/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
/*
*/
-
#include <kern/cpu_number.h>
#include <kern/kalloc.h>
#include <kern/cpu_data.h>
#include <mach/mach_types.h>
#include <mach/machine.h>
#include <mach/vm_map.h>
+#include <mach/machine/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
+#include <i386/bit_routines.h>
#include <i386/mp_desc.h>
-#include <i386/lock.h>
#include <i386/misc_protos.h>
#include <i386/mp.h>
#include <i386/pmap.h>
-#include <i386/cpu_threads.h>
+#if defined(__i386__) || defined(__x86_64__)
+#include <i386/pmap_internal.h>
+#endif /* i386 */
+#if CONFIG_MCA
+#include <i386/machine_check.h>
+#endif
#include <kern/misc_protos.h>
-#include <mach_kdb.h>
-
-/*
- * The i386 needs an interrupt stack to keep the PCB stack from being
- * overrun by interrupts. All interrupt stacks MUST lie at lower addresses
- * than any thread`s kernel stack.
- */
+#define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
+#define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
+
+// Declare macros that will declare the externs
+#define TRAP(n, name) extern void *name ;
+#define TRAP_ERR(n, name) extern void *name ;
+#define TRAP_SPC(n, name) extern void *name ;
+#define TRAP_IST1(n, name) extern void *name ;
+#define TRAP_IST2(n, name) extern void *name ;
+#define INTERRUPT(n) extern void *_intr_ ## n ;
+#define USER_TRAP(n, name) extern void *name ;
+#define USER_TRAP_SPC(n, name) extern void *name ;
+
+// Include the table to declare the externs
+#include "../x86_64/idt_table.h"
+
+// Undef the macros, then redefine them so we can declare the table
+#undef TRAP
+#undef TRAP_ERR
+#undef TRAP_SPC
+#undef TRAP_IST1
+#undef TRAP_IST2
+#undef INTERRUPT
+#undef USER_TRAP
+#undef USER_TRAP_SPC
+
+#define TRAP(n, name) \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 0, \
+ K_INTR_GATE, \
+ 0 \
+ },
+
+#define TRAP_ERR TRAP
+#define TRAP_SPC TRAP
+
+#define TRAP_IST1(n, name) \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 1, \
+ K_INTR_GATE, \
+ 0 \
+ },
+
+#define TRAP_IST2(n, name) \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 2, \
+ K_INTR_GATE, \
+ 0 \
+ },
+
+#define INTERRUPT(n) \
+ [n] = { \
+ (uintptr_t)&_intr_ ## n,\
+ KERNEL64_CS, \
+ 0, \
+ K_INTR_GATE, \
+ 0 \
+ },
+
+#define USER_TRAP(n, name) \
+ [n] = { \
+ (uintptr_t)&name, \
+ KERNEL64_CS, \
+ 0, \
+ U_INTR_GATE, \
+ 0 \
+ },
+
+#define USER_TRAP_SPC USER_TRAP
+
+// Declare the table using the macros we just set up
+struct fake_descriptor64 master_idt64[IDTSZ]
+ __attribute__ ((section("__HIB,__desc")))
+ __attribute__ ((aligned(PAGE_SIZE))) = {
+#include "../x86_64/idt_table.h"
+};
/*
* First cpu`s interrupt stack.
*/
-extern uint32_t low_intstack[]; /* bottom */
+extern uint32_t low_intstack[]; /* bottom */
extern uint32_t low_eintstack[]; /* top */
/*
* The master cpu (cpu 0) has its data area statically allocated;
* others are allocated dynamically and this array is updated at runtime.
*/
-cpu_data_t cpu_data_master;
-cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] &cpu_data_master };
+static cpu_data_t cpu_data_master = {
+ .cpu_this = &cpu_data_master,
+ .cpu_nanotime = &pal_rtc_nanotime_info,
+ .cpu_int_stack_top = (vm_offset_t) low_eintstack,
+};
+cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &cpu_data_master };
-decl_simple_lock_data(,cpu_lock); /* protects real_ncpus */
+decl_simple_lock_data(,ncpus_lock); /* protects real_ncpus */
unsigned int real_ncpus = 1;
unsigned int max_ncpus = MAX_CPUS;
-extern void *hi_remap_text;
-#define HI_TEXT(lo_text) \
- (((uint32_t)&lo_text - (uint32_t)&hi_remap_text) + HIGH_MEM_BASE)
-
-extern void hi_sysenter(void);
-extern void hi64_sysenter(void);
-extern void hi64_syscall(void);
-
+extern void hi64_sysenter(void);
+extern void hi64_syscall(void);
/*
* Multiprocessor i386/i486 systems use a separate copy of the
* Allocate and initialize the per-processor descriptor tables.
*/
-struct fake_descriptor ldt_desc_pattern = {
- (unsigned int) 0,
- LDTSZ_MIN * sizeof(struct fake_descriptor) - 1,
- 0,
- ACC_P|ACC_PL_K|ACC_LDT
-};
-
-struct fake_descriptor tss_desc_pattern = {
- (unsigned int) 0,
- sizeof(struct i386_tss) - 1,
- 0,
- ACC_P|ACC_PL_K|ACC_TSS
-};
-
-struct fake_descriptor cpudata_desc_pattern = {
- (unsigned int) 0,
- sizeof(cpu_data_t)-1,
- SZ_32,
- ACC_P|ACC_PL_K|ACC_DATA_W
-};
-
-struct fake_descriptor userwindow_desc_pattern = {
- (unsigned int) 0,
- ((NBPDE * NCOPY_WINDOWS) / PAGE_SIZE) - 1,
- SZ_32 | SZ_G,
- ACC_P|ACC_PL_U|ACC_DATA_W
-};
-
-struct fake_descriptor physwindow_desc_pattern = {
- (unsigned int) 0,
- PAGE_SIZE - 1,
- SZ_32,
- ACC_P|ACC_PL_K|ACC_DATA_W
-};
-
/*
* This is the expanded, 64-bit variant of the kernel LDT descriptor.
* When switching to 64-bit mode this replaces KERNEL_LDT entry
* in the uber-space remapping window on the kernel.
*/
struct fake_descriptor64 kernel_ldt_desc64 = {
- FAKE_UBER64(&master_ldt),
+ 0,
LDTSZ_MIN*sizeof(struct fake_descriptor)-1,
0,
ACC_P|ACC_PL_K|ACC_LDT,
* It is follows pattern of the KERNEL_LDT.
*/
struct fake_descriptor64 kernel_tss_desc64 = {
- FAKE_UBER64(&master_ktss64),
+ 0,
sizeof(struct x86_64_tss)-1,
0,
ACC_P|ACC_PL_K|ACC_TSS,
0
};
+/*
+ * Convert a descriptor from fake to real format.
+ *
+ * Fake descriptor format:
+ * bytes 0..3 base 31..0
+ * bytes 4..5 limit 15..0
+ * byte 6 access byte 2 | limit 19..16
+ * byte 7 access byte 1
+ *
+ * Real descriptor format:
+ * bytes 0..1 limit 15..0
+ * bytes 2..3 base 15..0
+ * byte 4 base 23..16
+ * byte 5 access byte 1
+ * byte 6 access byte 2 | limit 19..16
+ * byte 7 base 31..24
+ *
+ * Fake gate format:
+ * bytes 0..3 offset
+ * bytes 4..5 selector
+ * byte 6 word count << 4 (to match fake descriptor)
+ * byte 7 access byte 1
+ *
+ * Real gate format:
+ * bytes 0..1 offset 15..0
+ * bytes 2..3 selector
+ * byte 4 word count
+ * byte 5 access byte 1
+ * bytes 6..7 offset 31..16
+ */
void
-cpu_desc_init(
- cpu_data_t *cdp,
- boolean_t is_boot_cpu)
+fix_desc(void *d, int num_desc) {
+ //early_kprintf("fix_desc(%x, %x)\n", d, num_desc);
+ uint8_t *desc = (uint8_t*) d;
+
+ do {
+ if ((desc[7] & 0x14) == 0x04) { /* gate */
+ uint32_t offset;
+ uint16_t selector;
+ uint8_t wordcount;
+ uint8_t acc;
+
+ offset = *((uint32_t*)(desc));
+ selector = *((uint32_t*)(desc+4));
+ wordcount = desc[6] >> 4;
+ acc = desc[7];
+
+ *((uint16_t*)desc) = offset & 0xFFFF;
+ *((uint16_t*)(desc+2)) = selector;
+ desc[4] = wordcount;
+ desc[5] = acc;
+ *((uint16_t*)(desc+6)) = offset >> 16;
+
+ } else { /* descriptor */
+ uint32_t base;
+ uint16_t limit;
+ uint8_t acc1, acc2;
+
+ base = *((uint32_t*)(desc));
+ limit = *((uint16_t*)(desc+4));
+ acc2 = desc[6];
+ acc1 = desc[7];
+
+ *((uint16_t*)(desc)) = limit;
+ *((uint16_t*)(desc+2)) = base & 0xFFFF;
+ desc[4] = (base >> 16) & 0xFF;
+ desc[5] = acc1;
+ desc[6] = acc2;
+ desc[7] = base >> 24;
+ }
+ desc += 8;
+ } while (--num_desc);
+}
+
+void
+fix_desc64(void *descp, int count)
{
- cpu_desc_table_t *cdt = cdp->cpu_desc_tablep;
- cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
+ struct fake_descriptor64 *fakep;
+ union {
+ struct real_gate64 gate;
+ struct real_descriptor64 desc;
+ } real;
+ int i;
+
+ fakep = (struct fake_descriptor64 *) descp;
+
+ for (i = 0; i < count; i++, fakep++) {
+ /*
+ * Construct the real decriptor locally.
+ */
- if (is_boot_cpu) {
- /*
- * Master CPU uses the tables built at boot time.
- * Just set the index pointers to the high shared-mapping space.
- * Note that the sysenter stack uses empty space above the ktss
- * in the HIGH_FIXED_KTSS page. In this case we don't map the
- * the real master_sstk in low memory.
- */
- cdi->cdi_ktss = (struct i386_tss *)
- pmap_index_to_virt(HIGH_FIXED_KTSS) ;
- cdi->cdi_sstk = (vm_offset_t) (cdi->cdi_ktss + 1) +
- (vm_offset_t) &master_sstk.top -
- (vm_offset_t) &master_sstk;
-#if MACH_KDB
- cdi->cdi_dbtss = (struct i386_tss *)
- pmap_index_to_virt(HIGH_FIXED_DBTSS);
-#endif /* MACH_KDB */
- cdi->cdi_gdt = (struct fake_descriptor *)
- pmap_index_to_virt(HIGH_FIXED_GDT);
- cdi->cdi_idt = (struct fake_descriptor *)
- pmap_index_to_virt(HIGH_FIXED_IDT);
- cdi->cdi_ldt = (struct fake_descriptor *)
- pmap_index_to_virt(HIGH_FIXED_LDT_BEGIN);
-
- } else {
-
- vm_offset_t cpu_hi_desc;
-
- cpu_hi_desc = pmap_cpu_high_shared_remap(cdp->cpu_number,
- HIGH_CPU_DESC,
- (vm_offset_t) cdt, 1);
-
- /*
- * Per-cpu GDT, IDT, LDT, KTSS descriptors are allocated in one
- * block (cpu_desc_table) and double-mapped into high shared space
- * in one page window.
- * Also, a transient stack for the fast sysenter path. The top of
- * which is set at context switch time to point to the PCB using
- * the high address.
- */
- cdi->cdi_gdt = (struct fake_descriptor *) (cpu_hi_desc +
- offsetof(cpu_desc_table_t, gdt[0]));
- cdi->cdi_idt = (struct fake_descriptor *) (cpu_hi_desc +
- offsetof(cpu_desc_table_t, idt[0]));
- cdi->cdi_ktss = (struct i386_tss *) (cpu_hi_desc +
- offsetof(cpu_desc_table_t, ktss));
- cdi->cdi_sstk = cpu_hi_desc +
- offsetof(cpu_desc_table_t, sstk.top);
-
- /*
- * LDT descriptors are mapped into a seperate area.
- */
- cdi->cdi_ldt = (struct fake_descriptor *)
- pmap_cpu_high_shared_remap(
- cdp->cpu_number,
- HIGH_CPU_LDT_BEGIN,
- (vm_offset_t) cdp->cpu_ldtp,
- HIGH_CPU_LDT_END - HIGH_CPU_LDT_BEGIN + 1);
-
- /*
- * Copy the tables
- */
- bcopy((char *)master_idt,
- (char *)cdt->idt,
- sizeof(master_idt));
- bcopy((char *)master_gdt,
- (char *)cdt->gdt,
- sizeof(master_gdt));
- bcopy((char *)master_ldt,
- (char *)cdp->cpu_ldtp,
- sizeof(master_ldt));
- bzero((char *)&cdt->ktss,
- sizeof(struct i386_tss));
-
-#if MACH_KDB
- cdi->cdi_dbtss = (struct i386_tss *) (cpu_hi_desc +
- offsetof(cpu_desc_table_t, dbtss));
- bcopy((char *)&master_dbtss,
- (char *)&cdt->dbtss,
- sizeof(struct i386_tss));
-#endif /* MACH_KDB */
-
- /*
- * Fix up the entries in the GDT to point to
- * this LDT and this TSS.
- */
- cdt->gdt[sel_idx(KERNEL_LDT)] = ldt_desc_pattern;
- cdt->gdt[sel_idx(KERNEL_LDT)].offset = (vm_offset_t) cdi->cdi_ldt;
- fix_desc(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
-
- cdt->gdt[sel_idx(USER_LDT)] = ldt_desc_pattern;
- cdt->gdt[sel_idx(USER_LDT)].offset = (vm_offset_t) cdi->cdi_ldt;
- fix_desc(&cdt->gdt[sel_idx(USER_LDT)], 1);
-
- cdt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern;
- cdt->gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) cdi->cdi_ktss;
- fix_desc(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
-
- cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
- cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
- fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1);
-
-#if MACH_KDB
- cdt->gdt[sel_idx(DEBUG_TSS)] = tss_desc_pattern;
- cdt->gdt[sel_idx(DEBUG_TSS)].offset = (vm_offset_t) cdi->cdi_dbtss;
- fix_desc(&cdt->gdt[sel_idx(DEBUG_TSS)], 1);
-
- cdt->dbtss.esp0 = (int)(db_task_stack_store +
- (INTSTACK_SIZE * (cdp->cpu_number)) - sizeof (natural_t));
- cdt->dbtss.esp = cdt->dbtss.esp0;
- cdt->dbtss.eip = (int)&db_task_start;
-#endif /* MACH_KDB */
-
- cdt->ktss.ss0 = KERNEL_DS;
- cdt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */
-
- cpu_window_init(cdp->cpu_number);
+ bzero((void *) &real, sizeof(real));
+
+ switch (fakep->access & ACC_TYPE) {
+ case 0:
+ break;
+ case ACC_CALL_GATE:
+ case ACC_INTR_GATE:
+ case ACC_TRAP_GATE:
+ real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
+ real.gate.selector16 = fakep->lim_or_seg & 0xFFFF;
+ real.gate.IST = fakep->size_or_IST & 0x7;
+ real.gate.access8 = fakep->access;
+ real.gate.offset_high16 = (uint16_t)((fakep->offset64>>16) & 0xFFFF);
+ real.gate.offset_top32 = (uint32_t)(fakep->offset64>>32);
+ break;
+ default: /* Otherwise */
+ real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF;
+ real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
+ real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF);
+ real.desc.access8 = fakep->access;
+ real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF;
+ real.desc.granularity4 = fakep->size_or_IST;
+ real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF);
+ real.desc.base_top32 = (uint32_t)(fakep->offset64>>32);
+ }
+ /*
+ * Now copy back over the fake structure.
+ */
+ bcopy((void *) &real, (void *) fakep, sizeof(real));
}
+}
+
+static void
+cpu_gdt_alias(vm_map_offset_t gdt, vm_map_offset_t alias)
+{
+ pt_entry_t *pte = NULL;
+ /* Require page alignment */
+ assert(page_aligned(gdt));
+ assert(page_aligned(alias));
+
+ pte = pmap_pte(kernel_pmap, alias);
+ pmap_store_pte(pte, kvtophys(gdt) | INTEL_PTE_REF
+ | INTEL_PTE_MOD
+ | INTEL_PTE_WIRED
+ | INTEL_PTE_VALID
+ | INTEL_PTE_WRITE
+ | INTEL_PTE_NX);
+
+ /* TLB flush unneccessry because target processor isn't running yet */
}
+
void
-cpu_desc_init64(
- cpu_data_t *cdp,
- boolean_t is_boot_cpu)
+cpu_desc_init64(cpu_data_t *cdp)
{
- cpu_desc_table64_t *cdt = (cpu_desc_table64_t *)
- cdp->cpu_desc_tablep;
cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
- if (is_boot_cpu) {
- /*
- * Master CPU uses the tables built at boot time.
- * Just set the index pointers to the low memory space.
- * Note that in 64-bit mode these are addressed in the
- * double-mapped window (uber-space).
- */
- cdi->cdi_ktss = (struct i386_tss *) &master_ktss64;
- cdi->cdi_sstk = (vm_offset_t) &master_sstk.top;
- cdi->cdi_gdt = master_gdt;
- cdi->cdi_idt = (struct fake_descriptor *) &master_idt64;
- cdi->cdi_ldt = (struct fake_descriptor *) &master_ldt;
-
- /* Replace the expanded LDT and TSS slots in the GDT: */
- *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
- kernel_ldt_desc64;
- *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
- kernel_tss_desc64;
-
- /*
- * Fix up the expanded descriptors for 64-bit.
- */
- fix_desc64((void *) &master_idt64, IDTSZ);
- fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1);
- fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1);
-
- /*
- * Set the double-fault stack as IST1 in the 64-bit TSS
- */
- master_ktss64.ist1 = UBER64(df_task_stack_end);
-
- } else {
- /*
- * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel
- * heap (cpu_desc_table) and double-mapped in uber-space (over 4GB).
- * LDT descriptors are mapped into a separate area.
- */
- cdi->cdi_gdt = cdt->gdt;
- cdi->cdi_idt = (struct fake_descriptor *) cdt->idt;
- cdi->cdi_ktss = (struct i386_tss *) &cdt->ktss;
- cdi->cdi_sstk = (vm_offset_t) &cdt->sstk.top;
- cdi->cdi_ldt = cdp->cpu_ldtp;
-
- /*
- * Copy the tables
- */
- bcopy((char *)master_idt64,
- (char *)cdt->idt,
- sizeof(master_idt64));
- bcopy((char *)master_gdt,
- (char *)cdt->gdt,
- sizeof(master_gdt));
- bcopy((char *)master_ldt,
- (char *)cdp->cpu_ldtp,
- sizeof(master_ldt));
- bcopy((char *)&master_ktss64,
- (char *)&cdt->ktss,
- sizeof(struct x86_64_tss));
-
- /*
- * Fix up the entries in the GDT to point to
- * this LDT and this TSS.
- */
- kernel_ldt_desc64.offset[0] = (vm_offset_t) cdi->cdi_ldt;
- *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
- kernel_ldt_desc64;
- fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
-
- kernel_ldt_desc64.offset[0] = (vm_offset_t) cdi->cdi_ldt;
- *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
- kernel_ldt_desc64;
- fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
-
- kernel_tss_desc64.offset[0] = (vm_offset_t) cdi->cdi_ktss;
- *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
- kernel_tss_desc64;
- fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
-
- cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
- cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
- fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1);
-
- /* Set double-fault stack as IST1 */
- cdt->ktss.ist1 = UBER64(cdt->dfstk + sizeof(cdt->dfstk));
-
- /*
- * Allocate copyio windows.
- */
- cpu_window_init(cdp->cpu_number);
+ if (cdp == &cpu_data_master) {
+ /*
+ * Master CPU uses the tables built at boot time.
+ * Just set the index pointers to the low memory space.
+ */
+ cdi->cdi_ktss = (void *)&master_ktss64;
+ cdi->cdi_sstk = (vm_offset_t) &master_sstk.top;
+ cdi->cdi_gdt.ptr = (void *)MASTER_GDT_ALIAS;
+ cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS;
+ cdi->cdi_ldt = (struct fake_descriptor *) master_ldt;
+
+ /* Replace the expanded LDTs and TSS slots in the GDT */
+ kernel_ldt_desc64.offset64 = (uintptr_t) &master_ldt;
+ *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
+ kernel_ldt_desc64;
+ *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] =
+ kernel_ldt_desc64;
+ kernel_tss_desc64.offset64 = (uintptr_t) &master_ktss64;
+ *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
+ kernel_tss_desc64;
+
+ /* Fix up the expanded descriptors for 64-bit. */
+ fix_desc64((void *) &master_idt64, IDTSZ);
+ fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1);
+ fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1);
+ fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1);
+
+ /*
+ * Set the NMI/fault stacks as IST2/IST1 in the 64-bit TSS
+ * Note: this will be dynamically re-allocated in VM later.
+ */
+ master_ktss64.ist2 = (uintptr_t) low_eintstack;
+ master_ktss64.ist1 = (uintptr_t) low_eintstack
+ - sizeof(x86_64_intr_stack_frame_t);
+
+ } else if (cdi->cdi_ktss == NULL) { /* Skipping re-init on wake */
+ cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
+
+ /*
+ * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel
+ * heap (cpu_desc_table).
+ * LDT descriptors are mapped into a separate area.
+ * GDT descriptors are addressed by alias to avoid sgdt leaks to user-space.
+ */
+ cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS;
+ cdi->cdi_gdt.ptr = (void *)CPU_GDT_ALIAS(cdp->cpu_number);
+ cdi->cdi_ktss = (void *)&cdt->ktss;
+ cdi->cdi_sstk = (vm_offset_t)&cdt->sstk.top;
+ cdi->cdi_ldt = cdp->cpu_ldtp;
+
+ /* Make the virtual alias address for the GDT */
+ cpu_gdt_alias((vm_map_offset_t) &cdt->gdt,
+ (vm_map_offset_t) cdi->cdi_gdt.ptr);
+ /*
+ * Copy the tables
+ */
+ bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt));
+ bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt));
+ bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss));
+
+ /*
+ * Fix up the entries in the GDT to point to
+ * this LDT and this TSS.
+ */
+ kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt;
+ *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
+ kernel_ldt_desc64;
+ fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
+
+ kernel_ldt_desc64.offset64 = (uintptr_t) cdi->cdi_ldt;
+ *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
+ kernel_ldt_desc64;
+ fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
+
+ kernel_tss_desc64.offset64 = (uintptr_t) cdi->cdi_ktss;
+ *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
+ kernel_tss_desc64;
+ fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
+
+ /* Set (zeroed) fault stack as IST1, NMI intr stack IST2 */
+ bzero((void *) cdt->fstk, sizeof(cdt->fstk));
+ cdt->ktss.ist2 = (unsigned long)cdt->fstk + sizeof(cdt->fstk);
+ cdt->ktss.ist1 = cdt->ktss.ist2
+ - sizeof(x86_64_intr_stack_frame_t);
}
/* Require that the top of the sysenter stack is 16-byte aligned */
panic("cpu_desc_init64() sysenter stack not 16-byte aligned");
}
+
+void
+cpu_desc_load64(cpu_data_t *cdp)
+{
+ cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
+
+ /* Stuff the kernel per-cpu data area address into the MSRs */
+ wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
+ wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
+
+ /*
+ * Ensure the TSS segment's busy bit is clear. This is required
+ * for the case of reloading descriptors at wake to avoid
+ * their complete re-initialization.
+ */
+ gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
+
+ /* Load the GDT, LDT, IDT and TSS */
+ cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1;
+ cdi->cdi_idt.size = 0x1000 + cdp->cpu_number;
+ lgdt((uintptr_t *) &cdi->cdi_gdt);
+ lidt((uintptr_t *) &cdi->cdi_idt);
+ lldt(KERNEL_LDT);
+ set_tr(KERNEL_TSS);
+
+#if GPROF // Hack to enable mcount to work on K64
+ __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS)));
+#endif
+}
+
+
/*
- * Set MSRs for sysenter/sysexit for 64-bit.
+ * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
*/
-void
-fast_syscall_init64(void)
+static void
+fast_syscall_init64(__unused cpu_data_t *cdp)
{
wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
- wrmsr64(MSR_IA32_SYSENTER_EIP, UBER64(hi64_sysenter));
- wrmsr64(MSR_IA32_SYSENTER_ESP, UBER64(current_sstk()));
-
+ wrmsr64(MSR_IA32_SYSENTER_EIP, (uintptr_t) hi64_sysenter);
+ wrmsr64(MSR_IA32_SYSENTER_ESP, current_sstk());
/* Enable syscall/sysret */
wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);
* Note USER_CS because sysret uses this + 16 when returning to
* 64-bit code.
*/
- wrmsr64(MSR_IA32_LSTAR, UBER64(hi64_syscall));
- wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) |
- (((uint64_t)KERNEL64_CS) << 32));
+ wrmsr64(MSR_IA32_LSTAR, (uintptr_t) hi64_syscall);
+ wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) |
+ (((uint64_t)KERNEL64_CS) << 32));
/*
* Emulate eflags cleared by sysenter but note that
* we also clear the trace trap to avoid the complications
- * of single-stepping into a syscall. We also clear
- * the nested task bit to avoid a spurious "task switch"
- * on IRET.
+ * of single-stepping into a syscall. The nested task bit
+ * is also cleared to avoid a spurious "task switch"
+ * should we choose to return via an IRET.
*/
wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT);
- /*
- * Set the Kermel GS base MSR to point to per-cpu data in uber-space.
- * The uber-space handler (hi64_syscall) uses the swapgs instruction.
- */
- wrmsr64(MSR_IA32_KERNEL_GS_BASE, UBER64(current_cpu_datap()));
- kprintf("fast_syscall_init64() KERNEL_GS_BASE=0x%016llx\n",
- rdmsr64(MSR_IA32_KERNEL_GS_BASE));
}
-/*
- * Set MSRs for sysenter/sysexit
- */
-void
-fast_syscall_init(void)
-{
- wrmsr(MSR_IA32_SYSENTER_CS, SYSENTER_CS, 0);
- wrmsr(MSR_IA32_SYSENTER_EIP, HI_TEXT(hi_sysenter), 0);
- wrmsr(MSR_IA32_SYSENTER_ESP, current_sstk(), 0);
-}
cpu_data_t *
cpu_data_alloc(boolean_t is_boot_cpu)
if (is_boot_cpu) {
assert(real_ncpus == 1);
- simple_lock_init(&cpu_lock, 0);
- cdp = &cpu_data_master;
+ cdp = cpu_datap(0);
if (cdp->cpu_processor == NULL) {
+ simple_lock_init(&ncpus_lock, 0);
cdp->cpu_processor = cpu_processor_alloc(TRUE);
+#if NCOPY_WINDOWS > 0
cdp->cpu_pmap = pmap_cpu_alloc(TRUE);
- cdp->cpu_this = cdp;
- cdp->cpu_is64bit = FALSE;
- cdp->cpu_int_stack_top = (vm_offset_t) low_eintstack;
- cpu_desc_init(cdp, TRUE);
- fast_syscall_init();
+#endif
}
return cdp;
}
- /* Check count before making allocations */
- if (real_ncpus >= max_ncpus)
- return NULL;
-
/*
* Allocate per-cpu data:
*/
- ret = kmem_alloc(kernel_map,
- (vm_offset_t *) &cdp, sizeof(cpu_data_t));
+ ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
printf("cpu_data_alloc() failed, ret=%d\n", ret);
goto abort;
bzero((void*) cdp, sizeof(cpu_data_t));
cdp->cpu_this = cdp;
- /* Propagate mode */
- cdp->cpu_is64bit = cpu_mode_is64bit();
-
/*
* Allocate interrupt stack:
*/
ret = kmem_alloc(kernel_map,
(vm_offset_t *) &cdp->cpu_int_stack_top,
- INTSTACK_SIZE);
+ INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
printf("cpu_data_alloc() int stack failed, ret=%d\n", ret);
goto abort;
/*
* Allocate descriptor table:
- * Size depends on cpu mode.
*/
ret = kmem_alloc(kernel_map,
(vm_offset_t *) &cdp->cpu_desc_tablep,
- cdp->cpu_is64bit ? sizeof(cpu_desc_table64_t)
- : sizeof(cpu_desc_table_t));
+ sizeof(cpu_desc_table64_t),
+ VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret);
goto abort;
*/
ret = kmem_alloc(kernel_map,
(vm_offset_t *) &cdp->cpu_ldtp,
- sizeof(struct real_descriptor) * LDTSZ);
+ sizeof(struct real_descriptor) * LDTSZ,
+ VM_KERN_MEMORY_CPU);
if (ret != KERN_SUCCESS) {
printf("cpu_data_alloc() ldt failed, ret=%d\n", ret);
goto abort;
}
- simple_lock(&cpu_lock);
- if (real_ncpus >= max_ncpus) {
- simple_unlock(&cpu_lock);
- goto abort;
- }
+#if CONFIG_MCA
+ /* Machine-check shadow register allocation. */
+ mca_cpu_alloc(cdp);
+#endif
+
+ simple_lock(&ncpus_lock);
+
cpu_data_ptr[real_ncpus] = cdp;
cdp->cpu_number = real_ncpus;
real_ncpus++;
- simple_unlock(&cpu_lock);
+ simple_unlock(&ncpus_lock);
+
+ /*
+ * Before this cpu has been assigned a real thread context,
+ * we give it a fake, unique, non-zero thread id which the locking
+ * primitives use as their lock value.
+ * Note that this does not apply to the boot processor, cpu 0, which
+ * transitions to a thread context well before other processors are
+ * started.
+ */
+ cdp->cpu_active_thread = (thread_t) (uintptr_t) cdp->cpu_number;
+
+ cdp->cpu_nanotime = &pal_rtc_nanotime_info;
- kprintf("cpu_data_alloc(%d) 0x%x desc_table: 0x%x "
- "ldt: 0x%x "
- "int_stack: 0x%x-0x%x\n",
+ kprintf("cpu_data_alloc(%d) %p desc_table: %p "
+ "ldt: %p "
+ "int_stack: 0x%lx-0x%lx\n",
cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
- cdp->cpu_int_stack_top - INTSTACK_SIZE, cdp->cpu_int_stack_top);
+ (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top));
return cdp;
if (cdp) {
if (cdp->cpu_desc_tablep)
kfree((void *) cdp->cpu_desc_tablep,
- sizeof(*cdp->cpu_desc_tablep));
+ sizeof(cpu_desc_table64_t));
if (cdp->cpu_int_stack_top)
kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE),
INTSTACK_SIZE);
return NULL;
}
+boolean_t
+valid_user_data_selector(uint16_t selector)
+{
+ sel_t sel = selector_to_sel(selector);
+
+ if (selector == 0)
+ return (TRUE);
+
+ if (sel.ti == SEL_LDT)
+ return (TRUE);
+ else if (sel.index < GDTSZ) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
+ return (TRUE);
+ }
+
+ return (FALSE);
+}
+
+boolean_t
+valid_user_code_selector(uint16_t selector)
+{
+ sel_t sel = selector_to_sel(selector);
+
+ if (selector == 0)
+ return (FALSE);
+
+ if (sel.ti == SEL_LDT) {
+ if (sel.rpl == USER_PRIV)
+ return (TRUE);
+ }
+ else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
+ return (TRUE);
+ /* Explicitly validate the system code selectors
+ * even if not instantaneously privileged,
+ * since they are dynamically re-privileged
+ * at context switch
+ */
+ if ((selector == USER_CS) || (selector == USER64_CS))
+ return (TRUE);
+ }
+
+ return (FALSE);
+}
+
+boolean_t
+valid_user_stack_selector(uint16_t selector)
+{
+ sel_t sel = selector_to_sel(selector);
+
+ if (selector == 0)
+ return (FALSE);
+
+ if (sel.ti == SEL_LDT) {
+ if (sel.rpl == USER_PRIV)
+ return (TRUE);
+ }
+ else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
+ if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
+ return (TRUE);
+ }
+
+ return (FALSE);
+}
+
boolean_t
valid_user_segment_selectors(uint16_t cs,
- uint16_t ss,
- uint16_t ds,
- uint16_t es,
- uint16_t fs,
- uint16_t gs)
+ uint16_t ss,
+ uint16_t ds,
+ uint16_t es,
+ uint16_t fs,
+ uint16_t gs)
{
return valid_user_code_selector(cs) &&
- valid_user_stack_selector(ss) &&
- valid_user_data_selector(ds) &&
- valid_user_data_selector(es) &&
- valid_user_data_selector(fs) &&
- valid_user_data_selector(gs);
+ valid_user_stack_selector(ss) &&
+ valid_user_data_selector(ds) &&
+ valid_user_data_selector(es) &&
+ valid_user_data_selector(fs) &&
+ valid_user_data_selector(gs);
}
+#if NCOPY_WINDOWS > 0
static vm_offset_t user_window_base = 0;
-static vm_offset_t phys_window_base = 0;
void
-cpu_window_init(int cpu)
+cpu_userwindow_init(int cpu)
{
cpu_data_t *cdp = cpu_data_ptr[cpu];
- cpu_desc_index_t *cdi;
- vm_offset_t user_window;
- vm_offset_t phys_window;
- vm_offset_t vaddr;
+ vm_offset_t user_window;
+ vm_offset_t vaddr;
int num_cpus;
num_cpus = ml_get_max_cpus();
if (cpu >= num_cpus)
- panic("copy_window_init: cpu > num_cpus");
+ panic("cpu_userwindow_init: cpu > num_cpus");
if (user_window_base == 0) {
- if (vm_allocate(kernel_map, &vaddr,
- (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE,
- VM_FLAGS_ANYWHERE) != KERN_SUCCESS)
- panic("copy_window_init: "
- "couldn't allocate user map window");
+ if (vm_allocate(kernel_map, &vaddr,
+ (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE,
+ VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU)) != KERN_SUCCESS)
+ panic("cpu_userwindow_init: "
+ "couldn't allocate user map window");
/*
* window must start on a page table boundary
(vaddr +
((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) -
user_window);
-
- if (vm_allocate(kernel_map, &phys_window_base,
- PAGE_SIZE * num_cpus, VM_FLAGS_ANYWHERE)
- != KERN_SUCCESS)
- panic("copy_window_init: "
- "couldn't allocate phys map window");
}
- user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE);
- phys_window = phys_window_base + (cpu * PAGE_SIZE);
+ user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE);
- cdi = &cdp->cpu_desc_index;
-
cdp->cpu_copywindow_base = user_window;
- cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window);
-
- cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)] = userwindow_desc_pattern;
- cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)].offset = user_window;
-
- fix_desc(&cdi->cdi_gdt[sel_idx(USER_WINDOW_SEL)], 1);
-
- cdp->cpu_physwindow_base = phys_window;
-
/*
- * make sure the page that encompasses the
- * pte pointer we're interested in actually
- * exists in the page table
+ * Abuse this pdp entry, the pdp now actually points to
+ * an array of copy windows addresses.
*/
- pmap_expand(kernel_pmap, phys_window);
+ cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window);
- cdp->cpu_physwindow_ptep = vtopte(phys_window);
+}
- cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)] = physwindow_desc_pattern;
- cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)].offset = phys_window;
+void
+cpu_physwindow_init(int cpu)
+{
+ cpu_data_t *cdp = cpu_data_ptr[cpu];
+ vm_offset_t phys_window = cdp->cpu_physwindow_base;
- fix_desc(&cdi->cdi_gdt[sel_idx(PHYS_WINDOW_SEL)], 1);
-}
+ if (phys_window == 0) {
+ if (vm_allocate(kernel_map, &phys_window,
+ PAGE_SIZE, VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_CPU))
+ != KERN_SUCCESS)
+ panic("cpu_physwindow_init: "
+ "couldn't allocate phys map window");
+ /*
+ * make sure the page that encompasses the
+ * pte pointer we're interested in actually
+ * exists in the page table
+ */
+ pmap_expand(kernel_pmap, phys_window, PMAP_EXPAND_OPTIONS_NONE);
-typedef struct {
- uint16_t length;
- uint32_t offset[2];
-} __attribute__((__packed__)) table_descriptor64_t;
+ cdp->cpu_physwindow_base = phys_window;
+ cdp->cpu_physwindow_ptep = vtopte(phys_window);
+ }
+}
+#endif /* NCOPY_WINDOWS > 0 */
-extern table_descriptor64_t gdtptr64;
-extern table_descriptor64_t idtptr64;
/*
* Load the segment descriptor tables for the current processor.
*/
void
-cpu_desc_load64(cpu_data_t *cdp)
+cpu_mode_init(cpu_data_t *cdp)
{
- cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
+ fast_syscall_init64(cdp);
+}
- /*
- * Load up the new descriptors etc
- * ml_load_desc64() expects these global pseudo-descriptors:
- * gdtptr64 -> master_gdt
- * idtptr64 -> master_idt64
- * These are 10-byte descriptors with 64-bit addresses into
- * uber-space.
- */
- gdtptr64.length = sizeof(master_gdt) - 1;
- gdtptr64.offset[0] = (uint32_t) cdi->cdi_gdt;
- gdtptr64.offset[1] = KERNEL_UBER_BASE_HI32;
- idtptr64.length = sizeof(master_idt64) - 1;
- idtptr64.offset[0] = (uint32_t) cdi->cdi_idt;
- idtptr64.offset[1] = KERNEL_UBER_BASE_HI32;
-
- /* Make sure busy bit is cleared in the TSS */
- gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
-
- ml_load_desc64();
+/*
+ * Allocate a new interrupt stack for the boot processor from the
+ * heap rather than continue to use the statically allocated space.
+ * Also switch to a dynamically allocated cpu data area.
+ */
+void
+cpu_data_realloc(void)
+{
+ int ret;
+ vm_offset_t istk;
+ vm_offset_t fstk;
+ cpu_data_t *cdp;
+ boolean_t istate;
- kprintf("64-bit descriptor tables loaded\n");
+ ret = kmem_alloc(kernel_map, &istk, INTSTACK_SIZE, VM_KERN_MEMORY_CPU);
+ if (ret != KERN_SUCCESS) {
+ panic("cpu_data_realloc() stack alloc, ret=%d\n", ret);
+ }
+ bzero((void*) istk, INTSTACK_SIZE);
+ istk += INTSTACK_SIZE;
+
+ ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t), VM_KERN_MEMORY_CPU);
+ if (ret != KERN_SUCCESS) {
+ panic("cpu_data_realloc() cpu data alloc, ret=%d\n", ret);
+ }
+
+ /* Copy old contents into new area and make fix-ups */
+ assert(cpu_number() == 0);
+ bcopy((void *) cpu_data_ptr[0], (void*) cdp, sizeof(cpu_data_t));
+ cdp->cpu_this = cdp;
+ cdp->cpu_int_stack_top = istk;
+ timer_call_queue_init(&cdp->rtclock_timer.queue);
+
+ /* Allocate the separate fault stack */
+ ret = kmem_alloc(kernel_map, &fstk, PAGE_SIZE, VM_KERN_MEMORY_CPU);
+ if (ret != KERN_SUCCESS) {
+ panic("cpu_data_realloc() fault stack alloc, ret=%d\n", ret);
+ }
+ bzero((void*) fstk, PAGE_SIZE);
+ fstk += PAGE_SIZE;
+
+ /*
+ * With interrupts disabled commmit the new areas.
+ */
+ istate = ml_set_interrupts_enabled(FALSE);
+ cpu_data_ptr[0] = cdp;
+ master_ktss64.ist2 = (uintptr_t) fstk;
+ master_ktss64.ist1 = (uintptr_t) fstk
+ - sizeof(x86_64_intr_stack_frame_t);
+ wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
+ wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
+ (void) ml_set_interrupts_enabled(istate);
+
+ kprintf("Reallocated master cpu data: %p,"
+ " interrupt stack: %p, fault stack: %p\n",
+ (void *) cdp, (void *) istk, (void *) fstk);
}