3 bytes of a zone pointer are always 0xFFFFFF, and are checked
+ * by the sanity check, so it's OK for that part of the cookie to be predictable.
+ *
+ * TODO: Use #defines, xors, and shifts
+ */
+
+ zp_poisoned_cookie &= 0x000000FFFFFFFFFF;
+ zp_poisoned_cookie |= 0x0535210000000000; /* 0xFACADE */
+
+ zp_nopoison_cookie &= 0x000000FFFFFFFFFF;
+ zp_nopoison_cookie |= 0x3f00110000000000; /* 0xC0FFEE */
+#endif
+}
+
+/* zone_map page count for page table structure */
+uint64_t zone_map_table_page_count = 0;
+
+/*
+ * These macros are used to keep track of the number
+ * of pages being used by the zone currently. The
+ * z->page_count is protected by the zone lock.
+ */
+#define ZONE_PAGE_COUNT_INCR(z, count) \
+{ \
+ OSAddAtomic64(count, &(z->page_count)); \
+}
+
+#define ZONE_PAGE_COUNT_DECR(z, count) \
+{ \
+ OSAddAtomic64(-count, &(z->page_count)); \
+}
+
+/* for is_sane_zone_element and garbage collection */
+
+vm_offset_t zone_map_min_address = 0; /* initialized in zone_init */
+vm_offset_t zone_map_max_address = 0;
+
+/* Helpful for walking through a zone's free element list. */
+struct zone_free_element {
+ struct zone_free_element *next;
+ /* ... */
+ /* void *backup_ptr; */
+};
+
+struct zone_page_metadata {
+ queue_chain_t pages;
+ struct zone_free_element *elements;
+ zone_t zone;
+ uint16_t alloc_count;
+ uint16_t free_count;
+};
+
+/* The backup pointer is stored in the last pointer-sized location in an element. */
+static inline vm_offset_t *
+get_backup_ptr(vm_size_t elem_size,
+ vm_offset_t *element)
+{
+ return (vm_offset_t *) ((vm_offset_t)element + elem_size - sizeof(vm_offset_t));
+}
+
+static inline struct zone_page_metadata *
+get_zone_page_metadata(struct zone_free_element *element)
+{
+ return (struct zone_page_metadata *)(trunc_page((vm_offset_t)element));
+}
+
+/*
+ * Zone checking helper function.
+ * A pointer that satisfies these conditions is OK to be a freelist next pointer
+ * A pointer that doesn't satisfy these conditions indicates corruption
+ */
+static inline boolean_t
+is_sane_zone_ptr(zone_t zone,
+ vm_offset_t addr,
+ size_t obj_size)
+{
+ /* Must be aligned to pointer boundary */
+ if (__improbable((addr & (sizeof(vm_offset_t) - 1)) != 0))
+ return FALSE;
+
+ /* Must be a kernel address */
+ if (__improbable(!pmap_kernel_va(addr)))
+ return FALSE;
+
+ /* Must be from zone map if the zone only uses memory from the zone_map */
+ /*
+ * TODO: Remove the zone->collectable check when every
+ * zone using foreign memory is properly tagged with allows_foreign
+ */
+ if (zone->collectable && !zone->allows_foreign) {
+#if ZONE_ALIAS_ADDR
+ /*
+ * If this address is in the static kernel region, it might be
+ * the alias address of a valid zone element.
+ * If we tried to find the zone_virtual_addr() of an invalid
+ * address in the static kernel region, it will panic, so don't
+ * check addresses in this region.
+ *
+ * TODO: Use a safe variant of zone_virtual_addr to
+ * make this check more accurate
+ *
+ * The static kernel region is mapped at:
+ * [gVirtBase, gVirtBase + gPhysSize]
+ */
+ if ((addr - gVirtBase) < gPhysSize)
+ return TRUE;
+#endif
+ /* check if addr is from zone map */
+ if (addr >= zone_map_min_address &&
+ (addr + obj_size - 1) < zone_map_max_address )
+ return TRUE;
+
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+static inline boolean_t
+is_sane_zone_page_metadata(zone_t zone,
+ vm_offset_t page_meta)
+{
+ /* NULL page metadata structures are invalid */
+ if (page_meta == 0)
+ return FALSE;
+ return is_sane_zone_ptr(zone, page_meta, sizeof(struct zone_page_metadata));
+}
+
+static inline boolean_t
+is_sane_zone_element(zone_t zone,
+ vm_offset_t addr)
+{
+ /* NULL is OK because it indicates the tail of the list */
+ if (addr == 0)
+ return TRUE;
+ return is_sane_zone_ptr(zone, addr, zone->elem_size);
+}
+
+/* Someone wrote to freed memory. */
+static inline void /* noreturn */
+zone_element_was_modified_panic(zone_t zone,
+ vm_offset_t element,
+ vm_offset_t found,
+ vm_offset_t expected,
+ vm_offset_t offset)
+{
+ panic("a freed zone element has been modified in zone %s: expected %p but found %p, bits changed %p, at offset %d of %d in element %p, cookies %p %p",
+ zone->zone_name,
+ (void *) expected,
+ (void *) found,
+ (void *) (expected ^ found),
+ (uint32_t) offset,
+ (uint32_t) zone->elem_size,
+ (void *) element,
+ (void *) zp_nopoison_cookie,
+ (void *) zp_poisoned_cookie);
+}
+
+/*
+ * The primary and backup pointers don't match.
+ * Determine which one was likely the corrupted pointer, find out what it
+ * probably should have been, and panic.
+ * I would like to mark this as noreturn, but panic() isn't marked noreturn.
+ */
+static void /* noreturn */
+backup_ptr_mismatch_panic(zone_t zone,
+ vm_offset_t element,
+ vm_offset_t primary,
+ vm_offset_t backup)
+{
+ vm_offset_t likely_backup;
+
+ boolean_t sane_backup;
+ boolean_t sane_primary = is_sane_zone_element(zone, primary);
+ boolean_t element_was_poisoned = (backup & 0x1) ? TRUE : FALSE;
+
+#if defined(__LP64__)
+ /* We can inspect the tag in the upper bits for additional confirmation */
+ if ((backup & 0xFFFFFF0000000000) == 0xFACADE0000000000)
+ element_was_poisoned = TRUE;
+ else if ((backup & 0xFFFFFF0000000000) == 0xC0FFEE0000000000)
+ element_was_poisoned = FALSE;
+#endif
+
+ if (element_was_poisoned) {
+ likely_backup = backup ^ zp_poisoned_cookie;
+ sane_backup = is_sane_zone_element(zone, likely_backup);
+ } else {
+ likely_backup = backup ^ zp_nopoison_cookie;
+ sane_backup = is_sane_zone_element(zone, likely_backup);
+ }
+
+ /* The primary is definitely the corrupted one */
+ if (!sane_primary && sane_backup)
+ zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
+
+ /* The backup is definitely the corrupted one */
+ if (sane_primary && !sane_backup)
+ zone_element_was_modified_panic(zone, element, backup,
+ (primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)),
+ zone->elem_size - sizeof(vm_offset_t));
+
+ /*
+ * Not sure which is the corrupted one.
+ * It's less likely that the backup pointer was overwritten with
+ * ( (sane address) ^ (valid cookie) ), so we'll guess that the
+ * primary pointer has been overwritten with a sane but incorrect address.
+ */
+ if (sane_primary && sane_backup)
+ zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
+
+ /* Neither are sane, so just guess. */
+ zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
+}
+
+/*
+ * Sets the next element of tail to elem.
+ * elem can be NULL.
+ * Preserves the poisoning state of the element.
+ */
+static inline void
+append_zone_element(zone_t zone,
+ struct zone_free_element *tail,
+ struct zone_free_element *elem)
+{
+ vm_offset_t *backup = get_backup_ptr(zone->elem_size, (vm_offset_t *) tail);
+
+ vm_offset_t old_backup = *backup;
+
+ vm_offset_t old_next = (vm_offset_t) tail->next;
+ vm_offset_t new_next = (vm_offset_t) elem;
+
+ if (old_next == (old_backup ^ zp_nopoison_cookie))
+ *backup = new_next ^ zp_nopoison_cookie;
+ else if (old_next == (old_backup ^ zp_poisoned_cookie))
+ *backup = new_next ^ zp_poisoned_cookie;
+ else
+ backup_ptr_mismatch_panic(zone,
+ (vm_offset_t) tail,
+ old_next,
+ old_backup);
+
+ tail->next = elem;
+}
+
+
+/*
+ * Insert a linked list of elements (delineated by head and tail) at the head of
+ * the zone free list. Every element in the list being added has already gone
+ * through append_zone_element, so their backup pointers are already
+ * set properly.
+ * Precondition: There should be no elements after tail
+ */
+static inline void
+add_list_to_zone(zone_t zone,
+ struct zone_free_element *head,
+ struct zone_free_element *tail)
+{
+ assert(tail->next == NULL);
+ assert(!zone->use_page_list);
+
+ append_zone_element(zone, tail, zone->free_elements);
+
+ zone->free_elements = head;
+}
+
+
+/*
+ * Adds the element to the head of the zone's free list
+ * Keeps a backup next-pointer at the end of the element
+ */
+static inline void
+free_to_zone(zone_t zone,
+ vm_offset_t element,
+ boolean_t poison)
+{
+ vm_offset_t old_head;
+ struct zone_page_metadata *page_meta;
+
+ vm_offset_t *primary = (vm_offset_t *) element;
+ vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary);
+
+ if (zone->use_page_list) {
+ page_meta = get_zone_page_metadata((struct zone_free_element *)element);
+ assert(page_meta->zone == zone);
+ old_head = (vm_offset_t)page_meta->elements;
+ } else {
+ old_head = (vm_offset_t)zone->free_elements;
+ }
+
+#if MACH_ASSERT
+ if (__improbable(!is_sane_zone_element(zone, old_head)))
+ panic("zfree: invalid head pointer %p for freelist of zone %s\n",
+ (void *) old_head, zone->zone_name);
+#endif
+
+ if (__improbable(!is_sane_zone_element(zone, element)))
+ panic("zfree: freeing invalid pointer %p to zone %s\n",
+ (void *) element, zone->zone_name);
+
+ /*
+ * Always write a redundant next pointer
+ * So that it is more difficult to forge, xor it with a random cookie
+ * A poisoned element is indicated by using zp_poisoned_cookie
+ * instead of zp_nopoison_cookie
+ */
+
+ *backup = old_head ^ (poison ? zp_poisoned_cookie : zp_nopoison_cookie);
+
+ /* Insert this element at the head of the free list */
+ *primary = old_head;
+ if (zone->use_page_list) {
+ page_meta->elements = (struct zone_free_element *)element;
+ page_meta->free_count++;
+ if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) {
+ if (page_meta->free_count == 1) {
+ /* first foreign element freed on page, move from all_used */
+ remqueue((queue_entry_t)page_meta);
+ enqueue_tail(&zone->pages.any_free_foreign, (queue_entry_t)page_meta);
+ } else {
+ /* no other list transitions */
+ }
+ } else if (page_meta->free_count == page_meta->alloc_count) {
+ /* whether the page was on the intermediate or all_used, queue, move it to free */
+ remqueue((queue_entry_t)page_meta);
+ enqueue_tail(&zone->pages.all_free, (queue_entry_t)page_meta);
+ } else if (page_meta->free_count == 1) {
+ /* first free element on page, move from all_used */
+ remqueue((queue_entry_t)page_meta);
+ enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta);
+ }
+ } else {
+ zone->free_elements = (struct zone_free_element *)element;
+ }
+ zone->count--;
+ zone->countfree++;
+}
+
+
+/*
+ * Removes an element from the zone's free list, returning 0 if the free list is empty.
+ * Verifies that the next-pointer and backup next-pointer are intact,
+ * and verifies that a poisoned element hasn't been modified.
+ */
+static inline vm_offset_t
+try_alloc_from_zone(zone_t zone,
+ boolean_t* check_poison)
+{
+ vm_offset_t element;
+ struct zone_page_metadata *page_meta;
+
+ *check_poison = FALSE;
+
+ /* if zone is empty, bail */
+ if (zone->use_page_list) {
+ if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign))
+ page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign);
+ else if (!queue_empty(&zone->pages.intermediate))
+ page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate);
+ else if (!queue_empty(&zone->pages.all_free))
+ page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.all_free);
+ else {
+ return 0;
+ }
+
+ /* Check if page_meta passes is_sane_zone_element */
+ if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta)))
+ panic("zalloc: invalid metadata structure %p for freelist of zone %s\n",
+ (void *) page_meta, zone->zone_name);
+ assert(page_meta->zone == zone);
+ element = (vm_offset_t)page_meta->elements;
+ } else {
+ if (zone->free_elements == NULL)
+ return 0;
+
+ element = (vm_offset_t)zone->free_elements;
+ }
+
+#if MACH_ASSERT
+ if (__improbable(!is_sane_zone_element(zone, element)))
+ panic("zfree: invalid head pointer %p for freelist of zone %s\n",
+ (void *) element, zone->zone_name);
+#endif
+
+ vm_offset_t *primary = (vm_offset_t *) element;
+ vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary);
+
+ vm_offset_t next_element = *primary;
+ vm_offset_t next_element_backup = *backup;
+
+ /*
+ * backup_ptr_mismatch_panic will determine what next_element
+ * should have been, and print it appropriately
+ */
+ if (__improbable(!is_sane_zone_element(zone, next_element)))
+ backup_ptr_mismatch_panic(zone, element, next_element, next_element_backup);
+
+ /* Check the backup pointer for the regular cookie */
+ if (__improbable(next_element != (next_element_backup ^ zp_nopoison_cookie))) {
+
+ /* Check for the poisoned cookie instead */
+ if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie)))
+ /* Neither cookie is valid, corruption has occurred */
+ backup_ptr_mismatch_panic(zone, element, next_element, next_element_backup);
+
+ /*
+ * Element was marked as poisoned, so check its integrity before using it.
+ */
+ *check_poison = TRUE;
+ }
+
+ if (zone->use_page_list) {
+
+ /* Make sure the page_meta is at the correct offset from the start of page */
+ if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element)))
+ panic("zalloc: metadata located at incorrect location on page of zone %s\n",
+ zone->zone_name);
+
+ /* Make sure next_element belongs to the same page as page_meta */
+ if (next_element) {
+ if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element)))
+ panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n",
+ (void *)next_element, (void *)element, zone->zone_name);
+ }
+ }
+
+ /* Remove this element from the free list */
+ if (zone->use_page_list) {
+
+ page_meta->elements = (struct zone_free_element *)next_element;
+ page_meta->free_count--;
+
+ if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) {
+ if (page_meta->free_count == 0) {
+ /* move to all used */
+ remqueue((queue_entry_t)page_meta);
+ enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta);
+ } else {
+ /* no other list transitions */
+ }
+ } else if (page_meta->free_count == 0) {
+ /* remove from intermediate or free, move to all_used */
+ remqueue((queue_entry_t)page_meta);
+ enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta);
+ } else if (page_meta->alloc_count == page_meta->free_count + 1) {
+ /* remove from free, move to intermediate */
+ remqueue((queue_entry_t)page_meta);
+ enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta);
+ }
+ } else {
+ zone->free_elements = (struct zone_free_element *)next_element;
+ }
+ zone->countfree--;
+ zone->count++;
+ zone->sum_count++;
+
+ return element;
+}
+
+
+/*
+ * End of zone poisoning
+ */
/*
- * Support for garbage collection of unused zone pages:
+ * Fake zones for things that want to report via zprint but are not actually zones.
*/
+struct fake_zone_info {
+ const char* name;
+ void (*init)(int);
+ void (*query)(int *,
+ vm_size_t *, vm_size_t *, vm_size_t *, vm_size_t *,
+ uint64_t *, int *, int *, int *);
+};
+
+static const struct fake_zone_info fake_zones[] = {
+};
+static const unsigned int num_fake_zones =
+ sizeof (fake_zones) / sizeof (fake_zones[0]);
+
+/*
+ * Zone info options
+ */
+boolean_t zinfo_per_task = FALSE; /* enabled by -zinfop in boot-args */
+#define ZINFO_SLOTS 200 /* for now */
+#define ZONES_MAX (ZINFO_SLOTS - num_fake_zones - 1)
+
+/*
+ * Support for garbage collection of unused zone pages
+ *
+ * The kernel virtually allocates the "zone map" submap of the kernel
+ * map. When an individual zone needs more storage, memory is allocated
+ * out of the zone map, and the two-level "zone_page_table" is
+ * on-demand expanded so that it has entries for those pages.
+ * zone_page_init()/zone_page_alloc() initialize "alloc_count"
+ * to the number of zone elements that occupy the zone page (which may
+ * be a minimum of 1, including if a zone element spans multiple
+ * pages).
+ *
+ * Asynchronously, the zone_gc() logic attempts to walk zone free
+ * lists to see if all the elements on a zone page are free. If
+ * "collect_count" (which it increments during the scan) matches
+ * "alloc_count", the zone page is a candidate for collection and the
+ * physical page is returned to the VM system. During this process, the
+ * first word of the zone page is re-used to maintain a linked list of
+ * to-be-collected zone pages.
+ */
+typedef uint32_t zone_page_index_t;
+#define ZONE_PAGE_INDEX_INVALID ((zone_page_index_t)0xFFFFFFFFU)
struct zone_page_table_entry {
- struct zone_page_table_entry *link;
- short alloc_count;
- short collect_count;
+ volatile uint16_t alloc_count;
+ volatile uint16_t collect_count;
};
+#define ZONE_PAGE_USED 0
+#define ZONE_PAGE_UNUSED 0xffff
+
/* Forwards */
void zone_page_init(
vm_offset_t addr,
- vm_size_t size,
- int value);
+ vm_size_t size);
void zone_page_alloc(
vm_offset_t addr,
vm_size_t size);
void zone_page_free_element(
- struct zone_page_table_entry **free_pages,
+ zone_page_index_t *free_page_head,
+ zone_page_index_t *free_page_tail,
vm_offset_t addr,
vm_size_t size);
vm_offset_t addr,
vm_size_t size);
-void zalloc_async(
- thread_call_param_t p0,
- thread_call_param_t p1);
+void zone_display_zprint(void);
+
+zone_t zone_find_largest(void);
+
+/*
+ * Async allocation of zones
+ * This mechanism allows for bootstrapping an empty zone which is setup with
+ * non-blocking flags. The first call to zalloc_noblock() will kick off a thread_call
+ * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free.
+ * This will prime the zone for the next use.
+ *
+ * Currently the thread_callout function (zalloc_async) will loop through all zones
+ * looking for any zone with async_pending set and do the work for it.
+ *
+ * NOTE: If the calling thread for zalloc_noblock is lower priority than thread_call,
+ * then zalloc_noblock to an empty zone may succeed.
+ */
+void zalloc_async(
+ thread_call_param_t p0,
+ thread_call_param_t p1);
+
+static thread_call_data_t call_async_alloc;
+
+vm_map_t zone_map = VM_MAP_NULL;
+
+zone_t zone_zone = ZONE_NULL; /* the zone containing other zones */
+
+zone_t zinfo_zone = ZONE_NULL; /* zone of per-task zone info */
+
+/*
+ * The VM system gives us an initial chunk of memory.
+ * It has to be big enough to allocate the zone_zone
+ * all the way through the pmap zone.
+ */
+
+vm_offset_t zdata;
+vm_size_t zdata_size;
+/*
+ * Align elements that use the zone page list to 32 byte boundaries.
+ */
+#define ZONE_ELEMENT_ALIGNMENT 32
+
+#define zone_wakeup(zone) thread_wakeup((event_t)(zone))
+#define zone_sleep(zone) \
+ (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT);
+
+/*
+ * The zone_locks_grp allows for collecting lock statistics.
+ * All locks are associated to this group in zinit.
+ * Look at tools/lockstat for debugging lock contention.
+ */
+
+lck_grp_t zone_locks_grp;
+lck_grp_attr_t zone_locks_grp_attr;
+
+#define lock_zone_init(zone) \
+MACRO_BEGIN \
+ lck_attr_setdefault(&(zone)->lock_attr); \
+ lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \
+ &zone_locks_grp, &(zone)->lock_attr); \
+MACRO_END
+
+#define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock)
+
+/*
+ * Garbage collection map information
+ */
+#define ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE (32)
+struct zone_page_table_entry * volatile zone_page_table[ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE];
+vm_size_t zone_page_table_used_size;
+unsigned int zone_pages;
+unsigned int zone_page_table_second_level_size; /* power of 2 */
+unsigned int zone_page_table_second_level_shift_amount;
+
+#define zone_page_table_first_level_slot(x) ((x) >> zone_page_table_second_level_shift_amount)
+#define zone_page_table_second_level_slot(x) ((x) & (zone_page_table_second_level_size - 1))
+
+void zone_page_table_expand(zone_page_index_t pindex);
+struct zone_page_table_entry *zone_page_table_lookup(zone_page_index_t pindex);
+
+/*
+ * Exclude more than one concurrent garbage collection
+ */
+decl_lck_mtx_data(, zone_gc_lock)
+
+lck_attr_t zone_gc_lck_attr;
+lck_grp_t zone_gc_lck_grp;
+lck_grp_attr_t zone_gc_lck_grp_attr;
+lck_mtx_ext_t zone_gc_lck_ext;
+
+/*
+ * Protects first_zone, last_zone, num_zones,
+ * and the next_zone field of zones.
+ */
+decl_simple_lock_data(, all_zones_lock)
+zone_t first_zone;
+zone_t *last_zone;
+unsigned int num_zones;
+
+boolean_t zone_gc_allowed = TRUE;
+boolean_t zone_gc_forced = FALSE;
+boolean_t panic_include_zprint = FALSE;
+boolean_t zone_gc_allowed_by_time_throttle = TRUE;
+
+vm_offset_t panic_kext_memory_info = 0;
+vm_size_t panic_kext_memory_size = 0;
+
+#define ZALLOC_DEBUG_ZONEGC 0x00000001
+#define ZALLOC_DEBUG_ZCRAM 0x00000002
+uint32_t zalloc_debug = 0;
+
+/*
+ * Zone leak debugging code
+ *
+ * When enabled, this code keeps a log to track allocations to a particular zone that have not
+ * yet been freed. Examining this log will reveal the source of a zone leak. The log is allocated
+ * only when logging is enabled, so there is no effect on the system when it's turned off. Logging is
+ * off by default.
+ *
+ * Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone>
+ * is the name of the zone you wish to log.
+ *
+ * This code only tracks one zone, so you need to identify which one is leaking first.
+ * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone
+ * garbage collector. Note that the zone name printed in the panic message is not necessarily the one
+ * containing the leak. So do a zprint from gdb and locate the zone with the bloated size. This
+ * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test. The
+ * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs.
+ * See the help in the kgmacros for usage info.
+ *
+ *
+ * Zone corruption logging
+ *
+ * Logging can also be used to help identify the source of a zone corruption. First, identify the zone
+ * that is being corrupted, then add "-zc zlog=<zone name>" to the boot-args. When -zc is used in conjunction
+ * with zlog, it changes the logging style to track both allocations and frees to the zone. So when the
+ * corruption is detected, examining the log will show you the stack traces of the callers who last allocated
+ * and freed any particular element in the zone. Use the findelem kgmacro with the address of the element that's been
+ * corrupted to examine its history. This should lead to the source of the corruption.
+ */
+
+static int log_records; /* size of the log, expressed in number of records */
+
+#define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */
+
+static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */
+
+/* Log allocations and frees to help debug a zone element corruption */
+boolean_t corruption_debug_flag = FALSE; /* enabled by "-zc" boot-arg */
+
+/*
+ * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to
+ * the number of records you want in the log. For example, "zrecs=1000" sets it to 1000 records. Note
+ * that the larger the size of the log, the slower the system will run due to linear searching in the log,
+ * but one doesn't generally care about performance when tracking down a leak. The log is capped at 8000
+ * records since going much larger than this tends to make the system unresponsive and unbootable on small
+ * memory configurations. The default value is 4000 records.
+ */
+
+#if defined(__LP64__)
+#define ZRECORDS_MAX 128000 /* Max records allowed in the log */
+#else
+#define ZRECORDS_MAX 8000 /* Max records allowed in the log */
+#endif
+#define ZRECORDS_DEFAULT 4000 /* default records in log if zrecs is not specificed in boot-args */
+
+/*
+ * Each record in the log contains a pointer to the zone element it refers to,
+ * and a small array to hold the pc's from the stack trace. A
+ * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging,
+ * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees.
+ * If the log fills, old records are replaced as if it were a circular buffer.
+ */
+
+
+/*
+ * Opcodes for the btlog operation field:
+ */
+
+#define ZOP_ALLOC 1
+#define ZOP_FREE 0
+
+/*
+ * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest
+ */
+static btlog_t *zlog_btlog; /* the log itself, dynamically allocated when logging is enabled */
+static zone_t zone_of_interest = NULL; /* the zone being watched; corresponds to zone_name_to_log */
+
+/*
+ * Decide if we want to log this zone by doing a string compare between a zone name and the name
+ * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not
+ * possible to include spaces in strings passed in via the boot-args, a period in the logname will
+ * match a space in the zone name.
+ */
+
+static int
+log_this_zone(const char *zonename, const char *logname)
+{
+ int len;
+ const char *zc = zonename;
+ const char *lc = logname;
+
+ /*
+ * Compare the strings. We bound the compare by MAX_ZONE_NAME.
+ */
+
+ for (len = 1; len <= MAX_ZONE_NAME; zc++, lc++, len++) {
+
+ /*
+ * If the current characters don't match, check for a space in
+ * in the zone name and a corresponding period in the log name.
+ * If that's not there, then the strings don't match.
+ */
+
+ if (*zc != *lc && !(*zc == ' ' && *lc == '.'))
+ break;
+
+ /*
+ * The strings are equal so far. If we're at the end, then it's a match.
+ */
+
+ if (*zc == '\0')
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+
+/*
+ * Test if we want to log this zalloc/zfree event. We log if this is the zone we're interested in and
+ * the buffer for the records has been allocated.
+ */
+
+#define DO_LOGGING(z) (zlog_btlog && (z) == zone_of_interest)
+
+extern boolean_t kmem_alloc_ready;
+
+#if CONFIG_ZLEAKS
+#pragma mark -
+#pragma mark Zone Leak Detection
+
+/*
+ * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding
+ * allocations made by the zone allocator. Every zleak_sample_factor allocations in each zone, we capture a
+ * backtrace. Every free, we examine the table and determine if the allocation was being tracked,
+ * and stop tracking it if it was being tracked.
+ *
+ * We track the allocations in the zallocations hash table, which stores the address that was returned from
+ * the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which
+ * stores the backtrace associated with that allocation. This provides uniquing for the relatively large
+ * backtraces - we don't store them more than once.
+ *
+ * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up
+ * a large amount of virtual space.
+ */
+#define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */
+#define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */
+#define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */
+#define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */
+uint32_t zleak_state = 0; /* State of collection, as above */
+
+boolean_t panic_include_ztrace = FALSE; /* Enable zleak logging on panic */
+vm_size_t zleak_global_tracking_threshold; /* Size of zone map at which to start collecting data */
+vm_size_t zleak_per_zone_tracking_threshold; /* Size a zone will have before we will collect data on it */
+unsigned int zleak_sample_factor = 1000; /* Allocations per sample attempt */
+
+/*
+ * Counters for allocation statistics.
+ */
+
+/* Times two active records want to occupy the same spot */
+unsigned int z_alloc_collisions = 0;
+unsigned int z_trace_collisions = 0;
+
+/* Times a new record lands on a spot previously occupied by a freed allocation */
+unsigned int z_alloc_overwrites = 0;
+unsigned int z_trace_overwrites = 0;
+
+/* Times a new alloc or trace is put into the hash table */
+unsigned int z_alloc_recorded = 0;
+unsigned int z_trace_recorded = 0;
+
+/* Times zleak_log returned false due to not being able to acquire the lock */
+unsigned int z_total_conflicts = 0;
+
+
+#pragma mark struct zallocation
+/*
+ * Structure for keeping track of an allocation
+ * An allocation bucket is in use if its element is not NULL
+ */
+struct zallocation {
+ uintptr_t za_element; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */
+ vm_size_t za_size; /* how much memory did this allocation take up? */
+ uint32_t za_trace_index; /* index into ztraces for backtrace associated with allocation */
+ /* TODO: #if this out */
+ uint32_t za_hit_count; /* for determining effectiveness of hash function */
+};
+
+/* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */
+uint32_t zleak_alloc_buckets = CONFIG_ZLEAK_ALLOCATION_MAP_NUM;
+uint32_t zleak_trace_buckets = CONFIG_ZLEAK_TRACE_MAP_NUM;
+
+vm_size_t zleak_max_zonemap_size;
+
+/* Hashmaps of allocations and their corresponding traces */
+static struct zallocation* zallocations;
+static struct ztrace* ztraces;
+
+/* not static so that panic can see this, see kern/debug.c */
+struct ztrace* top_ztrace;
+
+/* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */
+static lck_spin_t zleak_lock;
+static lck_attr_t zleak_lock_attr;
+static lck_grp_t zleak_lock_grp;
+static lck_grp_attr_t zleak_lock_grp_attr;
+
+/*
+ * Initializes the zone leak monitor. Called from zone_init()
+ */
+static void
+zleak_init(vm_size_t max_zonemap_size)
+{
+ char scratch_buf[16];
+ boolean_t zleak_enable_flag = FALSE;
+
+ zleak_max_zonemap_size = max_zonemap_size;
+ zleak_global_tracking_threshold = max_zonemap_size / 2;
+ zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8;
+
+ /* -zleakoff (flag to disable zone leak monitor) */
+ if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) {
+ zleak_enable_flag = FALSE;
+ printf("zone leak detection disabled\n");
+ } else {
+ zleak_enable_flag = TRUE;
+ printf("zone leak detection enabled\n");
+ }
+
+ /* zfactor=XXXX (override how often to sample the zone allocator) */
+ if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) {
+ printf("Zone leak factor override: %u\n", zleak_sample_factor);
+ }
+
+ /* zleak-allocs=XXXX (override number of buckets in zallocations) */
+ if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets, sizeof(zleak_alloc_buckets))) {
+ printf("Zone leak alloc buckets override: %u\n", zleak_alloc_buckets);
+ /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
+ if (zleak_alloc_buckets == 0 || (zleak_alloc_buckets & (zleak_alloc_buckets-1))) {
+ printf("Override isn't a power of two, bad things might happen!\n");
+ }
+ }
+
+ /* zleak-traces=XXXX (override number of buckets in ztraces) */
+ if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets, sizeof(zleak_trace_buckets))) {
+ printf("Zone leak trace buckets override: %u\n", zleak_trace_buckets);
+ /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
+ if (zleak_trace_buckets == 0 || (zleak_trace_buckets & (zleak_trace_buckets-1))) {
+ printf("Override isn't a power of two, bad things might happen!\n");
+ }
+ }
+
+ /* allocate the zleak_lock */
+ lck_grp_attr_setdefault(&zleak_lock_grp_attr);
+ lck_grp_init(&zleak_lock_grp, "zleak_lock", &zleak_lock_grp_attr);
+ lck_attr_setdefault(&zleak_lock_attr);
+ lck_spin_init(&zleak_lock, &zleak_lock_grp, &zleak_lock_attr);
+
+ if (zleak_enable_flag) {
+ zleak_state = ZLEAK_STATE_ENABLED;
+ }
+}
+
+#if CONFIG_ZLEAKS
+
+/*
+ * Support for kern.zleak.active sysctl - a simplified
+ * version of the zleak_state variable.
+ */
+int
+get_zleak_state(void)
+{
+ if (zleak_state & ZLEAK_STATE_FAILED)
+ return (-1);
+ if (zleak_state & ZLEAK_STATE_ACTIVE)
+ return (1);
+ return (0);
+}
+
+#endif
+
+
+kern_return_t
+zleak_activate(void)
+{
+ kern_return_t retval;
+ vm_size_t z_alloc_size = zleak_alloc_buckets * sizeof(struct zallocation);
+ vm_size_t z_trace_size = zleak_trace_buckets * sizeof(struct ztrace);
+ void *allocations_ptr = NULL;
+ void *traces_ptr = NULL;
+
+ /* Only one thread attempts to activate at a time */
+ if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) {
+ return KERN_SUCCESS;
+ }
+
+ /* Indicate that we're doing the setup */
+ lck_spin_lock(&zleak_lock);
+ if (zleak_state & (ZLEAK_STATE_ACTIVE | ZLEAK_STATE_ACTIVATING | ZLEAK_STATE_FAILED)) {
+ lck_spin_unlock(&zleak_lock);
+ return KERN_SUCCESS;
+ }
+
+ zleak_state |= ZLEAK_STATE_ACTIVATING;
+ lck_spin_unlock(&zleak_lock);
+
+ /* Allocate and zero tables */
+ retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&allocations_ptr, z_alloc_size, VM_KERN_MEMORY_OSFMK);
+ if (retval != KERN_SUCCESS) {
+ goto fail;
+ }
+
+ retval = kmem_alloc_kobject(kernel_map, (vm_offset_t*)&traces_ptr, z_trace_size, VM_KERN_MEMORY_OSFMK);
+ if (retval != KERN_SUCCESS) {
+ goto fail;
+ }
+
+ bzero(allocations_ptr, z_alloc_size);
+ bzero(traces_ptr, z_trace_size);
+
+ /* Everything's set. Install tables, mark active. */
+ zallocations = allocations_ptr;
+ ztraces = traces_ptr;
+
+ /*
+ * Initialize the top_ztrace to the first entry in ztraces,
+ * so we don't have to check for null in zleak_log
+ */
+ top_ztrace = &ztraces[0];
+
+ /*
+ * Note that we do need a barrier between installing
+ * the tables and setting the active flag, because the zfree()
+ * path accesses the table without a lock if we're active.
+ */
+ lck_spin_lock(&zleak_lock);
+ zleak_state |= ZLEAK_STATE_ACTIVE;
+ zleak_state &= ~ZLEAK_STATE_ACTIVATING;
+ lck_spin_unlock(&zleak_lock);
+
+ return 0;
+
+fail:
+ /*
+ * If we fail to allocate memory, don't further tax
+ * the system by trying again.
+ */
+ lck_spin_lock(&zleak_lock);
+ zleak_state |= ZLEAK_STATE_FAILED;
+ zleak_state &= ~ZLEAK_STATE_ACTIVATING;
+ lck_spin_unlock(&zleak_lock);
+
+ if (allocations_ptr != NULL) {
+ kmem_free(kernel_map, (vm_offset_t)allocations_ptr, z_alloc_size);
+ }
+
+ if (traces_ptr != NULL) {
+ kmem_free(kernel_map, (vm_offset_t)traces_ptr, z_trace_size);
+ }
+
+ return retval;
+}
+
+/*
+ * TODO: What about allocations that never get deallocated,
+ * especially ones with unique backtraces? Should we wait to record
+ * until after boot has completed?
+ * (How many persistent zallocs are there?)
+ */
+
+/*
+ * This function records the allocation in the allocations table,
+ * and stores the associated backtrace in the traces table
+ * (or just increments the refcount if the trace is already recorded)
+ * If the allocation slot is in use, the old allocation is replaced with the new allocation, and
+ * the associated trace's refcount is decremented.
+ * If the trace slot is in use, it returns.
+ * The refcount is incremented by the amount of memory the allocation consumes.
+ * The return value indicates whether to try again next time.
+ */
+static boolean_t
+zleak_log(uintptr_t* bt,
+ uintptr_t addr,
+ uint32_t depth,
+ vm_size_t allocation_size)
+{
+ /* Quit if there's someone else modifying the hash tables */
+ if (!lck_spin_try_lock(&zleak_lock)) {
+ z_total_conflicts++;
+ return FALSE;
+ }
+
+ struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)];
+
+ uint32_t trace_index = hashbacktrace(bt, depth, zleak_trace_buckets);
+ struct ztrace* trace = &ztraces[trace_index];
+
+ allocation->za_hit_count++;
+ trace->zt_hit_count++;
+
+ /*
+ * If the allocation bucket we want to be in is occupied, and if the occupier
+ * has the same trace as us, just bail.
+ */
+ if (allocation->za_element != (uintptr_t) 0 && trace_index == allocation->za_trace_index) {
+ z_alloc_collisions++;
+
+ lck_spin_unlock(&zleak_lock);
+ return TRUE;
+ }
+
+ /* STEP 1: Store the backtrace in the traces array. */
+ /* A size of zero indicates that the trace bucket is free. */
+
+ if (trace->zt_size > 0 && bcmp(trace->zt_stack, bt, (depth * sizeof(uintptr_t))) != 0 ) {
+ /*
+ * Different unique trace with same hash!
+ * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated
+ * and get out of the way for later chances
+ */
+ trace->zt_collisions++;
+ z_trace_collisions++;
+
+ lck_spin_unlock(&zleak_lock);
+ return TRUE;
+ } else if (trace->zt_size > 0) {
+ /* Same trace, already added, so increment refcount */
+ trace->zt_size += allocation_size;
+ } else {
+ /* Found an unused trace bucket, record the trace here! */
+ if (trace->zt_depth != 0) /* if this slot was previously used but not currently in use */
+ z_trace_overwrites++;
+
+ z_trace_recorded++;
+ trace->zt_size = allocation_size;
+ memcpy(trace->zt_stack, bt, (depth * sizeof(uintptr_t)) );
+
+ trace->zt_depth = depth;
+ trace->zt_collisions = 0;
+ }
+
+ /* STEP 2: Store the allocation record in the allocations array. */
+
+ if (allocation->za_element != (uintptr_t) 0) {
+ /*
+ * Straight up replace any allocation record that was there. We don't want to do the work
+ * to preserve the allocation entries that were there, because we only record a subset of the
+ * allocations anyways.
+ */
+
+ z_alloc_collisions++;
+
+ struct ztrace* associated_trace = &ztraces[allocation->za_trace_index];
+ /* Knock off old allocation's size, not the new allocation */
+ associated_trace->zt_size -= allocation->za_size;
+ } else if (allocation->za_trace_index != 0) {
+ /* Slot previously used but not currently in use */
+ z_alloc_overwrites++;
+ }
+
+ allocation->za_element = addr;
+ allocation->za_trace_index = trace_index;
+ allocation->za_size = allocation_size;
+
+ z_alloc_recorded++;
+
+ if (top_ztrace->zt_size < trace->zt_size)
+ top_ztrace = trace;
+
+ lck_spin_unlock(&zleak_lock);
+ return TRUE;
+}
+/*
+ * Free the allocation record and release the stacktrace.
+ * This should be as fast as possible because it will be called for every free.
+ */
+static void
+zleak_free(uintptr_t addr,
+ vm_size_t allocation_size)
+{
+ if (addr == (uintptr_t) 0)
+ return;
+
+ struct zallocation* allocation = &zallocations[hashaddr(addr, zleak_alloc_buckets)];
+
+ /* Double-checked locking: check to find out if we're interested, lock, check to make
+ * sure it hasn't changed, then modify it, and release the lock.
+ */
+
+ if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) {
+ /* if the allocation was the one, grab the lock, check again, then delete it */
+ lck_spin_lock(&zleak_lock);
+
+ if (allocation->za_element == addr && allocation->za_trace_index < zleak_trace_buckets) {
+ struct ztrace *trace;
-#if ZONE_DEBUG && MACH_KDB
-int zone_count(
- zone_t z,
- int tail);
-#endif /* ZONE_DEBUG && MACH_KDB */
+ /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */
+ if (allocation->za_size != allocation_size) {
+ panic("Freeing as size %lu memory that was allocated with size %lu\n",
+ (uintptr_t)allocation_size, (uintptr_t)allocation->za_size);
+ }
+
+ trace = &ztraces[allocation->za_trace_index];
+
+ /* size of 0 indicates trace bucket is unused */
+ if (trace->zt_size > 0) {
+ trace->zt_size -= allocation_size;
+ }
+
+ /* A NULL element means the allocation bucket is unused */
+ allocation->za_element = 0;
+ }
+ lck_spin_unlock(&zleak_lock);
+ }
+}
-vm_map_t zone_map = VM_MAP_NULL;
+#endif /* CONFIG_ZLEAKS */
-zone_t zone_zone = ZONE_NULL; /* the zone containing other zones */
+/* These functions outside of CONFIG_ZLEAKS because they are also used in
+ * mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix.
+ */
/*
- * The VM system gives us an initial chunk of memory.
- * It has to be big enough to allocate the zone_zone
+ * This function captures a backtrace from the current stack and
+ * returns the number of frames captured, limited by max_frames.
+ * It's fast because it does no checking to make sure there isn't bad data.
+ * Since it's only called from threads that we're going to keep executing,
+ * if there's bad data we were going to die eventually.
+ * If this function is inlined, it doesn't record the frame of the function it's inside.
+ * (because there's no stack frame!)
*/
-vm_offset_t zdata;
-vm_size_t zdata_size;
-
-#define lock_zone(zone) \
-MACRO_BEGIN \
- lck_mtx_lock(&(zone)->lock); \
-MACRO_END
+uint32_t
+fastbacktrace(uintptr_t* bt, uint32_t max_frames)
+{
+ uintptr_t* frameptr = NULL, *frameptr_next = NULL;
+ uintptr_t retaddr = 0;
+ uint32_t frame_index = 0, frames = 0;
+ uintptr_t kstackb, kstackt;
+ thread_t cthread = current_thread();
-#define unlock_zone(zone) \
-MACRO_BEGIN \
- lck_mtx_unlock(&(zone)->lock); \
-MACRO_END
+ if (__improbable(cthread == NULL))
+ return 0;
-#define zone_wakeup(zone) thread_wakeup((event_t)(zone))
-#define zone_sleep(zone) \
- (void) lck_mtx_sleep(&(zone)->lock, 0, (event_t)(zone), THREAD_UNINT);
+ kstackb = cthread->kernel_stack;
+ kstackt = kstackb + kernel_stack_size;
+ /* Load stack frame pointer (EBP on x86) into frameptr */
+ frameptr = __builtin_frame_address(0);
+ if (((uintptr_t)frameptr > kstackt) || ((uintptr_t)frameptr < kstackb))
+ frameptr = NULL;
-extern int snprintf(char *, size_t, const char *, ...) __printflike(3,4);
+ while (frameptr != NULL && frame_index < max_frames ) {
+ /* Next frame pointer is pointed to by the previous one */
+ frameptr_next = (uintptr_t*) *frameptr;
-#define lock_zone_init(zone) \
-MACRO_BEGIN \
- char _name[32]; \
- (void) snprintf(_name, sizeof (_name), "zone.%s", (zone)->zone_name); \
- lck_grp_attr_setdefault(&(zone)->lock_grp_attr); \
- lck_grp_init(&(zone)->lock_grp, _name, &(zone)->lock_grp_attr); \
- lck_attr_setdefault(&(zone)->lock_attr); \
- lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \
- &(zone)->lock_grp, &(zone)->lock_attr); \
-MACRO_END
+ /* Bail if we see a zero in the stack frame, that means we've reached the top of the stack */
+ /* That also means the return address is worthless, so don't record it */
+ if (frameptr_next == NULL)
+ break;
+ /* Verify thread stack bounds */
+ if (((uintptr_t)frameptr_next > kstackt) || ((uintptr_t)frameptr_next < kstackb))
+ break;
+ /* Pull return address from one spot above the frame pointer */
+ retaddr = *(frameptr + 1);
-#define lock_try_zone(zone) lck_mtx_try_lock(&zone->lock)
+ /* Store it in the backtrace array */
+ bt[frame_index++] = retaddr;
-kern_return_t zget_space(
- vm_offset_t size,
- vm_offset_t *result);
+ frameptr = frameptr_next;
+ }
-decl_simple_lock_data(,zget_space_lock)
-vm_offset_t zalloc_next_space;
-vm_offset_t zalloc_end_of_space;
-vm_size_t zalloc_wasted_space;
+ /* Save the number of frames captured for return value */
+ frames = frame_index;
-/*
- * Garbage collection map information
- */
-struct zone_page_table_entry * zone_page_table;
-vm_offset_t zone_map_min_address;
-vm_offset_t zone_map_max_address;
-unsigned int zone_pages;
+ /* Fill in the rest of the backtrace with zeros */
+ while (frame_index < max_frames)
+ bt[frame_index++] = 0;
-/*
- * Exclude more than one concurrent garbage collection
- */
-decl_mutex_data(, zone_gc_lock)
+ return frames;
+}
-#if !ZONE_ALIAS_ADDR
-#define from_zone_map(addr, size) \
- ((vm_offset_t)(addr) >= zone_map_min_address && \
- ((vm_offset_t)(addr) + size -1) < zone_map_max_address)
+/* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */
+uintptr_t
+hash_mix(uintptr_t x)
+{
+#ifndef __LP64__
+ x += ~(x << 15);
+ x ^= (x >> 10);
+ x += (x << 3 );
+ x ^= (x >> 6 );
+ x += ~(x << 11);
+ x ^= (x >> 16);
#else
-#define from_zone_map(addr, size) \
- ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)addr)) >= zone_map_min_address && \
- ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)addr)) + size -1) < zone_map_max_address)
+ x += ~(x << 32);
+ x ^= (x >> 22);
+ x += ~(x << 13);
+ x ^= (x >> 8 );
+ x += (x << 3 );
+ x ^= (x >> 15);
+ x += ~(x << 27);
+ x ^= (x >> 31);
#endif
+ return x;
+}
-#define ZONE_PAGE_USED 0
-#define ZONE_PAGE_UNUSED -1
+uint32_t
+hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size)
+{
+
+ uintptr_t hash = 0;
+ uintptr_t mask = max_size - 1;
+
+ while (depth) {
+ hash += bt[--depth];
+ }
+
+ hash = hash_mix(hash) & mask;
+ assert(hash < max_size);
+
+ return (uint32_t) hash;
+}
/*
- * Protects first_zone, last_zone, num_zones,
- * and the next_zone field of zones.
+ * TODO: Determine how well distributed this is
+ * max_size must be a power of 2. i.e 0x10000 because 0x10000-1 is 0x0FFFF which is a great bitmask
*/
-decl_simple_lock_data(, all_zones_lock)
-zone_t first_zone;
-zone_t *last_zone;
-unsigned int num_zones;
+uint32_t
+hashaddr(uintptr_t pt, uint32_t max_size)
+{
+ uintptr_t hash = 0;
+ uintptr_t mask = max_size - 1;
-boolean_t zone_gc_allowed = TRUE;
-boolean_t zone_gc_forced = FALSE;
-unsigned zone_gc_last_tick = 0;
-unsigned zone_gc_max_rate = 0; /* in ticks */
+ hash = hash_mix(pt) & mask;
+
+ assert(hash < max_size);
+ return (uint32_t) hash;
+}
+
+/* End of all leak-detection code */
+#pragma mark -
/*
* zinit initializes a new zone. The zone data structures themselves
const char *name) /* a name for the zone */
{
zone_t z;
+ boolean_t use_page_list = FALSE;
if (zone_zone == ZONE_NULL) {
- if (zget_space(sizeof(struct zone), (vm_offset_t *)&z)
- != KERN_SUCCESS)
- return(ZONE_NULL);
+
+ z = (struct zone *)zdata;
+ /* special handling in zcram() because the first element is being used */
} else
z = (zone_t) zalloc(zone_zone);
+
if (z == ZONE_NULL)
return(ZONE_NULL);
+ /* Zone elements must fit both a next pointer and a backup pointer */
+ vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2;
+ if (size < minimum_element_size)
+ size = minimum_element_size;
+
/*
- * Round off all the parameters appropriately.
+ * Round element size to a multiple of sizeof(pointer)
+ * This also enforces that allocations will be aligned on pointer boundaries
*/
- if (size < sizeof(z->free_elements))
- size = sizeof(z->free_elements);
- size = ((size-1) + sizeof(z->free_elements)) -
- ((size-1) % sizeof(z->free_elements));
- if (alloc == 0)
+ size = ((size-1) + sizeof(vm_offset_t)) -
+ ((size-1) % sizeof(vm_offset_t));
+
+ if (alloc == 0)
alloc = PAGE_SIZE;
+
alloc = round_page(alloc);
max = round_page(max);
+
/*
* we look for an allocation size with less than 1% waste
* up to 5 pages in size...
* the user suggestion is larger AND has less fragmentation
*/
#if ZONE_ALIAS_ADDR
+ /* Favor PAGE_SIZE allocations unless we waste >10% space */
if ((size < PAGE_SIZE) && (PAGE_SIZE % size <= PAGE_SIZE / 10))
alloc = PAGE_SIZE;
else
#endif
- { vm_size_t best, waste; unsigned int i;
+#if defined(__LP64__)
+ if (((alloc % size) != 0) || (alloc > PAGE_SIZE * 8))
+#endif
+ {
+ vm_size_t best, waste; unsigned int i;
best = PAGE_SIZE;
waste = best % size;
for (i = 1; i <= 5; i++) {
- vm_size_t tsize, twaste;
+ vm_size_t tsize, twaste;
tsize = i * PAGE_SIZE;
if (max && (max < alloc))
max = alloc;
- z->free_elements = 0;
+ /*
+ * Opt into page list tracking if we can reliably map an allocation
+ * to its page_metadata, and if the wastage in the tail of
+ * the allocation is not too large
+ */
+
+ /* zone_zone can't use page metadata since the page metadata will overwrite zone metadata */
+ if (alloc == PAGE_SIZE && zone_zone != ZONE_NULL) {
+ vm_offset_t first_element_offset;
+ size_t zone_page_metadata_size = sizeof(struct zone_page_metadata);
+
+ if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0) {
+ first_element_offset = zone_page_metadata_size;
+ } else {
+ first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT));
+ }
+
+ if (((PAGE_SIZE - first_element_offset) % size) <= PAGE_SIZE / 100) {
+ use_page_list = TRUE;
+ }
+ }
+
+ z->free_elements = NULL;
+ queue_init(&z->pages.any_free_foreign);
+ queue_init(&z->pages.all_free);
+ queue_init(&z->pages.intermediate);
+ queue_init(&z->pages.all_used);
z->cur_size = 0;
+ z->page_count = 0;
z->max_size = max;
z->elem_size = size;
z->alloc_size = alloc;
z->zone_name = name;
z->count = 0;
- z->doing_alloc = FALSE;
+ z->countfree = 0;
+ z->sum_count = 0LL;
+ z->doing_alloc_without_vm_priv = FALSE;
+ z->doing_alloc_with_vm_priv = FALSE;
z->doing_gc = FALSE;
z->exhaustible = FALSE;
z->collectable = TRUE;
z->expandable = TRUE;
z->waiting = FALSE;
z->async_pending = FALSE;
+ z->caller_acct = TRUE;
+ z->noencrypt = FALSE;
+ z->no_callout = FALSE;
+ z->async_prio_refill = FALSE;
+ z->gzalloc_exempt = FALSE;
+ z->alignment_required = FALSE;
+ z->use_page_list = use_page_list;
+ z->prio_refill_watermark = 0;
+ z->zone_replenish_thread = NULL;
+ z->zp_count = 0;
+#if CONFIG_ZLEAKS
+ z->zleak_capture = 0;
+ z->zleak_on = FALSE;
+#endif /* CONFIG_ZLEAKS */
#if ZONE_DEBUG
z->active_zones.next = z->active_zones.prev = NULL;
/*
* Add the zone to the all-zones list.
+ * If we are tracking zone info per task, and we have
+ * already used all the available stat slots, then keep
+ * using the overflow zone slot.
*/
-
z->next_zone = ZONE_NULL;
- thread_call_setup(&z->call_async_alloc, zalloc_async, z);
simple_lock(&all_zones_lock);
*last_zone = z;
last_zone = &z->next_zone;
+ z->index = num_zones;
+ if (zinfo_per_task) {
+ if (num_zones > ZONES_MAX)
+ z->index = ZONES_MAX;
+ }
num_zones++;
simple_unlock(&all_zones_lock);
+ /*
+ * Check if we should be logging this zone. If so, remember the zone pointer.
+ */
+ if (log_this_zone(z->zone_name, zone_name_to_log)) {
+ zone_of_interest = z;
+ }
+
+ /*
+ * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are
+ * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to
+ * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one
+ * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again
+ * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized
+ * right now.
+ */
+ if (zone_of_interest != NULL && zlog_btlog == NULL && kmem_alloc_ready) {
+ zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, NULL, NULL, NULL);
+ if (zlog_btlog) {
+ printf("zone: logging started for zone %s\n", zone_of_interest->zone_name);
+ } else {
+ printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n");
+ zone_of_interest = NULL;
+ }
+ }
+#if CONFIG_GZALLOC
+ gzalloc_zone_init(z);
+#endif
return(z);
}
+unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated, zone_replenish_throttle_count;
+
+static void zone_replenish_thread(zone_t);
+
+/* High priority VM privileged thread used to asynchronously refill a designated
+ * zone, such as the reserved VM map entry zone.
+ */
+static void zone_replenish_thread(zone_t z) {
+ vm_size_t free_size;
+ current_thread()->options |= TH_OPT_VMPRIV;
+
+ for (;;) {
+ lock_zone(z);
+ assert(z->prio_refill_watermark != 0);
+ while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) {
+ assert(z->doing_alloc_without_vm_priv == FALSE);
+ assert(z->doing_alloc_with_vm_priv == FALSE);
+ assert(z->async_prio_refill == TRUE);
+
+ unlock_zone(z);
+ int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT;
+ vm_offset_t space, alloc_size;
+ kern_return_t kr;
+
+ if (vm_pool_low())
+ alloc_size = round_page(z->elem_size);
+ else
+ alloc_size = z->alloc_size;
+
+ if (z->noencrypt)
+ zflags |= KMA_NOENCRYPT;
+
+ kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
+
+ if (kr == KERN_SUCCESS) {
+#if ZONE_ALIAS_ADDR
+ if (alloc_size == PAGE_SIZE)
+ space = zone_alias_addr(space);
+#endif
+ zcram(z, space, alloc_size);
+ } else if (kr == KERN_RESOURCE_SHORTAGE) {
+ VM_PAGE_WAIT();
+ } else if (kr == KERN_NO_SPACE) {
+ kr = kernel_memory_allocate(kernel_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
+ if (kr == KERN_SUCCESS) {
+#if ZONE_ALIAS_ADDR
+ if (alloc_size == PAGE_SIZE)
+ space = zone_alias_addr(space);
+#endif
+ zcram(z, space, alloc_size);
+ } else {
+ assert_wait_timeout(&z->zone_replenish_thread, THREAD_UNINT, 1, 100 * NSEC_PER_USEC);
+ thread_block(THREAD_CONTINUE_NULL);
+ }
+ }
+
+ lock_zone(z);
+ zone_replenish_loops++;
+ }
+
+ unlock_zone(z);
+ /* Signal any potential throttled consumers, terminating
+ * their timer-bounded waits.
+ */
+ thread_wakeup(z);
+
+ assert_wait(&z->zone_replenish_thread, THREAD_UNINT);
+ thread_block(THREAD_CONTINUE_NULL);
+ zone_replenish_wakeups++;
+ }
+}
+
+void
+zone_prio_refill_configure(zone_t z, vm_size_t low_water_mark) {
+ z->prio_refill_watermark = low_water_mark;
+
+ z->async_prio_refill = TRUE;
+ OSMemoryBarrier();
+ kern_return_t tres = kernel_thread_start_priority((thread_continue_t)zone_replenish_thread, z, MAXPRI_KERNEL, &z->zone_replenish_thread);
+
+ if (tres != KERN_SUCCESS) {
+ panic("zone_prio_refill_configure, thread create: 0x%x", tres);
+ }
+
+ thread_deallocate(z->zone_replenish_thread);
+}
/*
- * Cram the given memory into the specified zone.
+ * Cram the given memory into the specified zone. Update the zone page count accordingly.
*/
void
zcram(
- register zone_t zone,
- void *newaddr,
+ zone_t zone,
+ vm_offset_t newmem,
vm_size_t size)
{
- register vm_size_t elem_size;
- vm_offset_t newmem = (vm_offset_t) newaddr;
+ vm_size_t elem_size;
+ boolean_t from_zm = FALSE;
/* Basic sanity checks */
assert(zone != ZONE_NULL && newmem != (vm_offset_t)0);
elem_size = zone->elem_size;
- lock_zone(zone);
- while (size >= elem_size) {
- ADD_TO_ZONE(zone, newmem);
- if (from_zone_map(newmem, elem_size))
- zone_page_alloc(newmem, elem_size);
- zone->count++; /* compensate for ADD_TO_ZONE */
- size -= elem_size;
- newmem += elem_size;
- zone->cur_size += elem_size;
- }
- unlock_zone(zone);
-}
+ if (from_zone_map(newmem, size))
+ from_zm = TRUE;
-/*
- * Contiguous space allocator for non-paged zones. Allocates "size" amount
- * of memory from zone_map.
- */
-
-kern_return_t
-zget_space(
- vm_offset_t size,
- vm_offset_t *result)
-{
- vm_offset_t new_space = 0;
- vm_size_t space_to_add = 0;
+ if (zalloc_debug & ZALLOC_DEBUG_ZCRAM)
+ kprintf("zcram(%p[%s], 0x%lx%s, 0x%lx)\n", zone, zone->zone_name,
+ (unsigned long)newmem, from_zm ? "" : "[F]", (unsigned long)size);
- simple_lock(&zget_space_lock);
- while ((zalloc_next_space + size) > zalloc_end_of_space) {
- /*
- * Add at least one page to allocation area.
- */
+ if (from_zm && !zone->use_page_list)
+ zone_page_init(newmem, size);
- space_to_add = round_page(size);
+ ZONE_PAGE_COUNT_INCR(zone, (size / PAGE_SIZE));
- if (new_space == 0) {
- kern_return_t retval;
- /*
- * Memory cannot be wired down while holding
- * any locks that the pageout daemon might
- * need to free up pages. [Making the zget_space
- * lock a complex lock does not help in this
- * regard.]
- *
- * Unlock and allocate memory. Because several
- * threads might try to do this at once, don't
- * use the memory before checking for available
- * space again.
- */
+ lock_zone(zone);
- simple_unlock(&zget_space_lock);
+ if (zone->use_page_list) {
+ struct zone_page_metadata *page_metadata;
+ size_t zone_page_metadata_size = sizeof(struct zone_page_metadata);
+
+ assert((newmem & PAGE_MASK) == 0);
+ assert((size & PAGE_MASK) == 0);
+ for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) {
+
+ vm_size_t pos_in_page;
+ page_metadata = (struct zone_page_metadata *)(newmem);
+
+ page_metadata->pages.next = NULL;
+ page_metadata->pages.prev = NULL;
+ page_metadata->elements = NULL;
+ page_metadata->zone = zone;
+ page_metadata->alloc_count = 0;
+ page_metadata->free_count = 0;
+
+ enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_metadata);
+
+ vm_offset_t first_element_offset;
+ if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0){
+ first_element_offset = zone_page_metadata_size;
+ } else {
+ first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT));
+ }
- retval = kernel_memory_allocate(zone_map, &new_space,
- space_to_add, 0, KMA_KOBJECT|KMA_NOPAGEWAIT);
- if (retval != KERN_SUCCESS)
- return(retval);
-#if ZONE_ALIAS_ADDR
- if (space_to_add == PAGE_SIZE)
- new_space = zone_alias_addr(new_space);
-#endif
- zone_page_init(new_space, space_to_add,
- ZONE_PAGE_USED);
- simple_lock(&zget_space_lock);
- continue;
+ for (pos_in_page = first_element_offset; (newmem + pos_in_page + elem_size) < (vm_offset_t)(newmem + PAGE_SIZE); pos_in_page += elem_size) {
+ page_metadata->alloc_count++;
+ zone->count++; /* compensate for free_to_zone */
+ free_to_zone(zone, newmem + pos_in_page, FALSE);
+ zone->cur_size += elem_size;
+ }
}
-
-
- /*
- * Memory was allocated in a previous iteration.
- *
- * Check whether the new region is contiguous
- * with the old one.
- */
-
- if (new_space != zalloc_end_of_space) {
- /*
- * Throw away the remainder of the
- * old space, and start a new one.
- */
- zalloc_wasted_space +=
- zalloc_end_of_space - zalloc_next_space;
- zalloc_next_space = new_space;
+ } else {
+ while (size >= elem_size) {
+ zone->count++; /* compensate for free_to_zone */
+ if (newmem == (vm_offset_t)zone) {
+ /* Don't free zone_zone zone */
+ } else {
+ free_to_zone(zone, newmem, FALSE);
+ }
+ if (from_zm)
+ zone_page_alloc(newmem, elem_size);
+ size -= elem_size;
+ newmem += elem_size;
+ zone->cur_size += elem_size;
}
-
- zalloc_end_of_space = new_space + space_to_add;
-
- new_space = 0;
}
- *result = zalloc_next_space;
- zalloc_next_space += size;
- simple_unlock(&zget_space_lock);
-
- if (new_space != 0)
- kmem_free(zone_map, new_space, space_to_add);
-
- return(KERN_SUCCESS);
+ unlock_zone(zone);
}
void
zone_steal_memory(void)
{
- zdata_size = round_page(128*sizeof(struct zone));
- zdata = (vm_offset_t)((char *)pmap_steal_memory(zdata_size) - (char *)0);
+#if CONFIG_GZALLOC
+ gzalloc_configure();
+#endif
+ /* Request enough early memory to get to the pmap zone */
+ zdata_size = 12 * sizeof(struct zone);
+ zdata_size = round_page(zdata_size);
+ zdata = (vm_offset_t)pmap_steal_memory(zdata_size);
}
/*
* Fill a zone with enough memory to contain at least nelem elements.
- * Memory is obtained with kmem_alloc_wired from the kernel_map.
+ * Memory is obtained with kmem_alloc_kobject from the kernel_map.
* Return the number of elements actually put into the zone, which may
* be more than the caller asked for since the memory allocation is
* rounded up to a full page.
return 0;
size = nelem * zone->elem_size;
size = round_page(size);
- kr = kmem_alloc_wired(kernel_map, &memory, size);
+ kr = kmem_alloc_kobject(kernel_map, &memory, size, VM_KERN_MEMORY_ZONE);
if (kr != KERN_SUCCESS)
return 0;
zone_change(zone, Z_FOREIGN, TRUE);
- zcram(zone, (void *)memory, size);
- nalloc = size / zone->elem_size;
+ zcram(zone, memory, size);
+ nalloc = (int)(size / zone->elem_size);
assert(nalloc >= nelem);
return nalloc;
void
zone_bootstrap(void)
{
- vm_size_t zone_zone_size;
- vm_offset_t zone_zone_space;
char temp_buf[16];
- /* see if we want freed zone element checking */
- if (PE_parse_boot_arg("-zc", temp_buf)) {
- check_freed_element = 1;
+ if (PE_parse_boot_argn("-zinfop", temp_buf, sizeof(temp_buf))) {
+ zinfo_per_task = TRUE;
+ }
+
+ if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug, sizeof(zalloc_debug)))
+ zalloc_debug = 0;
+
+ /* Set up zone element poisoning */
+ zp_init();
+
+ /* should zlog log to debug zone corruption instead of leaks? */
+ if (PE_parse_boot_argn("-zc", temp_buf, sizeof(temp_buf))) {
+ corruption_debug_flag = TRUE;
+ }
+
+ /*
+ * Check for and set up zone leak detection if requested via boot-args. We recognized two
+ * boot-args:
+ *
+ * zlog=<zone_to_log>
+ * zrecs=<num_records_in_log>
+ *
+ * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to
+ * control the size of the log. If zrecs is not specified, a default value is used.
+ */
+
+ if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) {
+ if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) {
+
+ /*
+ * Don't allow more than ZRECORDS_MAX records even if the user asked for more.
+ * This prevents accidentally hogging too much kernel memory and making the system
+ * unusable.
+ */
+
+ log_records = MIN(ZRECORDS_MAX, log_records);
+
+ } else {
+ log_records = ZRECORDS_DEFAULT;
+ }
}
simple_lock_init(&all_zones_lock, 0);
first_zone = ZONE_NULL;
last_zone = &first_zone;
num_zones = 0;
-
- simple_lock_init(&zget_space_lock, 0);
- zalloc_next_space = zdata;
- zalloc_end_of_space = zdata + zdata_size;
- zalloc_wasted_space = 0;
+ thread_call_setup(&call_async_alloc, zalloc_async, NULL);
/* assertion: nobody else called zinit before us */
assert(zone_zone == ZONE_NULL);
+
+ /* initializing global lock group for zones */
+ lck_grp_attr_setdefault(&zone_locks_grp_attr);
+ lck_grp_init(&zone_locks_grp, "zone_locks", &zone_locks_grp_attr);
+
zone_zone = zinit(sizeof(struct zone), 128 * sizeof(struct zone),
sizeof(struct zone), "zones");
zone_change(zone_zone, Z_COLLECT, FALSE);
- zone_zone_size = zalloc_end_of_space - zalloc_next_space;
- zget_space(zone_zone_size, &zone_zone_space);
- zcram(zone_zone, (void *)zone_zone_space, zone_zone_size);
+ zone_change(zone_zone, Z_CALLERACCT, FALSE);
+ zone_change(zone_zone, Z_NOENCRYPT, TRUE);
+
+ zcram(zone_zone, zdata, zdata_size);
+ VM_PAGE_MOVE_STOLEN(atop_64(zdata_size));
+
+ /* initialize fake zones and zone info if tracking by task */
+ if (zinfo_per_task) {
+ vm_size_t zisize = sizeof(zinfo_usage_store_t) * ZINFO_SLOTS;
+ unsigned int i;
+
+ for (i = 0; i < num_fake_zones; i++)
+ fake_zones[i].init(ZINFO_SLOTS - num_fake_zones + i);
+ zinfo_zone = zinit(zisize, zisize * CONFIG_TASK_MAX,
+ zisize, "per task zinfo");
+ zone_change(zinfo_zone, Z_CALLERACCT, FALSE);
+ }
+}
+
+void
+zinfo_task_init(task_t task)
+{
+ if (zinfo_per_task) {
+ task->tkm_zinfo = zalloc(zinfo_zone);
+ memset(task->tkm_zinfo, 0, sizeof(zinfo_usage_store_t) * ZINFO_SLOTS);
+ } else {
+ task->tkm_zinfo = NULL;
+ }
}
+void
+zinfo_task_free(task_t task)
+{
+ assert(task != kernel_task);
+ if (task->tkm_zinfo != NULL) {
+ zfree(zinfo_zone, task->tkm_zinfo);
+ task->tkm_zinfo = NULL;
+ }
+}
+
+/* Global initialization of Zone Allocator.
+ * Runs after zone_bootstrap.
+ */
void
zone_init(
vm_size_t max_zonemap_size)
kern_return_t retval;
vm_offset_t zone_min;
vm_offset_t zone_max;
- vm_size_t zone_table_size;
- retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size,
- FALSE, VM_FLAGS_ANYWHERE, &zone_map);
+ retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size,
+ FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT | VM_MAKE_TAG(VM_KERN_MEMORY_ZONE),
+ &zone_map);
+
+ if (retval != KERN_SUCCESS)
+ panic("zone_init: kmem_suballoc failed");
+ zone_max = zone_min + round_page(max_zonemap_size);
+#if CONFIG_GZALLOC
+ gzalloc_init(max_zonemap_size);
+#endif
+ /*
+ * Setup garbage collection information:
+ */
+ zone_map_min_address = zone_min;
+ zone_map_max_address = zone_max;
+
+#if defined(__LP64__)
+ /*
+ * ensure that any vm_page_t that gets created from
+ * the vm_page zone can be packed properly (see vm_page.h
+ * for the packing requirements
+ */
+ if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_min_address)) != (vm_page_t)zone_map_min_address)
+ panic("VM_PAGE_PACK_PTR failed on zone_map_min_address - %p", (void *)zone_map_min_address);
+
+ if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address)) != (vm_page_t)zone_map_max_address)
+ panic("VM_PAGE_PACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address);
+#endif
+
+ zone_pages = (unsigned int)atop_kernel(zone_max - zone_min);
+ zone_page_table_used_size = sizeof(zone_page_table);
+
+ zone_page_table_second_level_size = 1;
+ zone_page_table_second_level_shift_amount = 0;
+
+ /*
+ * Find the power of 2 for the second level that allows
+ * the first level to fit in ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE
+ * slots.
+ */
+ while ((zone_page_table_first_level_slot(zone_pages-1)) >= ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE) {
+ zone_page_table_second_level_size <<= 1;
+ zone_page_table_second_level_shift_amount++;
+ }
+
+ lck_grp_attr_setdefault(&zone_gc_lck_grp_attr);
+ lck_grp_init(&zone_gc_lck_grp, "zone_gc", &zone_gc_lck_grp_attr);
+ lck_attr_setdefault(&zone_gc_lck_attr);
+ lck_mtx_init_ext(&zone_gc_lock, &zone_gc_lck_ext, &zone_gc_lck_grp, &zone_gc_lck_attr);
+
+#if CONFIG_ZLEAKS
+ /*
+ * Initialize the zone leak monitor
+ */
+ zleak_init(max_zonemap_size);
+#endif /* CONFIG_ZLEAKS */
+}
+
+void
+zone_page_table_expand(zone_page_index_t pindex)
+{
+ unsigned int first_index;
+ struct zone_page_table_entry * volatile * first_level_ptr;
+
+ assert(pindex < zone_pages);
+
+ first_index = zone_page_table_first_level_slot(pindex);
+ first_level_ptr = &zone_page_table[first_index];
+
+ if (*first_level_ptr == NULL) {
+ /*
+ * We were able to verify the old first-level slot
+ * had NULL, so attempt to populate it.
+ */
+
+ vm_offset_t second_level_array = 0;
+ vm_size_t second_level_size = round_page(zone_page_table_second_level_size * sizeof(struct zone_page_table_entry));
+ zone_page_index_t i;
+ struct zone_page_table_entry *entry_array;
+
+ if (kmem_alloc_kobject(zone_map, &second_level_array,
+ second_level_size, VM_KERN_MEMORY_OSFMK) != KERN_SUCCESS) {
+ panic("zone_page_table_expand");
+ }
+ zone_map_table_page_count += (second_level_size / PAGE_SIZE);
+
+ /*
+ * zone_gc() may scan the "zone_page_table" directly,
+ * so make sure any slots have a valid unused state.
+ */
+ entry_array = (struct zone_page_table_entry *)second_level_array;
+ for (i=0; i < zone_page_table_second_level_size; i++) {
+ entry_array[i].alloc_count = ZONE_PAGE_UNUSED;
+ entry_array[i].collect_count = 0;
+ }
+
+ if (OSCompareAndSwapPtr(NULL, entry_array, first_level_ptr)) {
+ /* Old slot was NULL, replaced with expanded level */
+ OSAddAtomicLong(second_level_size, &zone_page_table_used_size);
+ } else {
+ /* Old slot was not NULL, someone else expanded first */
+ kmem_free(zone_map, second_level_array, second_level_size);
+ zone_map_table_page_count -= (second_level_size / PAGE_SIZE);
+ }
+ } else {
+ /* Old slot was not NULL, already been expanded */
+ }
+}
+
+struct zone_page_table_entry *
+zone_page_table_lookup(zone_page_index_t pindex)
+{
+ unsigned int first_index = zone_page_table_first_level_slot(pindex);
+ struct zone_page_table_entry *second_level = zone_page_table[first_index];
- if (retval != KERN_SUCCESS)
- panic("zone_init: kmem_suballoc failed");
- zone_max = zone_min + round_page(max_zonemap_size);
- /*
- * Setup garbage collection information:
- */
- zone_table_size = atop_32(zone_max - zone_min) *
- sizeof(struct zone_page_table_entry);
- if (kmem_alloc_wired(zone_map, (vm_offset_t *) &zone_page_table,
- zone_table_size) != KERN_SUCCESS)
- panic("zone_init");
- zone_min = (vm_offset_t)zone_page_table + round_page(zone_table_size);
- zone_pages = atop_32(zone_max - zone_min);
- zone_map_min_address = zone_min;
- zone_map_max_address = zone_max;
- mutex_init(&zone_gc_lock, 0);
- zone_page_init(zone_min, zone_max - zone_min, ZONE_PAGE_UNUSED);
+ if (second_level) {
+ return &second_level[zone_page_table_second_level_slot(pindex)];
+ }
+
+ return NULL;
}
+extern volatile SInt32 kfree_nop_count;
+
+#pragma mark -
+#pragma mark zalloc_canblock
/*
* zalloc returns an element from the specified zone.
*/
-void *
-zalloc_canblock(
- register zone_t zone,
- boolean_t canblock)
+static void *
+zalloc_internal(
+ zone_t zone,
+ boolean_t canblock,
+ boolean_t nopagewait)
{
- vm_offset_t addr;
- kern_return_t retval;
+ vm_offset_t addr = 0;
+ kern_return_t retval;
+ uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */
+ int numsaved = 0;
+ boolean_t zone_replenish_wakeup = FALSE, zone_alloc_throttle = FALSE;
+#if CONFIG_GZALLOC || ZONE_DEBUG
+ boolean_t did_gzalloc = FALSE;
+#endif
+ thread_t thr = current_thread();
+ boolean_t check_poison = FALSE;
+ boolean_t set_doing_alloc_with_vm_priv = FALSE;
+
+#if CONFIG_ZLEAKS
+ uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */
+#endif /* CONFIG_ZLEAKS */
assert(zone != ZONE_NULL);
- lock_zone(zone);
+#if CONFIG_GZALLOC
+ addr = gzalloc_alloc(zone, canblock);
+ did_gzalloc = (addr != 0);
+#endif
+
+ /*
+ * If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
+ */
+ if (__improbable(DO_LOGGING(zone)))
+ numsaved = OSBacktrace((void*) zbt, MAX_ZTRACE_DEPTH);
+
+#if CONFIG_ZLEAKS
+ /*
+ * Zone leak detection: capture a backtrace every zleak_sample_factor
+ * allocations in this zone.
+ */
+ if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) {
+ /* Avoid backtracing twice if zone logging is on */
+ if (numsaved == 0)
+ zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH);
+ else
+ zleak_tracedepth = numsaved;
+ }
+#endif /* CONFIG_ZLEAKS */
- REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
+ lock_zone(zone);
- while ((addr == 0) && canblock && (zone->doing_gc)) {
- zone->waiting = TRUE;
- zone_sleep(zone);
- REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
+ if (zone->async_prio_refill && zone->zone_replenish_thread) {
+ do {
+ vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size));
+ vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size;
+ zone_replenish_wakeup = (zfreec < zrefillwm);
+ zone_alloc_throttle = (zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0);
+
+ if (zone_replenish_wakeup) {
+ zone_replenish_wakeups_initiated++;
+ unlock_zone(zone);
+ /* Signal the potentially waiting
+ * refill thread.
+ */
+ thread_wakeup(&zone->zone_replenish_thread);
+
+ /* Scheduling latencies etc. may prevent
+ * the refill thread from keeping up
+ * with demand. Throttle consumers
+ * when we fall below half the
+ * watermark, unless VM privileged
+ */
+ if (zone_alloc_throttle) {
+ zone_replenish_throttle_count++;
+ assert_wait_timeout(zone, THREAD_UNINT, 1, NSEC_PER_MSEC);
+ thread_block(THREAD_CONTINUE_NULL);
+ }
+ lock_zone(zone);
+ }
+ } while (zone_alloc_throttle == TRUE);
}
+
+ if (__probable(addr == 0))
+ addr = try_alloc_from_zone(zone, &check_poison);
+
while ((addr == 0) && canblock) {
/*
- * If nothing was there, try to get more
+ * zone is empty, try to expand it
+ *
+ * Note that we now allow up to 2 threads (1 vm_privliged and 1 non-vm_privliged)
+ * to expand the zone concurrently... this is necessary to avoid stalling
+ * vm_privileged threads running critical code necessary to continue compressing/swapping
+ * pages (i.e. making new free pages) from stalling behind non-vm_privileged threads
+ * waiting to acquire free pages when the vm_page_free_count is below the
+ * vm_page_free_reserved limit.
*/
- if (zone->doing_alloc) {
+ if ((zone->doing_alloc_without_vm_priv || zone->doing_alloc_with_vm_priv) &&
+ (((thr->options & TH_OPT_VMPRIV) == 0) || zone->doing_alloc_with_vm_priv)) {
/*
- * Someone is allocating memory for this zone.
- * Wait for it to show up, then try again.
+ * This is a non-vm_privileged thread and a non-vm_privileged or
+ * a vm_privileged thread is already expanding the zone...
+ * OR
+ * this is a vm_privileged thread and a vm_privileged thread is
+ * already expanding the zone...
+ *
+ * In either case wait for a thread to finish, then try again.
*/
zone->waiting = TRUE;
zone_sleep(zone);
- }
- else {
+ } else if (zone->doing_gc) {
+ /*
+ * zone_gc() is running. Since we need an element
+ * from the free list that is currently being
+ * collected, set the waiting bit and
+ * wait for the GC process to finish
+ * before trying again
+ */
+ zone->waiting = TRUE;
+ zone_sleep(zone);
+ } else {
+ vm_offset_t space;
+ vm_size_t alloc_size;
+ int retry = 0;
+
if ((zone->cur_size + zone->elem_size) >
zone->max_size) {
if (zone->exhaustible)
} else {
unlock_zone(zone);
+ panic_include_zprint = TRUE;
+#if CONFIG_ZLEAKS
+ if (zleak_state & ZLEAK_STATE_ACTIVE)
+ panic_include_ztrace = TRUE;
+#endif /* CONFIG_ZLEAKS */
panic("zalloc: zone \"%s\" empty.", zone->zone_name);
}
}
- zone->doing_alloc = TRUE;
+ if ((thr->options & TH_OPT_VMPRIV)) {
+ zone->doing_alloc_with_vm_priv = TRUE;
+ set_doing_alloc_with_vm_priv = TRUE;
+ } else {
+ zone->doing_alloc_without_vm_priv = TRUE;
+ }
unlock_zone(zone);
- if (zone->collectable) {
- vm_offset_t space;
- vm_size_t alloc_size;
- int retry = 0;
-
- for (;;) {
-
- if (vm_pool_low() || retry >= 1)
- alloc_size =
- round_page(zone->elem_size);
- else
- alloc_size = zone->alloc_size;
-
- retval = kernel_memory_allocate(zone_map,
- &space, alloc_size, 0,
- KMA_KOBJECT|KMA_NOPAGEWAIT);
- if (retval == KERN_SUCCESS) {
+ for (;;) {
+ int zflags = KMA_KOBJECT|KMA_NOPAGEWAIT;
+
+ if (vm_pool_low() || retry >= 1)
+ alloc_size =
+ round_page(zone->elem_size);
+ else
+ alloc_size = zone->alloc_size;
+
+ if (zone->noencrypt)
+ zflags |= KMA_NOENCRYPT;
+
+ retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
+ if (retval == KERN_SUCCESS) {
#if ZONE_ALIAS_ADDR
- if (alloc_size == PAGE_SIZE)
- space = zone_alias_addr(space);
+ if (alloc_size == PAGE_SIZE)
+ space = zone_alias_addr(space);
#endif
- zone_page_init(space, alloc_size,
- ZONE_PAGE_USED);
- zcram(zone, (void *)space, alloc_size);
-
- break;
- } else if (retval != KERN_RESOURCE_SHORTAGE) {
- retry++;
-
- if (retry == 2) {
- zone_gc();
- printf("zalloc did gc\n");
+
+#if CONFIG_ZLEAKS
+ if ((zleak_state & (ZLEAK_STATE_ENABLED | ZLEAK_STATE_ACTIVE)) == ZLEAK_STATE_ENABLED) {
+ if (zone_map->size >= zleak_global_tracking_threshold) {
+ kern_return_t kr;
+
+ kr = zleak_activate();
+ if (kr != KERN_SUCCESS) {
+ printf("Failed to activate live zone leak debugging (%d).\n", kr);
+ }
}
- if (retry == 3)
- panic("zalloc: \"%s\" (%d elements) retry fail %d", zone->zone_name, zone->count, retval);
- } else {
- break;
}
- }
- lock_zone(zone);
- zone->doing_alloc = FALSE;
- if (zone->waiting) {
- zone->waiting = FALSE;
- zone_wakeup(zone);
- }
- REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
- if (addr == 0 &&
- retval == KERN_RESOURCE_SHORTAGE) {
- unlock_zone(zone);
- VM_PAGE_WAIT();
- lock_zone(zone);
- }
- } else {
- vm_offset_t space;
- retval = zget_space(zone->elem_size, &space);
-
- lock_zone(zone);
- zone->doing_alloc = FALSE;
- if (zone->waiting) {
- zone->waiting = FALSE;
- thread_wakeup((event_t)zone);
- }
- if (retval == KERN_SUCCESS) {
- zone->count++;
- zone->cur_size += zone->elem_size;
-#if ZONE_DEBUG
- if (zone_debug_enabled(zone)) {
- enqueue_tail(&zone->active_zones, (queue_entry_t)space);
+ if ((zleak_state & ZLEAK_STATE_ACTIVE) && !(zone->zleak_on)) {
+ if (zone->cur_size > zleak_per_zone_tracking_threshold) {
+ zone->zleak_on = TRUE;
+ }
}
-#endif
- unlock_zone(zone);
- zone_page_alloc(space, zone->elem_size);
-#if ZONE_DEBUG
- if (zone_debug_enabled(zone))
- space += ZONE_DEBUG_OFFSET;
-#endif
- addr = space;
- goto success;
- }
- if (retval == KERN_RESOURCE_SHORTAGE) {
- unlock_zone(zone);
+#endif /* CONFIG_ZLEAKS */
+ zcram(zone, space, alloc_size);
- VM_PAGE_WAIT();
- lock_zone(zone);
+ break;
+ } else if (retval != KERN_RESOURCE_SHORTAGE) {
+ retry++;
+
+ if (retry == 2) {
+ zone_gc(TRUE);
+ printf("zalloc did gc\n");
+ zone_display_zprint();
+ }
+ if (retry == 3) {
+ panic_include_zprint = TRUE;
+#if CONFIG_ZLEAKS
+ if ((zleak_state & ZLEAK_STATE_ACTIVE)) {
+ panic_include_ztrace = TRUE;
+ }
+#endif /* CONFIG_ZLEAKS */
+ if (retval == KERN_NO_SPACE) {
+ zone_t zone_largest = zone_find_largest();
+ panic("zalloc: zone map exhausted while allocating from zone %s, likely due to memory leak in zone %s (%lu total bytes, %d elements allocated)",
+ zone->zone_name, zone_largest->zone_name,
+ (unsigned long)zone_largest->cur_size, zone_largest->count);
+
+ }
+ panic("zalloc: \"%s\" (%d elements) retry fail %d, kfree_nop_count: %d", zone->zone_name, zone->count, retval, (int)kfree_nop_count);
+ }
} else {
- panic("zalloc: \"%s\" (%d elements) zget_space returned %d", zone->zone_name, zone->count, retval);
+ break;
}
}
+ lock_zone(zone);
+
+ if (set_doing_alloc_with_vm_priv == TRUE)
+ zone->doing_alloc_with_vm_priv = FALSE;
+ else
+ zone->doing_alloc_without_vm_priv = FALSE;
+
+ if (zone->waiting) {
+ zone->waiting = FALSE;
+ zone_wakeup(zone);
+ }
+ addr = try_alloc_from_zone(zone, &check_poison);
+ if (addr == 0 &&
+ retval == KERN_RESOURCE_SHORTAGE) {
+ if (nopagewait == TRUE)
+ break; /* out of the main while loop */
+ unlock_zone(zone);
+
+ VM_PAGE_WAIT();
+ lock_zone(zone);
+ }
}
if (addr == 0)
- REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
+ addr = try_alloc_from_zone(zone, &check_poison);
}
- if ((addr == 0) && !canblock && (zone->async_pending == FALSE) && (zone->exhaustible == FALSE) && (!vm_pool_low())) {
+#if CONFIG_ZLEAKS
+ /* Zone leak detection:
+ * If we're sampling this allocation, add it to the zleaks hash table.
+ */
+ if (addr && zleak_tracedepth > 0) {
+ /* Sampling can fail if another sample is happening at the same time in a different zone. */
+ if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) {
+ /* If it failed, roll back the counter so we sample the next allocation instead. */
+ zone->zleak_capture = zleak_sample_factor;
+ }
+ }
+#endif /* CONFIG_ZLEAKS */
+
+
+ if ((addr == 0) && (!canblock || nopagewait) && (zone->async_pending == FALSE) && (zone->no_callout == FALSE) && (zone->exhaustible == FALSE) && (!vm_pool_low())) {
zone->async_pending = TRUE;
unlock_zone(zone);
- thread_call_enter(&zone->call_async_alloc);
+ thread_call_enter(&call_async_alloc);
lock_zone(zone);
- REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
+ addr = try_alloc_from_zone(zone, &check_poison);
+ }
+
+ /*
+ * See if we should be logging allocations in this zone. Logging is rarely done except when a leak is
+ * suspected, so this code rarely executes. We need to do this code while still holding the zone lock
+ * since it protects the various log related data structures.
+ */
+
+ if (__improbable(DO_LOGGING(zone) && addr)) {
+ btlog_add_entry(zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved);
}
+ vm_offset_t inner_size = zone->elem_size;
+
#if ZONE_DEBUG
- if (addr && zone_debug_enabled(zone)) {
+ if (!did_gzalloc && addr && zone_debug_enabled(zone)) {
enqueue_tail(&zone->active_zones, (queue_entry_t)addr);
addr += ZONE_DEBUG_OFFSET;
+ inner_size -= ZONE_DEBUG_OFFSET;
}
#endif
unlock_zone(zone);
-success:
+ if (__improbable(check_poison && addr)) {
+ vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1;
+ vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr);
+
+ for ( ; element_cursor < backup ; element_cursor++)
+ if (__improbable(*element_cursor != ZP_POISON))
+ zone_element_was_modified_panic(zone,
+ addr,
+ *element_cursor,
+ ZP_POISON,
+ ((vm_offset_t)element_cursor) - addr);
+ }
+
+ if (addr) {
+ /*
+ * Clear out the old next pointer and backup to avoid leaking the cookie
+ * and so that only values on the freelist have a valid cookie
+ */
+
+ vm_offset_t *primary = (vm_offset_t *) addr;
+ vm_offset_t *backup = get_backup_ptr(inner_size, primary);
+
+ *primary = ZP_POISON;
+ *backup = ZP_POISON;
+ }
+
TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr);
+ if (addr) {
+ task_t task;
+ zinfo_usage_t zinfo;
+ vm_size_t sz = zone->elem_size;
+
+ if (zone->caller_acct)
+ ledger_credit(thr->t_ledger, task_ledgers.tkm_private, sz);
+ else
+ ledger_credit(thr->t_ledger, task_ledgers.tkm_shared, sz);
+
+ if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
+ OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].alloc);
+ }
return((void *)addr);
}
void *
-zalloc(
- register zone_t zone)
+zalloc(zone_t zone)
+{
+ return (zalloc_internal(zone, TRUE, FALSE));
+}
+
+void *
+zalloc_noblock(zone_t zone)
+{
+ return (zalloc_internal(zone, FALSE, FALSE));
+}
+
+void *
+zalloc_nopagewait(zone_t zone)
{
- return( zalloc_canblock(zone, TRUE) );
+ return (zalloc_internal(zone, TRUE, TRUE));
}
void *
-zalloc_noblock(
- register zone_t zone)
+zalloc_canblock(zone_t zone, boolean_t canblock)
{
- return( zalloc_canblock(zone, FALSE) );
+ return (zalloc_internal(zone, canblock, FALSE));
}
+
void
zalloc_async(
- thread_call_param_t p0,
+ __unused thread_call_param_t p0,
__unused thread_call_param_t p1)
{
- void *elt;
+ zone_t current_z = NULL, head_z;
+ unsigned int max_zones, i;
+ void *elt = NULL;
+ boolean_t pending = FALSE;
+
+ simple_lock(&all_zones_lock);
+ head_z = first_zone;
+ max_zones = num_zones;
+ simple_unlock(&all_zones_lock);
+ current_z = head_z;
+ for (i = 0; i < max_zones; i++) {
+ lock_zone(current_z);
+ if (current_z->async_pending == TRUE) {
+ current_z->async_pending = FALSE;
+ pending = TRUE;
+ }
+ unlock_zone(current_z);
- elt = zalloc_canblock((zone_t)p0, TRUE);
- zfree((zone_t)p0, elt);
- lock_zone(((zone_t)p0));
- ((zone_t)p0)->async_pending = FALSE;
- unlock_zone(((zone_t)p0));
+ if (pending == TRUE) {
+ elt = zalloc_canblock(current_z, TRUE);
+ zfree(current_z, elt);
+ pending = FALSE;
+ }
+ /*
+ * This is based on assumption that zones never get
+ * freed once allocated and linked.
+ * Hence a read outside of lock is OK.
+ */
+ current_z = current_z->next_zone;
+ }
}
-
/*
* zget returns an element from the specified zone
* and immediately returns nothing if there is nothing there.
*
* This form should be used when you can not block (like when
* processing an interrupt).
+ *
+ * XXX: It seems like only vm_page_grab_fictitious_common uses this, and its
+ * friend vm_page_more_fictitious can block, so it doesn't seem like
+ * this is used for interrupts any more....
*/
void *
zget(
register zone_t zone)
{
- register vm_offset_t addr;
+ vm_offset_t addr;
+ boolean_t check_poison = FALSE;
+
+#if CONFIG_ZLEAKS
+ uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used for zone leak detection */
+ uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */
+#endif /* CONFIG_ZLEAKS */
assert( zone != ZONE_NULL );
+#if CONFIG_ZLEAKS
+ /*
+ * Zone leak detection: capture a backtrace
+ */
+ if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) {
+ zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH);
+ }
+#endif /* CONFIG_ZLEAKS */
+
if (!lock_try_zone(zone))
return NULL;
+
+ addr = try_alloc_from_zone(zone, &check_poison);
- REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
+ vm_offset_t inner_size = zone->elem_size;
+
#if ZONE_DEBUG
if (addr && zone_debug_enabled(zone)) {
enqueue_tail(&zone->active_zones, (queue_entry_t)addr);
addr += ZONE_DEBUG_OFFSET;
+ inner_size -= ZONE_DEBUG_OFFSET;
}
#endif /* ZONE_DEBUG */
+
+#if CONFIG_ZLEAKS
+ /*
+ * Zone leak detection: record the allocation
+ */
+ if (zone->zleak_on && zleak_tracedepth > 0 && addr) {
+ /* Sampling can fail if another sample is happening at the same time in a different zone. */
+ if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) {
+ /* If it failed, roll back the counter so we sample the next allocation instead. */
+ zone->zleak_capture = zleak_sample_factor;
+ }
+ }
+#endif /* CONFIG_ZLEAKS */
+
unlock_zone(zone);
+ if (__improbable(check_poison && addr)) {
+ vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1;
+ vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr);
+
+ for ( ; element_cursor < backup ; element_cursor++)
+ if (__improbable(*element_cursor != ZP_POISON))
+ zone_element_was_modified_panic(zone,
+ addr,
+ *element_cursor,
+ ZP_POISON,
+ ((vm_offset_t)element_cursor) - addr);
+ }
+
+ if (addr) {
+ /*
+ * Clear out the old next pointer and backup to avoid leaking the cookie
+ * and so that only values on the freelist have a valid cookie
+ */
+ vm_offset_t *primary = (vm_offset_t *) addr;
+ vm_offset_t *backup = get_backup_ptr(inner_size, primary);
+
+ *primary = ZP_POISON;
+ *backup = ZP_POISON;
+ }
+
return((void *) addr);
}
slower in debug mode when true. Use debugger to enable if needed */
/* static */ boolean_t zone_check = FALSE;
+static void zone_check_freelist(zone_t zone, vm_offset_t elem)
+{
+ struct zone_free_element *this;
+ struct zone_page_metadata *thispage;
+
+ if (zone->use_page_list) {
+ if (zone->allows_foreign) {
+ for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign);
+ !queue_end(&zone->pages.any_free_foreign, (queue_entry_t)thispage);
+ thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) {
+ for (this = thispage->elements;
+ this != NULL;
+ this = this->next) {
+ if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
+ panic("zone_check_freelist");
+ }
+ }
+ }
+ for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.all_free);
+ !queue_end(&zone->pages.all_free, (queue_entry_t)thispage);
+ thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) {
+ for (this = thispage->elements;
+ this != NULL;
+ this = this->next) {
+ if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
+ panic("zone_check_freelist");
+ }
+ }
+ for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate);
+ !queue_end(&zone->pages.intermediate, (queue_entry_t)thispage);
+ thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) {
+ for (this = thispage->elements;
+ this != NULL;
+ this = this->next) {
+ if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
+ panic("zone_check_freelist");
+ }
+ }
+ } else {
+ for (this = zone->free_elements;
+ this != NULL;
+ this = this->next) {
+ if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
+ panic("zone_check_freelist");
+ }
+ }
+}
+
static zone_t zone_last_bogus_zone = ZONE_NULL;
static vm_offset_t zone_last_bogus_elem = 0;
void *addr)
{
vm_offset_t elem = (vm_offset_t) addr;
+ uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* only used if zone logging is enabled via boot-args */
+ int numsaved = 0;
+ boolean_t gzfreed = FALSE;
+ boolean_t poison = FALSE;
+
+ assert(zone != ZONE_NULL);
+
+#if 1
+ if (zone->use_page_list) {
+ struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr);
+ if (zone != page_meta->zone) {
+ /*
+ * Something bad has happened. Someone tried to zfree a pointer but the metadata says it is from
+ * a different zone (or maybe it's from a zone that doesn't use page free lists at all). We can repair
+ * some cases of this, if:
+ * 1) The specified zone had use_page_list, and the true zone also has use_page_list set. In that case
+ * we can swap the zone_t
+ * 2) The specified zone had use_page_list, but the true zone does not. In this case page_meta is garbage,
+ * and dereferencing page_meta->zone might panic.
+ * To distinguish the two, we enumerate the zone list to match it up.
+ * We do not handle the case where an incorrect zone is passed that does not have use_page_list set,
+ * even if the true zone did have this set.
+ */
+ zone_t fixed_zone = NULL;
+ int fixed_i, max_zones;
+
+ simple_lock(&all_zones_lock);
+ max_zones = num_zones;
+ fixed_zone = first_zone;
+ simple_unlock(&all_zones_lock);
+
+ for (fixed_i=0; fixed_i < max_zones; fixed_i++, fixed_zone = fixed_zone->next_zone) {
+ if (fixed_zone == page_meta->zone && fixed_zone->use_page_list) {
+ /* we can fix this */
+ printf("Fixing incorrect zfree from zone %s to zone %s\n", zone->zone_name, fixed_zone->zone_name);
+ zone = fixed_zone;
+ break;
+ }
+ }
+ }
+ }
+#endif
+
+ /*
+ * If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
+ */
+
+ if (__improbable(DO_LOGGING(zone) && corruption_debug_flag))
+ numsaved = OSBacktrace((void *)zbt, MAX_ZTRACE_DEPTH);
#if MACH_ASSERT
/* Basic sanity checks */
panic("zfree: freeing to zone_zone breaks zone_gc!");
#endif
- TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (int)addr);
+#if CONFIG_GZALLOC
+ gzfreed = gzalloc_free(zone, addr);
+#endif
+
+ TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (uintptr_t)addr);
- if (zone->collectable && !zone->allows_foreign &&
- !from_zone_map(elem, zone->elem_size)) {
+ if (__improbable(!gzfreed && zone->collectable && !zone->allows_foreign &&
+ !from_zone_map(elem, zone->elem_size))) {
#if MACH_ASSERT
panic("zfree: non-allocated memory in collectable zone!");
#endif
return;
}
+ if ((zp_factor != 0 || zp_tiny_zone_limit != 0) && !gzfreed) {
+ /*
+ * Poison the memory before it ends up on the freelist to catch
+ * use-after-free and use of uninitialized memory
+ *
+ * Always poison tiny zones' elements (limit is 0 if -no-zp is set)
+ * Also poison larger elements periodically
+ */
+
+ vm_offset_t inner_size = zone->elem_size;
+
+#if ZONE_DEBUG
+ if (!gzfreed && zone_debug_enabled(zone)) {
+ inner_size -= ZONE_DEBUG_OFFSET;
+ }
+#endif
+ uint32_t sample_factor = zp_factor + (((uint32_t)inner_size) >> zp_scale);
+
+ if (inner_size <= zp_tiny_zone_limit)
+ poison = TRUE;
+ else if (zp_factor != 0 && sample_counter(&zone->zp_count, sample_factor) == TRUE)
+ poison = TRUE;
+
+ if (__improbable(poison)) {
+
+ /* memset_pattern{4|8} could help make this faster: <rdar://problem/4662004> */
+ /* Poison everything but primary and backup */
+ vm_offset_t *element_cursor = ((vm_offset_t *) elem) + 1;
+ vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *)elem);
+
+ for ( ; element_cursor < backup; element_cursor++)
+ *element_cursor = ZP_POISON;
+ }
+ }
+
lock_zone(zone);
+
+ /*
+ * See if we're doing logging on this zone. There are two styles of logging used depending on
+ * whether we're trying to catch a leak or corruption. See comments above in zalloc for details.
+ */
+
+ if (__improbable(DO_LOGGING(zone))) {
+ if (corruption_debug_flag) {
+ /*
+ * We're logging to catch a corruption. Add a record of this zfree operation
+ * to log.
+ */
+ btlog_add_entry(zlog_btlog, (void *)addr, ZOP_FREE, (void **)zbt, numsaved);
+ } else {
+ /*
+ * We're logging to catch a leak. Remove any record we might have for this
+ * element since it's being freed. Note that we may not find it if the buffer
+ * overflowed and that's OK. Since the log is of a limited size, old records
+ * get overwritten if there are more zallocs than zfrees.
+ */
+ btlog_remove_entries_for_element(zlog_btlog, (void *)addr);
+ }
+ }
+
#if ZONE_DEBUG
- if (zone_debug_enabled(zone)) {
+ if (!gzfreed && zone_debug_enabled(zone)) {
queue_t tmp_elem;
elem -= ZONE_DEBUG_OFFSET;
if (elem != (vm_offset_t)tmp_elem)
panic("zfree()ing element from wrong zone");
}
- remqueue(&zone->active_zones, (queue_t) elem);
+ remqueue((queue_t) elem);
}
#endif /* ZONE_DEBUG */
if (zone_check) {
- vm_offset_t this;
+ zone_check_freelist(zone, elem);
+ }
- /* check the zone's consistency */
+ if (__probable(!gzfreed))
+ free_to_zone(zone, elem, poison);
- for (this = zone->free_elements;
- this != 0;
- this = * (vm_offset_t *) this)
- if (!pmap_kernel_va(this) || this == elem)
- panic("zfree");
- }
- ADD_TO_ZONE(zone, elem);
+#if MACH_ASSERT
+ if (zone->count < 0)
+ panic("zfree: zone count underflow in zone %s while freeing element %p, possible cause: double frees or freeing memory that did not come from this zone",
+ zone->zone_name, addr);
+#endif
+
+#if CONFIG_ZLEAKS
+ /*
+ * Zone leak detection: un-track the allocation
+ */
+ if (zone->zleak_on) {
+ zleak_free(elem, zone->elem_size);
+ }
+#endif /* CONFIG_ZLEAKS */
+
/*
* If elements have one or more pages, and memory is low,
* request to run the garbage collection in the zone the next
zone_gc_forced = TRUE;
}
unlock_zone(zone);
+
+ {
+ thread_t thr = current_thread();
+ task_t task;
+ zinfo_usage_t zinfo;
+ vm_size_t sz = zone->elem_size;
+
+ if (zone->caller_acct)
+ ledger_debit(thr->t_ledger, task_ledgers.tkm_private, sz);
+ else
+ ledger_debit(thr->t_ledger, task_ledgers.tkm_shared, sz);
+
+ if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
+ OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].free);
+ }
}
assert( value == TRUE || value == FALSE );
switch(item){
+ case Z_NOENCRYPT:
+ zone->noencrypt = value;
+ break;
case Z_EXHAUST:
zone->exhaustible = value;
break;
case Z_FOREIGN:
zone->allows_foreign = value;
break;
-#if MACH_ASSERT
+ case Z_CALLERACCT:
+ zone->caller_acct = value;
+ break;
+ case Z_NOCALLOUT:
+ zone->no_callout = value;
+ break;
+ case Z_GZALLOC_EXEMPT:
+ zone->gzalloc_exempt = value;
+#if CONFIG_GZALLOC
+ gzalloc_reconfigure(zone);
+#endif
+ break;
+ case Z_ALIGNMENT_REQUIRED:
+ zone->alignment_required = value;
+ /*
+ * Disable the page list optimization here to provide
+ * more of an alignment guarantee. This prevents
+ * the alignment from being modified by the metadata stored
+ * at the beginning of the page.
+ */
+ zone->use_page_list = FALSE;
+#if ZONE_DEBUG
+ zone_debug_disable(zone);
+#endif
+#if CONFIG_GZALLOC
+ gzalloc_reconfigure(zone);
+#endif
+ break;
default:
panic("Zone_change: Wrong Item Type!");
/* break; */
-#endif
}
}
integer_t free_count;
lock_zone(zone);
- free_count = zone->cur_size/zone->elem_size - zone->count;
+ free_count = zone->countfree;
unlock_zone(zone);
assert(free_count >= 0);
return(free_count);
}
-/*
- * zprealloc preallocates wired memory, exanding the specified
- * zone to the specified size
- */
-void
-zprealloc(
- zone_t zone,
- vm_size_t size)
-{
- vm_offset_t addr;
-
- if (size != 0) {
- if (kmem_alloc_wired(zone_map, &addr, size) != KERN_SUCCESS)
- panic("zprealloc");
- zone_page_init(addr, size, ZONE_PAGE_USED);
- zcram(zone, (void *)addr, size);
- }
-}
-
/*
* Zone garbage collection subroutines
*/
vm_size_t size)
{
struct zone_page_table_entry *zp;
- natural_t i, j;
+ zone_page_index_t i, j;
#if ZONE_ALIAS_ADDR
addr = zone_virtual_addr(addr);
panic("zone_page_collectable");
#endif
- i = atop_32(addr-zone_map_min_address);
- j = atop_32((addr+size-1) - zone_map_min_address);
+ i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
+ j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
- for (zp = zone_page_table + i; i <= j; zp++, i++)
+ for (; i <= j; i++) {
+ zp = zone_page_table_lookup(i);
if (zp->collect_count == zp->alloc_count)
return (TRUE);
+ }
return (FALSE);
}
vm_size_t size)
{
struct zone_page_table_entry *zp;
- natural_t i, j;
+ zone_page_index_t i, j;
#if ZONE_ALIAS_ADDR
addr = zone_virtual_addr(addr);
panic("zone_page_keep");
#endif
- i = atop_32(addr-zone_map_min_address);
- j = atop_32((addr+size-1) - zone_map_min_address);
+ i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
+ j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
- for (zp = zone_page_table + i; i <= j; zp++, i++)
+ for (; i <= j; i++) {
+ zp = zone_page_table_lookup(i);
zp->collect_count = 0;
+ }
}
void
vm_size_t size)
{
struct zone_page_table_entry *zp;
- natural_t i, j;
+ zone_page_index_t i, j;
#if ZONE_ALIAS_ADDR
addr = zone_virtual_addr(addr);
panic("zone_page_collect");
#endif
- i = atop_32(addr-zone_map_min_address);
- j = atop_32((addr+size-1) - zone_map_min_address);
+ i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
+ j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
- for (zp = zone_page_table + i; i <= j; zp++, i++)
+ for (; i <= j; i++) {
+ zp = zone_page_table_lookup(i);
++zp->collect_count;
+ }
}
void
zone_page_init(
vm_offset_t addr,
- vm_size_t size,
- int value)
+ vm_size_t size)
{
struct zone_page_table_entry *zp;
- natural_t i, j;
+ zone_page_index_t i, j;
#if ZONE_ALIAS_ADDR
addr = zone_virtual_addr(addr);
panic("zone_page_init");
#endif
- i = atop_32(addr-zone_map_min_address);
- j = atop_32((addr+size-1) - zone_map_min_address);
+ i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
+ j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
- for (zp = zone_page_table + i; i <= j; zp++, i++) {
- zp->alloc_count = value;
+ for (; i <= j; i++) {
+ /* make sure entry exists before marking unused */
+ zone_page_table_expand(i);
+
+ zp = zone_page_table_lookup(i);
+ assert(zp);
+ zp->alloc_count = ZONE_PAGE_UNUSED;
zp->collect_count = 0;
}
}
vm_size_t size)
{
struct zone_page_table_entry *zp;
- natural_t i, j;
+ zone_page_index_t i, j;
#if ZONE_ALIAS_ADDR
addr = zone_virtual_addr(addr);
panic("zone_page_alloc");
#endif
- i = atop_32(addr-zone_map_min_address);
- j = atop_32((addr+size-1) - zone_map_min_address);
+ i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
+ j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
+
+ for (; i <= j; i++) {
+ zp = zone_page_table_lookup(i);
+ assert(zp);
- for (zp = zone_page_table + i; i <= j; zp++, i++) {
/*
- * Set alloc_count to (ZONE_PAGE_USED + 1) if
+ * Set alloc_count to ZONE_PAGE_USED if
* it was previously set to ZONE_PAGE_UNUSED.
*/
if (zp->alloc_count == ZONE_PAGE_UNUSED)
- zp->alloc_count = 1;
- else
- ++zp->alloc_count;
+ zp->alloc_count = ZONE_PAGE_USED;
+
+ ++zp->alloc_count;
}
}
void
zone_page_free_element(
- struct zone_page_table_entry **free_pages,
+ zone_page_index_t *free_page_head,
+ zone_page_index_t *free_page_tail,
vm_offset_t addr,
vm_size_t size)
{
struct zone_page_table_entry *zp;
- natural_t i, j;
+ zone_page_index_t i, j;
#if ZONE_ALIAS_ADDR
addr = zone_virtual_addr(addr);
panic("zone_page_free_element");
#endif
- i = atop_32(addr-zone_map_min_address);
- j = atop_32((addr+size-1) - zone_map_min_address);
+ /* Clear out the old next and backup pointers */
+ vm_offset_t *primary = (vm_offset_t *) addr;
+ vm_offset_t *backup = get_backup_ptr(size, primary);
+
+ *primary = ZP_POISON;
+ *backup = ZP_POISON;
+
+ i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
+ j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
+
+ for (; i <= j; i++) {
+ zp = zone_page_table_lookup(i);
- for (zp = zone_page_table + i; i <= j; zp++, i++) {
if (zp->collect_count > 0)
--zp->collect_count;
if (--zp->alloc_count == 0) {
+ vm_address_t free_page_address;
+ vm_address_t prev_free_page_address;
+
zp->alloc_count = ZONE_PAGE_UNUSED;
zp->collect_count = 0;
- zp->link = *free_pages;
- *free_pages = zp;
- }
- }
-}
-
-
-/* This is used for walking through a zone's free element list.
- */
-struct zone_free_element {
- struct zone_free_element * next;
-};
-/*
- * Add a linked list of pages starting at base back into the zone
- * free list. Tail points to the last element on the list.
- */
+ /*
+ * This element was the last one on this page, re-use the page's
+ * storage for a page freelist
+ */
+ free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)i);
+ *(zone_page_index_t *)free_page_address = ZONE_PAGE_INDEX_INVALID;
-#define ADD_LIST_TO_ZONE(zone, base, tail) \
-MACRO_BEGIN \
- (tail)->next = (void *)((zone)->free_elements); \
- if (check_freed_element) { \
- if ((zone)->elem_size >= (2 * sizeof(vm_offset_t))) \
- ((vm_offset_t *)(tail))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \
- (zone)->free_elements; \
- } \
- (zone)->free_elements = (unsigned long)(base); \
-MACRO_END
+ if (*free_page_head == ZONE_PAGE_INDEX_INVALID) {
+ *free_page_head = i;
+ *free_page_tail = i;
+ } else {
+ prev_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)(*free_page_tail));
+ *(zone_page_index_t *)prev_free_page_address = i;
+ *free_page_tail = i;
+ }
+ }
+ }
+}
-/*
- * Add an element to the chain pointed to by prev.
- */
-#define ADD_ELEMENT(zone, prev, elem) \
-MACRO_BEGIN \
- (prev)->next = (elem); \
- if (check_freed_element) { \
- if ((zone)->elem_size >= (2 * sizeof(vm_offset_t))) \
- ((vm_offset_t *)(prev))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \
- (vm_offset_t)(elem); \
- } \
-MACRO_END
+#define ZONEGC_SMALL_ELEMENT_SIZE 4096
struct {
+ uint64_t zgc_invoked;
+ uint64_t zgc_bailed;
uint32_t pgs_freed;
uint32_t elems_collected,
* begins to run out of memory.
*/
void
-zone_gc(void)
+zone_gc(boolean_t all_zones)
{
unsigned int max_zones;
zone_t z;
unsigned int i;
- struct zone_page_table_entry *zp, *zone_free_pages;
+ uint32_t old_pgs_freed;
+ zone_page_index_t zone_free_page_head;
+ zone_page_index_t zone_free_page_tail;
+ thread_t mythread = current_thread();
+
+ lck_mtx_lock(&zone_gc_lock);
- mutex_lock(&zone_gc_lock);
+ zgc_stats.zgc_invoked++;
+ old_pgs_freed = zgc_stats.pgs_freed;
simple_lock(&all_zones_lock);
max_zones = num_zones;
z = first_zone;
simple_unlock(&all_zones_lock);
+ if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
+ kprintf("zone_gc(all_zones=%s) starting...\n", all_zones ? "TRUE" : "FALSE");
+
+ /*
+ * it's ok to allow eager kernel preemption while
+ * while holding a zone lock since it's taken
+ * as a spin lock (which prevents preemption)
+ */
+ thread_set_eager_preempt(mythread);
+
#if MACH_ASSERT
- for (i = 0; i < zone_pages; i++)
- assert(zone_page_table[i].collect_count == 0);
+ for (i = 0; i < zone_pages; i++) {
+ struct zone_page_table_entry *zp;
+
+ zp = zone_page_table_lookup(i);
+ assert(!zp || (zp->collect_count == 0));
+ }
#endif /* MACH_ASSERT */
- zone_free_pages = NULL;
-
for (i = 0; i < max_zones; i++, z = z->next_zone) {
- unsigned int n, m;
- vm_size_t elt_size, size_freed;
+ unsigned int n, m;
+ vm_size_t elt_size, size_freed;
struct zone_free_element *elt, *base_elt, *base_prev, *prev, *scan, *keep, *tail;
+ int kmem_frees = 0, total_freed_pages = 0;
+ struct zone_page_metadata *page_meta;
+ queue_head_t page_meta_head;
assert(z != ZONE_NULL);
if (!z->collectable)
continue;
+ if (all_zones == FALSE && z->elem_size < ZONEGC_SMALL_ELEMENT_SIZE && !z->use_page_list)
+ continue;
+
lock_zone(z);
elt_size = z->elem_size;
/*
- * Do a quick feasability check before we scan the zone:
+ * Do a quick feasibility check before we scan the zone:
* skip unless there is likelihood of getting pages back
* (i.e we need a whole allocation block's worth of free
* elements before we can garbage collect) and
* or the element size is a multiple of the PAGE_SIZE
*/
if ((elt_size & PAGE_MASK) &&
+ !z->use_page_list &&
(((z->cur_size - z->count * elt_size) <= (2 * z->alloc_size)) ||
((z->cur_size - z->count * elt_size) <= (z->cur_size / 10)))) {
unlock_zone(z);
* Snatch all of the free elements away from the zone.
*/
- scan = (void *)z->free_elements;
- z->free_elements = 0;
+ if (z->use_page_list) {
+ queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages);
+ queue_init(&z->pages.all_free);
+ } else {
+ scan = (void *)z->free_elements;
+ z->free_elements = 0;
+ }
unlock_zone(z);
+ if (z->use_page_list) {
+ /*
+ * For zones that maintain page lists (which in turn
+ * track free elements on those pages), zone_gc()
+ * is incredibly easy, and we bypass all the logic
+ * for scanning elements and mapping them to
+ * collectable pages
+ */
+
+ size_freed = 0;
+
+ queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) {
+ assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */
+
+ zgc_stats.elems_freed += page_meta->free_count;
+ size_freed += elt_size * page_meta->free_count;
+ zgc_stats.elems_collected += page_meta->free_count;
+ }
+
+ lock_zone(z);
+
+ if (size_freed > 0) {
+ z->cur_size -= size_freed;
+ z->countfree -= size_freed/elt_size;
+ }
+
+ z->doing_gc = FALSE;
+ if (z->waiting) {
+ z->waiting = FALSE;
+ zone_wakeup(z);
+ }
+
+ unlock_zone(z);
+
+ if (queue_empty(&page_meta_head))
+ continue;
+
+ thread_clear_eager_preempt(mythread);
+
+ while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) {
+ vm_address_t free_page_address;
+
+ free_page_address = trunc_page((vm_address_t)page_meta);
+#if ZONE_ALIAS_ADDR
+ free_page_address = zone_virtual_addr(free_page_address);
+#endif
+ kmem_free(zone_map, free_page_address, PAGE_SIZE);
+ ZONE_PAGE_COUNT_DECR(z, 1);
+ total_freed_pages++;
+ zgc_stats.pgs_freed += 1;
+
+ if (++kmem_frees == 32) {
+ thread_yield_internal(1);
+ kmem_frees = 0;
+ }
+ }
+
+ if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
+ kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages);
+
+ thread_set_eager_preempt(mythread);
+ continue; /* go to next zone */
+ }
+
/*
* Pass 1:
*
prev = (void *)&scan;
elt = scan;
n = 0; tail = keep = NULL;
+
+ zone_free_page_head = ZONE_PAGE_INDEX_INVALID;
+ zone_free_page_tail = ZONE_PAGE_INDEX_INVALID;
+
+
while (elt != NULL) {
if (from_zone_map(elt, elt_size)) {
zone_page_collect((vm_offset_t)elt, elt_size);
if (keep == NULL)
keep = tail = elt;
else {
- ADD_ELEMENT(z, tail, elt);
+ append_zone_element(z, tail, elt);
tail = elt;
}
- ADD_ELEMENT(z, prev, elt->next);
+ append_zone_element(z, prev, elt->next);
elt = elt->next;
- ADD_ELEMENT(z, tail, NULL);
+ append_zone_element(z, tail, NULL);
}
/*
* Dribble back the elements we are keeping.
+ * If there are none, give some elements that we haven't looked at yet
+ * back to the freelist so that others waiting on the zone don't get stuck
+ * for too long. This might prevent us from recovering some memory,
+ * but allows us to avoid having to allocate new memory to serve requests
+ * while zone_gc has all the free memory tied up.
+ * <rdar://problem/3893406>
*/
if (++n >= 50) {
if (z->waiting == TRUE) {
+ /* z->waiting checked without lock held, rechecked below after locking */
lock_zone(z);
if (keep != NULL) {
- ADD_LIST_TO_ZONE(z, keep, tail);
+ add_list_to_zone(z, keep, tail);
tail = keep = NULL;
} else {
m =0;
elt = elt->next;
}
if (m !=0 ) {
- ADD_LIST_TO_ZONE(z, base_elt, prev);
- ADD_ELEMENT(z, base_prev, elt);
+ /* Extract the elements from the list and
+ * give them back */
+ append_zone_element(z, prev, NULL);
+ add_list_to_zone(z, base_elt, prev);
+ append_zone_element(z, base_prev, elt);
prev = base_prev;
}
}
if (keep != NULL) {
lock_zone(z);
- ADD_LIST_TO_ZONE(z, keep, tail);
+ add_list_to_zone(z, keep, tail);
+
+ if (z->waiting) {
+ z->waiting = FALSE;
+ zone_wakeup(z);
+ }
unlock_zone(z);
}
- /*
- * Pass 2:
- *
- * Determine which pages we can reclaim and
- * free those elements.
- */
+ /*
+ * Pass 2:
+ *
+ * Determine which pages we can reclaim and
+ * free those elements.
+ */
+
+ size_freed = 0;
+ elt = scan;
+ n = 0; tail = keep = NULL;
+
+ while (elt != NULL) {
+ if (zone_page_collectable((vm_offset_t)elt, elt_size)) {
+ struct zone_free_element *next_elt = elt->next;
+
+ size_freed += elt_size;
+
+ /*
+ * If this is the last allocation on the page(s),
+ * we may use their storage to maintain the linked
+ * list of free-able pages. So store elt->next because
+ * "elt" may be scribbled over.
+ */
+ zone_page_free_element(&zone_free_page_head, &zone_free_page_tail, (vm_offset_t)elt, elt_size);
+
+ elt = next_elt;
+
+ ++zgc_stats.elems_freed;
+ }
+ else {
+ zone_page_keep((vm_offset_t)elt, elt_size);
+
+ if (keep == NULL)
+ keep = tail = elt;
+ else {
+ append_zone_element(z, tail, elt);
+ tail = elt;
+ }
+
+ elt = elt->next;
+ append_zone_element(z, tail, NULL);
+
+ ++zgc_stats.elems_kept;
+ }
+
+ /*
+ * Dribble back the elements we are keeping,
+ * and update the zone size info.
+ */
+
+ if (++n >= 50) {
+ lock_zone(z);
+
+ z->cur_size -= size_freed;
+ z->countfree -= size_freed/elt_size;
+ size_freed = 0;
+
+ if (keep != NULL) {
+ add_list_to_zone(z, keep, tail);
+ }
+
+ if (z->waiting) {
+ z->waiting = FALSE;
+ zone_wakeup(z);
+ }
+
+ unlock_zone(z);
+
+ n = 0; tail = keep = NULL;
+ }
+ }
+
+ /*
+ * Return any remaining elements, and update
+ * the zone size info.
+ */
+
+ lock_zone(z);
+
+ if (size_freed > 0 || keep != NULL) {
+
+ z->cur_size -= size_freed;
+ z->countfree -= size_freed/elt_size;
+
+ if (keep != NULL) {
+ add_list_to_zone(z, keep, tail);
+ }
+
+ }
+
+ z->doing_gc = FALSE;
+ if (z->waiting) {
+ z->waiting = FALSE;
+ zone_wakeup(z);
+ }
+ unlock_zone(z);
+
+ if (zone_free_page_head == ZONE_PAGE_INDEX_INVALID)
+ continue;
+
+ /*
+ * we don't want to allow eager kernel preemption while holding the
+ * various locks taken in the kmem_free path of execution
+ */
+ thread_clear_eager_preempt(mythread);
+
+
+ /*
+ * This loop counts the number of pages that should be freed by the
+ * next loop that tries to coalesce the kmem_frees()
+ */
+ uint32_t pages_to_free_count = 0;
+ vm_address_t fpa;
+ zone_page_index_t index;
+ for (index = zone_free_page_head; index != ZONE_PAGE_INDEX_INVALID;) {
+ pages_to_free_count++;
+ fpa = zone_map_min_address + PAGE_SIZE * ((vm_size_t)index);
+ index = *(zone_page_index_t *)fpa;
+ }
+
+ /*
+ * Reclaim the pages we are freeing.
+ */
+ while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) {
+ zone_page_index_t zind = zone_free_page_head;
+ vm_address_t free_page_address;
+ int page_count;
+
+ /*
+ * Use the first word of the page about to be freed to find the next free page
+ */
+ free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)zind);
+ zone_free_page_head = *(zone_page_index_t *)free_page_address;
+
+ page_count = 1;
+ total_freed_pages++;
+
+ while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) {
+ zone_page_index_t next_zind = zone_free_page_head;
+ vm_address_t next_free_page_address;
+
+ next_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)next_zind);
+
+ if (next_free_page_address == (free_page_address - PAGE_SIZE)) {
+ free_page_address = next_free_page_address;
+ } else if (next_free_page_address != (free_page_address + (PAGE_SIZE * page_count)))
+ break;
+
+ zone_free_page_head = *(zone_page_index_t *)next_free_page_address;
+ page_count++;
+ total_freed_pages++;
+ }
+ kmem_free(zone_map, free_page_address, page_count * PAGE_SIZE);
+ ZONE_PAGE_COUNT_DECR(z, page_count);
+ zgc_stats.pgs_freed += page_count;
+ pages_to_free_count -= page_count;
+
+ if (++kmem_frees == 32) {
+ thread_yield_internal(1);
+ kmem_frees = 0;
+ }
+ }
+
+ /* Check that we actually free the exact number of pages we were supposed to */
+ assert(pages_to_free_count == 0);
+
+ if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
+ kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages);
+
+ thread_set_eager_preempt(mythread);
+ }
+
+ if (old_pgs_freed == zgc_stats.pgs_freed)
+ zgc_stats.zgc_bailed++;
+
+ thread_clear_eager_preempt(mythread);
+
+ lck_mtx_unlock(&zone_gc_lock);
+
+}
+
+extern vm_offset_t kmapoff_kaddr;
+extern unsigned int kmapoff_pgcnt;
+
+/*
+ * consider_zone_gc:
+ *
+ * Called by the pageout daemon when the system needs more free pages.
+ */
+
+void
+consider_zone_gc(boolean_t force)
+{
+ boolean_t all_zones = FALSE;
+
+ if (kmapoff_kaddr != 0) {
+ /*
+ * One-time reclaim of kernel_map resources we allocated in
+ * early boot.
+ */
+ (void) vm_deallocate(kernel_map,
+ kmapoff_kaddr, kmapoff_pgcnt * PAGE_SIZE_64);
+ kmapoff_kaddr = 0;
+ }
+
+ if (zone_gc_allowed &&
+ (zone_gc_allowed_by_time_throttle ||
+ zone_gc_forced ||
+ force)) {
+ if (zone_gc_allowed_by_time_throttle == TRUE) {
+ zone_gc_allowed_by_time_throttle = FALSE;
+ all_zones = TRUE;
+ }
+ zone_gc_forced = FALSE;
+
+ zone_gc(all_zones);
+ }
+}
+
+/*
+ * By default, don't attempt zone GC more frequently
+ * than once / 1 minutes.
+ */
+void
+compute_zone_gc_throttle(void *arg __unused)
+{
+ zone_gc_allowed_by_time_throttle = TRUE;
+}
+
+
+#if CONFIG_TASK_ZONE_INFO
+
+kern_return_t
+task_zone_info(
+ task_t task,
+ mach_zone_name_array_t *namesp,
+ mach_msg_type_number_t *namesCntp,
+ task_zone_info_array_t *infop,
+ mach_msg_type_number_t *infoCntp)
+{
+ mach_zone_name_t *names;
+ vm_offset_t names_addr;
+ vm_size_t names_size;
+ task_zone_info_t *info;
+ vm_offset_t info_addr;
+ vm_size_t info_size;
+ unsigned int max_zones, i;
+ zone_t z;
+ mach_zone_name_t *zn;
+ task_zone_info_t *zi;
+ kern_return_t kr;
+
+ vm_size_t used;
+ vm_map_copy_t copy;
+
+
+ if (task == TASK_NULL)
+ return KERN_INVALID_TASK;
+
+ /*
+ * We assume that zones aren't freed once allocated.
+ * We won't pick up any zones that are allocated later.
+ */
+
+ simple_lock(&all_zones_lock);
+ max_zones = (unsigned int)(num_zones + num_fake_zones);
+ z = first_zone;
+ simple_unlock(&all_zones_lock);
+
+ names_size = round_page(max_zones * sizeof *names);
+ kr = kmem_alloc_pageable(ipc_kernel_map,
+ &names_addr, names_size, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS)
+ return kr;
+ names = (mach_zone_name_t *) names_addr;
+
+ info_size = round_page(max_zones * sizeof *info);
+ kr = kmem_alloc_pageable(ipc_kernel_map,
+ &info_addr, info_size, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS) {
+ kmem_free(ipc_kernel_map,
+ names_addr, names_size);
+ return kr;
+ }
+
+ info = (task_zone_info_t *) info_addr;
+
+ zn = &names[0];
+ zi = &info[0];
+
+ for (i = 0; i < max_zones - num_fake_zones; i++) {
+ struct zone zcopy;
+
+ assert(z != ZONE_NULL);
+
+ lock_zone(z);
+ zcopy = *z;
+ unlock_zone(z);
+
+ simple_lock(&all_zones_lock);
+ z = z->next_zone;
+ simple_unlock(&all_zones_lock);
+
+ /* assuming here the name data is static */
+ (void) strncpy(zn->mzn_name, zcopy.zone_name,
+ sizeof zn->mzn_name);
+ zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
+
+ zi->tzi_count = (uint64_t)zcopy.count;
+ zi->tzi_cur_size = ptoa_64(zcopy.page_count);
+ zi->tzi_max_size = (uint64_t)zcopy.max_size;
+ zi->tzi_elem_size = (uint64_t)zcopy.elem_size;
+ zi->tzi_alloc_size = (uint64_t)zcopy.alloc_size;
+ zi->tzi_sum_size = zcopy.sum_count * zcopy.elem_size;
+ zi->tzi_exhaustible = (uint64_t)zcopy.exhaustible;
+ zi->tzi_collectable = (uint64_t)zcopy.collectable;
+ zi->tzi_caller_acct = (uint64_t)zcopy.caller_acct;
+ if (task->tkm_zinfo != NULL) {
+ zi->tzi_task_alloc = task->tkm_zinfo[zcopy.index].alloc;
+ zi->tzi_task_free = task->tkm_zinfo[zcopy.index].free;
+ } else {
+ zi->tzi_task_alloc = 0;
+ zi->tzi_task_free = 0;
+ }
+ zn++;
+ zi++;
+ }
+
+ /*
+ * loop through the fake zones and fill them using the specialized
+ * functions
+ */
+ for (i = 0; i < num_fake_zones; i++) {
+ int count, collectable, exhaustible, caller_acct, index;
+ vm_size_t cur_size, max_size, elem_size, alloc_size;
+ uint64_t sum_size;
+
+ strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name);
+ zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
+ fake_zones[i].query(&count, &cur_size,
+ &max_size, &elem_size,
+ &alloc_size, &sum_size,
+ &collectable, &exhaustible, &caller_acct);
+ zi->tzi_count = (uint64_t)count;
+ zi->tzi_cur_size = (uint64_t)cur_size;
+ zi->tzi_max_size = (uint64_t)max_size;
+ zi->tzi_elem_size = (uint64_t)elem_size;
+ zi->tzi_alloc_size = (uint64_t)alloc_size;
+ zi->tzi_sum_size = sum_size;
+ zi->tzi_collectable = (uint64_t)collectable;
+ zi->tzi_exhaustible = (uint64_t)exhaustible;
+ zi->tzi_caller_acct = (uint64_t)caller_acct;
+ if (task->tkm_zinfo != NULL) {
+ index = ZINFO_SLOTS - num_fake_zones + i;
+ zi->tzi_task_alloc = task->tkm_zinfo[index].alloc;
+ zi->tzi_task_free = task->tkm_zinfo[index].free;
+ } else {
+ zi->tzi_task_alloc = 0;
+ zi->tzi_task_free = 0;
+ }
+ zn++;
+ zi++;
+ }
+
+ used = max_zones * sizeof *names;
+ if (used != names_size)
+ bzero((char *) (names_addr + used), names_size - used);
+
+ kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
+ (vm_map_size_t)used, TRUE, ©);
+ assert(kr == KERN_SUCCESS);
+
+ *namesp = (mach_zone_name_t *) copy;
+ *namesCntp = max_zones;
+
+ used = max_zones * sizeof *info;
+
+ if (used != info_size)
+ bzero((char *) (info_addr + used), info_size - used);
+
+ kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
+ (vm_map_size_t)used, TRUE, ©);
+ assert(kr == KERN_SUCCESS);
+
+ *infop = (task_zone_info_t *) copy;
+ *infoCntp = max_zones;
+
+ return KERN_SUCCESS;
+}
+
+#else /* CONFIG_TASK_ZONE_INFO */
- size_freed = 0;
- elt = scan;
- n = 0; tail = keep = NULL;
- while (elt != NULL) {
- if (zone_page_collectable((vm_offset_t)elt, elt_size)) {
- size_freed += elt_size;
- zone_page_free_element(&zone_free_pages,
- (vm_offset_t)elt, elt_size);
+kern_return_t
+task_zone_info(
+ __unused task_t task,
+ __unused mach_zone_name_array_t *namesp,
+ __unused mach_msg_type_number_t *namesCntp,
+ __unused task_zone_info_array_t *infop,
+ __unused mach_msg_type_number_t *infoCntp)
+{
+ return KERN_FAILURE;
+}
- elt = elt->next;
+#endif /* CONFIG_TASK_ZONE_INFO */
- ++zgc_stats.elems_freed;
- }
- else {
- zone_page_keep((vm_offset_t)elt, elt_size);
+kern_return_t
+mach_zone_info(
+ host_priv_t host,
+ mach_zone_name_array_t *namesp,
+ mach_msg_type_number_t *namesCntp,
+ mach_zone_info_array_t *infop,
+ mach_msg_type_number_t *infoCntp)
+{
+ return (mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL));
+}
- if (keep == NULL)
- keep = tail = elt;
- else {
- ADD_ELEMENT(z, tail, elt);
- tail = elt;
- }
+kern_return_t
+mach_memory_info(
+ host_priv_t host,
+ mach_zone_name_array_t *namesp,
+ mach_msg_type_number_t *namesCntp,
+ mach_zone_info_array_t *infop,
+ mach_msg_type_number_t *infoCntp,
+ mach_memory_info_array_t *memoryInfop,
+ mach_msg_type_number_t *memoryInfoCntp)
+{
+ mach_zone_name_t *names;
+ vm_offset_t names_addr;
+ vm_size_t names_size;
- elt = elt->next;
- ADD_ELEMENT(z, tail, NULL);
+ mach_zone_info_t *info;
+ vm_offset_t info_addr;
+ vm_size_t info_size;
- ++zgc_stats.elems_kept;
- }
+ mach_memory_info_t *memory_info;
+ vm_offset_t memory_info_addr;
+ vm_size_t memory_info_size;
+ vm_size_t memory_info_vmsize;
+ unsigned int num_sites;
- /*
- * Dribble back the elements we are keeping,
- * and update the zone size info.
- */
+ unsigned int max_zones, i;
+ zone_t z;
+ mach_zone_name_t *zn;
+ mach_zone_info_t *zi;
+ kern_return_t kr;
+
+ vm_size_t used;
+ vm_map_copy_t copy;
- if (++n >= 50) {
- lock_zone(z);
- z->cur_size -= size_freed;
- size_freed = 0;
+ if (host == HOST_NULL)
+ return KERN_INVALID_HOST;
+#if CONFIG_DEBUGGER_FOR_ZONE_INFO
+ if (!PE_i_can_has_debugger(NULL))
+ return KERN_INVALID_HOST;
+#endif
- if (keep != NULL) {
- ADD_LIST_TO_ZONE(z, keep, tail);
- }
+ /*
+ * We assume that zones aren't freed once allocated.
+ * We won't pick up any zones that are allocated later.
+ */
- if (z->waiting) {
- z->waiting = FALSE;
- zone_wakeup(z);
- }
+ simple_lock(&all_zones_lock);
+ max_zones = (unsigned int)(num_zones + num_fake_zones);
+ z = first_zone;
+ simple_unlock(&all_zones_lock);
- unlock_zone(z);
+ names_size = round_page(max_zones * sizeof *names);
+ kr = kmem_alloc_pageable(ipc_kernel_map,
+ &names_addr, names_size, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS)
+ return kr;
+ names = (mach_zone_name_t *) names_addr;
+
+ info_size = round_page(max_zones * sizeof *info);
+ kr = kmem_alloc_pageable(ipc_kernel_map,
+ &info_addr, info_size, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS) {
+ kmem_free(ipc_kernel_map,
+ names_addr, names_size);
+ return kr;
+ }
+ info = (mach_zone_info_t *) info_addr;
- n = 0; tail = keep = NULL;
- }
+ num_sites = 0;
+ memory_info_addr = 0;
+ if (memoryInfop && memoryInfoCntp)
+ {
+ num_sites = VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT;
+ memory_info_size = num_sites * sizeof(*info);
+ memory_info_vmsize = round_page(memory_info_size);
+ kr = kmem_alloc_pageable(ipc_kernel_map,
+ &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS) {
+ kmem_free(ipc_kernel_map,
+ names_addr, names_size);
+ kmem_free(ipc_kernel_map,
+ info_addr, info_size);
+ return kr;
}
- /*
- * Return any remaining elements, and update
- * the zone size info.
- */
+ kr = vm_map_wire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize,
+ VM_PROT_READ|VM_PROT_WRITE|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_IPC), FALSE);
+ assert(kr == KERN_SUCCESS);
- lock_zone(z);
+ memory_info = (mach_memory_info_t *) memory_info_addr;
+ vm_page_diagnose(memory_info, num_sites);
- if (size_freed > 0 || keep != NULL) {
+ kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE);
+ assert(kr == KERN_SUCCESS);
+ }
- z->cur_size -= size_freed;
+ zn = &names[0];
+ zi = &info[0];
- if (keep != NULL) {
- ADD_LIST_TO_ZONE(z, keep, tail);
- }
+ for (i = 0; i < max_zones - num_fake_zones; i++) {
+ struct zone zcopy;
- }
+ assert(z != ZONE_NULL);
- z->doing_gc = FALSE;
- if (z->waiting) {
- z->waiting = FALSE;
- zone_wakeup(z);
- }
+ lock_zone(z);
+ zcopy = *z;
unlock_zone(z);
+
+ simple_lock(&all_zones_lock);
+ z = z->next_zone;
+ simple_unlock(&all_zones_lock);
+
+ /* assuming here the name data is static */
+ (void) strncpy(zn->mzn_name, zcopy.zone_name,
+ sizeof zn->mzn_name);
+ zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
+
+ zi->mzi_count = (uint64_t)zcopy.count;
+ zi->mzi_cur_size = ptoa_64(zcopy.page_count);
+ zi->mzi_max_size = (uint64_t)zcopy.max_size;
+ zi->mzi_elem_size = (uint64_t)zcopy.elem_size;
+ zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size;
+ zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size;
+ zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible;
+ zi->mzi_collectable = (uint64_t)zcopy.collectable;
+ zn++;
+ zi++;
}
/*
- * Reclaim the pages we are freeing.
+ * loop through the fake zones and fill them using the specialized
+ * functions
*/
+ for (i = 0; i < num_fake_zones; i++) {
+ int count, collectable, exhaustible, caller_acct;
+ vm_size_t cur_size, max_size, elem_size, alloc_size;
+ uint64_t sum_size;
+
+ strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name);
+ zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
+ fake_zones[i].query(&count, &cur_size,
+ &max_size, &elem_size,
+ &alloc_size, &sum_size,
+ &collectable, &exhaustible, &caller_acct);
+ zi->mzi_count = (uint64_t)count;
+ zi->mzi_cur_size = (uint64_t)cur_size;
+ zi->mzi_max_size = (uint64_t)max_size;
+ zi->mzi_elem_size = (uint64_t)elem_size;
+ zi->mzi_alloc_size = (uint64_t)alloc_size;
+ zi->mzi_sum_size = sum_size;
+ zi->mzi_collectable = (uint64_t)collectable;
+ zi->mzi_exhaustible = (uint64_t)exhaustible;
- while ((zp = zone_free_pages) != NULL) {
- zone_free_pages = zp->link;
-#if ZONE_ALIAS_ADDR
- z = zone_virtual_addr((vm_map_address_t)z);
-#endif
- kmem_free(zone_map, zone_map_min_address + PAGE_SIZE *
- (zp - zone_page_table), PAGE_SIZE);
- ++zgc_stats.pgs_freed;
+ zn++;
+ zi++;
}
- mutex_unlock(&zone_gc_lock);
-}
+ used = max_zones * sizeof *names;
+ if (used != names_size)
+ bzero((char *) (names_addr + used), names_size - used);
-/*
- * consider_zone_gc:
- *
- * Called by the pageout daemon when the system needs more free pages.
- */
+ kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
+ (vm_map_size_t)used, TRUE, ©);
+ assert(kr == KERN_SUCCESS);
-void
-consider_zone_gc(void)
-{
- /*
- * By default, don't attempt zone GC more frequently
- * than once / 1 minutes.
- */
+ *namesp = (mach_zone_name_t *) copy;
+ *namesCntp = max_zones;
- if (zone_gc_max_rate == 0)
- zone_gc_max_rate = (60 << SCHED_TICK_SHIFT) + 1;
+ used = max_zones * sizeof *info;
- if (zone_gc_allowed &&
- ((sched_tick > (zone_gc_last_tick + zone_gc_max_rate)) ||
- zone_gc_forced)) {
- zone_gc_forced = FALSE;
- zone_gc_last_tick = sched_tick;
- zone_gc();
- }
-}
+ if (used != info_size)
+ bzero((char *) (info_addr + used), info_size - used);
-struct fake_zone_info {
- const char* name;
- void (*func)(int *, vm_size_t *, vm_size_t *, vm_size_t *, vm_size_t *,
- int *, int *);
-};
+ kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
+ (vm_map_size_t)used, TRUE, ©);
+ assert(kr == KERN_SUCCESS);
-static struct fake_zone_info fake_zones[] = {
- {
- .name = "kernel_stacks",
- .func = stack_fake_zone_info,
- },
-#ifdef ppc
- {
- .name = "save_areas",
- .func = save_fake_zone_info,
- },
- {
- .name = "pmap_mappings",
- .func = mapping_fake_zone_info,
- },
-#endif /* ppc */
-#ifdef i386
- {
- .name = "page_tables",
- .func = pt_fake_zone_info,
- },
-#endif /* i386 */
+ *infop = (mach_zone_info_t *) copy;
+ *infoCntp = max_zones;
+
+ if (memoryInfop && memoryInfoCntp)
{
- .name = "kalloc.large",
- .func = kalloc_fake_zone_info,
- },
-};
+ kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr,
+ (vm_map_size_t)memory_info_size, TRUE, ©);
+ assert(kr == KERN_SUCCESS);
+
+ *memoryInfop = (mach_memory_info_t *) copy;
+ *memoryInfoCntp = num_sites;
+ }
+ return KERN_SUCCESS;
+}
+
+/*
+ * host_zone_info - LEGACY user interface for Mach zone information
+ * Should use mach_zone_info() instead!
+ */
kern_return_t
host_zone_info(
- host_t host,
+ host_priv_t host,
zone_name_array_t *namesp,
mach_msg_type_number_t *namesCntp,
zone_info_array_t *infop,
zone_name_t *zn;
zone_info_t *zi;
kern_return_t kr;
- size_t num_fake_zones;
+
+ vm_size_t used;
+ vm_map_copy_t copy;
+
if (host == HOST_NULL)
return KERN_INVALID_HOST;
+#if CONFIG_DEBUGGER_FOR_ZONE_INFO
+ if (!PE_i_can_has_debugger(NULL))
+ return KERN_INVALID_HOST;
+#endif
- num_fake_zones = sizeof fake_zones / sizeof fake_zones[0];
+#if defined(__LP64__)
+ if (!thread_is_64bit(current_thread()))
+ return KERN_NOT_SUPPORTED;
+#else
+ if (thread_is_64bit(current_thread()))
+ return KERN_NOT_SUPPORTED;
+#endif
/*
* We assume that zones aren't freed once allocated.
*/
simple_lock(&all_zones_lock);
- max_zones = num_zones + num_fake_zones;
+ max_zones = (unsigned int)(num_zones + num_fake_zones);
z = first_zone;
simple_unlock(&all_zones_lock);
- if (max_zones <= *namesCntp) {
- /* use in-line memory */
- names_size = *namesCntp * sizeof *names;
- names = *namesp;
- } else {
- names_size = round_page(max_zones * sizeof *names);
- kr = kmem_alloc_pageable(ipc_kernel_map,
- &names_addr, names_size);
- if (kr != KERN_SUCCESS)
- return kr;
- names = (zone_name_t *) names_addr;
+ names_size = round_page(max_zones * sizeof *names);
+ kr = kmem_alloc_pageable(ipc_kernel_map,
+ &names_addr, names_size, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS)
+ return kr;
+ names = (zone_name_t *) names_addr;
+
+ info_size = round_page(max_zones * sizeof *info);
+ kr = kmem_alloc_pageable(ipc_kernel_map,
+ &info_addr, info_size, VM_KERN_MEMORY_IPC);
+ if (kr != KERN_SUCCESS) {
+ kmem_free(ipc_kernel_map,
+ names_addr, names_size);
+ return kr;
}
- if (max_zones <= *infoCntp) {
- /* use in-line memory */
- info_size = *infoCntp * sizeof *info;
- info = *infop;
- } else {
- info_size = round_page(max_zones * sizeof *info);
- kr = kmem_alloc_pageable(ipc_kernel_map,
- &info_addr, info_size);
- if (kr != KERN_SUCCESS) {
- if (names != *namesp)
- kmem_free(ipc_kernel_map,
- names_addr, names_size);
- return kr;
- }
+ info = (zone_info_t *) info_addr;
- info = (zone_info_t *) info_addr;
- }
zn = &names[0];
zi = &info[0];
- for (i = 0; i < num_zones; i++) {
+ for (i = 0; i < max_zones - num_fake_zones; i++) {
struct zone zcopy;
assert(z != ZONE_NULL);
zn->zn_name[sizeof zn->zn_name - 1] = '\0';
zi->zi_count = zcopy.count;
- zi->zi_cur_size = zcopy.cur_size;
+ zi->zi_cur_size = ptoa(zcopy.page_count);
zi->zi_max_size = zcopy.max_size;
zi->zi_elem_size = zcopy.elem_size;
zi->zi_alloc_size = zcopy.alloc_size;
* functions
*/
for (i = 0; i < num_fake_zones; i++) {
+ int caller_acct;
+ uint64_t sum_space;
strncpy(zn->zn_name, fake_zones[i].name, sizeof zn->zn_name);
zn->zn_name[sizeof zn->zn_name - 1] = '\0';
- fake_zones[i].func(&zi->zi_count, &zi->zi_cur_size,
- &zi->zi_max_size, &zi->zi_elem_size,
- &zi->zi_alloc_size, &zi->zi_collectable,
- &zi->zi_exhaustible);
+ fake_zones[i].query(&zi->zi_count, &zi->zi_cur_size,
+ &zi->zi_max_size, &zi->zi_elem_size,
+ &zi->zi_alloc_size, &sum_space,
+ &zi->zi_collectable, &zi->zi_exhaustible, &caller_acct);
zn++;
zi++;
}
- if (names != *namesp) {
- vm_size_t used;
- vm_map_copy_t copy;
-
- used = max_zones * sizeof *names;
+ used = max_zones * sizeof *names;
+ if (used != names_size)
+ bzero((char *) (names_addr + used), names_size - used);
- if (used != names_size)
- bzero((char *) (names_addr + used), names_size - used);
-
- kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
- (vm_map_size_t)names_size, TRUE, ©);
- assert(kr == KERN_SUCCESS);
+ kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
+ (vm_map_size_t)used, TRUE, ©);
+ assert(kr == KERN_SUCCESS);
- *namesp = (zone_name_t *) copy;
- }
+ *namesp = (zone_name_t *) copy;
*namesCntp = max_zones;
- if (info != *infop) {
- vm_size_t used;
- vm_map_copy_t copy;
-
- used = max_zones * sizeof *info;
+ used = max_zones * sizeof *info;
+ if (used != info_size)
+ bzero((char *) (info_addr + used), info_size - used);
- if (used != info_size)
- bzero((char *) (info_addr + used), info_size - used);
-
- kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
- (vm_map_size_t)info_size, TRUE, ©);
- assert(kr == KERN_SUCCESS);
+ kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
+ (vm_map_size_t)used, TRUE, ©);
+ assert(kr == KERN_SUCCESS);
- *infop = (zone_info_t *) copy;
- }
+ *infop = (zone_info_t *) copy;
*infoCntp = max_zones;
return KERN_SUCCESS;
}
-#if MACH_KDB
-#include <ddb/db_command.h>
-#include <ddb/db_output.h>
-#include <kern/kern_print.h>
-
-const char *zone_labels =
-"ENTRY COUNT TOT_SZ MAX_SZ ELT_SZ ALLOC_SZ NAME";
-
-/* Forwards */
-void db_print_zone(
- zone_t addr);
-
-#if ZONE_DEBUG
-void db_zone_check_active(
- zone_t zone);
-void db_zone_print_active(
- zone_t zone);
-#endif /* ZONE_DEBUG */
-void db_zone_print_free(
- zone_t zone);
-void
-db_print_zone(
- zone_t addr)
+kern_return_t
+mach_zone_force_gc(
+ host_t host)
{
- struct zone zcopy;
- zcopy = *addr;
+ if (host == HOST_NULL)
+ return KERN_INVALID_HOST;
- db_printf("%8x %8x %8x %8x %6x %8x %s ",
- addr, zcopy.count, zcopy.cur_size,
- zcopy.max_size, zcopy.elem_size,
- zcopy.alloc_size, zcopy.zone_name);
- if (zcopy.exhaustible)
- db_printf("H");
- if (zcopy.collectable)
- db_printf("C");
- if (zcopy.expandable)
- db_printf("X");
- db_printf("\n");
-}
+ consider_zone_gc(TRUE);
-/*ARGSUSED*/
-void
-db_show_one_zone(db_expr_t addr, boolean_t have_addr,
- __unused db_expr_t count, __unused char *modif)
-{
- struct zone *z = (zone_t)((char *)0 + addr);
+ return (KERN_SUCCESS);
+}
- if (z == ZONE_NULL || !have_addr){
- db_error("No Zone\n");
- /*NOTREACHED*/
- }
+extern unsigned int stack_total;
+extern unsigned long long stack_allocs;
- db_printf("%s\n", zone_labels);
- db_print_zone(z);
-}
+#if defined(__i386__) || defined (__x86_64__)
+extern unsigned int inuse_ptepages_count;
+extern long long alloc_ptepages_count;
+#endif
-/*ARGSUSED*/
-void
-db_show_all_zones(__unused db_expr_t addr, boolean_t have_addr, db_expr_t count,
- __unused char *modif)
+void zone_display_zprint()
{
- zone_t z;
- unsigned total = 0;
-
- /*
- * Don't risk hanging by unconditionally locking,
- * risk of incoherent data is small (zones aren't freed).
- */
- have_addr = simple_lock_try(&all_zones_lock);
- count = num_zones;
- z = first_zone;
- if (have_addr) {
- simple_unlock(&all_zones_lock);
- }
+ unsigned int i;
+ zone_t the_zone;
+
+ if(first_zone!=NULL) {
+ the_zone = first_zone;
+ for (i = 0; i < num_zones; i++) {
+ if(the_zone->cur_size > (1024*1024)) {
+ printf("%.20s:\t%lu\n",the_zone->zone_name,(uintptr_t)the_zone->cur_size);
+ }
- db_printf("%s\n", zone_labels);
- for ( ; count > 0; count--) {
- if (!z) {
- db_error("Mangled Zone List\n");
- /*NOTREACHED*/
- }
- db_print_zone(z);
- total += z->cur_size,
+ if(the_zone->next_zone == NULL) {
+ break;
+ }
- have_addr = simple_lock_try(&all_zones_lock);
- z = z->next_zone;
- if (have_addr) {
- simple_unlock(&all_zones_lock);
+ the_zone = the_zone->next_zone;
}
}
- db_printf("\nTotal %8x", total);
- db_printf("\n\nzone_gc() has reclaimed %d pages\n", zgc_stats.pgs_freed);
-}
-#if ZONE_DEBUG
-void
-db_zone_check_active(
- zone_t zone)
-{
- int count = 0;
- queue_t tmp_elem;
+ printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size * stack_total));
- if (!zone_debug_enabled(zone) || !zone_check)
- return;
- tmp_elem = queue_first(&zone->active_zones);
- while (count < zone->count) {
- count++;
- if (tmp_elem == 0) {
- printf("unexpected zero element, zone=%p, count=%d\n",
- zone, count);
- assert(FALSE);
- break;
- }
- if (queue_end(tmp_elem, &zone->active_zones)) {
- printf("unexpected queue_end, zone=%p, count=%d\n",
- zone, count);
- assert(FALSE);
- break;
- }
- tmp_elem = queue_next(tmp_elem);
- }
- if (!queue_end(tmp_elem, &zone->active_zones)) {
- printf("not at queue_end, zone=%p, tmp_elem=%p\n",
- zone, tmp_elem);
- assert(FALSE);
- }
+#if defined(__i386__) || defined (__x86_64__)
+ printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE * inuse_ptepages_count));
+#endif
+
+ printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total);
}
-void
-db_zone_print_active(
- zone_t zone)
+zone_t
+zone_find_largest(void)
{
- int count = 0;
- queue_t tmp_elem;
-
- if (!zone_debug_enabled(zone)) {
- printf("zone %p debug not enabled\n", zone);
- return;
- }
- if (!zone_check) {
- printf("zone_check FALSE\n");
- return;
- }
+ unsigned int i;
+ unsigned int max_zones;
+ zone_t the_zone;
+ zone_t zone_largest;
- printf("zone %p, active elements %d\n", zone, zone->count);
- printf("active list:\n");
- tmp_elem = queue_first(&zone->active_zones);
- while (count < zone->count) {
- printf(" %p", tmp_elem);
- count++;
- if ((count % 6) == 0)
- printf("\n");
- if (tmp_elem == 0) {
- printf("\nunexpected zero element, count=%d\n", count);
- break;
- }
- if (queue_end(tmp_elem, &zone->active_zones)) {
- printf("\nunexpected queue_end, count=%d\n", count);
- break;
+ simple_lock(&all_zones_lock);
+ the_zone = first_zone;
+ max_zones = num_zones;
+ simple_unlock(&all_zones_lock);
+
+ zone_largest = the_zone;
+ for (i = 0; i < max_zones; i++) {
+ if (the_zone->cur_size > zone_largest->cur_size) {
+ zone_largest = the_zone;
}
- tmp_elem = queue_next(tmp_elem);
- }
- if (!queue_end(tmp_elem, &zone->active_zones))
- printf("\nnot at queue_end, tmp_elem=%p\n", tmp_elem);
- else
- printf("\n");
-}
-#endif /* ZONE_DEBUG */
-void
-db_zone_print_free(
- zone_t zone)
-{
- int count = 0;
- int freecount;
- vm_offset_t elem;
-
- freecount = zone_free_count(zone);
- printf("zone %p, free elements %d\n", zone, freecount);
- printf("free list:\n");
- elem = zone->free_elements;
- while (count < freecount) {
- printf(" 0x%x", elem);
- count++;
- if ((count % 6) == 0)
- printf("\n");
- if (elem == 0) {
- printf("\nunexpected zero element, count=%d\n", count);
+ if (the_zone->next_zone == NULL) {
break;
}
- elem = *((vm_offset_t *)elem);
+
+ the_zone = the_zone->next_zone;
}
- if (elem != 0)
- printf("\nnot at end of free list, elem=0x%x\n", elem);
- else
- printf("\n");
+ return zone_largest;
}
-#endif /* MACH_KDB */
-
-
#if ZONE_DEBUG
/* should we care about locks here ? */
-#if MACH_KDB
-void *
-next_element(
- zone_t z,
- void *prev)
-{
- char *elt = (char *)prev;
-
- if (!zone_debug_enabled(z))
- return(NULL);
- elt -= ZONE_DEBUG_OFFSET;
- elt = (char *) queue_next((queue_t) elt);
- if ((queue_t) elt == &z->active_zones)
- return(NULL);
- elt += ZONE_DEBUG_OFFSET;
- return(elt);
-}
-
-void *
-first_element(
- zone_t z)
-{
- char *elt;
-
- if (!zone_debug_enabled(z))
- return(NULL);
- if (queue_empty(&z->active_zones))
- return(NULL);
- elt = (char *)queue_first(&z->active_zones);
- elt += ZONE_DEBUG_OFFSET;
- return(elt);
-}
-
-/*
- * Second arg controls how many zone elements are printed:
- * 0 => none
- * n, n < 0 => all
- * n, n > 0 => last n on active list
- */
-int
-zone_count(
- zone_t z,
- int tail)
-{
- void *elt;
- int count = 0;
- boolean_t print = (tail != 0);
-
- if (tail < 0)
- tail = z->count;
- if (z->count < tail)
- tail = 0;
- tail = z->count - tail;
- for (elt = first_element(z); elt; elt = next_element(z, elt)) {
- if (print && tail <= count)
- db_printf("%8x\n", elt);
- count++;
- }
- assert(count == z->count);
- return(count);
-}
-#endif /* MACH_KDB */
-
-#define zone_in_use(z) ( z->count || z->free_elements )
+#define zone_in_use(z) ( z->count || z->free_elements \
+ || !queue_empty(&z->pages.all_free) \
+ || !queue_empty(&z->pages.intermediate) \
+ || (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign)))
void
zone_debug_enable(
z->elem_size -= ZONE_DEBUG_OFFSET;
z->active_zones.next = z->active_zones.prev = NULL;
}
+
+
#endif /* ZONE_DEBUG */