/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
/*
*/
-#include <cpus.h>
-#include <platforms.h>
#include <mach/exception_types.h>
#include <mach/i386/thread_status.h>
#include <mach/i386/fp_reg.h>
+#include <mach/branch_predicates.h>
#include <kern/mach_param.h>
+#include <kern/processor.h>
#include <kern/thread.h>
#include <kern/zalloc.h>
#include <kern/misc_protos.h>
#include <kern/spl.h>
#include <kern/assert.h>
-#include <i386/thread.h>
+#include <libkern/OSAtomic.h>
+
+#include <architecture/i386/pio.h>
+#include <i386/cpuid.h>
#include <i386/fpu.h>
-#include <i386/trap.h>
-#include <i386/pio.h>
+#include <i386/proc_reg.h>
#include <i386/misc_protos.h>
+#include <i386/thread.h>
+#include <i386/trap.h>
+
+xstate_t fpu_capability = UNDEFINED; /* extended state capability */
+xstate_t fpu_default = UNDEFINED; /* default extended state */
+
+#define ALIGNED(addr,size) (((uintptr_t)(addr)&((size)-1))==0)
+
+/* Forward */
+
+extern void fpinit(void);
+extern void fp_save(
+ thread_t thr_act);
+extern void fp_load(
+ thread_t thr_act);
+
+static void configure_mxcsr_capability_mask(x86_ext_thread_state_t *fps);
+static xstate_t thread_xstate(thread_t);
+
+x86_ext_thread_state_t initial_fp_state __attribute((aligned(64)));
+
+
+/* Global MXCSR capability bitmask */
+static unsigned int mxcsr_capability_mask;
+
+#define fninit() \
+ __asm__ volatile("fninit")
+
+#define fnstcw(control) \
+ __asm__("fnstcw %0" : "=m" (*(unsigned short *)(control)))
+
+#define fldcw(control) \
+ __asm__ volatile("fldcw %0" : : "m" (*(unsigned short *) &(control)) )
+
+#define fnclex() \
+ __asm__ volatile("fnclex")
+
+#define fnsave(state) \
+ __asm__ volatile("fnsave %0" : "=m" (*state))
+
+#define frstor(state) \
+ __asm__ volatile("frstor %0" : : "m" (state))
+
+#define fwait() \
+ __asm__("fwait");
+
+static inline void fxrstor(struct x86_fx_thread_state *a) {
+ __asm__ __volatile__("fxrstor %0" :: "m" (*a));
+}
+
+static inline void fxsave(struct x86_fx_thread_state *a) {
+ __asm__ __volatile__("fxsave %0" : "=m" (*a));
+}
-#if 0
-#include <i386/ipl.h>
-extern int curr_ipl;
-#define ASSERT_IPL(L) \
-{ \
- if (curr_ipl != L) { \
- printf("IPL is %d, expected %d\n", curr_ipl, L); \
- panic("fpu: wrong ipl"); \
- } \
+static inline void fxrstor64(struct x86_fx_thread_state *a) {
+ __asm__ __volatile__("fxrstor64 %0" :: "m" (*a));
}
+
+static inline void fxsave64(struct x86_fx_thread_state *a) {
+ __asm__ __volatile__("fxsave64 %0" : "=m" (*a));
+}
+
+#if !defined(RC_HIDE_XNU_J137)
+#define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX || (x) == AVX512)
+#else
+#define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX)
+#endif
+
+zone_t ifps_zone[] = {
+ [FP] = NULL,
+ [AVX] = NULL,
+#if !defined(RC_HIDE_XNU_J137)
+ [AVX512] = NULL
+#endif
+};
+static uint32_t fp_state_size[] = {
+ [FP] = sizeof(struct x86_fx_thread_state),
+ [AVX] = sizeof(struct x86_avx_thread_state),
+#if !defined(RC_HIDE_XNU_J137)
+ [AVX512] = sizeof(struct x86_avx512_thread_state)
+#endif
+};
+
+static const char *xstate_name[] = {
+ [UNDEFINED] = "UNDEFINED",
+ [FP] = "FP",
+ [AVX] = "AVX",
+#if !defined(RC_HIDE_XNU_J137)
+ [AVX512] = "AVX512"
+#endif
+};
+
+#if !defined(RC_HIDE_XNU_J137)
+#define fpu_ZMM_capable (fpu_capability == AVX512)
+#define fpu_YMM_capable (fpu_capability == AVX || fpu_capability == AVX512)
+/*
+ * On-demand AVX512 support
+ * ------------------------
+ * On machines with AVX512 support, by default, threads are created with
+ * AVX512 masked off in XCR0 and an AVX-sized savearea is used. However, AVX512
+ * capabilities are advertised in the commpage and via sysctl. If a thread
+ * opts to use AVX512 instructions, the first will result in a #UD exception.
+ * Faulting AVX512 intructions are recognizable by their unique prefix.
+ * This exception results in the thread being promoted to use an AVX512-sized
+ * savearea and for the AVX512 bit masks being set in its XCR0. The faulting
+ * instruction is re-driven and the thread can proceed to perform AVX512
+ * operations.
+ *
+ * In addition to AVX512 instructions causing promotion, the thread_set_state()
+ * primitive with an AVX512 state flavor result in promotion.
+ *
+ * AVX512 promotion of the first thread in a task causes the default xstate
+ * of the task to be promoted so that any subsequently created or subsequently
+ * DNA-faulted thread will have AVX512 xstate and it will not need to fault-in
+ * a promoted xstate.
+ *
+ * Two savearea zones are used: the default pool of AVX-sized (832 byte) areas
+ * and a second pool of larger AVX512-sized (2688 byte) areas.
+ *
+ * Note the initial state value is an AVX512 object but that the AVX initial
+ * value is a subset of it.
+ */
#else
-#define ASSERT_IPL(L)
+#define fpu_YMM_capable (fpu_capability == AVX)
+#endif
+static uint32_t cpuid_reevaluated = 0;
+
+static void fpu_store_registers(void *, boolean_t);
+static void fpu_load_registers(void *);
+
+#define FP_XMASK ((uint32_t) (XFEM_X87 | XFEM_SSE))
+#define AVX_XMASK ((uint32_t) (XFEM_X87 | XFEM_SSE | XFEM_YMM))
+#if !defined(RC_HIDE_XNU_J137)
+#define AVX512_XMASK ((uint32_t) (XFEM_X87 | XFEM_SSE | XFEM_YMM | XFEM_ZMM))
+static const uint32_t xstate_xmask[] = {
+ [FP] = FP_XMASK,
+ [AVX] = AVX_XMASK,
+ [AVX512] = AVX512_XMASK
+};
+#else
+static const uint32_t xstate_xmask[] = {
+ [FP] = FP_XMASK,
+ [AVX] = AVX_XMASK,
+};
#endif
-int fp_kind = FP_387; /* 80387 present */
-zone_t ifps_zone; /* zone for FPU save area */
+static inline void xsetbv(uint32_t mask_hi, uint32_t mask_lo) {
+ __asm__ __volatile__("xsetbv" :: "a"(mask_lo), "d"(mask_hi), "c" (XCR0));
+}
-#if NCPUS == 1
-volatile thread_act_t fp_act = THR_ACT_NULL;
- /* thread whose state is in FPU */
- /* always THR_ACT_NULL if emulating FPU */
-volatile thread_act_t fp_intr_act = THR_ACT_NULL;
+static inline void xsave(struct x86_fx_thread_state *a, uint32_t rfbm) {
+ __asm__ __volatile__("xsave %0" :"=m" (*a) : "a"(rfbm), "d"(0));
+}
+static inline void xsave64(struct x86_fx_thread_state *a, uint32_t rfbm) {
+ __asm__ __volatile__("xsave64 %0" :"=m" (*a) : "a"(rfbm), "d"(0));
+}
-#define clear_fpu() \
- { \
- set_ts(); \
- fp_act = THR_ACT_NULL; \
- }
+static inline void xrstor(struct x86_fx_thread_state *a, uint32_t rfbm) {
+ __asm__ __volatile__("xrstor %0" :: "m" (*a), "a"(rfbm), "d"(0));
+}
-#else /* NCPUS > 1 */
-#define clear_fpu() \
- { \
- set_ts(); \
- }
+static inline void xrstor64(struct x86_fx_thread_state *a, uint32_t rfbm) {
+ __asm__ __volatile__("xrstor64 %0" :: "m" (*a), "a"(rfbm), "d"(0));
+}
+#if !defined(RC_HIDE_XNU_J137)
+static inline void vzeroupper(void) {
+ __asm__ __volatile__("vzeroupper" ::);
+}
+#if DEVELOPMENT || DEBUG
+static inline uint64_t xgetbv(uint32_t c) {
+ uint32_t mask_hi, mask_lo;
+ __asm__ __volatile__("xgetbv" : "=a"(mask_lo), "=d"(mask_hi) : "c" (c));
+ return ((uint64_t) mask_hi<<32) + (uint64_t) mask_lo;
+}
#endif
-/* Forward */
+static boolean_t fpu_thread_promote_avx512(thread_t); /* Forward */
-extern void fpinit(void);
-extern void fp_save(
- thread_act_t thr_act);
-extern void fp_load(
- thread_act_t thr_act);
+/*
+ * Define a wrapper for bcopy to defeat destination size checka.
+ * This is needed to treat repeated objects such as
+ * _STRUCT_XMM_REG fpu_ymmh0;
+ * ...
+ * _STRUCT_XMM_REG fpu_ymmh7;
+ * as an array and to copy like so:
+ * bcopy_nockch(src,&dst->fpu_ymmh0,8*sizeof(_STRUCT_XMM_REG));
+ * without the compiler throwing a __builtin__memmove_chk error.
+ */
+static inline void bcopy_nochk(void *_src, void *_dst, size_t _len) {
+ bcopy(_src, _dst, _len);
+}
+
+/*
+ * Furthermore, make compile-time asserts that no padding creeps into structures
+ * for which we're doing this.
+ */
+#define ASSERT_PACKED(t, m1, m2, n, mt) \
+extern char assert_packed_ ## t ## _ ## m1 ## _ ## m2 \
+ [(offsetof(t,m2) - offsetof(t,m1) == (n - 1)*sizeof(mt)) ? 1 : -1]
+
+ASSERT_PACKED(x86_avx_state32_t, fpu_ymmh0, fpu_ymmh7, 8, _STRUCT_XMM_REG);
+
+ASSERT_PACKED(x86_avx_state64_t, fpu_ymmh0, fpu_ymmh15, 16, _STRUCT_XMM_REG);
+
+ASSERT_PACKED(x86_avx512_state32_t, fpu_k0, fpu_k7, 8, _STRUCT_OPMASK_REG);
+ASSERT_PACKED(x86_avx512_state32_t, fpu_ymmh0, fpu_ymmh7, 8, _STRUCT_XMM_REG);
+ASSERT_PACKED(x86_avx512_state32_t, fpu_zmmh0, fpu_zmmh7, 8, _STRUCT_YMM_REG);
+
+ASSERT_PACKED(x86_avx512_state64_t, fpu_k0, fpu_k7, 8, _STRUCT_OPMASK_REG);
+ASSERT_PACKED(x86_avx512_state64_t, fpu_ymmh0, fpu_ymmh15, 16, _STRUCT_XMM_REG);
+ASSERT_PACKED(x86_avx512_state64_t, fpu_zmmh0, fpu_zmmh15, 16, _STRUCT_YMM_REG);
+ASSERT_PACKED(x86_avx512_state64_t, fpu_zmm16, fpu_zmm31, 16, _STRUCT_ZMM_REG);
+
+#if defined(DEBUG_AVX512)
+
+#define DBG(x...) kprintf("DBG: " x)
+
+typedef struct { uint8_t byte[8]; } opmask_t;
+typedef struct { uint8_t byte[16]; } xmm_t;
+typedef struct { uint8_t byte[32]; } ymm_t;
+typedef struct { uint8_t byte[64]; } zmm_t;
+
+static void
+DBG_AVX512_STATE(struct x86_avx512_thread_state *sp)
+{
+ int i, j;
+ xmm_t *xmm = (xmm_t *) &sp->fp.fx_XMM_reg;
+ xmm_t *ymmh = (xmm_t *) &sp->x_YMM_Hi128;
+ ymm_t *zmmh = (ymm_t *) &sp->x_ZMM_Hi256;
+ zmm_t *zmm = (zmm_t *) &sp->x_Hi16_ZMM;
+ opmask_t *k = (opmask_t *) &sp->x_Opmask;
+
+ kprintf("x_YMM_Hi128: %lu\n", offsetof(struct x86_avx512_thread_state, x_YMM_Hi128));
+ kprintf("x_Opmask: %lu\n", offsetof(struct x86_avx512_thread_state, x_Opmask));
+ kprintf("x_ZMM_Hi256: %lu\n", offsetof(struct x86_avx512_thread_state, x_ZMM_Hi256));
+ kprintf("x_Hi16_ZMM: %lu\n", offsetof(struct x86_avx512_thread_state, x_Hi16_ZMM));
+
+ kprintf("XCR0: 0x%016llx\n", xgetbv(XCR0));
+ kprintf("XINUSE: 0x%016llx\n", xgetbv(1));
+
+ /* Print all ZMM registers */
+ for (i = 0; i < 16; i++) {
+ kprintf("zmm%d:\t0x", i);
+ for (j = 0; j < 16; j++)
+ kprintf("%02x", xmm[i].byte[j]);
+ for (j = 0; j < 16; j++)
+ kprintf("%02x", ymmh[i].byte[j]);
+ for (j = 0; j < 32; j++)
+ kprintf("%02x", zmmh[i].byte[j]);
+ kprintf("\n");
+ }
+ for (i = 0; i < 16; i++) {
+ kprintf("zmm%d:\t0x", 16+i);
+ for (j = 0; j < 64; j++)
+ kprintf("%02x", zmm[i].byte[j]);
+ kprintf("\n");
+ }
+ for (i = 0; i < 8; i++) {
+ kprintf("k%d:\t0x", i);
+ for (j = 0; j < 8; j++)
+ kprintf("%02x", k[i].byte[j]);
+ kprintf("\n");
+ }
+
+ kprintf("xstate_bv: 0x%016llx\n", sp->_xh.xstate_bv);
+ kprintf("xcomp_bv: 0x%016llx\n", sp->_xh.xcomp_bv);
+}
+#else
+#define DBG(x...)
+static void
+DBG_AVX512_STATE(__unused struct x86_avx512_thread_state *sp)
+{
+ return;
+}
+#endif /* DEBUG_AVX512 */
+
+#endif
+
+#if DEBUG
+static inline unsigned short
+fnstsw(void)
+{
+ unsigned short status;
+ __asm__ volatile("fnstsw %0" : "=ma" (status));
+ return(status);
+}
+#endif
+
+/*
+ * Configure the initial FPU state presented to new threads.
+ * Determine the MXCSR capability mask, which allows us to mask off any
+ * potentially unsafe "reserved" bits before restoring the FPU context.
+ * *Not* per-cpu, assumes symmetry.
+ */
+
+static void
+configure_mxcsr_capability_mask(x86_ext_thread_state_t *fps)
+{
+ /* XSAVE requires a 64 byte aligned store */
+ assert(ALIGNED(fps, 64));
+ /* Clear, to prepare for the diagnostic FXSAVE */
+ bzero(fps, sizeof(*fps));
+
+ fpinit();
+ fpu_store_registers(fps, FALSE);
+
+ mxcsr_capability_mask = fps->fx.fx_MXCSR_MASK;
+
+ /* Set default mask value if necessary */
+ if (mxcsr_capability_mask == 0)
+ mxcsr_capability_mask = 0xffbf;
+
+ /* Clear vector register store */
+ bzero(&fps->fx.fx_XMM_reg[0][0], sizeof(fps->fx.fx_XMM_reg));
+ bzero(fps->avx.x_YMM_Hi128, sizeof(fps->avx.x_YMM_Hi128));
+#if !defined(RC_HIDE_XNU_J137)
+ if (fpu_ZMM_capable) {
+ bzero(fps->avx512.x_ZMM_Hi256, sizeof(fps->avx512.x_ZMM_Hi256));
+ bzero(fps->avx512.x_Hi16_ZMM, sizeof(fps->avx512.x_Hi16_ZMM));
+ bzero(fps->avx512.x_Opmask, sizeof(fps->avx512.x_Opmask));
+ }
+#endif
+
+ fps->fx.fp_valid = TRUE;
+ fps->fx.fp_save_layout = fpu_YMM_capable ? XSAVE32: FXSAVE32;
+ fpu_load_registers(fps);
+
+ /* Poison values to trap unsafe usage */
+ fps->fx.fp_valid = 0xFFFFFFFF;
+ fps->fx.fp_save_layout = FP_UNUSED;
+
+ /* Re-enable FPU/SSE DNA exceptions */
+ set_ts();
+}
/*
* Look for FPU and initialize it.
void
init_fpu(void)
{
- unsigned short status, control;
-
+#if DEBUG
+ unsigned short status;
+ unsigned short control;
+#endif
/*
* Check for FPU by initializing it,
* then trying to read the correct bit patterns from
* the control and status registers.
*/
- set_cr0(get_cr0() & ~(CR0_EM|CR0_TS)); /* allow use of FPU */
-
+ set_cr0((get_cr0() & ~(CR0_EM|CR0_TS)) | CR0_NE); /* allow use of FPU */
fninit();
+#if DEBUG
status = fnstsw();
fnstcw(&control);
+
+ assert(((status & 0xff) == 0) && ((control & 0x103f) == 0x3f));
+#endif
+ /* Advertise SSE support */
+ if (cpuid_features() & CPUID_FEATURE_FXSR) {
+ set_cr4(get_cr4() | CR4_OSFXS);
+ /* And allow SIMD exceptions if present */
+ if (cpuid_features() & CPUID_FEATURE_SSE) {
+ set_cr4(get_cr4() | CR4_OSXMM);
+ }
+ } else
+ panic("fpu is not FP_FXSR");
+
+ fpu_capability = fpu_default = FP;
+
+#if !defined(RC_HIDE_XNU_J137)
+ static boolean_t is_avx512_enabled = TRUE;
+ if (cpu_number() == master_cpu) {
+ if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_AVX512F) {
+ PE_parse_boot_argn("avx512", &is_avx512_enabled, sizeof(boolean_t));
+ kprintf("AVX512 supported %s\n",
+ is_avx512_enabled ? "and enabled" : "but disabled");
+ }
+ }
+#endif
+
+ /* Configure the XSAVE context mechanism if the processor supports
+ * AVX/YMM registers
+ */
+ if (cpuid_features() & CPUID_FEATURE_XSAVE) {
+ cpuid_xsave_leaf_t *xs0p = &cpuid_info()->cpuid_xsave_leaf[0];
+#if !defined(RC_HIDE_XNU_J137)
+ if (is_avx512_enabled &&
+ (xs0p->extended_state[eax] & XFEM_ZMM) == XFEM_ZMM) {
+ assert(xs0p->extended_state[eax] & XFEM_SSE);
+ assert(xs0p->extended_state[eax] & XFEM_YMM);
+ fpu_capability = AVX512;
+ /* XSAVE container size for all features */
+ set_cr4(get_cr4() | CR4_OSXSAVE);
+ xsetbv(0, AVX512_XMASK);
+ /* Re-evaluate CPUID, once, to reflect OSXSAVE */
+ if (OSCompareAndSwap(0, 1, &cpuid_reevaluated))
+ cpuid_set_info();
+ /* Verify that now selected state can be accommodated */
+ assert(xs0p->extended_state[ebx] == fp_state_size[AVX512]);
+ /*
+ * AVX set until AVX512 is used.
+ * See comment above about on-demand AVX512 support.
+ */
+ xsetbv(0, AVX_XMASK);
+ fpu_default = AVX;
+ } else
+#endif
+ if (xs0p->extended_state[eax] & XFEM_YMM) {
+ assert(xs0p->extended_state[eax] & XFEM_SSE);
+ fpu_capability = AVX;
+ fpu_default = AVX;
+ /* XSAVE container size for all features */
+ set_cr4(get_cr4() | CR4_OSXSAVE);
+ xsetbv(0, AVX_XMASK);
+ /* Re-evaluate CPUID, once, to reflect OSXSAVE */
+ if (OSCompareAndSwap(0, 1, &cpuid_reevaluated))
+ cpuid_set_info();
+ /* Verify that now selected state can be accommodated */
+ assert(xs0p->extended_state[ebx] == fp_state_size[AVX]);
+ }
+ }
- if ((status & 0xff) == 0 &&
- (control & 0x103f) == 0x3f)
- {
-#if 0
- /*
- * We have a FPU of some sort.
- * Compare -infinity against +infinity
- * to check whether we have a 287 or a 387.
- */
- volatile double fp_infinity, fp_one, fp_zero;
- fp_one = 1.0;
- fp_zero = 0.0;
- fp_infinity = fp_one / fp_zero;
- if (fp_infinity == -fp_infinity) {
- /*
- * We have an 80287.
- */
- fp_kind = FP_287;
- __asm__ volatile(".byte 0xdb; .byte 0xe4"); /* fnsetpm */
- }
- else
+ if (cpu_number() == master_cpu)
+ kprintf("fpu_state: %s, state_size: %d\n",
+ xstate_name[fpu_capability],
+ fp_state_size[fpu_capability]);
+
+ fpinit();
+
+ /*
+ * Trap wait instructions. Turn off FPU for now.
+ */
+ set_cr0(get_cr0() | CR0_TS | CR0_MP);
+}
+
+/*
+ * Allocate and initialize FP state for specified xstate.
+ * Don't load state.
+ */
+static void *
+fp_state_alloc(xstate_t xs)
+{
+ struct x86_fx_thread_state *ifps;
+
+ assert(ifps_zone[xs] != NULL);
+ ifps = zalloc(ifps_zone[xs]);
+
+#if DEBUG
+ if (!(ALIGNED(ifps,64))) {
+ panic("fp_state_alloc: %p, %u, %p, %u",
+ ifps, (unsigned) ifps_zone[xs]->elem_size,
+ (void *) ifps_zone[xs]->free_elements,
+ (unsigned) ifps_zone[xs]->alloc_size);
+ }
#endif
- {
- /*
- * We have a 387.
- */
- fp_kind = FP_387;
- }
- /*
- * Trap wait instructions. Turn off FPU for now.
- */
- set_cr0(get_cr0() | CR0_TS | CR0_MP);
+ bzero(ifps, fp_state_size[xs]);
+
+ return ifps;
+}
+
+static inline void
+fp_state_free(void *ifps, xstate_t xs)
+{
+ assert(ifps_zone[xs] != NULL);
+ zfree(ifps_zone[xs], ifps);
+}
+
+void clear_fpu(void)
+{
+ set_ts();
+}
+
+
+static void fpu_load_registers(void *fstate) {
+ struct x86_fx_thread_state *ifps = fstate;
+ fp_save_layout_t layout = ifps->fp_save_layout;
+
+ assert(current_task() == NULL || \
+ (thread_is_64bit(current_thread()) ? \
+ (layout == FXSAVE64 || layout == XSAVE64) : \
+ (layout == FXSAVE32 || layout == XSAVE32)));
+ assert(ALIGNED(ifps, 64));
+ assert(ml_get_interrupts_enabled() == FALSE);
+
+#if DEBUG
+ if (layout == XSAVE32 || layout == XSAVE64) {
+ struct x86_avx_thread_state *iavx = fstate;
+ unsigned i;
+ /* Verify reserved bits in the XSAVE header*/
+ if (iavx->_xh.xstate_bv & ~xstate_xmask[current_xstate()])
+ panic("iavx->_xh.xstate_bv: 0x%llx", iavx->_xh.xstate_bv);
+ for (i = 0; i < sizeof(iavx->_xh.xhrsvd); i++)
+ if (iavx->_xh.xhrsvd[i])
+ panic("Reserved bit set");
}
- else
- {
- /*
- * NO FPU.
- */
- fp_kind = FP_NO;
- set_cr0(get_cr0() | CR0_EM);
+ if (fpu_YMM_capable) {
+ if (layout != XSAVE32 && layout != XSAVE64)
+ panic("Inappropriate layout: %u\n", layout);
+ }
+#endif /* DEBUG */
+
+ switch (layout) {
+ case FXSAVE64:
+ fxrstor64(ifps);
+ break;
+ case FXSAVE32:
+ fxrstor(ifps);
+ break;
+ case XSAVE64:
+ xrstor64(ifps, xstate_xmask[current_xstate()]);
+ break;
+ case XSAVE32:
+ xrstor(ifps, xstate_xmask[current_xstate()]);
+ break;
+ default:
+ panic("fpu_load_registers() bad layout: %d\n", layout);
+ }
+}
+
+static void fpu_store_registers(void *fstate, boolean_t is64) {
+ struct x86_fx_thread_state *ifps = fstate;
+ assert(ALIGNED(ifps, 64));
+ xstate_t xs = current_xstate();
+ switch (xs) {
+ case FP:
+ if (is64) {
+ fxsave64(fstate);
+ ifps->fp_save_layout = FXSAVE64;
+ } else {
+ fxsave(fstate);
+ ifps->fp_save_layout = FXSAVE32;
+ }
+ break;
+ case AVX:
+#if !defined(RC_HIDE_XNU_J137)
+ case AVX512:
+#endif
+ if (is64) {
+ xsave64(ifps, xstate_xmask[xs]);
+ ifps->fp_save_layout = XSAVE64;
+ } else {
+ xsave(ifps, xstate_xmask[xs]);
+ ifps->fp_save_layout = XSAVE32;
+ }
+ break;
+ default:
+ panic("fpu_store_registers() bad xstate: %d\n", xs);
}
}
/*
* Initialize FP handling.
*/
+
void
fpu_module_init(void)
{
- ifps_zone = zinit(sizeof(struct i386_fpsave_state),
- THREAD_MAX * sizeof(struct i386_fpsave_state),
- THREAD_CHUNK * sizeof(struct i386_fpsave_state),
- "i386 fpsave state");
+ if (!IS_VALID_XSTATE(fpu_default))
+ panic("fpu_module_init: invalid extended state %u\n",
+ fpu_default);
+
+ /* We explicitly choose an allocation size of 13 pages = 64 * 832
+ * to eliminate waste for the 832 byte sized
+ * AVX XSAVE register save area.
+ */
+ ifps_zone[fpu_default] = zinit(fp_state_size[fpu_default],
+ thread_max * fp_state_size[fpu_default],
+ 64 * fp_state_size[fpu_default],
+ "x86 fpsave state");
+
+ /* To maintain the required alignment, disable
+ * zone debugging for this zone as that appends
+ * 16 bytes to each element.
+ */
+ zone_change(ifps_zone[fpu_default], Z_ALIGNMENT_REQUIRED, TRUE);
+
+#if !defined(RC_HIDE_XNU_J137)
+ /*
+ * If AVX512 is supported, create a separate savearea zone.
+ * with allocation size: 19 pages = 32 * 2668
+ */
+ if (fpu_capability == AVX512) {
+ ifps_zone[AVX512] = zinit(fp_state_size[AVX512],
+ thread_max * fp_state_size[AVX512],
+ 32 * fp_state_size[AVX512],
+ "x86 avx512 save state");
+ zone_change(ifps_zone[AVX512], Z_ALIGNMENT_REQUIRED, TRUE);
+ }
+#endif
+
+ /* Determine MXCSR reserved bits and configure initial FPU state*/
+ configure_mxcsr_capability_mask(&initial_fp_state);
+}
+
+/*
+ * Context switch fpu state.
+ * Always save old thread`s FPU context but don't load new .. allow that to fault-in.
+ * Switch to the new task's xstate.
+ */
+void
+fpu_switch_context(thread_t old, thread_t new)
+{
+ struct x86_fx_thread_state *ifps;
+ boolean_t is_ts_cleared = FALSE;
+
+ assert(ml_get_interrupts_enabled() == FALSE);
+ ifps = (old)->machine.ifps;
+#if DEBUG
+ if (ifps && ((ifps->fp_valid != FALSE) && (ifps->fp_valid != TRUE))) {
+ panic("ifps->fp_valid: %u\n", ifps->fp_valid);
+ }
+#endif
+ if (ifps != 0 && (ifps->fp_valid == FALSE)) {
+ /* Clear CR0.TS in preparation for the FP context save. In
+ * theory, this shouldn't be necessary since a live FPU should
+ * indicate that TS is clear. However, various routines
+ * (such as sendsig & sigreturn) manipulate TS directly.
+ */
+ clear_ts();
+ is_ts_cleared = TRUE;
+ /* registers are in FPU - save to memory */
+ fpu_store_registers(ifps, (thread_is_64bit(old) && is_saved_state64(old->machine.iss)));
+ ifps->fp_valid = TRUE;
+ }
+#if !defined(RC_HIDE_XNU_J137)
+ xstate_t old_xstate = thread_xstate(old);
+ xstate_t new_xstate = new ? thread_xstate(new) : fpu_default;
+ if (old_xstate == AVX512 && ifps != 0) {
+ DBG_AVX512_STATE((struct x86_avx512_thread_state *) ifps);
+ /*
+ * Clear upper bits for potential power-saving
+ * but first ensure the TS bit is clear.
+ */
+ if (!is_ts_cleared)
+ clear_ts();
+ vzeroupper();
+ }
+ if (new_xstate != old_xstate) {
+ DBG("fpu_switch_context(%p,%p) new xstate: %s\n",
+ old, new, xstate_name[new_xstate]);
+ xsetbv(0, xstate_xmask[new_xstate]);
+ }
+#else
+#pragma unused(new)
+#endif
+ set_ts();
}
+
/*
* Free a FPU save area.
* Called only when thread terminating - no locking necessary.
*/
void
-fp_free(fps)
- struct i386_fpsave_state *fps;
+fpu_free(thread_t thread, void *fps)
{
-ASSERT_IPL(SPL0);
-#if NCPUS == 1
- if ((fp_act != THR_ACT_NULL) && (fp_act->mact.pcb->ims.ifps == fps)) {
- /*
- * Make sure we don't get FPU interrupts later for
- * this thread
- */
- fwait();
-
- /* Mark it free and disable access */
- clear_fpu();
- }
-#endif /* NCPUS == 1 */
- zfree(ifps_zone, (vm_offset_t) fps);
+ pcb_t pcb = THREAD_TO_PCB(thread);
+
+ fp_state_free(fps, pcb->xstate);
+ pcb->xstate = UNDEFINED;
}
/*
- * Set the floating-point state for a thread.
+ * Set the floating-point state for a thread based
+ * on the FXSave formatted data. This is basically
+ * the same as fpu_set_state except it uses the
+ * expanded data structure.
* If the thread is not the current thread, it is
* not running (held). Locking needed against
* concurrent fpu_set_state or fpu_get_state.
*/
kern_return_t
-fpu_set_state(
- thread_act_t thr_act,
- struct i386_float_state *state)
+fpu_set_fxstate(
+ thread_t thr_act,
+ thread_state_t tstate,
+ thread_flavor_t f)
{
- register pcb_t pcb;
- register struct i386_fpsave_state *ifps;
- register struct i386_fpsave_state *new_ifps;
+ struct x86_fx_thread_state *ifps;
+ struct x86_fx_thread_state *new_ifps;
+ x86_float_state64_t *state;
+ pcb_t pcb;
+ boolean_t old_valid, fresh_state = FALSE;
+
+ if (fpu_capability == UNDEFINED)
+ return KERN_FAILURE;
+
+ if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) &&
+ fpu_capability < AVX)
+ return KERN_FAILURE;
+
+#if !defined(RC_HIDE_XNU_J137)
+ if ((f == x86_AVX512_STATE32 || f == x86_AVX512_STATE64) &&
+ thread_xstate(thr_act) == AVX)
+ if (!fpu_thread_promote_avx512(thr_act))
+ return KERN_FAILURE;
+#endif
-ASSERT_IPL(SPL0);
- if (fp_kind == FP_NO)
- return KERN_FAILURE;
+ state = (x86_float_state64_t *)tstate;
- assert(thr_act != THR_ACT_NULL);
- pcb = thr_act->mact.pcb;
+ assert(thr_act != THREAD_NULL);
+ pcb = THREAD_TO_PCB(thr_act);
-#if NCPUS == 1
+ if (state == NULL) {
+ /*
+ * new FPU state is 'invalid'.
+ * Deallocate the fp state if it exists.
+ */
+ simple_lock(&pcb->lock);
- /*
- * If this thread`s state is in the FPU,
- * discard it; we are replacing the entire
- * FPU state.
- */
- if (fp_act == thr_act) {
- fwait(); /* wait for possible interrupt */
- clear_fpu(); /* no state in FPU */
- }
-#endif
+ ifps = pcb->ifps;
+ pcb->ifps = 0;
+
+ simple_unlock(&pcb->lock);
- if (state->initialized == 0) {
- /*
- * new FPU state is 'invalid'.
- * Deallocate the fp state if it exists.
- */
- simple_lock(&pcb->lock);
- ifps = pcb->ims.ifps;
- pcb->ims.ifps = 0;
- simple_unlock(&pcb->lock);
-
- if (ifps != 0) {
- zfree(ifps_zone, (vm_offset_t) ifps);
- }
- }
- else {
- /*
- * Valid state. Allocate the fp state if there is none.
- */
- register struct i386_fp_save *user_fp_state;
- register struct i386_fp_regs *user_fp_regs;
-
- user_fp_state = (struct i386_fp_save *) &state->hw_state[0];
- user_fp_regs = (struct i386_fp_regs *)
- &state->hw_state[sizeof(struct i386_fp_save)];
-
- new_ifps = 0;
- Retry:
- simple_lock(&pcb->lock);
- ifps = pcb->ims.ifps;
- if (ifps == 0) {
- if (new_ifps == 0) {
- simple_unlock(&pcb->lock);
- new_ifps = (struct i386_fpsave_state *) zalloc(ifps_zone);
- goto Retry;
+ if (ifps != 0) {
+ fp_state_free(ifps, thread_xstate(thr_act));
}
- ifps = new_ifps;
+ } else {
+ /*
+ * Valid incoming state. Allocate the fp state if there is none.
+ */
new_ifps = 0;
- pcb->ims.ifps = ifps;
- }
+ Retry:
+ simple_lock(&pcb->lock);
+
+ ifps = pcb->ifps;
+ if (ifps == 0) {
+ if (new_ifps == 0) {
+ simple_unlock(&pcb->lock);
+ new_ifps = fp_state_alloc(thread_xstate(thr_act));
+ goto Retry;
+ }
+ ifps = new_ifps;
+ new_ifps = 0;
+ pcb->ifps = ifps;
+ pcb->xstate = thread_xstate(thr_act);
+ fresh_state = TRUE;
+ }
- /*
- * Ensure that reserved parts of the environment are 0.
- */
- bzero((char *)&ifps->fp_save_state, sizeof(struct i386_fp_save));
+ /*
+ * now copy over the new data.
+ */
- ifps->fp_save_state.fp_control = user_fp_state->fp_control;
- ifps->fp_save_state.fp_status = user_fp_state->fp_status;
- ifps->fp_save_state.fp_tag = user_fp_state->fp_tag;
- ifps->fp_save_state.fp_eip = user_fp_state->fp_eip;
- ifps->fp_save_state.fp_cs = user_fp_state->fp_cs;
- ifps->fp_save_state.fp_opcode = user_fp_state->fp_opcode;
- ifps->fp_save_state.fp_dp = user_fp_state->fp_dp;
- ifps->fp_save_state.fp_ds = user_fp_state->fp_ds;
- ifps->fp_regs = *user_fp_regs;
+ old_valid = ifps->fp_valid;
- simple_unlock(&pcb->lock);
- if (new_ifps != 0)
- zfree(ifps_zone, (vm_offset_t) ifps);
- }
+#if DEBUG || DEVELOPMENT
+ if ((fresh_state == FALSE) && (old_valid == FALSE) && (thr_act != current_thread())) {
+ panic("fpu_set_fxstate inconsistency, thread: %p not stopped", thr_act);
+ }
+#endif
+ /*
+ * Clear any reserved bits in the MXCSR to prevent a GPF
+ * when issuing an FXRSTOR.
+ */
+
+ state->fpu_mxcsr &= mxcsr_capability_mask;
+
+ bcopy((char *)&state->fpu_fcw, (char *)ifps, fp_state_size[FP]);
+
+ switch (thread_xstate(thr_act)) {
+ case UNDEFINED:
+ panic("fpu_set_fxstate() UNDEFINED xstate");
+ break;
+ case FP:
+ ifps->fp_save_layout = thread_is_64bit(thr_act) ? FXSAVE64 : FXSAVE32;
+ break;
+ case AVX: {
+ struct x86_avx_thread_state *iavx = (void *) ifps;
+ x86_avx_state64_t *xs = (x86_avx_state64_t *) state;
+
+ iavx->fp.fp_save_layout = thread_is_64bit(thr_act) ? XSAVE64 : XSAVE32;
+
+ /* Sanitize XSAVE header */
+ bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd));
+ iavx->_xh.xstate_bv = AVX_XMASK;
+ iavx->_xh.xcomp_bv = 0;
+
+ if (f == x86_AVX_STATE32) {
+ bcopy_nochk(&xs->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
+ } else if (f == x86_AVX_STATE64) {
+ bcopy_nochk(&xs->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
+ } else {
+ iavx->_xh.xstate_bv = (XFEM_SSE | XFEM_X87);
+ }
+ break;
+ }
+#if !defined(RC_HIDE_XNU_J137)
+ case AVX512: {
+ struct x86_avx512_thread_state *iavx = (void *) ifps;
+ union {
+ thread_state_t ts;
+ x86_avx512_state32_t *s32;
+ x86_avx512_state64_t *s64;
+ } xs = { .ts = tstate };
+
+ iavx->fp.fp_save_layout = thread_is_64bit(thr_act) ? XSAVE64 : XSAVE32;
+
+ /* Sanitize XSAVE header */
+ bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd));
+ iavx->_xh.xstate_bv = AVX512_XMASK;
+ iavx->_xh.xcomp_bv = 0;
+
+ switch (f) {
+ case x86_AVX512_STATE32:
+ bcopy_nochk(&xs.s32->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG));
+ bcopy_nochk(&xs.s32->fpu_zmmh0, iavx->x_ZMM_Hi256, 8 * sizeof(_STRUCT_YMM_REG));
+ bcopy_nochk(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
+ DBG_AVX512_STATE(iavx);
+ break;
+ case x86_AVX_STATE32:
+ bcopy_nochk(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
+ break;
+ case x86_AVX512_STATE64:
+ bcopy_nochk(&xs.s64->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG));
+ bcopy_nochk(&xs.s64->fpu_zmm16, iavx->x_Hi16_ZMM, 16 * sizeof(_STRUCT_ZMM_REG));
+ bcopy_nochk(&xs.s64->fpu_zmmh0, iavx->x_ZMM_Hi256, 16 * sizeof(_STRUCT_YMM_REG));
+ bcopy_nochk(&xs.s64->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
+ DBG_AVX512_STATE(iavx);
+ break;
+ case x86_AVX_STATE64:
+ bcopy_nochk(&xs.s64->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
+ break;
+ }
+ break;
+ }
+#endif
+ }
+
+ ifps->fp_valid = old_valid;
+ if (old_valid == FALSE) {
+ boolean_t istate = ml_set_interrupts_enabled(FALSE);
+ ifps->fp_valid = TRUE;
+ /* If altering the current thread's state, disable FPU */
+ if (thr_act == current_thread())
+ set_ts();
+
+ ml_set_interrupts_enabled(istate);
+ }
+
+ simple_unlock(&pcb->lock);
+
+ if (new_ifps != 0)
+ fp_state_free(new_ifps, thread_xstate(thr_act));
+ }
return KERN_SUCCESS;
}
* concurrent fpu_set_state or fpu_get_state.
*/
kern_return_t
-fpu_get_state(
- thread_act_t thr_act,
- register struct i386_float_state *state)
+fpu_get_fxstate(
+ thread_t thr_act,
+ thread_state_t tstate,
+ thread_flavor_t f)
{
- register pcb_t pcb;
- register struct i386_fpsave_state *ifps;
+ struct x86_fx_thread_state *ifps;
+ x86_float_state64_t *state;
+ kern_return_t ret = KERN_FAILURE;
+ pcb_t pcb;
+
+ if (fpu_capability == UNDEFINED)
+ return KERN_FAILURE;
+
+ if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) &&
+ fpu_capability < AVX)
+ return KERN_FAILURE;
+
+#if !defined(RC_HIDE_XNU_J137)
+ if ((f == x86_AVX512_STATE32 || f == x86_AVX512_STATE64) &&
+ thread_xstate(thr_act) != AVX512)
+ return KERN_FAILURE;
+#endif
-ASSERT_IPL(SPL0);
- if (fp_kind == FP_NO)
- return KERN_FAILURE;
+ state = (x86_float_state64_t *)tstate;
- assert(thr_act != THR_ACT_NULL);
- pcb = thr_act->mact.pcb;
+ assert(thr_act != THREAD_NULL);
+ pcb = THREAD_TO_PCB(thr_act);
simple_lock(&pcb->lock);
- ifps = pcb->ims.ifps;
+
+ ifps = pcb->ifps;
if (ifps == 0) {
- /*
- * No valid floating-point state.
- */
- simple_unlock(&pcb->lock);
- bzero((char *)state, sizeof(struct i386_float_state));
- return KERN_SUCCESS;
- }
-
- /* Make sure we`ve got the latest fp state info */
- /* If the live fpu state belongs to our target */
-#if NCPUS == 1
- if (thr_act == fp_act)
-#else
- if (thr_act == current_act())
+ /*
+ * No valid floating-point state.
+ */
+
+ bcopy((char *)&initial_fp_state, (char *)&state->fpu_fcw,
+ fp_state_size[FP]);
+
+ simple_unlock(&pcb->lock);
+
+ return KERN_SUCCESS;
+ }
+ /*
+ * Make sure we`ve got the latest fp state info
+ * If the live fpu state belongs to our target
+ */
+ if (thr_act == current_thread()) {
+ boolean_t intr;
+
+ intr = ml_set_interrupts_enabled(FALSE);
+
+ clear_ts();
+ fp_save(thr_act);
+ clear_fpu();
+
+ (void)ml_set_interrupts_enabled(intr);
+ }
+ if (ifps->fp_valid) {
+ bcopy((char *)ifps, (char *)&state->fpu_fcw, fp_state_size[FP]);
+ switch (thread_xstate(thr_act)) {
+ case UNDEFINED:
+ panic("fpu_get_fxstate() UNDEFINED xstate");
+ break;
+ case FP:
+ break; /* already done */
+ case AVX: {
+ struct x86_avx_thread_state *iavx = (void *) ifps;
+ x86_avx_state64_t *xs = (x86_avx_state64_t *) state;
+ if (f == x86_AVX_STATE32) {
+ bcopy_nochk(iavx->x_YMM_Hi128, &xs->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG));
+ } else if (f == x86_AVX_STATE64) {
+ bcopy_nochk(iavx->x_YMM_Hi128, &xs->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG));
+ }
+ break;
+ }
+#if !defined(RC_HIDE_XNU_J137)
+ case AVX512: {
+ struct x86_avx512_thread_state *iavx = (void *) ifps;
+ union {
+ thread_state_t ts;
+ x86_avx512_state32_t *s32;
+ x86_avx512_state64_t *s64;
+ } xs = { .ts = tstate };
+ switch (f) {
+ case x86_AVX512_STATE32:
+ bcopy_nochk(iavx->x_Opmask, &xs.s32->fpu_k0, 8 * sizeof(_STRUCT_OPMASK_REG));
+ bcopy_nochk(iavx->x_ZMM_Hi256, &xs.s32->fpu_zmmh0, 8 * sizeof(_STRUCT_YMM_REG));
+ bcopy_nochk(iavx->x_YMM_Hi128, &xs.s32->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG));
+ DBG_AVX512_STATE(iavx);
+ break;
+ case x86_AVX_STATE32:
+ bcopy_nochk(iavx->x_YMM_Hi128, &xs.s32->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG));
+ break;
+ case x86_AVX512_STATE64:
+ bcopy_nochk(iavx->x_Opmask, &xs.s64->fpu_k0, 8 * sizeof(_STRUCT_OPMASK_REG));
+ bcopy_nochk(iavx->x_Hi16_ZMM, &xs.s64->fpu_zmm16, 16 * sizeof(_STRUCT_ZMM_REG));
+ bcopy_nochk(iavx->x_ZMM_Hi256, &xs.s64->fpu_zmmh0, 16 * sizeof(_STRUCT_YMM_REG));
+ bcopy_nochk(iavx->x_YMM_Hi128, &xs.s64->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG));
+ DBG_AVX512_STATE(iavx);
+ break;
+ case x86_AVX_STATE64:
+ bcopy_nochk(iavx->x_YMM_Hi128, &xs.s64->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG));
+ break;
+ }
+ break;
+ }
#endif
- {
- clear_ts();
- fp_save(thr_act);
- clear_fpu();
+ }
+
+ ret = KERN_SUCCESS;
}
+ simple_unlock(&pcb->lock);
- state->fpkind = fp_kind;
- state->exc_status = 0;
+ return ret;
+}
- {
- register struct i386_fp_save *user_fp_state;
- register struct i386_fp_regs *user_fp_regs;
- state->initialized = ifps->fp_valid;
- user_fp_state = (struct i386_fp_save *) &state->hw_state[0];
- user_fp_regs = (struct i386_fp_regs *)
- &state->hw_state[sizeof(struct i386_fp_save)];
+/*
+ * the child thread is 'stopped' with the thread
+ * mutex held and is currently not known by anyone
+ * so no way for fpu state to get manipulated by an
+ * outside agency -> no need for pcb lock
+ */
+
+void
+fpu_dup_fxstate(
+ thread_t parent,
+ thread_t child)
+{
+ struct x86_fx_thread_state *new_ifps = NULL;
+ boolean_t intr;
+ pcb_t ppcb;
+ xstate_t xstate = thread_xstate(parent);
+
+ ppcb = THREAD_TO_PCB(parent);
- /*
- * Ensure that reserved parts of the environment are 0.
- */
- bzero((char *)user_fp_state, sizeof(struct i386_fp_save));
+ if (ppcb->ifps == NULL)
+ return;
- user_fp_state->fp_control = ifps->fp_save_state.fp_control;
- user_fp_state->fp_status = ifps->fp_save_state.fp_status;
- user_fp_state->fp_tag = ifps->fp_save_state.fp_tag;
- user_fp_state->fp_eip = ifps->fp_save_state.fp_eip;
- user_fp_state->fp_cs = ifps->fp_save_state.fp_cs;
- user_fp_state->fp_opcode = ifps->fp_save_state.fp_opcode;
- user_fp_state->fp_dp = ifps->fp_save_state.fp_dp;
- user_fp_state->fp_ds = ifps->fp_save_state.fp_ds;
- *user_fp_regs = ifps->fp_regs;
+ if (child->machine.ifps)
+ panic("fpu_dup_fxstate: child's ifps non-null");
+
+ new_ifps = fp_state_alloc(xstate);
+
+ simple_lock(&ppcb->lock);
+
+ if (ppcb->ifps != NULL) {
+ struct x86_fx_thread_state *ifps = ppcb->ifps;
+ /*
+ * Make sure we`ve got the latest fp state info
+ */
+ if (current_thread() == parent) {
+ intr = ml_set_interrupts_enabled(FALSE);
+ assert(current_thread() == parent);
+ clear_ts();
+ fp_save(parent);
+ clear_fpu();
+
+ (void)ml_set_interrupts_enabled(intr);
+ }
+
+ if (ifps->fp_valid) {
+ child->machine.ifps = new_ifps;
+ child->machine.xstate = xstate;
+ bcopy((char *)(ppcb->ifps),
+ (char *)(child->machine.ifps),
+ fp_state_size[xstate]);
+
+ /* Mark the new fp saved state as non-live. */
+ /* Temporarily disabled: radar 4647827
+ * new_ifps->fp_valid = TRUE;
+ */
+
+ /*
+ * Clear any reserved bits in the MXCSR to prevent a GPF
+ * when issuing an FXRSTOR.
+ */
+ new_ifps->fx_MXCSR &= mxcsr_capability_mask;
+ new_ifps = NULL;
+ }
}
- simple_unlock(&pcb->lock);
+ simple_unlock(&ppcb->lock);
- return KERN_SUCCESS;
+ if (new_ifps != NULL)
+ fp_state_free(new_ifps, xstate);
}
+
/*
* Initialize FPU.
*
- * Raise exceptions for:
- * invalid operation
- * divide by zero
- * overflow
- *
- * Use 53-bit precision.
*/
+
void
fpinit(void)
{
unsigned short control;
-ASSERT_IPL(SPL0);
clear_ts();
fninit();
fnstcw(&control);
control &= ~(FPC_PC|FPC_RC); /* Clear precision & rounding control */
- control |= (FPC_PC_53 | /* Set precision */
+ control |= (FPC_PC_64 | /* Set precision */
FPC_RC_RN | /* round-to-nearest */
FPC_ZE | /* Suppress zero-divide */
FPC_OE | /* and overflow */
FPC_DE | /* Allow denorms as operands */
FPC_PE); /* No trap for precision loss */
fldcw(control);
+
+ /* Initialize SSE/SSE2 */
+ __builtin_ia32_ldmxcsr(0x1f80);
}
/*
* Coprocessor not present.
*/
+uint64_t x86_isr_fp_simd_use;
+
void
fpnoextflt(void)
{
- /*
- * Enable FPU use.
- */
-ASSERT_IPL(SPL0);
- clear_ts();
-#if NCPUS == 1
-
- /*
- * If this thread`s state is in the FPU, we are done.
- */
- if (fp_act == current_act())
- return;
-
- /* Make sure we don't do fpsave() in fp_intr while doing fpsave()
- * here if the current fpu instruction generates an error.
- */
- fwait();
- /*
- * If another thread`s state is in the FPU, save it.
- */
- if (fp_act != THR_ACT_NULL) {
- fp_save(fp_act);
+ boolean_t intr;
+ thread_t thr_act;
+ pcb_t pcb;
+ struct x86_fx_thread_state *ifps = 0;
+ xstate_t xstate = current_xstate();
+
+ thr_act = current_thread();
+ pcb = THREAD_TO_PCB(thr_act);
+
+ if (pcb->ifps == 0 && !get_interrupt_level()) {
+ ifps = fp_state_alloc(xstate);
+ bcopy((char *)&initial_fp_state, (char *)ifps,
+ fp_state_size[xstate]);
+ if (!thread_is_64bit(thr_act)) {
+ ifps->fp_save_layout = fpu_YMM_capable ? XSAVE32 : FXSAVE32;
+ }
+ else
+ ifps->fp_save_layout = fpu_YMM_capable ? XSAVE64 : FXSAVE64;
+ ifps->fp_valid = TRUE;
}
+ intr = ml_set_interrupts_enabled(FALSE);
- /*
- * Give this thread the FPU.
- */
- fp_act = current_act();
+ clear_ts(); /* Enable FPU use */
-#endif /* NCPUS == 1 */
+ if (__improbable(get_interrupt_level())) {
+ /* Track number of #DNA traps at interrupt context,
+ * which is likely suboptimal. Racy, but good enough.
+ */
+ x86_isr_fp_simd_use++;
+ /*
+ * Save current FP/SIMD context if valid
+ * Initialize live FP/SIMD registers
+ */
+ if (pcb->ifps) {
+ fp_save(thr_act);
+ }
+ fpinit();
+ } else {
+ if (pcb->ifps == 0) {
+ pcb->ifps = ifps;
+ pcb->xstate = xstate;
+ ifps = 0;
+ }
+ /*
+ * Load this thread`s state into coprocessor live context.
+ */
+ fp_load(thr_act);
+ }
+ (void)ml_set_interrupts_enabled(intr);
- /*
- * Load this thread`s state into the FPU.
- */
- fp_load(current_act());
+ if (ifps)
+ fp_state_free(ifps, xstate);
}
/*
void
fpextovrflt(void)
{
- register thread_act_t thr_act = current_act();
- register pcb_t pcb;
- register struct i386_fpsave_state *ifps;
+ thread_t thr_act = current_thread();
+ pcb_t pcb;
+ struct x86_fx_thread_state *ifps;
+ boolean_t intr;
+ xstate_t xstate = current_xstate();
-#if NCPUS == 1
+ intr = ml_set_interrupts_enabled(FALSE);
- /*
- * Is exception for the currently running thread?
- */
- if (fp_act != thr_act) {
- /* Uh oh... */
- panic("fpextovrflt");
- }
-#endif
+ if (get_interrupt_level())
+ panic("FPU segment overrun exception at interrupt context\n");
+ if (current_task() == kernel_task)
+ panic("FPU segment overrun exception in kernel thread context\n");
/*
* This is a non-recoverable error.
* Invalidate the thread`s FPU state.
*/
- pcb = thr_act->mact.pcb;
+ pcb = THREAD_TO_PCB(thr_act);
simple_lock(&pcb->lock);
- ifps = pcb->ims.ifps;
- pcb->ims.ifps = 0;
+ ifps = pcb->ifps;
+ pcb->ifps = 0;
simple_unlock(&pcb->lock);
/*
*/
clear_fpu();
+ (void)ml_set_interrupts_enabled(intr);
+
if (ifps)
- zfree(ifps_zone, (vm_offset_t) ifps);
+ fp_state_free(ifps, xstate);
/*
* Raise exception.
/*NOTREACHED*/
}
+extern void fpxlog(int, uint32_t, uint32_t, uint32_t);
+
/*
* FPU error. Called by AST.
*/
void
fpexterrflt(void)
{
- register thread_act_t thr_act = current_act();
+ thread_t thr_act = current_thread();
+ struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
+ boolean_t intr;
-ASSERT_IPL(SPL0);
-#if NCPUS == 1
- /*
- * Since FPU errors only occur on ESC or WAIT instructions,
- * the current thread should own the FPU. If it didn`t,
- * we should have gotten the task-switched interrupt first.
- */
- if (fp_act != THR_ACT_NULL) {
- panic("fpexterrflt");
- return;
- }
+ intr = ml_set_interrupts_enabled(FALSE);
+
+ if (get_interrupt_level())
+ panic("FPU error exception at interrupt context\n");
+ if (current_task() == kernel_task)
+ panic("FPU error exception in kernel thread context\n");
- /*
- * Check if we got a context switch between the interrupt and the AST
- * This can happen if the interrupt arrived after the FPU AST was
- * checked. In this case, raise the exception in fp_load when this
- * thread next time uses the FPU. Remember exception condition in
- * fp_valid (extended boolean 2).
- */
- if (fp_intr_act != thr_act) {
- if (fp_intr_act == THR_ACT_NULL) {
- panic("fpexterrflt: fp_intr_act == THR_ACT_NULL");
- return;
- }
- fp_intr_act->mact.pcb->ims.ifps->fp_valid = 2;
- fp_intr_act = THR_ACT_NULL;
- return;
- }
- fp_intr_act = THR_ACT_NULL;
-#else /* NCPUS == 1 */
/*
* Save the FPU state and turn off the FPU.
*/
fp_save(thr_act);
-#endif /* NCPUS == 1 */
+ (void)ml_set_interrupts_enabled(intr);
+
+ const uint32_t mask = ifps->fx_control &
+ (FPC_IM | FPC_DM | FPC_ZM | FPC_OM | FPC_UE | FPC_PE);
+ const uint32_t xcpt = ~mask & (ifps->fx_status &
+ (FPS_IE | FPS_DE | FPS_ZE | FPS_OE | FPS_UE | FPS_PE));
+ fpxlog(EXC_I386_EXTERR, ifps->fx_status, ifps->fx_control, xcpt);
/*
* Raise FPU exception.
- * Locking not needed on pcb->ims.ifps,
+ * Locking not needed on pcb->ifps,
* since thread is running.
*/
i386_exception(EXC_ARITHMETIC,
EXC_I386_EXTERR,
- thr_act->mact.pcb->ims.ifps->fp_save_state.fp_status);
+ ifps->fx_status);
+
/*NOTREACHED*/
}
* . if called from fpu_get_state, pcb already locked.
* . if called from fpnoextflt or fp_intr, we are single-cpu
* . otherwise, thread is running.
+ * N.B.: Must be called with interrupts disabled
*/
void
fp_save(
- thread_act_t thr_act)
+ thread_t thr_act)
{
- register pcb_t pcb = thr_act->mact.pcb;
- register struct i386_fpsave_state *ifps = pcb->ims.ifps;
+ pcb_t pcb = THREAD_TO_PCB(thr_act);
+ struct x86_fx_thread_state *ifps = pcb->ifps;
+ assert(ifps != 0);
if (ifps != 0 && !ifps->fp_valid) {
- /* registers are in FPU */
- ifps->fp_valid = TRUE;
- fnsave(&ifps->fp_save_state);
+ assert((get_cr0() & CR0_TS) == 0);
+ /* registers are in FPU */
+ ifps->fp_valid = TRUE;
+ fpu_store_registers(ifps, thread_is_64bit(thr_act));
}
}
void
fp_load(
- thread_act_t thr_act)
+ thread_t thr_act)
{
- register pcb_t pcb = thr_act->mact.pcb;
- register struct i386_fpsave_state *ifps;
-
-ASSERT_IPL(SPL0);
- ifps = pcb->ims.ifps;
- if (ifps == 0) {
- ifps = (struct i386_fpsave_state *) zalloc(ifps_zone);
- bzero((char *)ifps, sizeof *ifps);
- pcb->ims.ifps = ifps;
- fpinit();
-#if 1
-/*
- * I'm not sure this is needed. Does the fpu regenerate the interrupt in
- * frstor or not? Without this code we may miss some exceptions, with it
- * we might send too many exceptions.
- */
- } else if (ifps->fp_valid == 2) {
- /* delayed exception pending */
-
- ifps->fp_valid = TRUE;
- clear_fpu();
- /*
- * Raise FPU exception.
- * Locking not needed on pcb->ims.ifps,
- * since thread is running.
- */
- i386_exception(EXC_ARITHMETIC,
- EXC_I386_EXTERR,
- thr_act->mact.pcb->ims.ifps->fp_save_state.fp_status);
- /*NOTREACHED*/
+ pcb_t pcb = THREAD_TO_PCB(thr_act);
+ struct x86_fx_thread_state *ifps = pcb->ifps;
+
+ assert(ifps);
+#if DEBUG
+ if (ifps->fp_valid != FALSE && ifps->fp_valid != TRUE) {
+ panic("fp_load() invalid fp_valid: %u, fp_save_layout: %u\n",
+ ifps->fp_valid, ifps->fp_save_layout);
+ }
#endif
+
+ if (ifps->fp_valid == FALSE) {
+ fpinit();
} else {
- frstor(ifps->fp_save_state);
+ fpu_load_registers(ifps);
}
ifps->fp_valid = FALSE; /* in FPU */
}
/*
- * Allocate and initialize FP state for current thread.
- * Don't load state.
- *
- * Locking not needed; always called on the current thread.
+ * SSE arithmetic exception handling code.
+ * Basically the same as the x87 exception handler with a different subtype
*/
+
void
-fp_state_alloc(void)
+fpSSEexterrflt(void)
{
- pcb_t pcb = current_act()->mact.pcb;
- struct i386_fpsave_state *ifps;
+ thread_t thr_act = current_thread();
+ struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
+ boolean_t intr;
- ifps = (struct i386_fpsave_state *)zalloc(ifps_zone);
- bzero((char *)ifps, sizeof *ifps);
- pcb->ims.ifps = ifps;
+ intr = ml_set_interrupts_enabled(FALSE);
- ifps->fp_valid = TRUE;
- ifps->fp_save_state.fp_control = (0x037f
- & ~(FPC_IM|FPC_ZM|FPC_OM|FPC_PC))
- | (FPC_PC_53|FPC_IC_AFF);
- ifps->fp_save_state.fp_status = 0;
- ifps->fp_save_state.fp_tag = 0xffff; /* all empty */
+ if (get_interrupt_level())
+ panic("SSE exception at interrupt context\n");
+ if (current_task() == kernel_task)
+ panic("SSE exception in kernel thread context\n");
+
+ /*
+ * Save the FPU state and turn off the FPU.
+ */
+ fp_save(thr_act);
+
+ (void)ml_set_interrupts_enabled(intr);
+ /*
+ * Raise FPU exception.
+ * Locking not needed on pcb->ifps,
+ * since thread is running.
+ */
+ const uint32_t mask = (ifps->fx_MXCSR >> 7) &
+ (FPC_IM | FPC_DM | FPC_ZM | FPC_OM | FPC_UE | FPC_PE);
+ const uint32_t xcpt = ~mask & (ifps->fx_MXCSR &
+ (FPS_IE | FPS_DE | FPS_ZE | FPS_OE | FPS_UE | FPS_PE));
+ fpxlog(EXC_I386_SSEEXTERR, ifps->fx_MXCSR, ifps->fx_MXCSR, xcpt);
+
+ i386_exception(EXC_ARITHMETIC,
+ EXC_I386_SSEEXTERR,
+ ifps->fx_MXCSR);
+ /*NOTREACHED*/
}
+#if !defined(RC_HIDE_XNU_J137)
/*
- * fpflush(thread_act_t)
- * Flush the current act's state, if needed
- * (used by thread_terminate_self to ensure fp faults
- * aren't satisfied by overly general trap code in the
- * context of the reaper thread)
+ * If a thread is using an AVX-sized savearea:
+ * - allocate a new AVX512-sized area,
+ * - copy the 256-bit state into the 512-bit area,
+ * - deallocate the smaller area
*/
-void
-fpflush(thread_act_t thr_act)
+static void
+fpu_savearea_promote_avx512(thread_t thread)
{
-#if NCPUS == 1
- if (fp_act && thr_act == fp_act) {
- clear_ts();
- fwait();
- clear_fpu();
+ struct x86_avx_thread_state *ifps = NULL;
+ struct x86_avx512_thread_state *ifps512 = NULL;
+ pcb_t pcb = THREAD_TO_PCB(thread);
+ boolean_t do_avx512_alloc = FALSE;
+
+ DBG("fpu_upgrade_savearea(%p)\n", thread);
+
+ simple_lock(&pcb->lock);
+
+ ifps = pcb->ifps;
+ if (ifps == NULL) {
+ pcb->xstate = AVX512;
+ simple_unlock(&pcb->lock);
+ if (thread != current_thread()) {
+ /* nothing to be done */
+
+ return;
+ }
+ fpnoextflt();
+ return;
}
-#else
- /* not needed on MP x86s; fp not lazily evaluated */
-#endif
-}
+ if (pcb->xstate != AVX512) {
+ do_avx512_alloc = TRUE;
+ }
+ simple_unlock(&pcb->lock);
+
+ if (do_avx512_alloc == TRUE) {
+ ifps512 = fp_state_alloc(AVX512);
+ }
+
+ simple_lock(&pcb->lock);
+ if (thread == current_thread()) {
+ boolean_t intr;
+
+ intr = ml_set_interrupts_enabled(FALSE);
+
+ clear_ts();
+ fp_save(thread);
+ clear_fpu();
+
+ xsetbv(0, AVX512_XMASK);
+
+ (void)ml_set_interrupts_enabled(intr);
+ }
+ assert(ifps->fp.fp_valid);
+
+ /* Allocate an AVX512 savearea and copy AVX state into it */
+ if (pcb->xstate != AVX512) {
+ bcopy(ifps, ifps512, fp_state_size[AVX]);
+ pcb->ifps = ifps512;
+ pcb->xstate = AVX512;
+ ifps512 = NULL;
+ } else {
+ ifps = NULL;
+ }
+ /* The PCB lock is redundant in some scenarios given the higher level
+ * thread mutex, but its pre-emption disablement is relied upon here
+ */
+ simple_unlock(&pcb->lock);
+
+ if (ifps) {
+ fp_state_free(ifps, AVX);
+ }
+ if (ifps512) {
+ fp_state_free(ifps, AVX512);
+ }
+}
/*
- * Handle a coprocessor error interrupt on the AT386.
- * This comes in on line 5 of the slave PIC at SPL1.
+ * Upgrade the calling thread to AVX512.
*/
+boolean_t
+fpu_thread_promote_avx512(thread_t thread)
+{
+ task_t task = current_task();
+
+ if (thread != current_thread())
+ return FALSE;
+ if (!ml_fpu_avx512_enabled())
+ return FALSE;
+
+ fpu_savearea_promote_avx512(thread);
+
+ /* Racy but the task's xstate is only a hint */
+ task->xstate = AVX512;
+
+ return TRUE;
+}
+
+/*
+ * Called from user_trap() when an invalid opcode fault is taken.
+ * If the user is attempting an AVX512 instruction on a machine
+ * that supports this, we switch the calling thread to use
+ * a larger savearea, set its XCR0 bit mask to enable AVX512 and
+ * return directly via thread_exception_return().
+ * Otherwise simply return.
+ */
+#define MAX_X86_INSN_LENGTH (16)
void
-fpintr(void)
+fpUDflt(user_addr_t rip)
{
- spl_t s;
- thread_act_t thr_act = current_act();
+ uint8_t instruction_prefix;
+ boolean_t is_AVX512_instruction = FALSE;
+ user_addr_t original_rip = rip;
+ do {
+ /* TODO: as an optimisation, copy up to the lesser of the
+ * next page boundary or maximal prefix length in one pass
+ * rather than issue multiple copyins
+ */
+ if (copyin(rip, (char *) &instruction_prefix, 1)) {
+ return;
+ }
+ DBG("fpUDflt(0x%016llx) prefix: 0x%x\n",
+ rip, instruction_prefix);
+ /* TODO: determine more specifically which prefixes
+ * are sane possibilities for AVX512 insns
+ */
+ switch (instruction_prefix) {
+ case 0x2E: /* CS segment override */
+ case 0x36: /* SS segment override */
+ case 0x3E: /* DS segment override */
+ case 0x26: /* ES segment override */
+ case 0x64: /* FS segment override */
+ case 0x65: /* GS segment override */
+ case 0x66: /* Operand-size override */
+ case 0x67: /* address-size override */
+ /* Skip optional prefixes */
+ rip++;
+ if ((rip - original_rip) > MAX_X86_INSN_LENGTH) {
+ return;
+ }
+ break;
+ case 0x62: /* EVEX */
+ case 0xC5: /* VEX 2-byte */
+ case 0xC4: /* VEX 3-byte */
+ is_AVX512_instruction = TRUE;
+ break;
+ default:
+ return;
+ }
+ } while (!is_AVX512_instruction);
-ASSERT_IPL(SPL1);
- /*
- * Turn off the extended 'busy' line.
- */
- outb(0xf0, 0);
+ /* Here if we detect attempted execution of an AVX512 instruction */
/*
- * Save the FPU context to the thread using it.
+ * Fail if this machine doesn't support AVX512
*/
-#if NCPUS == 1
- if (fp_act == THR_ACT_NULL) {
- printf("fpintr: FPU not belonging to anyone!\n");
- clear_ts();
- fninit();
- clear_fpu();
+ if (fpu_capability != AVX512)
return;
+
+ assert(xgetbv(XCR0) == AVX_XMASK);
+
+ DBG("fpUDflt() switching xstate to AVX512\n");
+ (void) fpu_thread_promote_avx512(current_thread());
+
+ thread_exception_return();
+ /* NOT REACHED */
+}
+#endif /* !defined(RC_HIDE_XNU_J137) */
+
+void
+fp_setvalid(boolean_t value) {
+ thread_t thr_act = current_thread();
+ struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
+
+ if (ifps) {
+ ifps->fp_valid = value;
+
+ if (value == TRUE) {
+ boolean_t istate = ml_set_interrupts_enabled(FALSE);
+ clear_fpu();
+ ml_set_interrupts_enabled(istate);
+ }
}
+}
- if (fp_act != thr_act) {
- /*
- * FPU exception is for a different thread.
- * When that thread again uses the FPU an exception will be
- * raised in fp_load. Remember the condition in fp_valid (== 2).
- */
- clear_ts();
- fp_save(fp_act);
- fp_act->mact.pcb->ims.ifps->fp_valid = 2;
- fninit();
- clear_fpu();
- /* leave fp_intr_act THR_ACT_NULL */
- return;
- }
- if (fp_intr_act != THR_ACT_NULL)
- panic("fp_intr: already caught intr");
- fp_intr_act = thr_act;
-#endif /* NCPUS == 1 */
+boolean_t
+ml_fpu_avx_enabled(void) {
+ return (fpu_capability >= AVX);
+}
- clear_ts();
- fp_save(thr_act);
- fninit();
- clear_fpu();
+#if !defined(RC_HIDE_XNU_J137)
+boolean_t
+ml_fpu_avx512_enabled(void) {
+ return (fpu_capability == AVX512);
+}
+#endif
- /*
- * Since we are running on the interrupt stack, we must
- * signal the thread to take the exception when we return
- * to user mode. Use an AST to do this.
- *
- * Don`t set the thread`s AST field. If the thread is
- * descheduled before it takes the AST, it will notice
- * the FPU error when it reloads its FPU state.
- */
- s = splsched();
- mp_disable_preemption();
- ast_on(AST_I386_FP);
- mp_enable_preemption();
- splx(s);
+static xstate_t
+task_xstate(task_t task)
+{
+ if (task == TASK_NULL)
+ return fpu_default;
+ else
+ return task->xstate;
+}
+
+static xstate_t
+thread_xstate(thread_t thread)
+{
+ xstate_t xs = THREAD_TO_PCB(thread)->xstate;
+ if (xs == UNDEFINED)
+ return task_xstate(thread->task);
+ else
+ return xs;
+}
+
+xstate_t
+current_xstate(void)
+{
+ return thread_xstate(current_thread());
+}
+
+/*
+ * Called when exec'ing between bitnesses.
+ * If valid FPU state exists, adjust the layout.
+ */
+void
+fpu_switch_addrmode(thread_t thread, boolean_t is_64bit)
+{
+ struct x86_fx_thread_state *ifps = thread->machine.ifps;
+
+ if (ifps && ifps->fp_valid) {
+ if (thread_xstate(thread) == FP) {
+ ifps->fp_save_layout = is_64bit ? FXSAVE64 : FXSAVE32;
+ } else {
+ ifps->fp_save_layout = is_64bit ? XSAVE64 : XSAVE32;
+ }
+ }
}