* @APPLE_LICENSE_HEADER_END@
*/
+#include <kern/sched_prim.h>
+#include <kern/ledger.h>
+#include <kern/policy_internal.h>
+
+#include <libkern/OSDebug.h>
+
#include <mach/mach_types.h>
+
+#include <machine/limits.h>
+
+#include <vm/vm_compressor_pager.h>
+#include <vm/vm_kern.h> /* kmem_alloc */
#include <vm/vm_page.h>
+#include <vm/vm_pageout.h>
+#include <vm/vm_protos.h>
#include <vm/vm_purgeable_internal.h>
+
#include <sys/kdebug.h>
+/*
+ * LOCK ORDERING for task-owned purgeable objects
+ *
+ * Whenever we need to hold multiple locks while adding to, removing from,
+ * or scanning a task's task_objq list of VM objects it owns, locks should
+ * be taken in this order:
+ *
+ * VM object ==> vm_purgeable_queue_lock ==> owner_task->task_objq_lock
+ *
+ * If one needs to acquire the VM object lock after any of the other 2 locks,
+ * one needs to use vm_object_lock_try() and, if that fails, release the
+ * other locks and retake them all in the correct order.
+ */
+
+extern vm_pressure_level_t memorystatus_vm_pressure_level;
+
struct token {
token_cnt_t count;
+ token_idx_t prev;
token_idx_t next;
};
-struct token tokens[MAX_VOLATILE];
+struct token *tokens;
+token_idx_t token_q_max_cnt = 0;
+vm_size_t token_q_cur_size = 0;
-token_idx_t token_free_idx = 0; /* head of free queue */
-token_cnt_t token_init_count = 1; /* token 0 is reserved!! */
-token_cnt_t token_new_pagecount = 0; /* count of pages that will
- * be added onto token queue */
+token_idx_t token_free_idx = 0; /* head of free queue */
+token_idx_t token_init_idx = 1; /* token 0 is reserved!! */
+int32_t token_new_pagecount = 0; /* count of pages that will
+ * be added onto token queue */
-int available_for_purge = 0; /* increase when ripe token
- * added, decrease when ripe
- * token removed protect with
- * page_queue_lock */
+int available_for_purge = 0; /* increase when ripe token
+ * added, decrease when ripe
+ * token removed.
+ * protected by page_queue_lock
+ */
+
+static int token_q_allocating = 0; /* flag for singlethreading
+ * allocator */
struct purgeable_q purgeable_queues[PURGEABLE_Q_TYPE_MAX];
+queue_head_t purgeable_nonvolatile_queue;
+int purgeable_nonvolatile_count;
-#define TOKEN_ADD 0x40/* 0x100 */
-#define TOKEN_DELETE 0x41/* 0x104 */
-#define TOKEN_QUEUE_ADVANCE 0x42/* 0x108 actually means "token ripened" */
-#define TOKEN_OBJECT_PURGED 0x43/* 0x10c */
-#define OBJECT_ADDED 0x50/* 0x140 */
-#define OBJECT_REMOVED 0x51/* 0x144 */
+decl_lck_mtx_data(, vm_purgeable_queue_lock)
-static void vm_purgeable_q_advance(uint32_t num_pages, purgeable_q_t queue);
static token_idx_t vm_purgeable_token_remove_first(purgeable_q_t queue);
+static void vm_purgeable_stats_helper(vm_purgeable_stat_t *stat, purgeable_q_t queue, int group, task_t target_task);
+
+
#if MACH_ASSERT
static void
vm_purgeable_token_check_queue(purgeable_q_t queue)
token_idx_t unripe = 0;
int our_inactive_count;
+#if DEVELOPMENT
+ static unsigned lightweight_check = 0;
+
+ /*
+ * Due to performance impact, only perform this check
+ * every 100 times on DEVELOPMENT kernels.
+ */
+ if (lightweight_check++ < 100) {
+ return;
+ }
+
+ lightweight_check = 0;
+#endif
+
while (token) {
if (tokens[token].count != 0) {
assert(queue->token_q_unripe);
}
page_cnt += tokens[token].count;
}
- if (tokens[token].next == 0)
+ if (tokens[token].next == 0) {
assert(queue->token_q_tail == token);
+ }
token_cnt++;
token = tokens[token].next;
}
- if (unripe)
+ if (unripe) {
assert(queue->token_q_unripe == unripe);
+ }
assert(token_cnt == queue->debug_count_tokens);
- our_inactive_count = page_cnt + queue->new_pages + token_new_pagecount;
- assert(our_inactive_count >= 0);
- assert((uint32_t) our_inactive_count == vm_page_inactive_count);
+
+ /* obsolete queue doesn't maintain token counts */
+ if (queue->type != PURGEABLE_Q_TYPE_OBSOLETE) {
+ our_inactive_count = page_cnt + queue->new_pages + token_new_pagecount;
+ assert(our_inactive_count >= 0);
+ assert((uint32_t) our_inactive_count == vm_page_inactive_count - vm_page_cleaned_count);
+ }
}
#endif
+/*
+ * Add a token. Allocate token queue memory if necessary.
+ * Call with page queue locked.
+ */
kern_return_t
vm_purgeable_token_add(purgeable_q_t queue)
{
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
/* new token */
token_idx_t token;
enum purgeable_q_type i;
- if (token_init_count < MAX_VOLATILE) { /* lazy token array init */
- token = token_init_count;
- token_init_count++;
- } else if (token_free_idx) {
+find_available_token:
+
+ if (token_free_idx) { /* unused tokens available */
token = token_free_idx;
token_free_idx = tokens[token_free_idx].next;
- } else {
- return KERN_FAILURE;
+ } else if (token_init_idx < token_q_max_cnt) { /* lazy token array init */
+ token = token_init_idx;
+ token_init_idx++;
+ } else { /* allocate more memory */
+ /* Wait if another thread is inside the memory alloc section */
+ while (token_q_allocating) {
+ wait_result_t res = lck_mtx_sleep(&vm_page_queue_lock,
+ LCK_SLEEP_DEFAULT,
+ (event_t)&token_q_allocating,
+ THREAD_UNINT);
+ if (res != THREAD_AWAKENED) {
+ return KERN_ABORTED;
+ }
+ }
+ ;
+
+ /* Check whether memory is still maxed out */
+ if (token_init_idx < token_q_max_cnt) {
+ goto find_available_token;
+ }
+
+ /* Still no memory. Allocate some. */
+ token_q_allocating = 1;
+
+ /* Drop page queue lock so we can allocate */
+ vm_page_unlock_queues();
+
+ struct token *new_loc;
+ vm_size_t alloc_size = token_q_cur_size + PAGE_SIZE;
+ kern_return_t result;
+
+ if (alloc_size / sizeof(struct token) > TOKEN_COUNT_MAX) {
+ result = KERN_RESOURCE_SHORTAGE;
+ } else {
+ if (token_q_cur_size) {
+ result = kmem_realloc(kernel_map,
+ (vm_offset_t) tokens,
+ token_q_cur_size,
+ (vm_offset_t *) &new_loc,
+ alloc_size, VM_KERN_MEMORY_OSFMK);
+ } else {
+ result = kmem_alloc(kernel_map,
+ (vm_offset_t *) &new_loc,
+ alloc_size, VM_KERN_MEMORY_OSFMK);
+ }
+ }
+
+ vm_page_lock_queues();
+
+ if (result) {
+ /* Unblock waiting threads */
+ token_q_allocating = 0;
+ thread_wakeup((event_t)&token_q_allocating);
+ return result;
+ }
+
+ /* If we get here, we allocated new memory. Update pointers and
+ * dealloc old range */
+ struct token *old_tokens = tokens;
+ tokens = new_loc;
+ vm_size_t old_token_q_cur_size = token_q_cur_size;
+ token_q_cur_size = alloc_size;
+ token_q_max_cnt = (token_idx_t) (token_q_cur_size /
+ sizeof(struct token));
+ assert(token_init_idx < token_q_max_cnt); /* We must have a free token now */
+
+ if (old_token_q_cur_size) { /* clean up old mapping */
+ vm_page_unlock_queues();
+ /* kmem_realloc leaves the old region mapped. Get rid of it. */
+ kmem_free(kernel_map, (vm_offset_t)old_tokens, old_token_q_cur_size);
+ vm_page_lock_queues();
+ }
+
+ /* Unblock waiting threads */
+ token_q_allocating = 0;
+ thread_wakeup((event_t)&token_q_allocating);
+
+ goto find_available_token;
}
+ assert(token);
+
/*
* the new pagecount we got need to be applied to all queues except
* obsolete
*/
for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) {
- purgeable_queues[i].new_pages += token_new_pagecount;
- assert(purgeable_queues[i].new_pages >= 0);
- assert((uint64_t) (purgeable_queues[i].new_pages) <= TOKEN_COUNT_MAX);
+ int64_t pages = purgeable_queues[i].new_pages += token_new_pagecount;
+ assert(pages >= 0);
+ assert(pages <= TOKEN_COUNT_MAX);
+ purgeable_queues[i].new_pages = (int32_t) pages;
+ assert(purgeable_queues[i].new_pages == pages);
}
token_new_pagecount = 0;
/* set token counter value */
- if (queue->type != PURGEABLE_Q_TYPE_OBSOLETE)
+ if (queue->type != PURGEABLE_Q_TYPE_OBSOLETE) {
tokens[token].count = queue->new_pages;
- else
- tokens[token].count = 0; /* all obsolete items are
- * ripe immediately */
+ } else {
+ tokens[token].count = 0; /* all obsolete items are
+ * ripe immediately */
+ }
queue->new_pages = 0;
/* put token on token counter list */
if (queue->token_q_tail == 0) {
assert(queue->token_q_head == 0 && queue->token_q_unripe == 0);
queue->token_q_head = token;
+ tokens[token].prev = 0;
} else {
tokens[queue->token_q_tail].next = token;
+ tokens[token].prev = queue->token_q_tail;
}
- if (queue->token_q_unripe == 0) { /* only ripe tokens (token
- * count == 0) in queue */
- if (tokens[token].count > 0)
- queue->token_q_unripe = token; /* first unripe token */
- else
- available_for_purge++; /* added a ripe token?
- * increase available count */
+ if (queue->token_q_unripe == 0) { /* only ripe tokens (token
+ * count == 0) in queue */
+ if (tokens[token].count > 0) {
+ queue->token_q_unripe = token; /* first unripe token */
+ } else {
+ available_for_purge++; /* added a ripe token?
+ * increase available count */
+ }
}
queue->token_q_tail = token;
vm_purgeable_token_check_queue(&purgeable_queues[PURGEABLE_Q_TYPE_LIFO]);
KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_ADD)),
- queue->type,
- tokens[token].count, /* num pages on token
- * (last token) */
- queue->debug_count_tokens,
- 0,
- 0);
+ queue->type,
+ tokens[token].count, /* num pages on token
+ * (last token) */
+ queue->debug_count_tokens,
+ 0,
+ 0);
#endif
return KERN_SUCCESS;
/*
* Remove first token from queue and return its index. Add its count to the
* count of the next token.
+ * Call with page queue locked.
*/
-static token_idx_t
+static token_idx_t
vm_purgeable_token_remove_first(purgeable_q_t queue)
{
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
token_idx_t token;
token = queue->token_q_head;
assert(available_for_purge >= 0);
}
- if (queue->token_q_tail == queue->token_q_head)
+ if (queue->token_q_tail == queue->token_q_head) {
assert(tokens[token].next == 0);
+ }
queue->token_q_head = tokens[token].next;
if (queue->token_q_head) {
tokens[queue->token_q_head].count += tokens[token].count;
+ tokens[queue->token_q_head].prev = 0;
} else {
/* currently no other tokens in the queue */
/*
vm_purgeable_token_check_queue(queue);
KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_DELETE)),
- queue->type,
- tokens[queue->token_q_head].count, /* num pages on new
- * first token */
- token_new_pagecount, /* num pages waiting for
- * next token */
- available_for_purge,
- 0);
+ queue->type,
+ tokens[queue->token_q_head].count, /* num pages on new
+ * first token */
+ token_new_pagecount, /* num pages waiting for
+ * next token */
+ available_for_purge,
+ 0);
#endif
}
return token;
}
-/* Delete first token from queue. Return token to token queue. */
+static token_idx_t
+vm_purgeable_token_remove_last(purgeable_q_t queue)
+{
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ token_idx_t token;
+ token = queue->token_q_tail;
+
+ assert(token);
+
+ if (token) {
+ assert(queue->token_q_head);
+
+ if (queue->token_q_tail == queue->token_q_head) {
+ assert(tokens[token].next == 0);
+ }
+
+ if (queue->token_q_unripe == 0) {
+ /* we're removing a ripe token. decrease count */
+ available_for_purge--;
+ assert(available_for_purge >= 0);
+ } else if (queue->token_q_unripe == token) {
+ /* we're removing the only unripe token */
+ queue->token_q_unripe = 0;
+ }
+
+ if (token == queue->token_q_head) {
+ /* token is the last one in the queue */
+ queue->token_q_head = 0;
+ queue->token_q_tail = 0;
+ } else {
+ token_idx_t new_tail;
+
+ new_tail = tokens[token].prev;
+
+ assert(new_tail);
+ assert(tokens[new_tail].next == token);
+
+ queue->token_q_tail = new_tail;
+ tokens[new_tail].next = 0;
+ }
+
+ queue->new_pages += tokens[token].count;
+
+#if MACH_ASSERT
+ queue->debug_count_tokens--;
+ vm_purgeable_token_check_queue(queue);
+
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_DELETE)),
+ queue->type,
+ tokens[queue->token_q_head].count, /* num pages on new
+ * first token */
+ token_new_pagecount, /* num pages waiting for
+ * next token */
+ available_for_purge,
+ 0);
+#endif
+ }
+ return token;
+}
+
+/*
+ * Delete first token from queue. Return token to token queue.
+ * Call with page queue locked.
+ */
void
vm_purgeable_token_delete_first(purgeable_q_t queue)
{
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
token_idx_t token = vm_purgeable_token_remove_first(queue);
if (token) {
/* stick removed token on free queue */
tokens[token].next = token_free_idx;
+ tokens[token].prev = 0;
token_free_idx = token;
}
}
-
void
-vm_purgeable_q_advance_all(uint32_t num_pages)
+vm_purgeable_token_delete_last(purgeable_q_t queue)
{
- /*
- * don't need to advance obsolete queue - all items are ripe there,
- * always
- */
- vm_purgeable_q_advance(num_pages, &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]);
- vm_purgeable_q_advance(num_pages, &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ token_idx_t token = vm_purgeable_token_remove_last(queue);
+
+ if (token) {
+ /* stick removed token on free queue */
+ tokens[token].next = token_free_idx;
+ tokens[token].prev = 0;
+ token_free_idx = token;
+ }
}
-/*
- * Decrements token counters. A token counter can be zero, this means the
- * object is ripe to be purged. It is not purged immediately, because that
- * could cause several objects to be purged even if purging one would satisfy
- * the memory needs. Instead, the pageout thread purges one after the other
- * by calling vm_purgeable_object_purge_one and then rechecking the memory
- * balance.
- */
-static void
-vm_purgeable_q_advance(uint32_t num_pages, purgeable_q_t queue)
+
+/* Call with page queue locked. */
+void
+vm_purgeable_q_advance_all()
{
- /* Iterate over tokens as long as there are unripe tokens. */
- while (queue->token_q_unripe) {
- int min = (tokens[queue->token_q_unripe].count < num_pages) ?
- tokens[queue->token_q_unripe].count : num_pages;
- tokens[queue->token_q_unripe].count -= min;
- num_pages -= min;
-
- if (tokens[queue->token_q_unripe].count == 0) {
- queue->token_q_unripe = tokens[queue->token_q_unripe].next;
- available_for_purge++;
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_QUEUE_ADVANCE)),
- queue->type,
- tokens[queue->token_q_head].count, /* num pages on new
- * first token */
- 0,
- available_for_purge,
- 0);
- continue; /* One token ripened. Make sure to
- * check the next. */
- }
- if (num_pages == 0)
- break; /* Current token not ripe and no more pages.
- * Work done. */
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ /* check queue counters - if they get really large, scale them back.
+ * They tend to get that large when there is no purgeable queue action */
+ int i;
+ if (token_new_pagecount > (TOKEN_NEW_PAGECOUNT_MAX >> 1)) { /* a system idling years might get there */
+ for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) {
+ int64_t pages = purgeable_queues[i].new_pages += token_new_pagecount;
+ assert(pages >= 0);
+ assert(pages <= TOKEN_COUNT_MAX);
+ purgeable_queues[i].new_pages = (int32_t) pages;
+ assert(purgeable_queues[i].new_pages == pages);
+ }
+ token_new_pagecount = 0;
}
/*
- * if there are no unripe tokens in the queue, decrement the
- * new_pages counter instead new_pages can be negative, but must be
- * canceled out by token_new_pagecount -- since inactive queue as a
- * whole always contains a nonnegative number of pages
+ * Decrement token counters. A token counter can be zero, this means the
+ * object is ripe to be purged. It is not purged immediately, because that
+ * could cause several objects to be purged even if purging one would satisfy
+ * the memory needs. Instead, the pageout thread purges one after the other
+ * by calling vm_purgeable_object_purge_one and then rechecking the memory
+ * balance.
+ *
+ * No need to advance obsolete queue - all items are ripe there,
+ * always
*/
- if (!queue->token_q_unripe) {
- queue->new_pages -= num_pages;
- assert((int32_t) token_new_pagecount + queue->new_pages >= 0);
- }
+ for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) {
+ purgeable_q_t queue = &purgeable_queues[i];
+ uint32_t num_pages = 1;
+
+ /* Iterate over tokens as long as there are unripe tokens. */
+ while (queue->token_q_unripe) {
+ if (tokens[queue->token_q_unripe].count && num_pages) {
+ tokens[queue->token_q_unripe].count -= 1;
+ num_pages -= 1;
+ }
+
+ if (tokens[queue->token_q_unripe].count == 0) {
+ queue->token_q_unripe = tokens[queue->token_q_unripe].next;
+ available_for_purge++;
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_RIPEN)),
+ queue->type,
+ tokens[queue->token_q_head].count, /* num pages on new
+ * first token */
+ 0,
+ available_for_purge,
+ 0);
+ continue; /* One token ripened. Make sure to
+ * check the next. */
+ }
+ if (num_pages == 0) {
+ break; /* Current token not ripe and no more pages.
+ * Work done. */
+ }
+ }
+
+ /*
+ * if there are no unripe tokens in the queue, decrement the
+ * new_pages counter instead new_pages can be negative, but must be
+ * canceled out by token_new_pagecount -- since inactive queue as a
+ * whole always contains a nonnegative number of pages
+ */
+ if (!queue->token_q_unripe) {
+ queue->new_pages -= num_pages;
+ assert((int32_t) token_new_pagecount + queue->new_pages >= 0);
+ }
#if MACH_ASSERT
- vm_purgeable_token_check_queue(queue);
+ vm_purgeable_token_check_queue(queue);
#endif
+ }
}
/*
* Yes - purge it. Remove token. If there is no ripe token, remove ripe
* token from other queue and migrate unripe token from this
* queue to other queue.
+ * Call with page queue locked.
*/
static void
vm_purgeable_token_remove_ripe(purgeable_q_t queue)
{
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
assert(queue->token_q_head && tokens[queue->token_q_head].count == 0);
/* return token to free list. advance token list. */
token_idx_t new_head = tokens[queue->token_q_head].next;
tokens[queue->token_q_head].next = token_free_idx;
+ tokens[queue->token_q_head].prev = 0;
token_free_idx = queue->token_q_head;
queue->token_q_head = new_head;
- if (new_head == 0)
+ tokens[new_head].prev = 0;
+ if (new_head == 0) {
queue->token_q_tail = 0;
+ }
#if MACH_ASSERT
queue->debug_count_tokens--;
* Delete a ripe token from the given queue. If there are no ripe tokens on
* that queue, delete a ripe token from queue2, and migrate an unripe token
* from queue to queue2
+ * Call with page queue locked.
*/
static void
vm_purgeable_token_choose_and_delete_ripe(purgeable_q_t queue, purgeable_q_t queue2)
{
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
assert(queue->token_q_head);
if (tokens[queue->token_q_head].count == 0) {
token_cnt_t count;
/* remove token from queue1 */
- assert(queue->token_q_unripe == queue->token_q_head); /* queue1 had no unripe
- * tokens, remember? */
+ assert(queue->token_q_unripe == queue->token_q_head); /* queue1 had no unripe
+ * tokens, remember? */
token = vm_purgeable_token_remove_first(queue);
assert(token);
/* migrate to queue2 */
/* go to migration target loc */
- token_idx_t *token_in_queue2 = &queue2->token_q_head;
- while (*token_in_queue2 && count > tokens[*token_in_queue2].count) {
- count -= tokens[*token_in_queue2].count;
- token_in_queue2 = &tokens[*token_in_queue2].next;
- }
- if ((*token_in_queue2 == queue2->token_q_unripe) || /* becomes the first
- * unripe token */
- (queue2->token_q_unripe == 0))
- queue2->token_q_unripe = token; /* must update unripe
- * pointer */
+ token_idx_t token_to_insert_before = queue2->token_q_head, token_to_insert_after;
- /* insert token */
- tokens[token].count = count;
- tokens[token].next = *token_in_queue2;
+ while (token_to_insert_before != 0 && count > tokens[token_to_insert_before].count) {
+ count -= tokens[token_to_insert_before].count;
+ token_to_insert_before = tokens[token_to_insert_before].next;
+ }
+
+ /* token_to_insert_before is now set correctly */
+ /* should the inserted token become the first unripe token? */
+ if ((token_to_insert_before == queue2->token_q_unripe) || (queue2->token_q_unripe == 0)) {
+ queue2->token_q_unripe = token; /* if so, must update unripe pointer */
+ }
/*
- * if inserting at end, reduce new_pages by that value if
- * inserting before token, reduce counter of that token
+ * insert token.
+ * if inserting at end, reduce new_pages by that value;
+ * otherwise, reduce counter of next token
*/
- if (*token_in_queue2 == 0) { /* insertion at end of queue2 */
- queue2->token_q_tail = token; /* must update tail
- * pointer */
+
+ tokens[token].count = count;
+
+ if (token_to_insert_before != 0) {
+ token_to_insert_after = tokens[token_to_insert_before].prev;
+
+ tokens[token].next = token_to_insert_before;
+ tokens[token_to_insert_before].prev = token;
+
+ assert(tokens[token_to_insert_before].count >= count);
+ tokens[token_to_insert_before].count -= count;
+ } else {
+ /* if we ran off the end of the list, the token to insert after is the tail */
+ token_to_insert_after = queue2->token_q_tail;
+
+ tokens[token].next = 0;
+ queue2->token_q_tail = token;
+
assert(queue2->new_pages >= (int32_t) count);
queue2->new_pages -= count;
+ }
+
+ if (token_to_insert_after != 0) {
+ tokens[token].prev = token_to_insert_after;
+ tokens[token_to_insert_after].next = token;
} else {
- assert(tokens[*token_in_queue2].count >= count);
- tokens[*token_in_queue2].count -= count;
+ /* is this case possible? */
+ tokens[token].prev = 0;
+ queue2->token_q_head = token;
}
- *token_in_queue2 = token;
#if MACH_ASSERT
queue2->debug_count_tokens++;
}
/* Find an object that can be locked. Returns locked object. */
-static vm_object_t
-vm_purgeable_object_find_and_lock(purgeable_q_t queue, int group)
+/* Call with purgeable queue locked. */
+static vm_object_t
+vm_purgeable_object_find_and_lock(
+ purgeable_q_t queue,
+ int group,
+ boolean_t pick_ripe)
{
+ vm_object_t object, best_object;
+ int object_task_importance;
+ int best_object_task_importance;
+ int best_object_skipped;
+ int num_objects_skipped;
+ int try_lock_failed = 0;
+ int try_lock_succeeded = 0;
+ task_t owner;
+
+ best_object = VM_OBJECT_NULL;
+ best_object_task_importance = INT_MAX;
+
+ LCK_MTX_ASSERT(&vm_purgeable_queue_lock, LCK_MTX_ASSERT_OWNED);
/*
* Usually we would pick the first element from a queue. However, we
* might not be able to get a lock on it, in which case we try the
* remaining elements in order.
*/
- vm_object_t object;
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_LOOP) | DBG_FUNC_START),
+ pick_ripe,
+ group,
+ VM_KERNEL_UNSLIDE_OR_PERM(queue),
+ 0,
+ 0);
+
+ num_objects_skipped = 0;
for (object = (vm_object_t) queue_first(&queue->objq[group]);
- !queue_end(&queue->objq[group], (queue_entry_t) object);
- object = (vm_object_t) queue_next(&object->objq)) {
- if (vm_object_lock_try(object)) {
- /* Locked. Great. We'll take it. Remove and return. */
- queue_remove(&queue->objq[group], object,
- vm_object_t, objq);
- object->objq.next = 0;
- object->objq.prev = 0;
-#if MACH_ASSERT
- queue->debug_count_objects--;
-#endif
- return object;
+ !queue_end(&queue->objq[group], (queue_entry_t) object);
+ object = (vm_object_t) queue_next(&object->objq),
+ num_objects_skipped++) {
+ /*
+ * To prevent us looping for an excessively long time, choose
+ * the best object we've seen after looking at PURGEABLE_LOOP_MAX elements.
+ * If we haven't seen an eligible object after PURGEABLE_LOOP_MAX elements,
+ * we keep going until we find the first eligible object.
+ */
+ if ((num_objects_skipped >= PURGEABLE_LOOP_MAX) && (best_object != NULL)) {
+ break;
+ }
+
+ if (pick_ripe &&
+ !object->purgeable_when_ripe) {
+ /* we want an object that has a ripe token */
+ continue;
+ }
+
+ object_task_importance = 0;
+
+ /*
+ * We don't want to use VM_OBJECT_OWNER() here: we want to
+ * distinguish kernel-owned and disowned objects.
+ * Disowned objects have no owner and will have no importance...
+ */
+ owner = object->vo_owner;
+ if (owner != NULL && owner != VM_OBJECT_OWNER_DISOWNED) {
+#if CONFIG_EMBEDDED
+#if CONFIG_JETSAM
+ object_task_importance = proc_get_memstat_priority((struct proc *)get_bsdtask_info(owner), TRUE);
+#endif /* CONFIG_JETSAM */
+#else /* CONFIG_EMBEDDED */
+ object_task_importance = task_importance_estimate(owner);
+#endif /* CONFIG_EMBEDDED */
+ }
+
+ if (object_task_importance < best_object_task_importance) {
+ if (vm_object_lock_try(object)) {
+ try_lock_succeeded++;
+ if (best_object != VM_OBJECT_NULL) {
+ /* forget about previous best object */
+ vm_object_unlock(best_object);
+ }
+ best_object = object;
+ best_object_task_importance = object_task_importance;
+ best_object_skipped = num_objects_skipped;
+ if (best_object_task_importance == 0) {
+ /* can't get any better: stop looking */
+ break;
+ }
+ } else {
+ try_lock_failed++;
+ }
}
}
- return 0;
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_LOOP) | DBG_FUNC_END),
+ num_objects_skipped, /* considered objects */
+ try_lock_failed,
+ try_lock_succeeded,
+ VM_KERNEL_UNSLIDE_OR_PERM(best_object),
+ ((best_object == NULL) ? 0 : best_object->resident_page_count));
+
+ object = best_object;
+
+ if (object == VM_OBJECT_NULL) {
+ return VM_OBJECT_NULL;
+ }
+
+ /* Locked. Great. We'll take it. Remove and return. */
+// printf("FOUND PURGEABLE object %p skipped %d\n", object, num_objects_skipped);
+
+ vm_object_lock_assert_exclusive(object);
+
+ queue_remove(&queue->objq[group], object,
+ vm_object_t, objq);
+ object->objq.next = NULL;
+ object->objq.prev = NULL;
+ object->purgeable_queue_type = PURGEABLE_Q_TYPE_MAX;
+ object->purgeable_queue_group = 0;
+ /* one less volatile object for this object's owner */
+ vm_purgeable_volatile_owner_update(VM_OBJECT_OWNER(object), -1);
+
+#if DEBUG
+ object->vo_purgeable_volatilizer = NULL;
+#endif /* DEBUG */
+
+ /* keep queue of non-volatile objects */
+ queue_enter(&purgeable_nonvolatile_queue, object,
+ vm_object_t, objq);
+ assert(purgeable_nonvolatile_count >= 0);
+ purgeable_nonvolatile_count++;
+ assert(purgeable_nonvolatile_count > 0);
+ /* one more nonvolatile object for this object's owner */
+ vm_purgeable_nonvolatile_owner_update(VM_OBJECT_OWNER(object), +1);
+
+#if MACH_ASSERT
+ queue->debug_count_objects--;
+#endif
+ return object;
}
+/* Can be called without holding locks */
void
-vm_purgeable_object_purge_one(void)
+vm_purgeable_object_purge_all(void)
{
enum purgeable_q_type i;
int group;
- vm_object_t object = 0;
+ vm_object_t object;
+ unsigned int purged_count;
+ uint32_t collisions;
- mutex_lock(&vm_purgeable_queue_lock);
+ purged_count = 0;
+ collisions = 0;
+
+restart:
+ lck_mtx_lock(&vm_purgeable_queue_lock);
/* Cycle through all queues */
for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) {
- purgeable_q_t queue = &purgeable_queues[i];
+ purgeable_q_t queue;
+
+ queue = &purgeable_queues[i];
/*
- * Are there any ripe tokens on this queue? If yes, we'll
- * find an object to purge there
+ * Look through all groups, starting from the lowest. If
+ * we find an object in that group, try to lock it (this can
+ * fail). If locking is successful, we can drop the queue
+ * lock, remove a token and then purge the object.
*/
- if (!(queue->token_q_head && tokens[queue->token_q_head].count == 0))
- continue; /* no token? Look at next purgeable
- * queue */
+ for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
+ while (!queue_empty(&queue->objq[group])) {
+ object = vm_purgeable_object_find_and_lock(queue, group, FALSE);
+ if (object == VM_OBJECT_NULL) {
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ mutex_pause(collisions++);
+ goto restart;
+ }
+
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+
+ /* Lock the page queue here so we don't hold it
+ * over the whole, legthy operation */
+ if (object->purgeable_when_ripe) {
+ vm_page_lock_queues();
+ vm_purgeable_token_remove_first(queue);
+ vm_page_unlock_queues();
+ }
+
+ (void) vm_object_purge(object, 0);
+ assert(object->purgable == VM_PURGABLE_EMPTY);
+ /* no change in purgeable accounting */
+
+ vm_object_unlock(object);
+ purged_count++;
+ goto restart;
+ }
+ assert(queue->debug_count_objects >= 0);
+ }
+ }
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_ALL)),
+ purged_count, /* # of purged objects */
+ 0,
+ available_for_purge,
+ 0,
+ 0);
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ return;
+}
+
+boolean_t
+vm_purgeable_object_purge_one_unlocked(
+ int force_purge_below_group)
+{
+ boolean_t retval;
+
+ vm_page_lock_queues();
+ retval = vm_purgeable_object_purge_one(force_purge_below_group, 0);
+ vm_page_unlock_queues();
+
+ return retval;
+}
+
+boolean_t
+vm_purgeable_object_purge_one(
+ int force_purge_below_group,
+ int flags)
+{
+ enum purgeable_q_type i;
+ int group;
+ vm_object_t object = 0;
+ purgeable_q_t queue, queue2;
+ boolean_t forced_purge;
+ unsigned int resident_page_count;
+
+
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE)) | DBG_FUNC_START,
+ force_purge_below_group, flags, 0, 0, 0);
+
+ /* Need the page queue lock since we'll be changing the token queue. */
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+
+ /* Cycle through all queues */
+ for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) {
+ queue = &purgeable_queues[i];
+
+ if (force_purge_below_group == 0) {
+ /*
+ * Are there any ripe tokens on this queue? If yes,
+ * we'll find an object to purge there
+ */
+ if (!queue->token_q_head) {
+ /* no token: look at next purgeable queue */
+ continue;
+ }
+
+ if (tokens[queue->token_q_head].count != 0) {
+ /* no ripe token: next queue */
+ continue;
+ }
+ }
/*
* Now look through all groups, starting from the lowest. If
* lock, remove a token and then purge the object.
*/
for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
- if (!queue_empty(&queue->objq[group]) && (object = vm_purgeable_object_find_and_lock(queue, group))) {
- mutex_unlock(&vm_purgeable_queue_lock);
- vm_purgeable_token_choose_and_delete_ripe(queue, 0);
+ if (!queue->token_q_head ||
+ tokens[queue->token_q_head].count != 0) {
+ /* no tokens or no ripe tokens */
+
+ if (group >= force_purge_below_group) {
+ /* no more groups to force-purge */
+ break;
+ }
+
+ /*
+ * Try and purge an object in this group
+ * even though no tokens are ripe.
+ */
+ if (!queue_empty(&queue->objq[group]) &&
+ (object = vm_purgeable_object_find_and_lock(queue, group, FALSE))) {
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ if (object->purgeable_when_ripe) {
+ vm_purgeable_token_delete_first(queue);
+ }
+ forced_purge = TRUE;
+ goto purge_now;
+ }
+
+ /* nothing to purge in this group: next group */
+ continue;
+ }
+ if (!queue_empty(&queue->objq[group]) &&
+ (object = vm_purgeable_object_find_and_lock(queue, group, TRUE))) {
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ if (object->purgeable_when_ripe) {
+ vm_purgeable_token_choose_and_delete_ripe(queue, 0);
+ }
+ forced_purge = FALSE;
goto purge_now;
- } else {
- assert(i != PURGEABLE_Q_TYPE_OBSOLETE); /* obsolete queue must
- * have all objects in
- * group 0 */
- purgeable_q_t queue2 = &purgeable_queues[i != PURGEABLE_Q_TYPE_FIFO ? PURGEABLE_Q_TYPE_FIFO : PURGEABLE_Q_TYPE_LIFO];
-
- if (!queue_empty(&queue2->objq[group]) && (object = vm_purgeable_object_find_and_lock(queue2, group))) {
- mutex_unlock(&vm_purgeable_queue_lock);
- vm_purgeable_token_choose_and_delete_ripe(queue2, queue);
+ }
+ if (i != PURGEABLE_Q_TYPE_OBSOLETE) {
+ /* This is the token migration case, and it works between
+ * FIFO and LIFO only */
+ queue2 = &purgeable_queues[i != PURGEABLE_Q_TYPE_FIFO ?
+ PURGEABLE_Q_TYPE_FIFO :
+ PURGEABLE_Q_TYPE_LIFO];
+
+ if (!queue_empty(&queue2->objq[group]) &&
+ (object = vm_purgeable_object_find_and_lock(queue2, group, TRUE))) {
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ if (object->purgeable_when_ripe) {
+ vm_purgeable_token_choose_and_delete_ripe(queue2, queue);
+ }
+ forced_purge = FALSE;
goto purge_now;
}
}
}
}
/*
- * because we have to do a try_lock on the objects which could fail,
- * we could end up with no object to purge at this time, even though
- * we have objects in a purgeable state
- */
- mutex_unlock(&vm_purgeable_queue_lock);
- return;
+ * because we have to do a try_lock on the objects which could fail,
+ * we could end up with no object to purge at this time, even though
+ * we have objects in a purgeable state
+ */
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE)) | DBG_FUNC_END,
+ 0, 0, available_for_purge, 0, 0);
+
+ return FALSE;
purge_now:
assert(object);
- (void) vm_object_purge(object);
+ vm_page_unlock_queues(); /* Unlock for call to vm_object_purge() */
+// printf("%sPURGING object %p task %p importance %d queue %d group %d force_purge_below_group %d memorystatus_vm_pressure_level %d\n", forced_purge ? "FORCED " : "", object, object->vo_owner, task_importance_estimate(object->vo_owner), i, group, force_purge_below_group, memorystatus_vm_pressure_level);
+ resident_page_count = object->resident_page_count;
+ (void) vm_object_purge(object, flags);
+ assert(object->purgable == VM_PURGABLE_EMPTY);
+ /* no change in purgeable accounting */
vm_object_unlock(object);
+ vm_page_lock_queues();
+
+ vm_pageout_vminfo.vm_pageout_pages_purged += resident_page_count;
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_OBJECT_PURGED)),
- (unsigned int) object, /* purged object */
- 0,
- available_for_purge,
- 0,
- 0);
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE)) | DBG_FUNC_END,
+ VM_KERNEL_UNSLIDE_OR_PERM(object), /* purged object */
+ resident_page_count,
+ available_for_purge,
+ 0,
+ 0);
+
+ return TRUE;
}
+/* Called with object lock held */
void
vm_purgeable_object_add(vm_object_t object, purgeable_q_t queue, int group)
{
- mutex_lock(&vm_purgeable_queue_lock);
+ vm_object_lock_assert_exclusive(object);
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+
+ assert(object->objq.next != NULL);
+ assert(object->objq.prev != NULL);
+ queue_remove(&purgeable_nonvolatile_queue, object,
+ vm_object_t, objq);
+ object->objq.next = NULL;
+ object->objq.prev = NULL;
+ assert(purgeable_nonvolatile_count > 0);
+ purgeable_nonvolatile_count--;
+ assert(purgeable_nonvolatile_count >= 0);
+ /* one less nonvolatile object for this object's owner */
+ vm_purgeable_nonvolatile_owner_update(VM_OBJECT_OWNER(object), -1);
- if (queue->type == PURGEABLE_Q_TYPE_OBSOLETE)
+ if (queue->type == PURGEABLE_Q_TYPE_OBSOLETE) {
group = 0;
- if (queue->type != PURGEABLE_Q_TYPE_LIFO) /* fifo and obsolete are
- * fifo-queued */
- queue_enter(&queue->objq[group], object, vm_object_t, objq); /* last to die */
- else
- queue_enter_first(&queue->objq[group], object, vm_object_t, objq); /* first to die */
+ }
+
+ if (queue->type != PURGEABLE_Q_TYPE_LIFO) { /* fifo and obsolete are
+ * fifo-queued */
+ queue_enter(&queue->objq[group], object, vm_object_t, objq); /* last to die */
+ } else {
+ queue_enter_first(&queue->objq[group], object, vm_object_t, objq); /* first to die */
+ }
+ /* one more volatile object for this object's owner */
+ vm_purgeable_volatile_owner_update(VM_OBJECT_OWNER(object), +1);
+
+ object->purgeable_queue_type = queue->type;
+ object->purgeable_queue_group = group;
+
+#if DEBUG
+ assert(object->vo_purgeable_volatilizer == NULL);
+ object->vo_purgeable_volatilizer = current_task();
+ OSBacktrace(&object->purgeable_volatilizer_bt[0],
+ ARRAY_COUNT(object->purgeable_volatilizer_bt));
+#endif /* DEBUG */
#if MACH_ASSERT
queue->debug_count_objects++;
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_ADDED)),
- 0,
- tokens[queue->token_q_head].count,
- queue->type,
- group,
- 0);
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_ADD)),
+ 0,
+ tokens[queue->token_q_head].count,
+ queue->type,
+ group,
+ 0);
#endif
- mutex_unlock(&vm_purgeable_queue_lock);
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
}
/* Look for object. If found, remove from purgeable queue. */
+/* Called with object lock held */
purgeable_q_t
vm_purgeable_object_remove(vm_object_t object)
{
- enum purgeable_q_type i;
- int group;
+ int group;
+ enum purgeable_q_type type;
+ purgeable_q_t queue;
+
+ vm_object_lock_assert_exclusive(object);
+
+ type = object->purgeable_queue_type;
+ group = object->purgeable_queue_group;
+
+ if (type == PURGEABLE_Q_TYPE_MAX) {
+ if (object->objq.prev || object->objq.next) {
+ panic("unmarked object on purgeable q");
+ }
+
+ return NULL;
+ } else if (!(object->objq.prev && object->objq.next)) {
+ panic("marked object not on purgeable q");
+ }
+
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+
+ queue = &purgeable_queues[type];
+
+ queue_remove(&queue->objq[group], object, vm_object_t, objq);
+ object->objq.next = NULL;
+ object->objq.prev = NULL;
+ /* one less volatile object for this object's owner */
+ vm_purgeable_volatile_owner_update(VM_OBJECT_OWNER(object), -1);
+#if DEBUG
+ object->vo_purgeable_volatilizer = NULL;
+#endif /* DEBUG */
+ /* keep queue of non-volatile objects */
+ if (object->alive && !object->terminating) {
+ queue_enter(&purgeable_nonvolatile_queue, object,
+ vm_object_t, objq);
+ assert(purgeable_nonvolatile_count >= 0);
+ purgeable_nonvolatile_count++;
+ assert(purgeable_nonvolatile_count > 0);
+ /* one more nonvolatile object for this object's owner */
+ vm_purgeable_nonvolatile_owner_update(VM_OBJECT_OWNER(object), +1);
+ }
- mutex_lock(&vm_purgeable_queue_lock);
- for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) {
- purgeable_q_t queue = &purgeable_queues[i];
- for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
- vm_object_t o;
- for (o = (vm_object_t) queue_first(&queue->objq[group]);
- !queue_end(&queue->objq[group], (queue_entry_t) o);
- o = (vm_object_t) queue_next(&o->objq)) {
- if (o == object) {
- queue_remove(&queue->objq[group], object,
- vm_object_t, objq);
#if MACH_ASSERT
- queue->debug_count_objects--;
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_REMOVED)),
- 0,
- tokens[queue->token_q_head].count,
- queue->type,
- group,
- 0);
+ queue->debug_count_objects--;
+ KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_REMOVE)),
+ 0,
+ tokens[queue->token_q_head].count,
+ queue->type,
+ group,
+ 0);
#endif
- mutex_unlock(&vm_purgeable_queue_lock);
- object->objq.next = 0;
- object->objq.prev = 0;
- return &purgeable_queues[i];
- }
+
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+
+ object->purgeable_queue_type = PURGEABLE_Q_TYPE_MAX;
+ object->purgeable_queue_group = 0;
+
+ vm_object_lock_assert_exclusive(object);
+
+ return &purgeable_queues[type];
+}
+
+void
+vm_purgeable_stats_helper(vm_purgeable_stat_t *stat, purgeable_q_t queue, int group, task_t target_task)
+{
+ LCK_MTX_ASSERT(&vm_purgeable_queue_lock, LCK_MTX_ASSERT_OWNED);
+
+ stat->count = stat->size = 0;
+ vm_object_t object;
+ for (object = (vm_object_t) queue_first(&queue->objq[group]);
+ !queue_end(&queue->objq[group], (queue_entry_t) object);
+ object = (vm_object_t) queue_next(&object->objq)) {
+ if (!target_task || VM_OBJECT_OWNER(object) == target_task) {
+ stat->count++;
+ stat->size += (object->resident_page_count * PAGE_SIZE);
+ }
+ }
+ return;
+}
+
+void
+vm_purgeable_stats(vm_purgeable_info_t info, task_t target_task)
+{
+ purgeable_q_t queue;
+ int group;
+
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+
+ /* Populate fifo_data */
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
+ for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
+ vm_purgeable_stats_helper(&(info->fifo_data[group]), queue, group, target_task);
+ }
+
+ /* Populate lifo_data */
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO];
+ for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
+ vm_purgeable_stats_helper(&(info->lifo_data[group]), queue, group, target_task);
+ }
+
+ /* Populate obsolete data */
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE];
+ vm_purgeable_stats_helper(&(info->obsolete_data), queue, 0, target_task);
+
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ return;
+}
+
+#if DEVELOPMENT || DEBUG
+static void
+vm_purgeable_account_volatile_queue(
+ purgeable_q_t queue,
+ int group,
+ task_t task,
+ pvm_account_info_t acnt_info)
+{
+ vm_object_t object;
+ uint64_t compressed_count;
+
+ for (object = (vm_object_t) queue_first(&queue->objq[group]);
+ !queue_end(&queue->objq[group], (queue_entry_t) object);
+ object = (vm_object_t) queue_next(&object->objq)) {
+ if (VM_OBJECT_OWNER(object) == task) {
+ compressed_count = vm_compressor_pager_get_count(object->pager);
+ acnt_info->pvm_volatile_compressed_count += compressed_count;
+ acnt_info->pvm_volatile_count += (object->resident_page_count - object->wired_page_count);
+ acnt_info->pvm_nonvolatile_count += object->wired_page_count;
+ }
+ }
+}
+
+/*
+ * Walks the purgeable object queues and calculates the usage
+ * associated with the objects for the given task.
+ */
+kern_return_t
+vm_purgeable_account(
+ task_t task,
+ pvm_account_info_t acnt_info)
+{
+ queue_head_t *nonvolatile_q;
+ vm_object_t object;
+ int group;
+ int state;
+ uint64_t compressed_count;
+ purgeable_q_t volatile_q;
+
+
+ if ((task == NULL) || (acnt_info == NULL)) {
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ acnt_info->pvm_volatile_count = 0;
+ acnt_info->pvm_volatile_compressed_count = 0;
+ acnt_info->pvm_nonvolatile_count = 0;
+ acnt_info->pvm_nonvolatile_compressed_count = 0;
+
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+
+ nonvolatile_q = &purgeable_nonvolatile_queue;
+ for (object = (vm_object_t) queue_first(nonvolatile_q);
+ !queue_end(nonvolatile_q, (queue_entry_t) object);
+ object = (vm_object_t) queue_next(&object->objq)) {
+ if (VM_OBJECT_OWNER(object) == task) {
+ state = object->purgable;
+ compressed_count = vm_compressor_pager_get_count(object->pager);
+ if (state == VM_PURGABLE_EMPTY) {
+ acnt_info->pvm_volatile_count += (object->resident_page_count - object->wired_page_count);
+ acnt_info->pvm_volatile_compressed_count += compressed_count;
+ } else {
+ acnt_info->pvm_nonvolatile_count += (object->resident_page_count - object->wired_page_count);
+ acnt_info->pvm_nonvolatile_compressed_count += compressed_count;
}
+ acnt_info->pvm_nonvolatile_count += object->wired_page_count;
+ }
+ }
+
+ volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE];
+ vm_purgeable_account_volatile_queue(volatile_q, 0, task, acnt_info);
+
+ volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
+ for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
+ vm_purgeable_account_volatile_queue(volatile_q, group, task, acnt_info);
+ }
+
+ volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO];
+ for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
+ vm_purgeable_account_volatile_queue(volatile_q, group, task, acnt_info);
+ }
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+
+ acnt_info->pvm_volatile_count = (acnt_info->pvm_volatile_count * PAGE_SIZE);
+ acnt_info->pvm_volatile_compressed_count = (acnt_info->pvm_volatile_compressed_count * PAGE_SIZE);
+ acnt_info->pvm_nonvolatile_count = (acnt_info->pvm_nonvolatile_count * PAGE_SIZE);
+ acnt_info->pvm_nonvolatile_compressed_count = (acnt_info->pvm_nonvolatile_compressed_count * PAGE_SIZE);
+
+ return KERN_SUCCESS;
+}
+#endif /* DEVELOPMENT || DEBUG */
+
+void
+vm_purgeable_disown(
+ task_t task)
+{
+ vm_object_t next_object;
+ vm_object_t object;
+ int collisions;
+
+ if (task == NULL) {
+ return;
+ }
+
+ /*
+ * Scan the purgeable objects queues for objects owned by "task".
+ * This has to be done "atomically" under the "vm_purgeable_queue"
+ * lock, to ensure that no new purgeable object get associated
+ * with this task or moved between queues while we're scanning.
+ */
+
+ /*
+ * Scan non-volatile queue for objects owned by "task".
+ */
+
+ collisions = 0;
+
+again:
+ if (task->task_purgeable_disowned) {
+ /* task has already disowned its purgeable memory */
+ assert(task->task_volatile_objects == 0);
+ assert(task->task_nonvolatile_objects == 0);
+ return;
+ }
+
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+ task_objq_lock(task);
+
+ task->task_purgeable_disowning = TRUE;
+
+ for (object = (vm_object_t) queue_first(&task->task_objq);
+ !queue_end(&task->task_objq, (queue_entry_t) object);
+ object = next_object) {
+ if (task->task_nonvolatile_objects == 0 &&
+ task->task_volatile_objects == 0) {
+ /* no more purgeable objects owned by "task" */
+ break;
+ }
+
+ next_object = (vm_object_t) queue_next(&object->task_objq);
+ if (object->purgable == VM_PURGABLE_DENY) {
+ /* not a purgeable object: skip */
+ continue;
+ }
+
+#if DEBUG
+ assert(object->vo_purgeable_volatilizer == NULL);
+#endif /* DEBUG */
+ assert(object->vo_owner == task);
+ if (!vm_object_lock_try(object)) {
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ task_objq_unlock(task);
+ mutex_pause(collisions++);
+ goto again;
+ }
+ /* transfer ownership to the kernel */
+ assert(VM_OBJECT_OWNER(object) != kernel_task);
+ vm_object_ownership_change(
+ object,
+ object->vo_ledger_tag, /* unchanged */
+ VM_OBJECT_OWNER_DISOWNED, /* new owner */
+ TRUE); /* old_owner->task_objq locked */
+ assert(object->vo_owner == VM_OBJECT_OWNER_DISOWNED);
+ vm_object_unlock(object);
+ }
+
+ if (__improbable(task->task_volatile_objects != 0 ||
+ task->task_nonvolatile_objects != 0)) {
+ panic("%s(%p): volatile=%d nonvolatile=%d q=%p q_first=%p q_last=%p",
+ __FUNCTION__,
+ task,
+ task->task_volatile_objects,
+ task->task_nonvolatile_objects,
+ &task->task_objq,
+ queue_first(&task->task_objq),
+ queue_last(&task->task_objq));
+ }
+
+ /* there shouldn't be any purgeable objects owned by task now */
+ assert(task->task_volatile_objects == 0);
+ assert(task->task_nonvolatile_objects == 0);
+ assert(task->task_purgeable_disowning);
+
+ /* and we don't need to try and disown again */
+ task->task_purgeable_disowned = TRUE;
+
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ task_objq_unlock(task);
+}
+
+
+static uint64_t
+vm_purgeable_queue_purge_task_owned(
+ purgeable_q_t queue,
+ int group,
+ task_t task)
+{
+ vm_object_t object = VM_OBJECT_NULL;
+ int collisions = 0;
+ uint64_t num_pages_purged = 0;
+
+ num_pages_purged = 0;
+ collisions = 0;
+
+look_again:
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+
+ for (object = (vm_object_t) queue_first(&queue->objq[group]);
+ !queue_end(&queue->objq[group], (queue_entry_t) object);
+ object = (vm_object_t) queue_next(&object->objq)) {
+ if (object->vo_owner != task) {
+ continue;
+ }
+
+ /* found an object: try and grab it */
+ if (!vm_object_lock_try(object)) {
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+ mutex_pause(collisions++);
+ goto look_again;
+ }
+ /* got it ! */
+
+ collisions = 0;
+
+ /* remove object from purgeable queue */
+ queue_remove(&queue->objq[group], object,
+ vm_object_t, objq);
+ object->objq.next = NULL;
+ object->objq.prev = NULL;
+ object->purgeable_queue_type = PURGEABLE_Q_TYPE_MAX;
+ object->purgeable_queue_group = 0;
+ /* one less volatile object for this object's owner */
+ assert(object->vo_owner == task);
+ vm_purgeable_volatile_owner_update(task, -1);
+
+#if DEBUG
+ object->vo_purgeable_volatilizer = NULL;
+#endif /* DEBUG */
+ queue_enter(&purgeable_nonvolatile_queue, object,
+ vm_object_t, objq);
+ assert(purgeable_nonvolatile_count >= 0);
+ purgeable_nonvolatile_count++;
+ assert(purgeable_nonvolatile_count > 0);
+ /* one more nonvolatile object for this object's owner */
+ assert(object->vo_owner == task);
+ vm_purgeable_nonvolatile_owner_update(task, +1);
+
+ /* unlock purgeable queues */
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+
+ if (object->purgeable_when_ripe) {
+ /* remove a token */
+ vm_page_lock_queues();
+ vm_purgeable_token_remove_first(queue);
+ vm_page_unlock_queues();
+ }
+
+ /* purge the object */
+ num_pages_purged += vm_object_purge(object, 0);
+
+ assert(object->purgable == VM_PURGABLE_EMPTY);
+ /* no change for purgeable accounting */
+ vm_object_unlock(object);
+
+ /* we unlocked the purgeable queues, so start over */
+ goto look_again;
+ }
+
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+
+ return num_pages_purged;
+}
+
+uint64_t
+vm_purgeable_purge_task_owned(
+ task_t task)
+{
+ purgeable_q_t queue = NULL;
+ int group = 0;
+ uint64_t num_pages_purged = 0;
+
+ num_pages_purged = 0;
+
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE];
+ num_pages_purged += vm_purgeable_queue_purge_task_owned(queue,
+ 0,
+ task);
+
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
+ for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
+ num_pages_purged += vm_purgeable_queue_purge_task_owned(queue,
+ group,
+ task);
+ }
+
+ queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO];
+ for (group = 0; group < NUM_VOLATILE_GROUPS; group++) {
+ num_pages_purged += vm_purgeable_queue_purge_task_owned(queue,
+ group,
+ task);
+ }
+
+ return num_pages_purged;
+}
+
+void
+vm_purgeable_nonvolatile_enqueue(
+ vm_object_t object,
+ task_t owner)
+{
+ vm_object_lock_assert_exclusive(object);
+
+ assert(object->purgable == VM_PURGABLE_NONVOLATILE);
+ assert(object->vo_owner == NULL);
+
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+
+ if (owner != NULL &&
+ owner->task_purgeable_disowning) {
+ /* task is exiting and no longer tracking purgeable objects */
+ owner = VM_OBJECT_OWNER_DISOWNED;
+ }
+ if (owner == NULL) {
+ owner = kernel_task;
+ }
+#if DEBUG
+ OSBacktrace(&object->purgeable_owner_bt[0],
+ ARRAY_COUNT(object->purgeable_owner_bt));
+ object->vo_purgeable_volatilizer = NULL;
+#endif /* DEBUG */
+
+ vm_object_ownership_change(object,
+ object->vo_ledger_tag, /* tag unchanged */
+ owner,
+ FALSE); /* task_objq_locked */
+
+ assert(object->objq.next == NULL);
+ assert(object->objq.prev == NULL);
+
+ queue_enter(&purgeable_nonvolatile_queue, object,
+ vm_object_t, objq);
+ assert(purgeable_nonvolatile_count >= 0);
+ purgeable_nonvolatile_count++;
+ assert(purgeable_nonvolatile_count > 0);
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+
+ vm_object_lock_assert_exclusive(object);
+}
+
+void
+vm_purgeable_nonvolatile_dequeue(
+ vm_object_t object)
+{
+ task_t owner;
+
+ vm_object_lock_assert_exclusive(object);
+
+ owner = VM_OBJECT_OWNER(object);
+#if DEBUG
+ assert(object->vo_purgeable_volatilizer == NULL);
+#endif /* DEBUG */
+ if (owner != NULL) {
+ /*
+ * Update the owner's ledger to stop accounting
+ * for this object.
+ */
+ /* transfer ownership to the kernel */
+ assert(VM_OBJECT_OWNER(object) != kernel_task);
+ vm_object_ownership_change(
+ object,
+ object->vo_ledger_tag, /* unchanged */
+ VM_OBJECT_OWNER_DISOWNED, /* new owner */
+ FALSE); /* old_owner->task_objq locked */
+ assert(object->vo_owner == VM_OBJECT_OWNER_DISOWNED);
+ }
+
+ lck_mtx_lock(&vm_purgeable_queue_lock);
+ assert(object->objq.next != NULL);
+ assert(object->objq.prev != NULL);
+ queue_remove(&purgeable_nonvolatile_queue, object,
+ vm_object_t, objq);
+ object->objq.next = NULL;
+ object->objq.prev = NULL;
+ assert(purgeable_nonvolatile_count > 0);
+ purgeable_nonvolatile_count--;
+ assert(purgeable_nonvolatile_count >= 0);
+ lck_mtx_unlock(&vm_purgeable_queue_lock);
+
+ vm_object_lock_assert_exclusive(object);
+}
+
+void
+vm_purgeable_accounting(
+ vm_object_t object,
+ vm_purgable_t old_state)
+{
+ task_t owner;
+ int resident_page_count;
+ int wired_page_count;
+ int compressed_page_count;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ boolean_t do_footprint;
+
+ vm_object_lock_assert_exclusive(object);
+ assert(object->purgable != VM_PURGABLE_DENY);
+
+ owner = VM_OBJECT_OWNER(object);
+ if (owner == NULL ||
+ object->purgable == VM_PURGABLE_DENY) {
+ return;
+ }
+
+ vm_object_ledger_tag_ledgers(object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+
+ resident_page_count = object->resident_page_count;
+ wired_page_count = object->wired_page_count;
+ if (VM_CONFIG_COMPRESSOR_IS_PRESENT &&
+ object->pager != NULL) {
+ compressed_page_count =
+ vm_compressor_pager_get_count(object->pager);
+ } else {
+ compressed_page_count = 0;
+ }
+
+ if (old_state == VM_PURGABLE_VOLATILE ||
+ old_state == VM_PURGABLE_EMPTY) {
+ /* less volatile bytes in ledger */
+ ledger_debit(owner->ledger,
+ ledger_idx_volatile,
+ ptoa_64(resident_page_count - wired_page_count));
+ /* less compressed volatile bytes in ledger */
+ ledger_debit(owner->ledger,
+ ledger_idx_volatile_compressed,
+ ptoa_64(compressed_page_count));
+
+ /* more non-volatile bytes in ledger */
+ ledger_credit(owner->ledger,
+ ledger_idx_nonvolatile,
+ ptoa_64(resident_page_count - wired_page_count));
+ /* more compressed non-volatile bytes in ledger */
+ ledger_credit(owner->ledger,
+ ledger_idx_nonvolatile_compressed,
+ ptoa_64(compressed_page_count));
+ if (do_footprint) {
+ /* more footprint */
+ ledger_credit(owner->ledger,
+ task_ledgers.phys_footprint,
+ ptoa_64(resident_page_count
+ + compressed_page_count
+ - wired_page_count));
+ }
+ } else if (old_state == VM_PURGABLE_NONVOLATILE) {
+ /* less non-volatile bytes in ledger */
+ ledger_debit(owner->ledger,
+ ledger_idx_nonvolatile,
+ ptoa_64(resident_page_count - wired_page_count));
+ /* less compressed non-volatile bytes in ledger */
+ ledger_debit(owner->ledger,
+ ledger_idx_nonvolatile_compressed,
+ ptoa_64(compressed_page_count));
+ if (do_footprint) {
+ /* less footprint */
+ ledger_debit(owner->ledger,
+ task_ledgers.phys_footprint,
+ ptoa_64(resident_page_count
+ + compressed_page_count
+ - wired_page_count));
+ }
+
+ /* more volatile bytes in ledger */
+ ledger_credit(owner->ledger,
+ ledger_idx_volatile,
+ ptoa_64(resident_page_count - wired_page_count));
+ /* more compressed volatile bytes in ledger */
+ ledger_credit(owner->ledger,
+ ledger_idx_volatile_compressed,
+ ptoa_64(compressed_page_count));
+ } else {
+ panic("vm_purgeable_accounting(%p): "
+ "unexpected old_state=%d\n",
+ object, old_state);
+ }
+
+ vm_object_lock_assert_exclusive(object);
+}
+
+void
+vm_purgeable_nonvolatile_owner_update(
+ task_t owner,
+ int delta)
+{
+ if (owner == NULL || delta == 0) {
+ return;
+ }
+
+ if (delta > 0) {
+ assert(owner->task_nonvolatile_objects >= 0);
+ OSAddAtomic(delta, &owner->task_nonvolatile_objects);
+ assert(owner->task_nonvolatile_objects > 0);
+ } else {
+ assert(owner->task_nonvolatile_objects > delta);
+ OSAddAtomic(delta, &owner->task_nonvolatile_objects);
+ assert(owner->task_nonvolatile_objects >= 0);
+ }
+}
+
+void
+vm_purgeable_volatile_owner_update(
+ task_t owner,
+ int delta)
+{
+ if (owner == NULL || delta == 0) {
+ return;
+ }
+
+ if (delta > 0) {
+ assert(owner->task_volatile_objects >= 0);
+ OSAddAtomic(delta, &owner->task_volatile_objects);
+ assert(owner->task_volatile_objects > 0);
+ } else {
+ assert(owner->task_volatile_objects > delta);
+ OSAddAtomic(delta, &owner->task_volatile_objects);
+ assert(owner->task_volatile_objects >= 0);
+ }
+}
+
+void
+vm_object_owner_compressed_update(
+ vm_object_t object,
+ int delta)
+{
+ task_t owner;
+ int ledger_idx_volatile;
+ int ledger_idx_nonvolatile;
+ int ledger_idx_volatile_compressed;
+ int ledger_idx_nonvolatile_compressed;
+ boolean_t do_footprint;
+
+ vm_object_lock_assert_exclusive(object);
+
+ owner = VM_OBJECT_OWNER(object);
+
+ if (delta == 0 ||
+ !object->internal ||
+ (object->purgable == VM_PURGABLE_DENY &&
+ !object->vo_ledger_tag) ||
+ owner == NULL) {
+ /* not an owned purgeable (or tagged) VM object: nothing to update */
+ return;
+ }
+
+ vm_object_ledger_tag_ledgers(object,
+ &ledger_idx_volatile,
+ &ledger_idx_nonvolatile,
+ &ledger_idx_volatile_compressed,
+ &ledger_idx_nonvolatile_compressed,
+ &do_footprint);
+ switch (object->purgable) {
+ case VM_PURGABLE_DENY:
+ /* not purgeable: must be ledger-tagged */
+ assert(object->vo_ledger_tag != VM_OBJECT_LEDGER_TAG_NONE);
+ /* fallthru */
+ case VM_PURGABLE_NONVOLATILE:
+ if (delta > 0) {
+ ledger_credit(owner->ledger,
+ ledger_idx_nonvolatile_compressed,
+ ptoa_64(delta));
+ if (do_footprint) {
+ ledger_credit(owner->ledger,
+ task_ledgers.phys_footprint,
+ ptoa_64(delta));
+ }
+ } else {
+ ledger_debit(owner->ledger,
+ ledger_idx_nonvolatile_compressed,
+ ptoa_64(-delta));
+ if (do_footprint) {
+ ledger_debit(owner->ledger,
+ task_ledgers.phys_footprint,
+ ptoa_64(-delta));
+ }
+ }
+ break;
+ case VM_PURGABLE_VOLATILE:
+ case VM_PURGABLE_EMPTY:
+ if (delta > 0) {
+ ledger_credit(owner->ledger,
+ ledger_idx_volatile_compressed,
+ ptoa_64(delta));
+ } else {
+ ledger_debit(owner->ledger,
+ ledger_idx_volatile_compressed,
+ ptoa_64(-delta));
}
+ break;
+ default:
+ panic("vm_purgeable_compressed_update(): "
+ "unexpected purgable %d for object %p\n",
+ object->purgable, object);
}
- mutex_unlock(&vm_purgeable_queue_lock);
- return 0;
}