/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
+
#include <i386/machine_routines.h>
#include <i386/io_map_entries.h>
#include <i386/cpuid.h>
#include <i386/fpu.h>
+#include <mach/processor.h>
#include <kern/processor.h>
#include <kern/machine.h>
#include <kern/cpu_data.h>
#include <i386/machine_cpu.h>
#include <i386/mp.h>
#include <i386/mp_events.h>
-#include <i386/cpu_threads.h>
#include <i386/pmap.h>
#include <i386/misc_protos.h>
+#include <i386/pmCPU.h>
+#include <i386/proc_reg.h>
+#include <i386/tsc.h>
+#include <i386/cpu_threads.h>
#include <mach/vm_param.h>
-
-#define MIN(a,b) ((a)<(b)? (a) : (b))
-
-extern void initialize_screen(Boot_Video *, unsigned int);
+#if MACH_KDB
+#include <i386/db_machdep.h>
+#include <ddb/db_aout.h>
+#include <ddb/db_access.h>
+#include <ddb/db_sym.h>
+#include <ddb/db_variables.h>
+#include <ddb/db_command.h>
+#include <ddb/db_output.h>
+#include <ddb/db_expr.h>
+#endif
+
+#if DEBUG
+#define DBG(x...) kprintf("DBG: " x)
+#else
+#define DBG(x...)
+#endif
+
+extern thread_t Shutdown_context(thread_t thread, void (*doshutdown)(processor_t),processor_t processor);
extern void wakeup(void *);
+extern unsigned KernelRelocOffset;
static int max_cpus_initialized = 0;
+unsigned int LockTimeOut;
+unsigned int LockTimeOutTSC;
+unsigned int MutexSpin;
+
#define MAX_CPUS_SET 0x1
#define MAX_CPUS_WAIT 0x2
vm_offset_t phys_addr,
vm_size_t size)
{
- return(io_map(phys_addr,size));
+ return(io_map(phys_addr,size,VM_WIMG_IO));
}
/* boot memory allocation */
return((vm_offset_t)NULL);
}
+
+void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
+{
+ *phys_addr = bounce_pool_base;
+ *size = bounce_pool_size;
+}
+
+
+vm_offset_t
+ml_boot_ptovirt(
+ vm_offset_t paddr)
+{
+ return (vm_offset_t)((paddr-KernelRelocOffset) | LINEAR_KERNEL_ADDRESS);
+}
+
vm_offset_t
ml_static_ptovirt(
vm_offset_t paddr)
vm_offset_t vaddr_cur;
ppnum_t ppn;
- if (vaddr < VM_MIN_KERNEL_ADDRESS) return;
+// if (vaddr < VM_MIN_KERNEL_ADDRESS) return;
assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
vaddr_cur += PAGE_SIZE) {
ppn = pmap_find_phys(kernel_pmap, (addr64_t)vaddr_cur);
if (ppn != (vm_offset_t)NULL) {
+ kernel_pmap->stats.resident_count++;
+ if (kernel_pmap->stats.resident_count >
+ kernel_pmap->stats.resident_max) {
+ kernel_pmap->stats.resident_max =
+ kernel_pmap->stats.resident_count;
+ }
pmap_remove(kernel_pmap, (addr64_t)vaddr_cur, (addr64_t)(vaddr_cur+PAGE_SIZE));
vm_page_create(ppn,(ppn+1));
vm_page_wire_count--;
}
}
+
/* virtual to physical on wired pages */
vm_offset_t ml_vtophys(
vm_offset_t vaddr)
return kvtophys(vaddr);
}
+/*
+ * Routine: ml_nofault_copy
+ * Function: Perform a physical mode copy if the source and
+ * destination have valid translations in the kernel pmap.
+ * If translations are present, they are assumed to
+ * be wired; i.e. no attempt is made to guarantee that the
+ * translations obtained remained valid for
+ * the duration of the copy process.
+ */
+
+vm_size_t ml_nofault_copy(
+ vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
+{
+ addr64_t cur_phys_dst, cur_phys_src;
+ uint32_t count, nbytes = 0;
+
+ while (size > 0) {
+ if (!(cur_phys_src = kvtophys(virtsrc)))
+ break;
+ if (!(cur_phys_dst = kvtophys(virtdst)))
+ break;
+ if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src)))
+ break;
+ count = PAGE_SIZE - (cur_phys_src & PAGE_MASK);
+ if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK)))
+ count = PAGE_SIZE - (cur_phys_dst & PAGE_MASK);
+ if (count > size)
+ count = size;
+
+ bcopy_phys(cur_phys_src, cur_phys_dst, count);
+
+ nbytes += count;
+ virtsrc += count;
+ virtdst += count;
+ size -= count;
+ }
+
+ return nbytes;
+}
+
/* Interrupt handling */
/* Initialize Interrupts */
__asm__ volatile("pushf; popl %0" : "=r" (flags));
- if (enable)
+ if (enable) {
+ ast_t *myast;
+
+ myast = ast_pending();
+
+ if ( (get_preemption_level() == 0) && (*myast & AST_URGENT) ) {
__asm__ volatile("sti");
- else
+ __asm__ volatile ("int $0xff");
+ } else {
+ __asm__ volatile ("sti");
+ }
+ }
+ else {
__asm__ volatile("cli");
+ }
return (flags & EFL_IF) != 0;
}
void ml_thread_policy(
thread_t thread,
- unsigned policy_id,
+__unused unsigned policy_id,
unsigned policy_info)
{
- if (policy_id == MACHINE_GROUP)
- thread_bind(thread, master_processor);
-
if (policy_info & MACHINE_NETWORK_WORKLOOP) {
spl_t s = splsched();
(void) ml_set_interrupts_enabled(current_state);
- initialize_screen(0, kPEAcquireScreen);
+ initialize_screen(NULL, kPEAcquireScreen);
}
-static void
-cpu_idle(void)
-{
- __asm__ volatile("sti; hlt": : :"memory");
-}
-void (*cpu_idle_handler)(void) = cpu_idle;
void
machine_idle(void)
{
- cpu_core_t *my_core = cpu_core();
+ x86_core_t *my_core = x86_core();
+ cpu_data_t *my_cpu = current_cpu_datap();
int others_active;
/*
* unless kernel param idlehalt is false and no other thread
* in the same core is active - if so, don't halt so that this
* core doesn't go into a low-power mode.
+ * For 4/4, we set a null "active cr3" while idle.
*/
+ if (my_core == NULL || my_cpu == NULL)
+ goto out;
+
others_active = !atomic_decl_and_test(
- (long *) &my_core->active_threads, 1);
+ (long *) &my_core->active_lcpus, 1);
+ my_cpu->lcpu.idle = TRUE;
if (idlehalt || others_active) {
DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
- cpu_idle_handler();
+ MARK_CPU_IDLE(cpu_number());
+ machine_idle_cstate(FALSE);
+ MARK_CPU_ACTIVE(cpu_number());
DBGLOG(cpu_handle, cpu_number(), MP_UNIDLE);
- } else {
- __asm__ volatile("sti");
}
- atomic_incl((long *) &my_core->active_threads, 1);
+ my_cpu->lcpu.idle = FALSE;
+ atomic_incl((long *) &my_core->active_lcpus, 1);
+ out:
+ __asm__ volatile("sti");
}
void
cpu_interrupt(PROCESSOR_DATA(processor, slot_num));
}
+thread_t
+machine_processor_shutdown(
+ thread_t thread,
+ void (*doshutdown)(processor_t),
+ processor_t processor)
+{
+ vmx_suspend();
+ fpu_save_context(thread);
+ return(Shutdown_context(thread, doshutdown, processor));
+}
+
kern_return_t
ml_processor_register(
cpu_id_t cpu_id,
if (this_cpu_datap->cpu_console_buf == NULL)
goto failed;
+ this_cpu_datap->cpu_chud = chudxnu_cpu_alloc(boot_cpu);
+ if (this_cpu_datap->cpu_chud == NULL)
+ goto failed;
+
if (!boot_cpu) {
+ this_cpu_datap->lcpu.core = cpu_thread_alloc(this_cpu_datap->cpu_number);
+ if (this_cpu_datap->lcpu.core == NULL)
+ goto failed;
+
+ pmCPUStateInit();
+
this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
if (this_cpu_datap->cpu_pmap == NULL)
goto failed;
this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
if (this_cpu_datap->cpu_processor == NULL)
goto failed;
- processor_init(this_cpu_datap->cpu_processor, target_cpu);
+ /*
+ * processor_init() deferred to topology start
+ * because "slot numbers" a.k.a. logical processor numbers
+ * are not yet finalized.
+ */
}
*processor_out = this_cpu_datap->cpu_processor;
*ipi_handler = NULL;
+ if (target_cpu == machine_info.max_cpus - 1) {
+ /*
+ * All processors are now registered but not started (except
+ * for this "in-limbo" boot processor). We call to the machine
+ * topology code to finalize and activate the topology.
+ */
+ cpu_topology_start();
+ }
+
return KERN_SUCCESS;
failed:
cpu_processor_free(this_cpu_datap->cpu_processor);
pmap_cpu_free(this_cpu_datap->cpu_pmap);
+ chudxnu_cpu_free(this_cpu_datap->cpu_chud);
console_cpu_free(this_cpu_datap->cpu_console_buf);
return KERN_FAILURE;
}
return;
/*
- * Are we supporting XMM/SSE/SSE2?
+ * Are we supporting MMX/SSE/SSE2/SSE3?
* As distinct from whether the cpu has these capabilities.
*/
os_supports_sse = get_cr4() & CR4_XMM;
- if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
+ if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse)
+ cpu_infop->vector_unit = 8;
+ else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse)
+ cpu_infop->vector_unit = 7;
+ else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse)
+ cpu_infop->vector_unit = 6;
+ else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
+ cpu_infop->vector_unit = 5;
+ else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
cpu_infop->vector_unit = 4;
else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
cpu_infop->vector_unit = 3;
}
if (cpuid_infop->cache_size[L3U] > 0) {
- cpu_infop->l2_settings = 1;
- cpu_infop->l2_cache_size = cpuid_infop->cache_size[L3U];
+ cpu_infop->l3_settings = 1;
+ cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
} else {
cpu_infop->l3_settings = 0;
cpu_infop->l3_cache_size = 0xFFFFFFFF;
if (max_cpus_initialized != MAX_CPUS_SET) {
if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
/*
- * Note: max_cpus is the number of enable processors
+ * Note: max_cpus is the number of enabled processors
* that ACPI found; max_ncpus is the maximum number
* that the kernel supports or that the "cpus="
* boot-arg has set. Here we take int minimum.
return(machine_info.max_cpus);
}
+/*
+ * Routine: ml_init_lock_timeout
+ * Function:
+ */
+void
+ml_init_lock_timeout(void)
+{
+ uint64_t abstime;
+ uint32_t mtxspin;
+
+ /* LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks */
+ nanoseconds_to_absolutetime(NSEC_PER_SEC>>2, &abstime);
+ LockTimeOut = (uint32_t) abstime;
+ LockTimeOutTSC = (uint32_t) tmrCvt(abstime, tscFCvtn2t);
+
+ if (PE_parse_boot_arg("mtxspin", &mtxspin)) {
+ if (mtxspin > USEC_PER_SEC>>4)
+ mtxspin = USEC_PER_SEC>>4;
+ nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
+ } else {
+ nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
+ }
+ MutexSpin = (unsigned int)abstime;
+}
+
/*
* This is called from the machine-independent routine cpu_up()
* to perform machine-dependent info updates. Defer to cpu_thread_init().
return;
}
-/* Stubs for pc tracing mechanism */
-
-int *pc_trace_buf;
-int pc_trace_cnt = 0;
-
-int
-set_be_bit(void)
-{
- return(0);
-}
-
-int
-clr_be_bit(void)
-{
- return(0);
-}
-
-int
-be_tracing(void)
-{
- return(0);
-}
-
/*
* The following are required for parts of the kernel
* that cannot resolve these functions as inlines:
{
return(current_thread_fast());
}
+
+
+boolean_t ml_is64bit(void) {
+
+ return (cpu_mode_is64bit());
+}
+
+
+boolean_t ml_thread_is64bit(thread_t thread) {
+
+ return (thread_is_64bit(thread));
+}
+
+
+boolean_t ml_state_is64bit(void *saved_state) {
+
+ return is_saved_state64(saved_state);
+}
+
+void ml_cpu_set_ldt(int selector)
+{
+ /*
+ * Avoid loading the LDT
+ * if we're setting the KERNEL LDT and it's already set.
+ */
+ if (selector == KERNEL_LDT &&
+ current_cpu_datap()->cpu_ldt == KERNEL_LDT)
+ return;
+
+ /*
+ * If 64bit this requires a mode switch (and back).
+ */
+ if (cpu_mode_is64bit())
+ ml_64bit_lldt(selector);
+ else
+ lldt(selector);
+ current_cpu_datap()->cpu_ldt = selector;
+}
+
+void ml_fp_setvalid(boolean_t value)
+{
+ fp_setvalid(value);
+}
+
+uint64_t ml_cpu_int_event_time(void)
+{
+ return current_cpu_datap()->cpu_int_event_time;
+}
+
+
+#if MACH_KDB
+
+/*
+ * Display the global msrs
+ * *
+ * ms
+ */
+void
+db_msr(__unused db_expr_t addr,
+ __unused int have_addr,
+ __unused db_expr_t count,
+ __unused char *modif)
+{
+
+ uint32_t i, msrlow, msrhigh;
+
+ /* Try all of the first 4096 msrs */
+ for (i = 0; i < 4096; i++) {
+ if (!rdmsr_carefully(i, &msrlow, &msrhigh)) {
+ db_printf("%08X - %08X.%08X\n", i, msrhigh, msrlow);
+ }
+ }
+
+ /* Try all of the 4096 msrs at 0x0C000000 */
+ for (i = 0; i < 4096; i++) {
+ if (!rdmsr_carefully(0x0C000000 | i, &msrlow, &msrhigh)) {
+ db_printf("%08X - %08X.%08X\n",
+ 0x0C000000 | i, msrhigh, msrlow);
+ }
+ }
+
+ /* Try all of the 4096 msrs at 0xC0000000 */
+ for (i = 0; i < 4096; i++) {
+ if (!rdmsr_carefully(0xC0000000 | i, &msrlow, &msrhigh)) {
+ db_printf("%08X - %08X.%08X\n",
+ 0xC0000000 | i, msrhigh, msrlow);
+ }
+ }
+}
+
+#endif