#include <vm/vm_kern.h>
#include <vm/vm_map.h>
-#include <i386/lock.h>
+#include <i386/bit_routines.h>
#include <i386/mp_desc.h>
#include <i386/misc_protos.h>
#include <i386/mp.h>
#include <i386/pmap.h>
-#if defined(__i386__) || defined(__x86_64__)
+#include <i386/postcode.h>
#include <i386/pmap_internal.h>
-#endif /* i386 */
#if CONFIG_MCA
#include <i386/machine_check.h>
#endif
#include <kern/misc_protos.h>
+#if MONOTONIC
+#include <kern/monotonic.h>
+#endif /* MONOTONIC */
+#include <san/kasan.h>
+
#define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
#define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
/*
* Per-cpu data area pointers.
- * The master cpu (cpu 0) has its data area statically allocated;
- * others are allocated dynamically and this array is updated at runtime.
*/
-static cpu_data_t cpu_data_master = {
- .cpu_this = &cpu_data_master,
- .cpu_nanotime = &pal_rtc_nanotime_info,
- .cpu_int_stack_top = (vm_offset_t) low_eintstack,
+cpu_data_t cpshadows[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
+cpu_data_t scdatas[MAX_CPUS] __attribute__((aligned(64))) = {
+ [0].cpu_this = &scdatas[0],
+ [0].cpu_nanotime = &pal_rtc_nanotime_info,
+ [0].cpu_int_stack_top = (vm_offset_t) low_eintstack,
+ [0].cd_shadow = &cpshadows[0]
};
-cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &cpu_data_master };
+cpu_data_t *cpu_data_master = &scdatas[0];
+
+cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &scdatas[0] };
decl_simple_lock_data(,ncpus_lock); /* protects real_ncpus */
unsigned int real_ncpus = 1;
extern void hi64_sysenter(void);
extern void hi64_syscall(void);
+typedef struct {
+ struct real_descriptor pcldts[LDTSZ];
+} cldt_t;
+
+cpu_desc_table64_t scdtables[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
+cpu_fault_stack_t scfstks[MAX_CPUS] __attribute__((aligned(64))) __attribute__((section("__HIB, __desc")));
+
+cldt_t *dyn_ldts;
+
/*
* Multiprocessor i386/i486 systems use a separate copy of the
* GDT, IDT, LDT, and kernel TSS per processor. The first three
* Allocate and initialize the per-processor descriptor tables.
*/
-struct fake_descriptor ldt_desc_pattern = {
- (unsigned int) 0,
- LDTSZ_MIN * sizeof(struct fake_descriptor) - 1,
- 0,
- ACC_P|ACC_PL_K|ACC_LDT
-};
-
-struct fake_descriptor tss_desc_pattern = {
- (unsigned int) 0,
- sizeof(struct i386_tss) - 1,
- 0,
- ACC_P|ACC_PL_K|ACC_TSS
-};
-
-struct fake_descriptor cpudata_desc_pattern = {
- (unsigned int) 0,
- sizeof(cpu_data_t)-1,
- SZ_32,
- ACC_P|ACC_PL_K|ACC_DATA_W
-};
-
-#if NCOPY_WINDOWS > 0
-struct fake_descriptor userwindow_desc_pattern = {
- (unsigned int) 0,
- ((NBPDE * NCOPY_WINDOWS) / PAGE_SIZE) - 1,
- SZ_32 | SZ_G,
- ACC_P|ACC_PL_U|ACC_DATA_W
-};
-#endif
-
-struct fake_descriptor physwindow_desc_pattern = {
- (unsigned int) 0,
- PAGE_SIZE - 1,
- SZ_32,
- ACC_P|ACC_PL_K|ACC_DATA_W
-};
-
/*
* This is the expanded, 64-bit variant of the kernel LDT descriptor.
* When switching to 64-bit mode this replaces KERNEL_LDT entry
}
}
-static void
-cpu_gdt_alias(vm_map_offset_t gdt, vm_map_offset_t alias)
-{
- pt_entry_t *pte = NULL;
-
- /* Require page alignment */
- assert(page_aligned(gdt));
- assert(page_aligned(alias));
-
- pte = pmap_pte(kernel_pmap, alias);
- pmap_store_pte(pte, kvtophys(gdt) | INTEL_PTE_REF
- | INTEL_PTE_MOD
- | INTEL_PTE_WIRED
- | INTEL_PTE_VALID
- | INTEL_PTE_WRITE
- | INTEL_PTE_NX);
-
- /* TLB flush unneccessry because target processor isn't running yet */
-}
-
-
+extern unsigned mldtsz;
void
-cpu_desc_init64(cpu_data_t *cdp)
+cpu_desc_init(cpu_data_t *cdp)
{
cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
- if (cdp == &cpu_data_master) {
+ if (cdp == cpu_data_master) {
/*
- * Master CPU uses the tables built at boot time.
- * Just set the index pointers to the low memory space.
+ * Populate the double-mapped 'u' and base 'b' fields in the
+ * KTSS with I/G/LDT and sysenter stack data.
*/
- cdi->cdi_ktss = (void *)&master_ktss64;
- cdi->cdi_sstk = (vm_offset_t) &master_sstk.top;
- cdi->cdi_gdt.ptr = (void *)MASTER_GDT_ALIAS;
- cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS;
- cdi->cdi_ldt = (struct fake_descriptor *) master_ldt;
+ cdi->cdi_ktssu = (void *)DBLMAP(&master_ktss64);
+ cdi->cdi_ktssb = (void *)&master_ktss64;
+ cdi->cdi_sstku = (vm_offset_t) DBLMAP(&master_sstk.top);
+ cdi->cdi_sstkb = (vm_offset_t) &master_sstk.top;
+
+ cdi->cdi_gdtu.ptr = (void *)DBLMAP((uintptr_t) &master_gdt);
+ cdi->cdi_gdtb.ptr = (void *)&master_gdt;
+ cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
+ cdi->cdi_idtb.ptr = (void *)((uintptr_t) &master_idt64);
+ cdi->cdi_ldtu = (struct fake_descriptor *) (void *) DBLMAP((uintptr_t)&master_ldt[0]);
+ cdi->cdi_ldtb = (struct fake_descriptor *) (void *) &master_ldt[0];
/* Replace the expanded LDTs and TSS slots in the GDT */
- kernel_ldt_desc64.offset64 = (uintptr_t) &master_ldt;
+ kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
*(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
kernel_ldt_desc64;
*(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] =
kernel_ldt_desc64;
- kernel_tss_desc64.offset64 = (uintptr_t) &master_ktss64;
+ kernel_tss_desc64.offset64 = (uintptr_t) DBLMAP(&master_ktss64);
*(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
kernel_tss_desc64;
/*
* Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS
- * Note: this will be dynamically re-allocated in VM later.
*/
master_ktss64.ist2 = (uintptr_t) low_eintstack;
- master_ktss64.ist1 = (uintptr_t) low_eintstack
- - sizeof(x86_64_intr_stack_frame_t);
-
- } else if (cdi->cdi_ktss == NULL) { /* Skipping re-init on wake */
+ master_ktss64.ist1 = (uintptr_t) low_eintstack - sizeof(x86_64_intr_stack_frame_t);
+ } else if (cdi->cdi_ktssu == NULL) { /* Skipping re-init on wake */
cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
- /*
- * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel
- * heap (cpu_desc_table).
- * LDT descriptors are mapped into a separate area.
- * GDT descriptors are addressed by alias to avoid sgdt leaks to user-space.
- */
- cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS;
- cdi->cdi_gdt.ptr = (void *)CPU_GDT_ALIAS(cdp->cpu_number);
- cdi->cdi_ktss = (void *)&cdt->ktss;
- cdi->cdi_sstk = (vm_offset_t)&cdt->sstk.top;
- cdi->cdi_ldt = cdp->cpu_ldtp;
+ cdi->cdi_idtu.ptr = (void *)DBLMAP((uintptr_t) &master_idt64);
- /* Make the virtual alias address for the GDT */
- cpu_gdt_alias((vm_map_offset_t) &cdt->gdt,
- (vm_map_offset_t) cdi->cdi_gdt.ptr);
+ cdi->cdi_ktssu = (void *)DBLMAP(&cdt->ktss);
+ cdi->cdi_ktssb = (void *)(&cdt->ktss);
+ cdi->cdi_sstku = (vm_offset_t)DBLMAP(&cdt->sstk.top);
+ cdi->cdi_sstkb = (vm_offset_t)(&cdt->sstk.top);
+ cdi->cdi_ldtu = (void *)LDTALIAS(cdp->cpu_ldtp);
+ cdi->cdi_ldtb = (void *)(cdp->cpu_ldtp);
/*
* Copy the tables
*/
bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt));
- bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt));
+ bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, mldtsz);
bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss));
-
+ cdi->cdi_gdtu.ptr = (void *)DBLMAP(cdt->gdt);
+ cdi->cdi_gdtb.ptr = (void *)(cdt->gdt);
/*
* Fix up the entries in the GDT to point to
* this LDT and this TSS.
+ * Note reuse of global 'kernel_ldt_desc64, which is not
+ * concurrency-safe. Higher level synchronization is expected
*/
- kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt;
+ kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
kernel_ldt_desc64;
fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
- kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt;
+ kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldtu;
*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
kernel_ldt_desc64;
fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
- kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktss;
+ kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktssu;
*(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
kernel_tss_desc64;
fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
/* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */
- bzero((void *) cdt->fstk, sizeof(cdt->fstk));
- cdt->ktss.ist2 = (unsigned long)cdt->fstk + sizeof(cdt->fstk);
- cdt->ktss.ist1 = cdt->ktss.ist2
- - sizeof(x86_64_intr_stack_frame_t);
+ uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
+ cdt->fstkp = cfstk;
+ bzero((void *) cfstk, FSTK_SZ);
+ cdt->ktss.ist2 = DBLMAP((uint64_t)cdt->fstkp + FSTK_SZ);
+ cdt->ktss.ist1 = cdt->ktss.ist2 - sizeof(x86_64_intr_stack_frame_t);
}
/* Require that the top of the sysenter stack is 16-byte aligned */
- if ((cdi->cdi_sstk % 16) != 0)
- panic("cpu_desc_init64() sysenter stack not 16-byte aligned");
+ if ((cdi->cdi_sstku % 16) != 0)
+ panic("cpu_desc_init() sysenter stack not 16-byte aligned");
}
-
-
void
-cpu_desc_load64(cpu_data_t *cdp)
+cpu_desc_load(cpu_data_t *cdp)
{
cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
+ postcode(CPU_DESC_LOAD_ENTRY);
+
/* Stuff the kernel per-cpu data area address into the MSRs */
+ postcode(CPU_DESC_LOAD_GS_BASE);
wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
+ postcode(CPU_DESC_LOAD_KERNEL_GS_BASE);
wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
/*
gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
/* Load the GDT, LDT, IDT and TSS */
- cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1;
- cdi->cdi_idt.size = 0x1000 + cdp->cpu_number;
- lgdt((uintptr_t *) &cdi->cdi_gdt);
- lidt((uintptr_t *) &cdi->cdi_idt);
+ cdi->cdi_gdtb.size = sizeof(struct real_descriptor)*GDTSZ - 1;
+ cdi->cdi_gdtu.size = cdi->cdi_gdtb.size;
+ cdi->cdi_idtb.size = 0x1000 + cdp->cpu_number;
+ cdi->cdi_idtu.size = cdi->cdi_idtb.size;
+
+ postcode(CPU_DESC_LOAD_GDT);
+ lgdt((uintptr_t *) &cdi->cdi_gdtu);
+ postcode(CPU_DESC_LOAD_IDT);
+ lidt((uintptr_t *) &cdi->cdi_idtu);
+ postcode(CPU_DESC_LOAD_LDT);
lldt(KERNEL_LDT);
+ postcode(CPU_DESC_LOAD_TSS);
set_tr(KERNEL_TSS);
#if GPROF // Hack to enable mcount to work on K64
__asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS)));
#endif
+ postcode(CPU_DESC_LOAD_EXIT);
}
-
/*
* Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
*/
-static void
-fast_syscall_init64(__unused cpu_data_t *cdp)
+void
+cpu_syscall_init(cpu_data_t *cdp)
{
+#if MONOTONIC
+ mt_cpu_up(cdp);
+#else /* MONOTONIC */
+#pragma unused(cdp)
+#endif /* !MONOTONIC */
wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
- wrmsr64(MSR_IA32_SYSENTER_EIP, (uintptr_t) hi64_sysenter);
- wrmsr64(MSR_IA32_SYSENTER_ESP, current_sstk());
+ wrmsr64(MSR_IA32_SYSENTER_EIP, DBLMAP((uintptr_t) hi64_sysenter));
+ wrmsr64(MSR_IA32_SYSENTER_ESP, current_cpu_datap()->cpu_desc_index.cdi_sstku);
/* Enable syscall/sysret */
wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);
* Note USER_CS because sysret uses this + 16 when returning to
* 64-bit code.
*/
- wrmsr64(MSR_IA32_LSTAR, (uintptr_t) hi64_syscall);
- wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) |
- (((uint64_t)KERNEL64_CS) << 32));
+ wrmsr64(MSR_IA32_LSTAR, DBLMAP((uintptr_t) hi64_syscall));
+ wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | (((uint64_t)KERNEL64_CS) << 32));
/*
* Emulate eflags cleared by sysenter but note that
* we also clear the trace trap to avoid the complications
wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT);
}
-
+extern vm_offset_t dyn_dblmap(vm_offset_t, vm_offset_t);
+uint64_t ldt_alias_offset;
cpu_data_t *
cpu_data_alloc(boolean_t is_boot_cpu)
return cdp;
}
+ boolean_t do_ldt_alloc = FALSE;
+ simple_lock(&ncpus_lock);
+ int cnum = real_ncpus;
+ real_ncpus++;
+ if (dyn_ldts == NULL) {
+ do_ldt_alloc = TRUE;
+ }
+ simple_unlock(&ncpus_lock);
+
/*
* Allocate per-cpu data:
*/
- ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t));
- if (ret != KERN_SUCCESS) {
- printf("cpu_data_alloc() failed, ret=%d\n", ret);
- goto abort;
- }
+
+ cdp = &scdatas[cnum];
bzero((void*) cdp, sizeof(cpu_data_t));
cdp->cpu_this = cdp;
-
+ cdp->cpu_number = cnum;
+ cdp->cd_shadow = &cpshadows[cnum];
/*
* Allocate interrupt stack:
*/
ret = kmem_alloc(kernel_map,
(vm_offset_t *) &cdp->cpu_int_stack_top,
- INTSTACK_SIZE);
+ INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
- printf("cpu_data_alloc() int stack failed, ret=%d\n", ret);
- goto abort;
+ panic("cpu_data_alloc() int stack failed, ret=%d\n", ret);
}
bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE);
cdp->cpu_int_stack_top += INTSTACK_SIZE;
/*
* Allocate descriptor table:
*/
- ret = kmem_alloc(kernel_map,
- (vm_offset_t *) &cdp->cpu_desc_tablep,
- sizeof(cpu_desc_table64_t));
- if (ret != KERN_SUCCESS) {
- printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret);
- goto abort;
- }
+ cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[cnum];
/*
* Allocate LDT
*/
- ret = kmem_alloc(kernel_map,
- (vm_offset_t *) &cdp->cpu_ldtp,
- sizeof(struct real_descriptor) * LDTSZ);
- if (ret != KERN_SUCCESS) {
- printf("cpu_data_alloc() ldt failed, ret=%d\n", ret);
- goto abort;
+ if (do_ldt_alloc) {
+ boolean_t do_ldt_free = FALSE;
+ vm_offset_t sldtoffset = 0;
+ /*
+ * Allocate LDT
+ */
+ vm_offset_t ldtalloc = 0, ldtallocsz = round_page_64(MAX_CPUS * sizeof(struct real_descriptor) * LDTSZ);
+ ret = kmem_alloc(kernel_map, (vm_offset_t *) &ldtalloc, ldtallocsz, VM_KERN_MEMORY_CPU);
+ if (ret != KERN_SUCCESS) {
+ panic("cpu_data_alloc() ldt failed, kmem_alloc=%d\n", ret);
+ }
+
+ simple_lock(&ncpus_lock);
+ if (dyn_ldts == NULL) {
+ dyn_ldts = (cldt_t *)ldtalloc;
+ } else {
+ do_ldt_free = TRUE;
+ }
+ simple_unlock(&ncpus_lock);
+
+ if (do_ldt_free) {
+ kmem_free(kernel_map, ldtalloc, ldtallocsz);
+ } else {
+ /* CPU registration and startup are expected to execute
+ * serially, as invoked by the platform driver.
+ * Create trampoline alias of LDT region.
+ */
+ sldtoffset = dyn_dblmap(ldtalloc, ldtallocsz);
+ ldt_alias_offset = sldtoffset;
+ }
}
+ cdp->cpu_ldtp = &dyn_ldts[cnum].pcldts[0];
#if CONFIG_MCA
/* Machine-check shadow register allocation. */
mca_cpu_alloc(cdp);
#endif
- simple_lock(&ncpus_lock);
-
- cpu_data_ptr[real_ncpus] = cdp;
- cdp->cpu_number = real_ncpus;
- real_ncpus++;
- simple_unlock(&ncpus_lock);
+ /*
+ * Before this cpu has been assigned a real thread context,
+ * we give it a fake, unique, non-zero thread id which the locking
+ * primitives use as their lock value.
+ * Note that this does not apply to the boot processor, cpu 0, which
+ * transitions to a thread context well before other processors are
+ * started.
+ */
+ cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number;
cdp->cpu_nanotime = &pal_rtc_nanotime_info;
"int_stack: 0x%lx-0x%lx\n",
cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
(long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top));
+ cpu_data_ptr[cnum] = cdp;
return cdp;
-abort:
- if (cdp) {
- if (cdp->cpu_desc_tablep)
- kfree((void *) cdp->cpu_desc_tablep,
- sizeof(cpu_desc_table64_t));
- if (cdp->cpu_int_stack_top)
- kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE),
- INTSTACK_SIZE);
- kfree((void *) cdp, sizeof(*cdp));
- }
- return NULL;
}
boolean_t
if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
return (TRUE);
}
-
return (FALSE);
}
else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
return (TRUE);
+ /* Explicitly validate the system code selectors
+ * even if not instantaneously privileged,
+ * since they are dynamically re-privileged
+ * at context switch
+ */
+ if ((selector == USER_CS) || (selector == USER64_CS))
+ return (TRUE);
}
return (FALSE);
if (vm_allocate(kernel_map, &vaddr,
(NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE,
- VM_FLAGS_ANYWHERE) != KERN_SUCCESS)
+ VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) != KERN_SUCCESS)
panic("cpu_userwindow_init: "
"couldn't allocate user map window");
if (phys_window == 0) {
if (vm_allocate(kernel_map, &phys_window,
- PAGE_SIZE, VM_FLAGS_ANYWHERE)
+ PAGE_SIZE, VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU))
!= KERN_SUCCESS)
panic("cpu_physwindow_init: "
"couldn't allocate phys map window");
}
#endif /* NCOPY_WINDOWS > 0 */
-/*
- * Load the segment descriptor tables for the current processor.
- */
-void
-cpu_mode_init(cpu_data_t *cdp)
-{
- fast_syscall_init64(cdp);
-}
-
/*
* Allocate a new interrupt stack for the boot processor from the
* heap rather than continue to use the statically allocated space.
{
int ret;
vm_offset_t istk;
- vm_offset_t fstk;
cpu_data_t *cdp;
boolean_t istate;
- ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE);
+ ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
panic("cpu_data_realloc() stack alloc, ret=%d\n", ret);
}
bzero((void*) istk, INTSTACK_SIZE);
istk += INTSTACK_SIZE;
- ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t));
- if (ret != KERN_SUCCESS) {
- panic("cpu_data_realloc() cpu data alloc, ret=%d\n", ret);
- }
+ cdp = &scdatas[0];
/* Copy old contents into new area and make fix-ups */
assert(cpu_number() == 0);
cdp->cpu_this = cdp;
cdp->cpu_int_stack_top = istk;
timer_call_queue_init(&cdp->rtclock_timer.queue);
+ cdp->cpu_desc_tablep = (struct cpu_desc_table *) &scdtables[0];
+ cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
- /* Allocate the separate fault stack */
- ret = kmem_alloc(kernel_map, &fstk, PAGE_SIZE);
- if (ret != KERN_SUCCESS) {
- panic("cpu_data_realloc() fault stack alloc, ret=%d\n", ret);
- }
- bzero((void*) fstk, PAGE_SIZE);
- fstk += PAGE_SIZE;
+ uint8_t *cfstk = &scfstks[cdp->cpu_number].fstk[0];
+ cdt->fstkp = cfstk;
+ cfstk += FSTK_SZ;
/*
* With interrupts disabled commmit the new areas.
*/
istate = ml_set_interrupts_enabled(FALSE);
cpu_data_ptr[0] = cdp;
- master_ktss64.ist2 = (uintptr_t) fstk;
- master_ktss64.ist1 = (uintptr_t) fstk
- - sizeof(x86_64_intr_stack_frame_t);
+ master_ktss64.ist2 = DBLMAP((uintptr_t) cfstk);
+ master_ktss64.ist1 = DBLMAP((uintptr_t) cfstk - sizeof(x86_64_intr_stack_frame_t));
wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
(void) ml_set_interrupts_enabled(istate);
kprintf("Reallocated master cpu data: %p,"
" interrupt stack: %p, fault stack: %p\n",
- (void *) cdp, (void *) istk, (void *) fstk);
+ (void *) cdp, (void *) istk, (void *) cfstk);
}