/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 1991-2015 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
-/* Copyright (c) 1991 NeXT Computer, Inc. All rights reserved.
- *
- * File: kern/mach_fat.c
- * Author: Peter King
- *
- * Fat file support routines.
- *
- */
-
#include <sys/param.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <kern/cpu_number.h>
#include <mach-o/fat.h>
#include <kern/mach_loader.h>
-#include <architecture/byte_order.h>
-
-/* XXX should be in common header */
-extern int grade_binary(cpu_type_t exectype, cpu_subtype_t execsubtype);
-
-#define CPU_TYPE_NATIVE (cpu_type())
-#define CPU_TYPE_CLASSIC CPU_TYPE_POWERPC
+#include <kern/mach_fat.h>
+#include <libkern/OSByteOrder.h>
+#include <machine/exec.h>
/**********************************************************************
- * Routine: fatfile_getarch2()
+ * Routine: fatfile_getarch()
*
* Function: Locate the architecture-dependant contents of a fat
* file that match this CPU.
*
- * Args: vp: The vnode for the fat file.
- * header: A pointer to the fat file header.
+ * Args: header: A pointer to the fat file header.
+ * size: How large the fat file header is (including fat_arch array)
* req_cpu_type: The required cpu type.
* mask_bits: Bits to mask from the sub-image type when
* grading it vs. the req_cpu_type
* KERN_FAILURE: No valid architecture found.
**********************************************************************/
static load_return_t
-fatfile_getarch2(
-#if 0
- struct vnode *vp,
-#else
- __unused struct vnode *vp,
-#endif
+fatfile_getarch(
vm_offset_t data_ptr,
+ vm_size_t data_size,
cpu_type_t req_cpu_type,
cpu_type_t mask_bits,
struct fat_arch *archret)
{
- /* vm_pager_t pager; */
- vm_offset_t addr;
- vm_size_t size;
load_return_t lret;
struct fat_arch *arch;
struct fat_arch *best_arch;
int grade;
int best_grade;
- int nfat_arch;
- off_t end_of_archs;
+ uint32_t nfat_arch, max_nfat_arch;
+ cpu_type_t testtype;
+ cpu_type_t testsubtype;
struct fat_header *header;
-#if 0
- off_t filesize;
-#endif
- /*
- * Get the pager for the file.
- */
+ if (sizeof(struct fat_header) > data_size) {
+ return (LOAD_FAILURE);
+ }
header = (struct fat_header *)data_ptr;
+ nfat_arch = OSSwapBigToHostInt32(header->nfat_arch);
- /*
- * Map portion that must be accessible directly into
- * kernel's map.
- */
- nfat_arch = NXSwapBigLongToHost(header->nfat_arch);
-
- end_of_archs = (off_t)nfat_arch * sizeof(struct fat_arch) +
- sizeof(struct fat_header);
-#if 0
- filesize = ubc_getsize(vp);
- if (end_of_archs > (int)filesize) {
- return(LOAD_BADMACHO);
+ max_nfat_arch = (data_size - sizeof(struct fat_header)) / sizeof(struct fat_arch);
+ if (nfat_arch > max_nfat_arch) {
+ /* nfat_arch would cause us to read off end of buffer */
+ return (LOAD_BADMACHO);
}
-#endif
/*
- * This check is limited on the top end because we are reading
- * only PAGE_SIZE bytes
- */
- if (end_of_archs > PAGE_SIZE ||
- end_of_archs < (sizeof(struct fat_header)+sizeof(struct fat_arch)))
- return(LOAD_BADMACHO);
- /*
- * Round size of fat_arch structures up to page boundry.
- */
- size = round_page_32(end_of_archs);
- if (size == 0)
- return(LOAD_BADMACHO);
-
- /*
- * Scan the fat_arch's looking for the best one.
- */
- addr = data_ptr;
+ * Scan the fat_arch's looking for the best one. */
best_arch = NULL;
best_grade = 0;
- arch = (struct fat_arch *) (addr + sizeof(struct fat_header));
+ arch = (struct fat_arch *) (data_ptr + sizeof(struct fat_header));
for (; nfat_arch-- > 0; arch++) {
+ testtype = OSSwapBigToHostInt32(arch->cputype);
+ testsubtype = OSSwapBigToHostInt32(arch->cpusubtype) & ~CPU_SUBTYPE_MASK;
/*
* Check to see if right cpu type.
*/
- if(((cpu_type_t)NXSwapBigIntToHost(arch->cputype) & ~mask_bits) != req_cpu_type)
+ if((testtype & ~mask_bits) != (req_cpu_type & ~mask_bits)) {
continue;
+ }
/*
- * Get the grade of the cpu subtype.
+ * Get the grade of the cpu subtype (without feature flags)
*/
- grade = grade_binary(
- NXSwapBigIntToHost(arch->cputype),
- NXSwapBigIntToHost(arch->cpusubtype));
+ grade = grade_binary(testtype, testsubtype);
/*
* Remember it if it's the best we've seen.
lret = LOAD_BADARCH;
} else {
archret->cputype =
- NXSwapBigIntToHost(best_arch->cputype);
+ OSSwapBigToHostInt32(best_arch->cputype);
archret->cpusubtype =
- NXSwapBigIntToHost(best_arch->cpusubtype);
+ OSSwapBigToHostInt32(best_arch->cpusubtype);
archret->offset =
- NXSwapBigLongToHost(best_arch->offset);
+ OSSwapBigToHostInt32(best_arch->offset);
archret->size =
- NXSwapBigLongToHost(best_arch->size);
+ OSSwapBigToHostInt32(best_arch->size);
archret->align =
- NXSwapBigLongToHost(best_arch->align);
+ OSSwapBigToHostInt32(best_arch->align);
lret = LOAD_SUCCESS;
}
return(lret);
}
-extern char classichandler[];
-
load_return_t
-fatfile_getarch_affinity(
- struct vnode *vp,
+fatfile_getbestarch(
vm_offset_t data_ptr,
- struct fat_arch *archret,
- int affinity)
+ vm_size_t data_size,
+ struct fat_arch *archret)
{
- load_return_t lret;
- int handler = (classichandler[0] != 0);
- cpu_type_t primary_type, fallback_type;
-
- if (handler && affinity) {
- primary_type = CPU_TYPE_CLASSIC;
- fallback_type = CPU_TYPE_NATIVE;
- } else {
- primary_type = CPU_TYPE_NATIVE;
- fallback_type = CPU_TYPE_CLASSIC;
- }
- /*
- * Ignore the architectural bits when determining if an image
- * in a fat file should be skipped or graded.
- */
- lret = fatfile_getarch2(vp, data_ptr, primary_type, CPU_ARCH_MASK, archret);
- if ((lret != 0) && handler) {
- lret = fatfile_getarch2(vp, data_ptr, fallback_type,
- 0, archret);
- }
- return lret;
+ /*
+ * Ignore all architectural bits when determining if an image
+ * in a fat file should be skipped or graded.
+ */
+ return fatfile_getarch(data_ptr, data_size, cpu_type(), CPU_ARCH_MASK, archret);
}
-/**********************************************************************
- * Routine: fatfile_getarch()
- *
- * Function: Locate the architecture-dependant contents of a fat
- * file that match this CPU.
- *
- * Args: vp: The vnode for the fat file.
- * header: A pointer to the fat file header.
- * archret (out): Pointer to fat_arch structure to hold
- * the results.
- *
- * Returns: KERN_SUCCESS: Valid architecture found.
- * KERN_FAILURE: No valid architecture found.
- **********************************************************************/
load_return_t
-fatfile_getarch(
- struct vnode *vp,
- vm_offset_t data_ptr,
- struct fat_arch *archret)
+fatfile_getbestarch_for_cputype(
+ cpu_type_t cputype,
+ vm_offset_t data_ptr,
+ vm_size_t data_size,
+ struct fat_arch *archret)
{
- return fatfile_getarch2(vp, data_ptr, CPU_TYPE_NATIVE, 0, archret);
+ /*
+ * Scan the fat_arch array for exact matches for this cpu_type_t only
+ */
+ return fatfile_getarch(data_ptr, data_size, cputype, 0, archret);
}
/**********************************************************************
**********************************************************************/
load_return_t
fatfile_getarch_with_bits(
- struct vnode *vp,
integer_t archbits,
vm_offset_t data_ptr,
+ vm_size_t data_size,
struct fat_arch *archret)
{
- return fatfile_getarch2(vp, data_ptr, archbits | CPU_TYPE_NATIVE, 0, archret);
+ /*
+ * Scan the fat_arch array for matches with the requested
+ * architectural bits set, and for the current hardware cpu CPU.
+ */
+ return fatfile_getarch(data_ptr, data_size, (archbits & CPU_ARCH_MASK) | (cpu_type() & ~CPU_ARCH_MASK), 0, archret);
}
+/*
+ * Validate the fat_header and fat_arch array in memory. We check that:
+ *
+ * 1) arch count would not exceed the data buffer
+ * 2) arch list does not contain duplicate cputype/cpusubtype tuples
+ * 3) arch list does not have two overlapping slices. The area
+ * at the front of the file containing the fat headers is implicitly
+ * a range that a slice should also not try to cover
+ */
+load_return_t
+fatfile_validate_fatarches(vm_offset_t data_ptr, vm_size_t data_size)
+{
+ uint32_t magic, nfat_arch;
+ uint32_t max_nfat_arch, i, j;
+ uint32_t fat_header_size;
+
+ struct fat_arch *arches;
+ struct fat_header *header;
+
+ if (sizeof(struct fat_header) > data_size) {
+ return (LOAD_FAILURE);
+ }
+
+ header = (struct fat_header *)data_ptr;
+ magic = OSSwapBigToHostInt32(header->magic);
+ nfat_arch = OSSwapBigToHostInt32(header->nfat_arch);
+
+ if (magic != FAT_MAGIC) {
+ /* must be FAT_MAGIC big endian */
+ return (LOAD_FAILURE);
+ }
+
+ max_nfat_arch = (data_size - sizeof(struct fat_header)) / sizeof(struct fat_arch);
+ if (nfat_arch > max_nfat_arch) {
+ /* nfat_arch would cause us to read off end of buffer */
+ return (LOAD_BADMACHO);
+ }
+
+ /* now that we know the fat_arch list fits in the buffer, how much does it use? */
+ fat_header_size = sizeof(struct fat_header) + nfat_arch * sizeof(struct fat_arch);
+ arches = (struct fat_arch *)(data_ptr + sizeof(struct fat_header));
+
+ for (i=0; i < nfat_arch; i++) {
+ uint32_t i_begin = OSSwapBigToHostInt32(arches[i].offset);
+ uint32_t i_size = OSSwapBigToHostInt32(arches[i].size);
+ uint32_t i_cputype = OSSwapBigToHostInt32(arches[i].cputype);
+ uint32_t i_cpusubtype = OSSwapBigToHostInt32(arches[i].cpusubtype);
+
+ if (i_begin < fat_header_size) {
+ /* slice is trying to claim part of the file used by fat headers themselves */
+ return (LOAD_BADMACHO);
+ }
+
+ if ((UINT32_MAX - i_size) < i_begin) {
+ /* start + size would overflow */
+ return (LOAD_BADMACHO);
+ }
+ uint32_t i_end = i_begin + i_size;
+
+ for (j=i+1; j < nfat_arch; j++) {
+ uint32_t j_begin = OSSwapBigToHostInt32(arches[j].offset);
+ uint32_t j_size = OSSwapBigToHostInt32(arches[j].size);
+ uint32_t j_cputype = OSSwapBigToHostInt32(arches[j].cputype);
+ uint32_t j_cpusubtype = OSSwapBigToHostInt32(arches[j].cpusubtype);
+
+ if ((i_cputype == j_cputype) && (i_cpusubtype == j_cpusubtype)) {
+ /* duplicate cputype/cpusubtype, results in ambiguous references */
+ return (LOAD_BADMACHO);
+ }
+
+ if ((UINT32_MAX - j_size) < j_begin) {
+ /* start + size would overflow */
+ return (LOAD_BADMACHO);
+ }
+ uint32_t j_end = j_begin + j_size;
+
+ if (i_begin <= j_begin) {
+ if (i_end <= j_begin) {
+ /* I completely precedes J */
+ } else {
+ /* I started before J, but ends somewhere in or after J */
+ return (LOAD_BADMACHO);
+ }
+ } else {
+ if (i_begin >= j_end) {
+ /* I started after J started but also after J ended */
+ } else {
+ /* I started after J started but before it ended, so there is overlap */
+ return (LOAD_BADMACHO);
+ }
+ }
+ }
+ }
+
+ return (LOAD_SUCCESS);
+}