/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
+
#include <i386/machine_routines.h>
#include <i386/io_map_entries.h>
#include <i386/cpuid.h>
#include <i386/fpu.h>
+#include <mach/processor.h>
#include <kern/processor.h>
#include <kern/machine.h>
-#include <kern/cpu_data.h>
+
#include <kern/cpu_number.h>
#include <kern/thread.h>
-#include <i386/cpu_data.h>
+#include <kern/thread_call.h>
+#include <kern/policy_internal.h>
+
+#include <prng/random.h>
#include <i386/machine_cpu.h>
-#include <i386/mp.h>
+#include <i386/lapic.h>
+#include <i386/bit_routines.h>
#include <i386/mp_events.h>
+#include <i386/pmCPU.h>
+#include <i386/trap.h>
+#include <i386/tsc.h>
#include <i386/cpu_threads.h>
+#include <i386/proc_reg.h>
+#include <mach/vm_param.h>
#include <i386/pmap.h>
+#include <i386/pmap_internal.h>
#include <i386/misc_protos.h>
-#include <mach/vm_param.h>
+#include <kern/timer_queue.h>
+#if KPC
+#include <kern/kpc.h>
+#endif
+#include <architecture/i386/pio.h>
+#include <i386/cpu_data.h>
+#if DEBUG
+#define DBG(x...) kprintf("DBG: " x)
+#else
+#define DBG(x...)
+#endif
-#define MIN(a,b) ((a)<(b)? (a) : (b))
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
-extern void initialize_screen(Boot_Video *, unsigned int);
extern void wakeup(void *);
static int max_cpus_initialized = 0;
+uint64_t LockTimeOut;
+uint64_t TLBTimeOut;
+uint64_t LockTimeOutTSC;
+uint32_t LockTimeOutUsec;
+uint64_t MutexSpin;
+uint64_t LastDebuggerEntryAllowance;
+uint64_t delay_spin_threshold;
+
+extern uint64_t panic_restart_timeout;
+
+boolean_t virtualized = FALSE;
+
+decl_simple_lock_data(static, ml_timer_evaluation_slock);
+uint32_t ml_timer_eager_evaluations;
+uint64_t ml_timer_eager_evaluation_max;
+static boolean_t ml_timer_evaluation_in_progress = FALSE;
+
+
#define MAX_CPUS_SET 0x1
#define MAX_CPUS_WAIT 0x2
vm_offset_t phys_addr,
vm_size_t size)
{
- return(io_map(phys_addr,size));
+ return(io_map(phys_addr,size,VM_WIMG_IO));
}
/* boot memory allocation */
return((vm_offset_t)NULL);
}
+
+void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
+{
+ *phys_addr = 0;
+ *size = 0;
+}
+
+
vm_offset_t
ml_static_ptovirt(
vm_offset_t paddr)
{
- return (vm_offset_t)((unsigned) paddr | LINEAR_KERNEL_ADDRESS);
+#if defined(__x86_64__)
+ return (vm_offset_t)(((unsigned long) paddr) | VM_MIN_KERNEL_ADDRESS);
+#else
+ return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS);
+#endif
}
vm_offset_t vaddr,
vm_size_t size)
{
- vm_offset_t vaddr_cur;
+ addr64_t vaddr_cur;
ppnum_t ppn;
-
- if (vaddr < VM_MIN_KERNEL_ADDRESS) return;
+ uint32_t freed_pages = 0;
+ assert(vaddr >= VM_MIN_KERNEL_ADDRESS);
assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
for (vaddr_cur = vaddr;
- vaddr_cur < round_page_32(vaddr+size);
+ vaddr_cur < round_page_64(vaddr+size);
vaddr_cur += PAGE_SIZE) {
- ppn = pmap_find_phys(kernel_pmap, (addr64_t)vaddr_cur);
+ ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
if (ppn != (vm_offset_t)NULL) {
- pmap_remove(kernel_pmap, (addr64_t)vaddr_cur, (addr64_t)(vaddr_cur+PAGE_SIZE));
- vm_page_create(ppn,(ppn+1));
- vm_page_wire_count--;
+ kernel_pmap->stats.resident_count++;
+ if (kernel_pmap->stats.resident_count >
+ kernel_pmap->stats.resident_max) {
+ kernel_pmap->stats.resident_max =
+ kernel_pmap->stats.resident_count;
+ }
+ pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur+PAGE_SIZE);
+ assert(pmap_valid_page(ppn));
+ if (IS_MANAGED_PAGE(ppn)) {
+ vm_page_create(ppn,(ppn+1));
+ freed_pages++;
+ }
}
}
+ vm_page_lockspin_queues();
+ vm_page_wire_count -= freed_pages;
+ vm_page_wire_count_initial -= freed_pages;
+ vm_page_unlock_queues();
+
+#if DEBUG
+ kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn);
+#endif
}
+
/* virtual to physical on wired pages */
vm_offset_t ml_vtophys(
vm_offset_t vaddr)
{
- return kvtophys(vaddr);
+ return (vm_offset_t)kvtophys(vaddr);
+}
+
+/*
+ * Routine: ml_nofault_copy
+ * Function: Perform a physical mode copy if the source and
+ * destination have valid translations in the kernel pmap.
+ * If translations are present, they are assumed to
+ * be wired; i.e. no attempt is made to guarantee that the
+ * translations obtained remained valid for
+ * the duration of the copy process.
+ */
+
+vm_size_t ml_nofault_copy(
+ vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
+{
+ addr64_t cur_phys_dst, cur_phys_src;
+ uint32_t count, nbytes = 0;
+
+ while (size > 0) {
+ if (!(cur_phys_src = kvtophys(virtsrc)))
+ break;
+ if (!(cur_phys_dst = kvtophys(virtdst)))
+ break;
+ if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src)))
+ break;
+ count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
+ if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK)))
+ count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK));
+ if (count > size)
+ count = (uint32_t)size;
+
+ bcopy_phys(cur_phys_src, cur_phys_dst, count);
+
+ nbytes += count;
+ virtsrc += count;
+ virtdst += count;
+ size -= count;
+ }
+
+ return nbytes;
+}
+
+/*
+ * Routine: ml_validate_nofault
+ * Function: Validate that ths address range has a valid translations
+ * in the kernel pmap. If translations are present, they are
+ * assumed to be wired; i.e. no attempt is made to guarantee
+ * that the translation persist after the check.
+ * Returns: TRUE if the range is mapped and will not cause a fault,
+ * FALSE otherwise.
+ */
+
+boolean_t ml_validate_nofault(
+ vm_offset_t virtsrc, vm_size_t size)
+{
+ addr64_t cur_phys_src;
+ uint32_t count;
+
+ while (size > 0) {
+ if (!(cur_phys_src = kvtophys(virtsrc)))
+ return FALSE;
+ if (!pmap_valid_page(i386_btop(cur_phys_src)))
+ return FALSE;
+ count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
+ if (count > size)
+ count = (uint32_t)size;
+
+ virtsrc += count;
+ size -= count;
+ }
+
+ return TRUE;
}
/* Interrupt handling */
(void) ml_set_interrupts_enabled(TRUE);
}
+
/* Get Interrupts Enabled */
boolean_t ml_get_interrupts_enabled(void)
{
unsigned long flags;
- __asm__ volatile("pushf; popl %0" : "=r" (flags));
+ __asm__ volatile("pushf; pop %0" : "=r" (flags));
return (flags & EFL_IF) != 0;
}
/* Set Interrupts Enabled */
boolean_t ml_set_interrupts_enabled(boolean_t enable)
{
- unsigned long flags;
+ unsigned long flags;
+ boolean_t istate;
+
+ __asm__ volatile("pushf; pop %0" : "=r" (flags));
- __asm__ volatile("pushf; popl %0" : "=r" (flags));
+ assert(get_interrupt_level() ? (enable == FALSE) : TRUE);
- if (enable)
- __asm__ volatile("sti");
- else
- __asm__ volatile("cli");
+ istate = ((flags & EFL_IF) != 0);
- return (flags & EFL_IF) != 0;
+ if (enable) {
+ __asm__ volatile("sti;nop");
+
+ if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT))
+ __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
+ }
+ else {
+ if (istate)
+ __asm__ volatile("cli");
+ }
+
+ return istate;
}
/* Check if running at interrupt context */
return get_interrupt_level() != 0;
}
+void ml_get_power_state(boolean_t *icp, boolean_t *pidlep) {
+ *icp = (get_interrupt_level() != 0);
+ /* These will be technically inaccurate for interrupts that occur
+ * successively within a single "idle exit" event, but shouldn't
+ * matter statistically.
+ */
+ *pidlep = (current_cpu_datap()->lcpu.package->num_idle == topoParms.nLThreadsPerPackage);
+}
+
/* Generate a fake interrupt */
void ml_cause_interrupt(void)
{
panic("ml_cause_interrupt not defined yet on Intel");
}
+/*
+ * TODO: transition users of this to kernel_thread_start_priority
+ * ml_thread_policy is an unsupported KPI
+ */
void ml_thread_policy(
thread_t thread,
- unsigned policy_id,
+__unused unsigned policy_id,
unsigned policy_info)
{
- if (policy_id == MACHINE_GROUP)
- thread_bind(thread, master_processor);
-
if (policy_info & MACHINE_NETWORK_WORKLOOP) {
- spl_t s = splsched();
+ thread_precedence_policy_data_t info;
+ __assert_only kern_return_t kret;
- thread_lock(thread);
+ info.importance = 1;
- set_priority(thread, thread->priority + 1);
-
- thread_unlock(thread);
- splx(s);
+ kret = thread_policy_set_internal(thread, THREAD_PRECEDENCE_POLICY,
+ (thread_policy_t)&info,
+ THREAD_PRECEDENCE_POLICY_COUNT);
+ assert(kret == KERN_SUCCESS);
}
}
{
boolean_t current_state;
- current_state = ml_get_interrupts_enabled();
+ current_state = ml_set_interrupts_enabled(FALSE);
PE_install_interrupt_handler(nub, source, target,
(IOInterruptHandler) handler, refCon);
(void) ml_set_interrupts_enabled(current_state);
- initialize_screen(0, kPEAcquireScreen);
+ initialize_screen(NULL, kPEAcquireScreen);
}
-static void
-cpu_idle(void)
+
+void
+machine_signal_idle(
+ processor_t processor)
{
- __asm__ volatile("sti; hlt": : :"memory");
+ cpu_interrupt(processor->cpu_id);
}
-void (*cpu_idle_handler)(void) = cpu_idle;
void
-machine_idle(void)
+machine_signal_idle_deferred(
+ __unused processor_t processor)
{
- cpu_core_t *my_core = cpu_core();
- int others_active;
-
- /*
- * We halt this cpu thread
- * unless kernel param idlehalt is false and no other thread
- * in the same core is active - if so, don't halt so that this
- * core doesn't go into a low-power mode.
- */
- others_active = !atomic_decl_and_test(
- (long *) &my_core->active_threads, 1);
- if (idlehalt || others_active) {
- DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
- cpu_idle_handler();
- DBGLOG(cpu_handle, cpu_number(), MP_UNIDLE);
- } else {
- __asm__ volatile("sti");
- }
- atomic_incl((long *) &my_core->active_threads, 1);
+ panic("Unimplemented");
}
void
-machine_signal_idle(
- processor_t processor)
+machine_signal_idle_cancel(
+ __unused processor_t processor)
{
- cpu_interrupt(PROCESSOR_DATA(processor, slot_num));
+ panic("Unimplemented");
}
-kern_return_t
-ml_processor_register(
- cpu_id_t cpu_id,
- uint32_t lapic_id,
- processor_t *processor_out,
- ipi_handler_t *ipi_handler,
- boolean_t boot_cpu)
+static kern_return_t
+register_cpu(
+ uint32_t lapic_id,
+ processor_t *processor_out,
+ boolean_t boot_cpu )
{
int target_cpu;
cpu_data_t *this_cpu_datap;
lapic_cpu_map(lapic_id, target_cpu);
- this_cpu_datap->cpu_id = cpu_id;
+ /* The cpu_id is not known at registration phase. Just do
+ * lapic_id for now
+ */
this_cpu_datap->cpu_phys_number = lapic_id;
this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
if (this_cpu_datap->cpu_console_buf == NULL)
goto failed;
+#if KPC
+ if (kpc_register_cpu(this_cpu_datap) != TRUE)
+ goto failed;
+#endif
+
if (!boot_cpu) {
+ cpu_thread_alloc(this_cpu_datap->cpu_number);
+ if (this_cpu_datap->lcpu.core == NULL)
+ goto failed;
+
+#if NCOPY_WINDOWS > 0
this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
if (this_cpu_datap->cpu_pmap == NULL)
goto failed;
+#endif
this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
if (this_cpu_datap->cpu_processor == NULL)
goto failed;
- processor_init(this_cpu_datap->cpu_processor, target_cpu);
+ /*
+ * processor_init() deferred to topology start
+ * because "slot numbers" a.k.a. logical processor numbers
+ * are not yet finalized.
+ */
}
*processor_out = this_cpu_datap->cpu_processor;
- *ipi_handler = NULL;
return KERN_SUCCESS;
failed:
cpu_processor_free(this_cpu_datap->cpu_processor);
+#if NCOPY_WINDOWS > 0
pmap_cpu_free(this_cpu_datap->cpu_pmap);
+#endif
console_cpu_free(this_cpu_datap->cpu_console_buf);
+#if KPC
+ kpc_unregister_cpu(this_cpu_datap);
+#endif /* KPC */
+
return KERN_FAILURE;
}
+
+kern_return_t
+ml_processor_register(
+ cpu_id_t cpu_id,
+ uint32_t lapic_id,
+ processor_t *processor_out,
+ boolean_t boot_cpu,
+ boolean_t start )
+{
+ static boolean_t done_topo_sort = FALSE;
+ static uint32_t num_registered = 0;
+
+ /* Register all CPUs first, and track max */
+ if( start == FALSE )
+ {
+ num_registered++;
+
+ DBG( "registering CPU lapic id %d\n", lapic_id );
+
+ return register_cpu( lapic_id, processor_out, boot_cpu );
+ }
+
+ /* Sort by topology before we start anything */
+ if( !done_topo_sort )
+ {
+ DBG( "about to start CPUs. %d registered\n", num_registered );
+
+ cpu_topology_sort( num_registered );
+ done_topo_sort = TRUE;
+ }
+
+ /* Assign the cpu ID */
+ uint32_t cpunum = -1;
+ cpu_data_t *this_cpu_datap = NULL;
+
+ /* find cpu num and pointer */
+ cpunum = ml_get_cpuid( lapic_id );
+
+ if( cpunum == 0xFFFFFFFF ) /* never heard of it? */
+ panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
+
+ this_cpu_datap = cpu_datap(cpunum);
+
+ /* fix the CPU id */
+ this_cpu_datap->cpu_id = cpu_id;
+
+ /* allocate and initialize other per-cpu structures */
+ if (!boot_cpu) {
+ mp_cpus_call_cpu_init(cpunum);
+ prng_cpu_init(cpunum);
+ }
+
+ /* output arg */
+ *processor_out = this_cpu_datap->cpu_processor;
+
+ /* OK, try and start this CPU */
+ return cpu_topology_start_cpu( cpunum );
+}
+
+
void
ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
{
return;
/*
- * Are we supporting XMM/SSE/SSE2?
+ * Are we supporting MMX/SSE/SSE2/SSE3?
* As distinct from whether the cpu has these capabilities.
*/
- os_supports_sse = get_cr4() & CR4_XMM;
- if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
+ os_supports_sse = !!(get_cr4() & CR4_OSXMM);
+
+ if (ml_fpu_avx_enabled())
+ cpu_infop->vector_unit = 9;
+ else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse)
+ cpu_infop->vector_unit = 8;
+ else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse)
+ cpu_infop->vector_unit = 7;
+ else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse)
+ cpu_infop->vector_unit = 6;
+ else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
+ cpu_infop->vector_unit = 5;
+ else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
cpu_infop->vector_unit = 4;
else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
cpu_infop->vector_unit = 3;
}
if (cpuid_infop->cache_size[L3U] > 0) {
- cpu_infop->l2_settings = 1;
- cpu_infop->l2_cache_size = cpuid_infop->cache_size[L3U];
+ cpu_infop->l3_settings = 1;
+ cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
} else {
cpu_infop->l3_settings = 0;
cpu_infop->l3_cache_size = 0xFFFFFFFF;
if (max_cpus_initialized != MAX_CPUS_SET) {
if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
/*
- * Note: max_cpus is the number of enable processors
+ * Note: max_cpus is the number of enabled processors
* that ACPI found; max_ncpus is the maximum number
* that the kernel supports or that the "cpus="
* boot-arg has set. Here we take int minimum.
*/
- machine_info.max_cpus = MIN(max_cpus, max_ncpus);
+ machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
}
if (max_cpus_initialized == MAX_CPUS_WAIT)
wakeup((event_t)&max_cpus_initialized);
return(machine_info.max_cpus);
}
-/*
- * This is called from the machine-independent routine cpu_up()
- * to perform machine-dependent info updates. Defer to cpu_thread_init().
- */
+boolean_t
+ml_wants_panic_trap_to_debugger(void)
+{
+ return FALSE;
+}
+
void
-ml_cpu_up(void)
+ml_panic_trap_to_debugger(__unused const char *panic_format_str,
+ __unused va_list *panic_args,
+ __unused unsigned int reason,
+ __unused void *ctx,
+ __unused uint64_t panic_options_mask,
+ __unused unsigned long panic_caller)
{
return;
}
/*
- * This is called from the machine-independent routine cpu_down()
- * to perform machine-dependent info updates.
+ * Routine: ml_init_lock_timeout
+ * Function:
*/
void
-ml_cpu_down(void)
+ml_init_lock_timeout(void)
{
- return;
+ uint64_t abstime;
+ uint32_t mtxspin;
+#if DEVELOPMENT || DEBUG
+ uint64_t default_timeout_ns = NSEC_PER_SEC>>2;
+#else
+ uint64_t default_timeout_ns = NSEC_PER_SEC>>1;
+#endif
+ uint32_t slto;
+ uint32_t prt;
+
+ if (PE_parse_boot_argn("slto_us", &slto, sizeof (slto)))
+ default_timeout_ns = slto * NSEC_PER_USEC;
+
+ /*
+ * LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks,
+ * and LockTimeOutUsec is in microseconds and it's 32-bits.
+ */
+ LockTimeOutUsec = (uint32_t) (default_timeout_ns / NSEC_PER_USEC);
+ nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+ LockTimeOut = abstime;
+ LockTimeOutTSC = tmrCvt(abstime, tscFCvtn2t);
+
+ /*
+ * TLBTimeOut dictates the TLB flush timeout period. It defaults to
+ * LockTimeOut but can be overriden separately. In particular, a
+ * zero value inhibits the timeout-panic and cuts a trace evnt instead
+ * - see pmap_flush_tlbs().
+ */
+ if (PE_parse_boot_argn("tlbto_us", &slto, sizeof (slto))) {
+ default_timeout_ns = slto * NSEC_PER_USEC;
+ nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+ TLBTimeOut = (uint32_t) abstime;
+ } else {
+ TLBTimeOut = LockTimeOut;
+ }
+
+#if DEVELOPMENT || DEBUG
+ reportphyreaddelayabs = LockTimeOut >> 1;
+#endif
+ if (PE_parse_boot_argn("phyreadmaxus", &slto, sizeof (slto))) {
+ default_timeout_ns = slto * NSEC_PER_USEC;
+ nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
+ reportphyreaddelayabs = abstime;
+ }
+
+ if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof (mtxspin))) {
+ if (mtxspin > USEC_PER_SEC>>4)
+ mtxspin = USEC_PER_SEC>>4;
+ nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
+ } else {
+ nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
+ }
+ MutexSpin = (unsigned int)abstime;
+
+ nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC, &LastDebuggerEntryAllowance);
+ if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof (prt)))
+ nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout);
+
+ virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0);
+ if (virtualized) {
+ int vti;
+
+ if (!PE_parse_boot_argn("vti", &vti, sizeof (vti)))
+ vti = 6;
+ printf("Timeouts adjusted for virtualization (<<%d)\n", vti);
+ kprintf("Timeouts adjusted for virtualization (<<%d):\n", vti);
+#define VIRTUAL_TIMEOUT_INFLATE64(_timeout) \
+MACRO_BEGIN \
+ kprintf("%24s: 0x%016llx ", #_timeout, _timeout); \
+ _timeout <<= vti; \
+ kprintf("-> 0x%016llx\n", _timeout); \
+MACRO_END
+#define VIRTUAL_TIMEOUT_INFLATE32(_timeout) \
+MACRO_BEGIN \
+ kprintf("%24s: 0x%08x ", #_timeout, _timeout); \
+ if ((_timeout <<vti) >> vti == _timeout) \
+ _timeout <<= vti; \
+ else \
+ _timeout = ~0; /* cap rather than overflow */ \
+ kprintf("-> 0x%08x\n", _timeout); \
+MACRO_END
+ VIRTUAL_TIMEOUT_INFLATE32(LockTimeOutUsec);
+ VIRTUAL_TIMEOUT_INFLATE64(LockTimeOut);
+ VIRTUAL_TIMEOUT_INFLATE64(LockTimeOutTSC);
+ VIRTUAL_TIMEOUT_INFLATE64(TLBTimeOut);
+ VIRTUAL_TIMEOUT_INFLATE64(MutexSpin);
+ VIRTUAL_TIMEOUT_INFLATE64(reportphyreaddelayabs);
+ }
+
+ interrupt_latency_tracker_setup();
+ simple_lock_init(&ml_timer_evaluation_slock, 0);
}
-/* Stubs for pc tracing mechanism */
+/*
+ * Threshold above which we should attempt to block
+ * instead of spinning for clock_delay_until().
+ */
-int *pc_trace_buf;
-int pc_trace_cnt = 0;
+void
+ml_init_delay_spin_threshold(int threshold_us)
+{
+ nanoseconds_to_absolutetime(threshold_us * NSEC_PER_USEC, &delay_spin_threshold);
+}
-int
-set_be_bit(void)
+boolean_t
+ml_delay_should_spin(uint64_t interval)
{
- return(0);
+ return (interval < delay_spin_threshold) ? TRUE : FALSE;
}
-int
-clr_be_bit(void)
+/*
+ * This is called from the machine-independent layer
+ * to perform machine-dependent info updates. Defer to cpu_thread_init().
+ */
+void
+ml_cpu_up(void)
{
- return(0);
+ return;
}
-int
-be_tracing(void)
+/*
+ * This is called from the machine-independent layer
+ * to perform machine-dependent info updates.
+ */
+void
+ml_cpu_down(void)
{
- return(0);
+ i386_deactivate_cpu();
+
+ return;
}
/*
{
return(current_thread_fast());
}
+
+
+boolean_t ml_is64bit(void) {
+
+ return (cpu_mode_is64bit());
+}
+
+
+boolean_t ml_thread_is64bit(thread_t thread) {
+
+ return (thread_is_64bit(thread));
+}
+
+
+boolean_t ml_state_is64bit(void *saved_state) {
+
+ return is_saved_state64(saved_state);
+}
+
+void ml_cpu_set_ldt(int selector)
+{
+ /*
+ * Avoid loading the LDT
+ * if we're setting the KERNEL LDT and it's already set.
+ */
+ if (selector == KERNEL_LDT &&
+ current_cpu_datap()->cpu_ldt == KERNEL_LDT)
+ return;
+
+ lldt(selector);
+ current_cpu_datap()->cpu_ldt = selector;
+}
+
+void ml_fp_setvalid(boolean_t value)
+{
+ fp_setvalid(value);
+}
+
+uint64_t ml_cpu_int_event_time(void)
+{
+ return current_cpu_datap()->cpu_int_event_time;
+}
+
+vm_offset_t ml_stack_remaining(void)
+{
+ uintptr_t local = (uintptr_t) &local;
+
+ if (ml_at_interrupt_context() != 0) {
+ return (local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE));
+ } else {
+ return (local - current_thread()->kernel_stack);
+ }
+}
+
+#if KASAN
+vm_offset_t ml_stack_base(void);
+vm_size_t ml_stack_size(void);
+
+vm_offset_t
+ml_stack_base(void)
+{
+ if (ml_at_interrupt_context()) {
+ return current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE;
+ } else {
+ return current_thread()->kernel_stack;
+ }
+}
+
+vm_size_t
+ml_stack_size(void)
+{
+ if (ml_at_interrupt_context()) {
+ return INTSTACK_SIZE;
+ } else {
+ return kernel_stack_size;
+ }
+}
+#endif
+
+void
+kernel_preempt_check(void)
+{
+ boolean_t intr;
+ unsigned long flags;
+
+ assert(get_preemption_level() == 0);
+
+ __asm__ volatile("pushf; pop %0" : "=r" (flags));
+
+ intr = ((flags & EFL_IF) != 0);
+
+ if ((*ast_pending() & AST_URGENT) && intr == TRUE) {
+ /*
+ * can handle interrupts and preemptions
+ * at this point
+ */
+
+ /*
+ * now cause the PRE-EMPTION trap
+ */
+ __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
+ }
+}
+
+boolean_t machine_timeout_suspended(void) {
+ return (pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity() || ml_recent_wake());
+}
+
+/* Eagerly evaluate all pending timer and thread callouts
+ */
+void ml_timer_evaluate(void) {
+ KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_START, 0, 0, 0, 0, 0);
+
+ uint64_t te_end, te_start = mach_absolute_time();
+ simple_lock(&ml_timer_evaluation_slock);
+ ml_timer_evaluation_in_progress = TRUE;
+ thread_call_delayed_timer_rescan_all();
+ mp_cpus_call(CPUMASK_ALL, ASYNC, timer_queue_expire_rescan, NULL);
+ ml_timer_evaluation_in_progress = FALSE;
+ ml_timer_eager_evaluations++;
+ te_end = mach_absolute_time();
+ ml_timer_eager_evaluation_max = MAX(ml_timer_eager_evaluation_max, (te_end - te_start));
+ simple_unlock(&ml_timer_evaluation_slock);
+
+ KERNEL_DEBUG_CONSTANT(DECR_TIMER_RESCAN|DBG_FUNC_END, 0, 0, 0, 0, 0);
+}
+
+boolean_t
+ml_timer_forced_evaluation(void) {
+ return ml_timer_evaluation_in_progress;
+}
+
+/* 32-bit right-rotate n bits */
+static inline uint32_t ror32(uint32_t val, const unsigned int n)
+{
+ __asm__ volatile("rorl %%cl,%0" : "=r" (val) : "0" (val), "c" (n));
+ return val;
+}
+
+void
+ml_entropy_collect(void)
+{
+ uint32_t tsc_lo, tsc_hi;
+ uint32_t *ep;
+
+ assert(cpu_number() == master_cpu);
+
+ /* update buffer pointer cyclically */
+ if (EntropyData.index_ptr - EntropyData.buffer == ENTROPY_BUFFER_SIZE)
+ ep = EntropyData.index_ptr = EntropyData.buffer;
+ else
+ ep = EntropyData.index_ptr++;
+
+ rdtsc_nofence(tsc_lo, tsc_hi);
+ *ep = ror32(*ep, 9) ^ tsc_lo;
+}
+
+uint64_t
+ml_energy_stat(__unused thread_t t) {
+ return 0;
+}
+
+void
+ml_gpu_stat_update(uint64_t gpu_ns_delta) {
+ current_thread()->machine.thread_gpu_ns += gpu_ns_delta;
+}
+
+uint64_t
+ml_gpu_stat(thread_t t) {
+ return t->machine.thread_gpu_ns;
+}
+
+int plctrace_enabled = 0;
+
+void _disable_preemption(void) {
+ disable_preemption_internal();
+}
+
+void _enable_preemption(void) {
+ enable_preemption_internal();
+}
+
+void plctrace_disable(void) {
+ plctrace_enabled = 0;
+}
+
+static boolean_t ml_quiescing;
+
+void ml_set_is_quiescing(boolean_t quiescing)
+{
+ assert(FALSE == ml_get_interrupts_enabled());
+ ml_quiescing = quiescing;
+}
+
+boolean_t ml_is_quiescing(void)
+{
+ assert(FALSE == ml_get_interrupts_enabled());
+ return (ml_quiescing);
+}
+
+uint64_t ml_get_booter_memory_size(void)
+{
+ return (0);
+}