/*
- * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_FREE_COPYRIGHT@
#include <kern/pms.h>
+struct run_queue rt_runq;
+#define RT_RUNQ ((processor_t)-1)
+decl_simple_lock_data(static,rt_lock);
+
#define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */
int default_preemption_rate = DEFAULT_PREEMPTION_RATE;
uint32_t sched_cswtime;
-static uint32_t delay_idle_limit, delay_idle_spin;
-static processor_t delay_idle(
- processor_t processor,
- thread_t self);
-
unsigned sched_tick;
uint32_t sched_tick_interval;
-uint32_t sched_pri_shift;
+uint32_t sched_pri_shift = INT8_MAX;
+uint32_t sched_fixed_shift;
+
+uint32_t sched_run_count, sched_share_count;
+uint32_t sched_load_average, sched_mach_factor;
+
+void (*pm_tick_callout)(void) = NULL;
/* Forwards */
-void wait_queues_init(void);
+void wait_queues_init(void) __attribute__((section("__TEXT, initcode")));
+
+static void load_shift_init(void) __attribute__((section("__TEXT, initcode")));
+
+static thread_t thread_select_idle(
+ thread_t thread,
+ processor_t processor);
-static void load_shift_init(void);
+static thread_t processor_idle(
+ thread_t thread,
+ processor_t processor);
static thread_t choose_thread(
- processor_set_t pset,
+ processor_t processor);
+
+static thread_t steal_thread(
processor_t processor);
static void thread_update_scan(void);
+#if DEBUG
+extern int debug_task;
+#define TLOG(a, fmt, args...) if(debug_task & a) kprintf(fmt, ## args)
+#else
+#define TLOG(a, fmt, args...) do {} while (0)
+#endif
+
#if DEBUG
static
boolean_t thread_runnable(
#endif /*DEBUG*/
+
/*
* State machine
*
wait_queues_init();
load_shift_init();
- pset_init(&default_pset);
+ simple_lock_init(&rt_lock, 0);
+ run_queue_init(&rt_runq);
sched_tick = 0;
ast_init();
}
abstime = (abstime * 5) / 3;
for (shift = 0; abstime > BASEPRI_DEFAULT; ++shift)
abstime >>= 1;
- sched_pri_shift = shift;
+ sched_fixed_shift = shift;
max_unsafe_computation = max_unsafe_quanta * std_quantum;
max_poll_computation = max_poll_quanta * std_quantum;
-
- /* delay idle constant(s) (60, 1 us) */
- clock_interval_to_absolutetime_interval(60, NSEC_PER_USEC, &abstime);
- assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- delay_idle_limit = abstime;
-
- clock_interval_to_absolutetime_interval(1, NSEC_PER_USEC, &abstime);
- assert((abstime >> 32) == 0 && (uint32_t)abstime != 0);
- delay_idle_spin = abstime;
}
void
boolean_t result = FALSE;
/*
- * Set wait_result.
+ * Set wait_result.
*/
thread->wait_result = wresult;
/*
- * Cancel pending wait timer.
+ * Cancel pending wait timer.
*/
if (thread->wait_timer_is_set) {
if (timer_call_cancel(&thread->wait_timer))
}
/*
- * Update scheduling state.
+ * Update scheduling state: not waiting,
+ * set running.
*/
thread->state &= ~(TH_WAIT|TH_UNINT);
if (!(thread->state & TH_RUN)) {
thread->state |= TH_RUN;
- /*
- * Mark unblocked if call out.
- */
- if (thread->options & TH_OPT_CALLOUT)
- call_thread_unblock();
+ (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread);
/*
- * Update pset run counts.
+ * Update run counts.
*/
- pset_run_incr(thread->processor_set);
+ sched_run_incr();
if (thread->sched_mode & TH_MODE_TIMESHARE)
- pset_share_incr(thread->processor_set);
+ sched_share_incr();
}
- else
+ else {
+ /*
+ * Signal if idling on another processor.
+ */
+ if (thread->state & TH_IDLE) {
+ processor_t processor = thread->last_processor;
+
+ if (processor != current_processor())
+ machine_signal_idle(processor);
+ }
+
result = TRUE;
+ }
/*
* Calculate deadline for real-time threads.
at_safe_point = (interruptible == THREAD_ABORTSAFE);
if ( interruptible == THREAD_UNINT ||
- !(thread->state & TH_ABORT) ||
+ !(thread->sched_mode & TH_MODE_ABORT) ||
(!at_safe_point &&
- (thread->state & TH_ABORT_SAFELY)) ) {
+ (thread->sched_mode & TH_MODE_ABORTSAFELY))) {
thread->state |= (interruptible) ? TH_WAIT : (TH_WAIT | TH_UNINT);
thread->at_safe_point = at_safe_point;
return (thread->wait_result = THREAD_WAITING);
}
else
- if (thread->state & TH_ABORT_SAFELY)
- thread->state &= ~(TH_ABORT|TH_ABORT_SAFELY);
+ if (thread->sched_mode & TH_MODE_ABORTSAFELY)
+ thread->sched_mode &= ~TH_MODE_ISABORTED;
return (thread->wait_result = THREAD_INTERRUPTED);
}
thread_t thread)
{
wait_result_t wresult;
- spl_t s;
+ spl_t s = splsched();
- s = splsched();
wake_lock(thread);
+ thread_lock(thread);
while (thread->state & TH_SUSP) {
thread->wake_active = TRUE;
+ thread_unlock(thread);
+
wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE);
wake_unlock(thread);
splx(s);
s = splsched();
wake_lock(thread);
+ thread_lock(thread);
}
- thread_lock(thread);
thread->state |= TH_SUSP;
while (thread->state & TH_RUN) {
processor_t processor = thread->last_processor;
- if ( processor != PROCESSOR_NULL &&
- processor->state == PROCESSOR_RUNNING &&
- processor->active_thread == thread )
+ if (processor != PROCESSOR_NULL && processor->active_thread == thread)
cause_ast_check(processor);
- thread_unlock(thread);
thread->wake_active = TRUE;
+ thread_unlock(thread);
+
wresult = assert_wait(&thread->wake_active, THREAD_ABORTSAFE);
wake_unlock(thread);
splx(s);
if (thread->wake_active) {
thread->wake_active = FALSE;
thread_unlock(thread);
+
+ thread_wakeup(&thread->wake_active);
wake_unlock(thread);
splx(s);
- thread_wakeup(&thread->wake_active);
return;
}
}
while (thread->state & TH_RUN) {
processor_t processor = thread->last_processor;
- if ( processor != PROCESSOR_NULL &&
- processor->state == PROCESSOR_RUNNING &&
- processor->active_thread == thread )
+ if (processor != PROCESSOR_NULL && processor->active_thread == thread)
cause_ast_check(processor);
- thread_unlock(thread);
thread->wake_active = TRUE;
+ thread_unlock(thread);
+
wresult = assert_wait(&thread->wake_active, THREAD_UNINT);
wake_unlock(thread);
splx(s);
return (thread_go(thread, wresult));
} while (--i > 0);
- panic("clear_wait_internal: deadlock: thread=0x%x, wq=0x%x, cpu=%d\n",
+ panic("clear_wait_internal: deadlock: thread=%p, wq=%p, cpu=%d\n",
thread, wq, cpu_number());
return (KERN_FAILURE);
/*
* thread_bind:
*
- * Force a thread to execute on the specified processor.
+ * Force the current thread to execute on the specified processor.
*
* Returns the previous binding. PROCESSOR_NULL means
* not bound.
*/
processor_t
thread_bind(
- register thread_t thread,
- processor_t processor)
+ processor_t processor)
{
+ thread_t self = current_thread();
processor_t prev;
- run_queue_t runq = RUN_QUEUE_NULL;
spl_t s;
s = splsched();
- thread_lock(thread);
- prev = thread->bound_processor;
- if (prev != PROCESSOR_NULL)
- runq = run_queue_remove(thread);
+ thread_lock(self);
- thread->bound_processor = processor;
+ prev = self->bound_processor;
+ self->bound_processor = processor;
- if (runq != RUN_QUEUE_NULL)
- thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
- thread_unlock(thread);
+ thread_unlock(self);
splx(s);
return (prev);
}
-struct {
- uint32_t idle_pset_last,
- idle_pset_any,
- idle_bound;
-
- uint32_t pset_self,
- pset_last,
- pset_other,
- bound_self,
- bound_other;
-
- uint32_t realtime_self,
- realtime_last,
- realtime_other;
-
- uint32_t missed_realtime,
- missed_other;
-} dispatch_counts;
-
/*
- * Select a thread for the current processor to run.
+ * thread_select:
+ *
+ * Select a new thread for the current processor to execute.
*
* May select the current thread, which must be locked.
*/
-thread_t
+static thread_t
thread_select(
- register processor_t processor)
+ thread_t thread,
+ processor_t processor)
{
- register thread_t thread;
- processor_set_t pset;
- boolean_t other_runnable;
+ processor_set_t pset = processor->processor_set;
+ thread_t new_thread;
+ boolean_t other_runnable;
- /*
- * Check for other non-idle runnable threads.
- */
- pset = processor->processor_set;
- thread = processor->active_thread;
+ do {
+ /*
+ * Update the priority.
+ */
+ if (thread->sched_stamp != sched_tick)
+ update_priority(thread);
- /* Update the thread's priority */
- if (thread->sched_stamp != sched_tick)
- update_priority(thread);
+ processor->current_pri = thread->sched_pri;
- processor->current_pri = thread->sched_pri;
+ pset_lock(pset);
+
+ simple_lock(&rt_lock);
+
+ /*
+ * Check for other runnable threads.
+ */
+ other_runnable = processor->runq.count > 0 || rt_runq.count > 0;
- simple_lock(&pset->sched_lock);
-
- other_runnable = processor->runq.count > 0 || pset->runq.count > 0;
-
- if ( thread->state == TH_RUN &&
- thread->processor_set == pset &&
- (thread->bound_processor == PROCESSOR_NULL ||
- thread->bound_processor == processor) ) {
- if ( thread->sched_pri >= BASEPRI_RTQUEUES &&
- first_timeslice(processor) ) {
- if (pset->runq.highq >= BASEPRI_RTQUEUES) {
- register run_queue_t runq = &pset->runq;
- register queue_t q;
-
- q = runq->queues + runq->highq;
- if (((thread_t)q->next)->realtime.deadline <
- processor->deadline) {
- thread = (thread_t)q->next;
- ((queue_entry_t)thread)->next->prev = q;
- q->next = ((queue_entry_t)thread)->next;
- thread->runq = RUN_QUEUE_NULL;
- assert(thread->sched_mode & TH_MODE_PREEMPT);
- runq->count--; runq->urgency--;
- if (queue_empty(q)) {
- if (runq->highq != IDLEPRI)
- clrbit(MAXPRI - runq->highq, runq->bitmap);
- runq->highq = MAXPRI - ffsbit(runq->bitmap);
+ /*
+ * Test to see if the current thread should continue
+ * to run on this processor. Must be runnable, and not
+ * bound to a different processor, nor be in the wrong
+ * processor set.
+ */
+ if ( thread->state == TH_RUN &&
+ (thread->bound_processor == PROCESSOR_NULL ||
+ thread->bound_processor == processor) &&
+ (thread->affinity_set == AFFINITY_SET_NULL ||
+ thread->affinity_set->aset_pset == pset) ) {
+ if ( thread->sched_pri >= BASEPRI_RTQUEUES &&
+ first_timeslice(processor) ) {
+ if (rt_runq.highq >= BASEPRI_RTQUEUES) {
+ register run_queue_t runq = &rt_runq;
+ register queue_t q;
+
+ q = runq->queues + runq->highq;
+ if (((thread_t)q->next)->realtime.deadline <
+ processor->deadline) {
+ thread = (thread_t)q->next;
+ ((queue_entry_t)thread)->next->prev = q;
+ q->next = ((queue_entry_t)thread)->next;
+ thread->runq = PROCESSOR_NULL;
+ assert(thread->sched_mode & TH_MODE_PREEMPT);
+ runq->count--; runq->urgency--;
+ if (queue_empty(q)) {
+ if (runq->highq != IDLEPRI)
+ clrbit(MAXPRI - runq->highq, runq->bitmap);
+ runq->highq = MAXPRI - ffsbit(runq->bitmap);
+ }
}
}
+
+ simple_unlock(&rt_lock);
+
+ processor->deadline = thread->realtime.deadline;
+
+ pset_unlock(pset);
+
+ return (thread);
}
- processor->deadline = thread->realtime.deadline;
+ if ( (!other_runnable ||
+ (processor->runq.highq < thread->sched_pri &&
+ rt_runq.highq < thread->sched_pri)) ) {
- simple_unlock(&pset->sched_lock);
+ simple_unlock(&rt_lock);
- return (thread);
- }
+ /* I am the highest priority runnable (non-idle) thread */
- if ( (!other_runnable ||
- (processor->runq.highq < thread->sched_pri &&
- pset->runq.highq < thread->sched_pri)) ) {
+ pset_hint_low(pset, processor);
+ pset_hint_high(pset, processor);
- /* I am the highest priority runnable (non-idle) thread */
+ processor->deadline = UINT64_MAX;
- processor->deadline = UINT64_MAX;
+ pset_unlock(pset);
- simple_unlock(&pset->sched_lock);
+ return (thread);
+ }
+ }
+
+ if (other_runnable)
+ return choose_thread(processor);
+
+ simple_unlock(&rt_lock);
- return (thread);
+ /*
+ * No runnable threads, attempt to steal
+ * from other processors.
+ */
+ if (pset->high_hint != PROCESSOR_NULL && pset->high_hint->runq.count > 0) {
+ new_thread = steal_thread(pset->high_hint);
+ if (new_thread != THREAD_NULL) {
+ pset_unlock(pset);
+
+ return (new_thread);
+ }
}
- }
- if (other_runnable)
- thread = choose_thread(pset, processor);
- else {
/*
* Nothing is runnable, so set this processor idle if it
- * was running. Return its idle thread.
+ * was running.
*/
if (processor->state == PROCESSOR_RUNNING) {
remqueue(&pset->active_queue, (queue_entry_t)processor);
processor->state = PROCESSOR_IDLE;
- enqueue_tail(&pset->idle_queue, (queue_entry_t)processor);
+ enqueue_head(&pset->idle_queue, (queue_entry_t)processor);
+ pset->low_hint = processor;
pset->idle_count++;
}
processor->deadline = UINT64_MAX;
- thread = processor->idle_thread;
+ pset_unlock(pset);
+
+ /*
+ * Choose idle thread if fast idle is not possible.
+ */
+ if ((thread->state & (TH_IDLE|TH_TERMINATE|TH_SUSP)) || !(thread->state & TH_WAIT) || thread->wake_active)
+ return (processor->idle_thread);
+
+ /*
+ * Perform idling activities directly without a
+ * context switch. Return dispatched thread,
+ * else check again for a runnable thread.
+ */
+ new_thread = thread_select_idle(thread, processor);
+
+ } while (new_thread == THREAD_NULL);
+
+ return (new_thread);
+}
+
+/*
+ * thread_select_idle:
+ *
+ * Idle the processor using the current thread context.
+ *
+ * Called with thread locked, then dropped and relocked.
+ */
+static thread_t
+thread_select_idle(
+ thread_t thread,
+ processor_t processor)
+{
+ thread_t new_thread;
+
+ if (thread->sched_mode & TH_MODE_TIMESHARE)
+ sched_share_decr();
+ sched_run_decr();
+
+ thread->state |= TH_IDLE;
+ processor->current_pri = IDLEPRI;
+
+ thread_unlock(thread);
+
+ /*
+ * Switch execution timing to processor idle thread.
+ */
+ processor->last_dispatch = mach_absolute_time();
+ thread_timer_event(processor->last_dispatch, &processor->idle_thread->system_timer);
+ PROCESSOR_DATA(processor, kernel_timer) = &processor->idle_thread->system_timer;
+
+ /*
+ * Cancel the quantum timer while idling.
+ */
+ timer_call_cancel(&processor->quantum_timer);
+ processor->timeslice = 0;
+
+ (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
+
+ /*
+ * Enable interrupts and perform idling activities. No
+ * preemption due to TH_IDLE being set.
+ */
+ spllo(); new_thread = processor_idle(thread, processor);
+
+ (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread);
+
+ thread_lock(thread);
+
+ /*
+ * If awakened, switch to thread timer and start a new quantum.
+ * Otherwise skip; we will context switch to another thread or return here.
+ */
+ if (!(thread->state & TH_WAIT)) {
+ processor->last_dispatch = mach_absolute_time();
+ thread_timer_event(processor->last_dispatch, &thread->system_timer);
+ PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
+
+ thread_quantum_init(thread);
+
+ processor->quantum_end = processor->last_dispatch + thread->current_quantum;
+ timer_call_enter1(&processor->quantum_timer, thread, processor->quantum_end);
+ processor->timeslice = 1;
+
+ thread->computation_epoch = processor->last_dispatch;
}
- simple_unlock(&pset->sched_lock);
+ thread->state &= ~TH_IDLE;
- return (thread);
+ sched_run_incr();
+ if (thread->sched_mode & TH_MODE_TIMESHARE)
+ sched_share_incr();
+
+ return (new_thread);
}
/*
} \
MACRO_END
-boolean_t
+static boolean_t
thread_invoke(
- register thread_t old_thread,
- register thread_t new_thread,
+ register thread_t self,
+ register thread_t thread,
ast_t reason)
{
- thread_continue_t new_cont, continuation = old_thread->continuation;
- void *new_param, *parameter = old_thread->parameter;
+ thread_continue_t continuation = self->continuation;
+ void *parameter = self->parameter;
processor_t processor;
- thread_t prev_thread;
if (get_preemption_level() != 0)
panic("thread_invoke: preemption_level %d\n",
- get_preemption_level());
+ get_preemption_level());
- assert(old_thread == current_thread());
+ assert(self == current_thread());
/*
* Mark thread interruptible.
*/
- thread_lock(new_thread);
- new_thread->state &= ~TH_UNINT;
+ thread_lock(thread);
+ thread->state &= ~TH_UNINT;
- assert(thread_runnable(new_thread));
+#if DEBUG
+ assert(thread_runnable(thread));
+#endif
/*
* Allow time constraint threads to hang onto
* a stack.
*/
- if ( (old_thread->sched_mode & TH_MODE_REALTIME) &&
- !old_thread->reserved_stack ) {
- old_thread->reserved_stack = old_thread->kernel_stack;
- }
+ if ((self->sched_mode & TH_MODE_REALTIME) && !self->reserved_stack)
+ self->reserved_stack = self->kernel_stack;
if (continuation != NULL) {
- if (!new_thread->kernel_stack) {
+ if (!thread->kernel_stack) {
/*
- * If the old thread is using a privileged stack,
+ * If we are using a privileged stack,
* check to see whether we can exchange it with
- * that of the new thread.
+ * that of the other thread.
*/
- if ( old_thread->kernel_stack == old_thread->reserved_stack &&
- !new_thread->reserved_stack)
+ if (self->kernel_stack == self->reserved_stack && !thread->reserved_stack)
goto need_stack;
/*
* Context switch by performing a stack handoff.
*/
- new_cont = new_thread->continuation;
- new_thread->continuation = NULL;
- new_param = new_thread->parameter;
- new_thread->parameter = NULL;
+ continuation = thread->continuation;
+ parameter = thread->parameter;
processor = current_processor();
- processor->active_thread = new_thread;
- processor->current_pri = new_thread->sched_pri;
- new_thread->last_processor = processor;
- ast_context(new_thread);
- thread_unlock(new_thread);
-
- current_task()->csw++;
+ processor->active_thread = thread;
+ processor->current_pri = thread->sched_pri;
+ if (thread->last_processor != processor && thread->last_processor != NULL) {
+ if (thread->last_processor->processor_set != processor->processor_set)
+ thread->ps_switch++;
+ thread->p_switch++;
+ }
+ thread->last_processor = processor;
+ thread->c_switch++;
+ ast_context(thread);
+ thread_unlock(thread);
- old_thread->reason = reason;
+ self->reason = reason;
processor->last_dispatch = mach_absolute_time();
- timer_event((uint32_t)processor->last_dispatch,
- &new_thread->system_timer);
-
- thread_done(old_thread, new_thread, processor);
+ thread_timer_event(processor->last_dispatch, &thread->system_timer);
+ PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
+
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF)|DBG_FUNC_NONE,
+ self->reason, (int)thread, self->sched_pri, thread->sched_pri, 0);
- machine_stack_handoff(old_thread, new_thread);
+TLOG(1, "thread_invoke: calling machine_stack_handoff\n");
+ machine_stack_handoff(self, thread);
- thread_begin(new_thread, processor);
+ thread_dispatch(self, thread);
- /*
- * Now dispatch the old thread.
- */
- thread_dispatch(old_thread);
+ thread->continuation = thread->parameter = NULL;
- counter_always(c_thread_invoke_hits++);
+ counter(c_thread_invoke_hits++);
- funnel_refunnel_check(new_thread, 2);
+ funnel_refunnel_check(thread, 2);
(void) spllo();
- assert(new_cont);
- call_continuation(new_cont, new_param, new_thread->wait_result);
+ assert(continuation);
+ call_continuation(continuation, parameter, thread->wait_result);
/*NOTREACHED*/
}
- else
- if (new_thread == old_thread) {
+ else if (thread == self) {
/* same thread but with continuation */
+ ast_context(self);
counter(++c_thread_invoke_same);
- thread_unlock(new_thread);
+ thread_unlock(self);
- funnel_refunnel_check(new_thread, 3);
+ self->continuation = self->parameter = NULL;
+
+ funnel_refunnel_check(self, 3);
(void) spllo();
- call_continuation(continuation, parameter, new_thread->wait_result);
+ call_continuation(continuation, parameter, self->wait_result);
/*NOTREACHED*/
}
}
else {
/*
- * Check that the new thread has a stack
+ * Check that the other thread has a stack
*/
- if (!new_thread->kernel_stack) {
+ if (!thread->kernel_stack) {
need_stack:
- if (!stack_alloc_try(new_thread)) {
- counter_always(c_thread_invoke_misses++);
- thread_unlock(new_thread);
- thread_stack_enqueue(new_thread);
+ if (!stack_alloc_try(thread)) {
+ counter(c_thread_invoke_misses++);
+ thread_unlock(thread);
+ thread_stack_enqueue(thread);
return (FALSE);
}
}
- else
- if (new_thread == old_thread) {
+ else if (thread == self) {
+ ast_context(self);
counter(++c_thread_invoke_same);
- thread_unlock(new_thread);
+ thread_unlock(self);
return (TRUE);
}
}
* Context switch by full context save.
*/
processor = current_processor();
- processor->active_thread = new_thread;
- processor->current_pri = new_thread->sched_pri;
- new_thread->last_processor = processor;
- ast_context(new_thread);
- assert(thread_runnable(new_thread));
- thread_unlock(new_thread);
+ processor->active_thread = thread;
+ processor->current_pri = thread->sched_pri;
+ if (thread->last_processor != processor && thread->last_processor != NULL) {
+ if (thread->last_processor->processor_set != processor->processor_set)
+ thread->ps_switch++;
+ thread->p_switch++;
+ }
+ thread->last_processor = processor;
+ thread->c_switch++;
+ ast_context(thread);
+ thread_unlock(thread);
- counter_always(c_thread_invoke_csw++);
- current_task()->csw++;
+ counter(c_thread_invoke_csw++);
- assert(old_thread->runq == RUN_QUEUE_NULL);
- old_thread->reason = reason;
+ assert(self->runq == PROCESSOR_NULL);
+ self->reason = reason;
processor->last_dispatch = mach_absolute_time();
- timer_event((uint32_t)processor->last_dispatch, &new_thread->system_timer);
+ thread_timer_event(processor->last_dispatch, &thread->system_timer);
+ PROCESSOR_DATA(processor, kernel_timer) = &thread->system_timer;
- thread_done(old_thread, new_thread, processor);
+ KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
+ (int)self->reason, (int)thread, self->sched_pri, thread->sched_pri, 0);
/*
* This is where we actually switch register context,
- * and address space if required. Control will not
- * return here immediately.
- */
- prev_thread = machine_switch_context(old_thread, continuation, new_thread);
-
- /*
- * We are still old_thread, possibly on a different processor,
- * and new_thread is now stale.
+ * and address space if required. We will next run
+ * as a result of a subsequent context switch.
*/
- thread_begin(old_thread, old_thread->last_processor);
+ thread = machine_switch_context(self, continuation, thread);
+TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self, continuation, thread);
/*
- * Now dispatch the thread which resumed us.
+ * We have been resumed and are set to run.
*/
- thread_dispatch(prev_thread);
+ thread_dispatch(thread, self);
if (continuation) {
- funnel_refunnel_check(old_thread, 3);
+ self->continuation = self->parameter = NULL;
+
+ funnel_refunnel_check(self, 3);
(void) spllo();
- call_continuation(continuation, parameter, old_thread->wait_result);
+ call_continuation(continuation, parameter, self->wait_result);
/*NOTREACHED*/
}
}
/*
- * thread_done:
+ * thread_dispatch:
*
- * Perform calculations for thread
- * finishing execution on the current processor.
+ * Handle threads at context switch. Re-dispatch other thread
+ * if still running, otherwise update run state and perform
+ * special actions. Update quantum for other thread and begin
+ * the quantum for ourselves.
*
* Called at splsched.
*/
void
-thread_done(
- thread_t old_thread,
- thread_t new_thread,
- processor_t processor)
+thread_dispatch(
+ thread_t thread,
+ thread_t self)
{
- if (!(old_thread->state & TH_IDLE)) {
+ processor_t processor = self->last_processor;
+
+ if (thread != THREAD_NULL) {
/*
- * Compute remainder of current quantum.
+ * If blocked at a continuation, discard
+ * the stack.
*/
- if ( first_timeslice(processor) &&
- processor->quantum_end > processor->last_dispatch )
- old_thread->current_quantum =
- (processor->quantum_end - processor->last_dispatch);
- else
- old_thread->current_quantum = 0;
+ if (thread->continuation != NULL && thread->kernel_stack != 0)
+ stack_free(thread);
+
+ if (!(thread->state & TH_IDLE)) {
+ wake_lock(thread);
+ thread_lock(thread);
- if (old_thread->sched_mode & TH_MODE_REALTIME) {
/*
- * Cancel the deadline if the thread has
- * consumed the entire quantum.
+ * Compute remainder of current quantum.
*/
- if (old_thread->current_quantum == 0) {
- old_thread->realtime.deadline = UINT64_MAX;
- old_thread->reason |= AST_QUANTUM;
+ if ( first_timeslice(processor) &&
+ processor->quantum_end > processor->last_dispatch )
+ thread->current_quantum = (processor->quantum_end - processor->last_dispatch);
+ else
+ thread->current_quantum = 0;
+
+ if (thread->sched_mode & TH_MODE_REALTIME) {
+ /*
+ * Cancel the deadline if the thread has
+ * consumed the entire quantum.
+ */
+ if (thread->current_quantum == 0) {
+ thread->realtime.deadline = UINT64_MAX;
+ thread->reason |= AST_QUANTUM;
+ }
}
- }
- else {
+ else {
+ /*
+ * For non-realtime threads treat a tiny
+ * remaining quantum as an expired quantum
+ * but include what's left next time.
+ */
+ if (thread->current_quantum < min_std_quantum) {
+ thread->reason |= AST_QUANTUM;
+ thread->current_quantum += std_quantum;
+ }
+ }
+
/*
- * For non-realtime threads treat a tiny
- * remaining quantum as an expired quantum
- * but include what's left next time.
+ * If we are doing a direct handoff then
+ * take the remainder of the quantum.
*/
- if (old_thread->current_quantum < min_std_quantum) {
- old_thread->reason |= AST_QUANTUM;
- old_thread->current_quantum += std_quantum;
+ if ((thread->reason & (AST_HANDOFF|AST_QUANTUM)) == AST_HANDOFF) {
+ self->current_quantum = thread->current_quantum;
+ thread->reason |= AST_QUANTUM;
+ thread->current_quantum = 0;
}
- }
- /*
- * If we are doing a direct handoff then
- * give the remainder of our quantum to
- * the next thread.
- */
- if ((old_thread->reason & (AST_HANDOFF|AST_QUANTUM)) == AST_HANDOFF) {
- new_thread->current_quantum = old_thread->current_quantum;
- old_thread->reason |= AST_QUANTUM;
- old_thread->current_quantum = 0;
- }
+ thread->last_switch = processor->last_dispatch;
+
+ thread->computation_metered += (thread->last_switch - thread->computation_epoch);
+
+ if (!(thread->state & TH_WAIT)) {
+ /*
+ * Still running.
+ */
+ if (thread->reason & AST_QUANTUM)
+ thread_setrun(thread, SCHED_TAILQ);
+ else
+ if (thread->reason & AST_PREEMPT)
+ thread_setrun(thread, SCHED_HEADQ);
+ else
+ thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
+
+ thread->reason = AST_NONE;
+
+ thread_unlock(thread);
+ wake_unlock(thread);
+ }
+ else {
+ /*
+ * Waiting.
+ */
+ thread->state &= ~TH_RUN;
+
+ if (thread->sched_mode & TH_MODE_TIMESHARE)
+ sched_share_decr();
+ sched_run_decr();
+
+ if (thread->wake_active) {
+ thread->wake_active = FALSE;
+ thread_unlock(thread);
+
+ thread_wakeup(&thread->wake_active);
+ }
+ else
+ thread_unlock(thread);
- old_thread->last_switch = processor->last_dispatch;
+ wake_unlock(thread);
- old_thread->computation_metered +=
- (old_thread->last_switch - old_thread->computation_epoch);
+ (*thread->sched_call)(SCHED_CALL_BLOCK, thread);
+
+ if (thread->state & TH_TERMINATE)
+ thread_terminate_enqueue(thread);
+ }
+ }
}
-}
-/*
- * thread_begin:
- *
- * Set up for thread beginning execution on
- * the current processor.
- *
- * Called at splsched.
- */
-void
-thread_begin(
- thread_t thread,
- processor_t processor)
-{
- if (!(thread->state & TH_IDLE)) {
+ if (!(self->state & TH_IDLE)) {
/*
- * Give the thread a new quantum
- * if none remaining.
+ * Get a new quantum if none remaining.
*/
- if (thread->current_quantum == 0)
- thread_quantum_init(thread);
+ if (self->current_quantum == 0)
+ thread_quantum_init(self);
/*
- * Set up quantum timer and timeslice.
+ * Set up quantum timer and timeslice.
*/
- processor->quantum_end =
- (processor->last_dispatch + thread->current_quantum);
- timer_call_enter1(&processor->quantum_timer,
- thread, processor->quantum_end);
+ processor->quantum_end = (processor->last_dispatch + self->current_quantum);
+ timer_call_enter1(&processor->quantum_timer, self, processor->quantum_end);
- processor_timeslice_setup(processor, thread);
+ processor->timeslice = 1;
- thread->last_switch = processor->last_dispatch;
+ self->last_switch = processor->last_dispatch;
- thread->computation_epoch = thread->last_switch;
+ self->computation_epoch = self->last_switch;
}
else {
timer_call_cancel(&processor->quantum_timer);
- processor->timeslice = 1;
+ processor->timeslice = 0;
}
}
/*
- * thread_dispatch:
+ * thread_block_reason:
*
- * Handle previous thread at context switch. Re-dispatch
- * if still running, otherwise update run state and perform
- * special actions.
+ * Forces a reschedule, blocking the caller if a wait
+ * has been asserted.
*
- * Called at splsched.
+ * If a continuation is specified, then thread_invoke will
+ * attempt to discard the thread's kernel stack. When the
+ * thread resumes, it will execute the continuation function
+ * on a new kernel stack.
*/
-void
-thread_dispatch(
- register thread_t thread)
+counter(mach_counter_t c_thread_block_calls = 0;)
+
+wait_result_t
+thread_block_reason(
+ thread_continue_t continuation,
+ void *parameter,
+ ast_t reason)
{
- /*
- * If blocked at a continuation, discard
- * the stack.
- */
- if (thread->continuation != NULL && thread->kernel_stack)
- stack_free(thread);
-
- if (!(thread->state & TH_IDLE)) {
- wake_lock(thread);
- thread_lock(thread);
-
- if (!(thread->state & TH_WAIT)) {
- /*
- * Still running.
- */
- if (thread->reason & AST_QUANTUM)
- thread_setrun(thread, SCHED_TAILQ);
- else
- if (thread->reason & AST_PREEMPT)
- thread_setrun(thread, SCHED_HEADQ);
- else
- thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
-
- thread->reason = AST_NONE;
-
- thread_unlock(thread);
- wake_unlock(thread);
- }
- else {
- boolean_t wake;
-
- /*
- * Waiting.
- */
- thread->state &= ~TH_RUN;
-
- wake = thread->wake_active;
- thread->wake_active = FALSE;
-
- if (thread->sched_mode & TH_MODE_TIMESHARE)
- pset_share_decr(thread->processor_set);
- pset_run_decr(thread->processor_set);
-
- thread_unlock(thread);
- wake_unlock(thread);
-
- if (thread->options & TH_OPT_CALLOUT)
- call_thread_block();
-
- if (wake)
- thread_wakeup((event_t)&thread->wake_active);
-
- if (thread->state & TH_TERMINATE)
- thread_terminate_enqueue(thread);
- }
- }
-}
-
-/*
- * thread_block_reason:
- *
- * Forces a reschedule, blocking the caller if a wait
- * has been asserted.
- *
- * If a continuation is specified, then thread_invoke will
- * attempt to discard the thread's kernel stack. When the
- * thread resumes, it will execute the continuation function
- * on a new kernel stack.
- */
-counter(mach_counter_t c_thread_block_calls = 0;)
-
-wait_result_t
-thread_block_reason(
- thread_continue_t continuation,
- void *parameter,
- ast_t reason)
-{
- register thread_t self = current_thread();
- register processor_t processor;
- register thread_t new_thread;
- spl_t s;
+ register thread_t self = current_thread();
+ register processor_t processor;
+ register thread_t new_thread;
+ spl_t s;
counter(++c_thread_block_calls);
s = splsched();
-#if 0
-#if MACH_KDB
- {
- extern void db_chkpmgr(void);
- db_chkpmgr(); /* (BRINGUP) See if pm config changed */
-
- }
-#endif
-#endif
-
if (!(reason & AST_PREEMPT))
funnel_release_check(self, 2);
processor = current_processor();
- /*
- * Delay switching to the idle thread under certain conditions.
- */
- if (s != FALSE && (self->state & (TH_IDLE|TH_TERMINATE|TH_WAIT)) == TH_WAIT) {
- if ( processor->processor_set->processor_count > 1 &&
- processor->processor_set->runq.count == 0 &&
- processor->runq.count == 0 )
- processor = delay_idle(processor, self);
- }
-
/* If we're explicitly yielding, force a subsequent quantum */
if (reason & AST_YIELD)
processor->timeslice = 0;
self->continuation = continuation;
self->parameter = parameter;
- thread_lock(self);
- new_thread = thread_select(processor);
- assert(new_thread && thread_runnable(new_thread));
- thread_unlock(self);
- while (!thread_invoke(self, new_thread, reason)) {
+ do {
thread_lock(self);
- new_thread = thread_select(processor);
- assert(new_thread && thread_runnable(new_thread));
+ new_thread = thread_select(self, processor);
thread_unlock(self);
- }
+ } while (!thread_invoke(self, new_thread, reason));
funnel_refunnel_check(self, 5);
splx(s);
self->parameter = parameter;
while (!thread_invoke(self, new_thread, handoff)) {
- register processor_t processor = current_processor();
+ processor_t processor = current_processor();
thread_lock(self);
- new_thread = thread_select(processor);
+ new_thread = thread_select(self, processor);
thread_unlock(self);
handoff = AST_NONE;
}
*/
void
thread_continue(
- register thread_t old_thread)
+ register thread_t thread)
{
register thread_t self = current_thread();
register thread_continue_t continuation;
register void *parameter;
continuation = self->continuation;
- self->continuation = NULL;
parameter = self->parameter;
- self->parameter = NULL;
- thread_begin(self, self->last_processor);
+ thread_dispatch(thread, self);
- if (old_thread != THREAD_NULL)
- thread_dispatch(old_thread);
+ self->continuation = self->parameter = NULL;
funnel_refunnel_check(self, 4);
- if (old_thread != THREAD_NULL)
+ if (thread != THREAD_NULL)
(void)spllo();
+ TLOG(1, "thread_continue: calling call_continuation \n");
call_continuation(continuation, parameter, self->wait_result);
/*NOTREACHED*/
}
/*
- * Enqueue thread on run queue. Thread must be locked,
- * and not already be on a run queue. Returns TRUE
- * if a preemption is indicated based on the state
- * of the run queue.
+ * run_queue_init:
*
- * Run queue must be locked, see run_queue_remove()
- * for more info.
+ * Initialize a run queue before first use.
*/
-static boolean_t
-run_queue_enqueue(
- register run_queue_t rq,
- register thread_t thread,
- integer_t options)
-{
- register int whichq = thread->sched_pri;
- register queue_t queue = &rq->queues[whichq];
- boolean_t result = FALSE;
-
- assert(whichq >= MINPRI && whichq <= MAXPRI);
+void
+run_queue_init(
+ run_queue_t rq)
+{
+ int i;
+
+ rq->highq = IDLEPRI;
+ for (i = 0; i < NRQBM; i++)
+ rq->bitmap[i] = 0;
+ setbit(MAXPRI - IDLEPRI, rq->bitmap);
+ rq->urgency = rq->count = 0;
+ for (i = 0; i < NRQS; i++)
+ queue_init(&rq->queues[i]);
+}
- assert(thread->runq == RUN_QUEUE_NULL);
- if (queue_empty(queue)) {
- enqueue_tail(queue, (queue_entry_t)thread);
+/*
+ * run_queue_dequeue:
+ *
+ * Perform a dequeue operation on a run queue,
+ * and return the resulting thread.
+ *
+ * The run queue must be locked (see run_queue_remove()
+ * for more info), and not empty.
+ */
+static thread_t
+run_queue_dequeue(
+ run_queue_t rq,
+ integer_t options)
+{
+ thread_t thread;
+ queue_t queue = rq->queues + rq->highq;
- setbit(MAXPRI - whichq, rq->bitmap);
- if (whichq > rq->highq) {
- rq->highq = whichq;
- result = TRUE;
- }
+ if (options & SCHED_HEADQ) {
+ thread = (thread_t)queue->next;
+ ((queue_entry_t)thread)->next->prev = queue;
+ queue->next = ((queue_entry_t)thread)->next;
+ }
+ else {
+ thread = (thread_t)queue->prev;
+ ((queue_entry_t)thread)->prev->next = queue;
+ queue->prev = ((queue_entry_t)thread)->prev;
}
- else
- if (options & SCHED_HEADQ)
- enqueue_head(queue, (queue_entry_t)thread);
- else
- enqueue_tail(queue, (queue_entry_t)thread);
- thread->runq = rq;
+ thread->runq = PROCESSOR_NULL;
+ rq->count--;
if (thread->sched_mode & TH_MODE_PREEMPT)
- rq->urgency++;
- rq->count++;
+ rq->urgency--;
+ if (queue_empty(queue)) {
+ if (rq->highq != IDLEPRI)
+ clrbit(MAXPRI - rq->highq, rq->bitmap);
+ rq->highq = MAXPRI - ffsbit(rq->bitmap);
+ }
- return (result);
+ return (thread);
}
/*
- * Enqueue a thread for realtime execution, similar
- * to above. Handles preemption directly.
+ * realtime_queue_insert:
+ *
+ * Enqueue a thread for realtime execution.
*/
-static void
-realtime_schedule_insert(
- register processor_set_t pset,
- register thread_t thread)
+static boolean_t
+realtime_queue_insert(
+ thread_t thread)
{
- register run_queue_t rq = &pset->runq;
- register int whichq = thread->sched_pri;
- register queue_t queue = &rq->queues[whichq];
- uint64_t deadline = thread->realtime.deadline;
- boolean_t try_preempt = FALSE;
+ run_queue_t rq = &rt_runq;
+ queue_t queue = rq->queues + thread->sched_pri;
+ uint64_t deadline = thread->realtime.deadline;
+ boolean_t preempt = FALSE;
- assert(whichq >= BASEPRI_REALTIME && whichq <= MAXPRI);
+ simple_lock(&rt_lock);
- assert(thread->runq == RUN_QUEUE_NULL);
if (queue_empty(queue)) {
enqueue_tail(queue, (queue_entry_t)thread);
- setbit(MAXPRI - whichq, rq->bitmap);
- if (whichq > rq->highq)
- rq->highq = whichq;
- try_preempt = TRUE;
+ setbit(MAXPRI - thread->sched_pri, rq->bitmap);
+ if (thread->sched_pri > rq->highq)
+ rq->highq = thread->sched_pri;
+ preempt = TRUE;
}
else {
register thread_t entry = (thread_t)queue_first(queue);
}
if ((queue_entry_t)entry == queue)
- try_preempt = TRUE;
+ preempt = TRUE;
insque((queue_entry_t)thread, (queue_entry_t)entry);
}
- thread->runq = rq;
+ thread->runq = RT_RUNQ;
assert(thread->sched_mode & TH_MODE_PREEMPT);
rq->count++; rq->urgency++;
- if (try_preempt) {
- register processor_t processor;
+ simple_unlock(&rt_lock);
- processor = current_processor();
- if ( pset == processor->processor_set &&
- (thread->sched_pri > processor->current_pri ||
- deadline < processor->deadline ) ) {
- dispatch_counts.realtime_self++;
- simple_unlock(&pset->sched_lock);
+ return (preempt);
+}
- ast_on(AST_PREEMPT | AST_URGENT);
- return;
- }
+/*
+ * realtime_setrun:
+ *
+ * Dispatch a thread for realtime execution.
+ *
+ * Thread must be locked. Associated pset must
+ * be locked, and is returned unlocked.
+ */
+static void
+realtime_setrun(
+ processor_t processor,
+ thread_t thread)
+{
+ processor_set_t pset = processor->processor_set;
- if ( pset->processor_count > 1 ||
- pset != processor->processor_set ) {
- processor_t myprocessor, lastprocessor;
- queue_entry_t next;
+ /*
+ * Dispatch directly onto idle processor.
+ */
+ if (processor->state == PROCESSOR_IDLE) {
+ remqueue(&pset->idle_queue, (queue_entry_t)processor);
+ pset->idle_count--;
+ enqueue_head(&pset->active_queue, (queue_entry_t)processor);
- myprocessor = processor;
- processor = thread->last_processor;
- if ( processor != myprocessor &&
- processor != PROCESSOR_NULL &&
- processor->processor_set == pset &&
- processor->state == PROCESSOR_RUNNING &&
- (thread->sched_pri > processor->current_pri ||
- deadline < processor->deadline ) ) {
- dispatch_counts.realtime_last++;
- cause_ast_check(processor);
- simple_unlock(&pset->sched_lock);
- return;
- }
+ processor->next_thread = thread;
+ processor->deadline = thread->realtime.deadline;
+ processor->state = PROCESSOR_DISPATCHING;
+ pset_unlock(pset);
- lastprocessor = processor;
- queue = &pset->active_queue;
- processor = (processor_t)queue_first(queue);
- while (!queue_end(queue, (queue_entry_t)processor)) {
- next = queue_next((queue_entry_t)processor);
-
- if ( processor != myprocessor &&
- processor != lastprocessor &&
- (thread->sched_pri > processor->current_pri ||
- deadline < processor->deadline ) ) {
- if (!queue_end(queue, next)) {
- remqueue(queue, (queue_entry_t)processor);
- enqueue_tail(queue, (queue_entry_t)processor);
- }
- dispatch_counts.realtime_other++;
- cause_ast_check(processor);
- simple_unlock(&pset->sched_lock);
- return;
- }
+ if (processor != current_processor())
+ machine_signal_idle(processor);
+ return;
+ }
- processor = (processor_t)next;
- }
+ if (realtime_queue_insert(thread)) {
+ if (processor == current_processor())
+ ast_on(AST_PREEMPT | AST_URGENT);
+ else
+ cause_ast_check(processor);
+ }
+
+ pset_unlock(pset);
+}
+
+/*
+ * processor_enqueue:
+ *
+ * Enqueue thread on a processor run queue. Thread must be locked,
+ * and not already be on a run queue.
+ *
+ * Returns TRUE if a preemption is indicated based on the state
+ * of the run queue.
+ *
+ * The run queue must be locked (see run_queue_remove()
+ * for more info).
+ */
+static boolean_t
+processor_enqueue(
+ processor_t processor,
+ thread_t thread,
+ integer_t options)
+{
+ run_queue_t rq = &processor->runq;
+ queue_t queue = rq->queues + thread->sched_pri;
+ boolean_t result = FALSE;
+
+ if (queue_empty(queue)) {
+ enqueue_tail(queue, (queue_entry_t)thread);
+
+ setbit(MAXPRI - thread->sched_pri, rq->bitmap);
+ if (thread->sched_pri > rq->highq) {
+ rq->highq = thread->sched_pri;
+ result = TRUE;
}
}
+ else
+ if (options & SCHED_TAILQ)
+ enqueue_tail(queue, (queue_entry_t)thread);
+ else
+ enqueue_head(queue, (queue_entry_t)thread);
- simple_unlock(&pset->sched_lock);
+ thread->runq = processor;
+ if (thread->sched_mode & TH_MODE_PREEMPT)
+ rq->urgency++;
+ rq->count++;
+
+ return (result);
}
/*
- * thread_setrun:
+ * processor_setrun:
*
- * Dispatch thread for execution, directly onto an idle
- * processor if possible. Else put on appropriate run
- * queue. (local if bound, else processor set)
+ * Dispatch a thread for execution on a
+ * processor.
*
- * Thread must be locked.
+ * Thread must be locked. Associated pset must
+ * be locked, and is returned unlocked.
*/
-void
-thread_setrun(
- register thread_t new_thread,
- integer_t options)
+static void
+processor_setrun(
+ processor_t processor,
+ thread_t thread,
+ integer_t options)
{
- register processor_t processor;
- register processor_set_t pset;
- register thread_t thread;
- ast_t preempt = (options & SCHED_PREEMPT)?
- AST_PREEMPT: AST_NONE;
+ processor_set_t pset = processor->processor_set;
+ ast_t preempt;
- assert(thread_runnable(new_thread));
-
/*
- * Update priority if needed.
+ * Dispatch directly onto idle processor.
*/
- if (new_thread->sched_stamp != sched_tick)
- update_priority(new_thread);
+ if (processor->state == PROCESSOR_IDLE) {
+ remqueue(&pset->idle_queue, (queue_entry_t)processor);
+ pset->idle_count--;
+ enqueue_head(&pset->active_queue, (queue_entry_t)processor);
+
+ processor->next_thread = thread;
+ processor->deadline = UINT64_MAX;
+ processor->state = PROCESSOR_DISPATCHING;
+ pset_unlock(pset);
+
+ if (processor != current_processor())
+ machine_signal_idle(processor);
+ return;
+ }
/*
- * Check for urgent preemption.
+ * Set preemption mode.
*/
- if (new_thread->sched_mode & TH_MODE_PREEMPT)
+ if (thread->sched_mode & TH_MODE_PREEMPT)
preempt = (AST_PREEMPT | AST_URGENT);
+ else
+ if (thread->sched_mode & TH_MODE_TIMESHARE && thread->priority < BASEPRI_BACKGROUND)
+ preempt = AST_NONE;
+ else
+ preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE;
- assert(new_thread->runq == RUN_QUEUE_NULL);
+ if (!processor_enqueue(processor, thread, options))
+ preempt = AST_NONE;
- if ((processor = new_thread->bound_processor) == PROCESSOR_NULL) {
- /*
- * First try to dispatch on
- * the last processor.
- */
- pset = new_thread->processor_set;
- processor = new_thread->last_processor;
- if ( pset->processor_count > 1 &&
- processor != PROCESSOR_NULL &&
- processor->state == PROCESSOR_IDLE ) {
- processor_lock(processor);
- simple_lock(&pset->sched_lock);
- if ( processor->processor_set == pset &&
- processor->state == PROCESSOR_IDLE ) {
- remqueue(&pset->idle_queue, (queue_entry_t)processor);
- pset->idle_count--;
- processor->next_thread = new_thread;
- if (new_thread->sched_pri >= BASEPRI_RTQUEUES)
- processor->deadline = new_thread->realtime.deadline;
- else
- processor->deadline = UINT64_MAX;
- processor->state = PROCESSOR_DISPATCHING;
- dispatch_counts.idle_pset_last++;
- simple_unlock(&pset->sched_lock);
- processor_unlock(processor);
- if (processor != current_processor())
- machine_signal_idle(processor);
- return;
- }
- processor_unlock(processor);
+ pset_hint_high(pset, processor);
+
+ if (preempt != AST_NONE) {
+ if (processor == current_processor()) {
+ thread_t self = processor->active_thread;
+
+ if (csw_needed(self, processor))
+ ast_on(preempt);
}
else
- simple_lock(&pset->sched_lock);
+ if ( (processor->state == PROCESSOR_RUNNING ||
+ processor->state == PROCESSOR_SHUTDOWN) &&
+ thread->sched_pri >= processor->current_pri ) {
+ cause_ast_check(processor);
+ }
+ }
+ else
+ if ( processor->state == PROCESSOR_SHUTDOWN &&
+ thread->sched_pri >= processor->current_pri ) {
+ cause_ast_check(processor);
+ }
+
+ pset_unlock(pset);
+}
+#define next_pset(p) (((p)->pset_list != PROCESSOR_SET_NULL)? (p)->pset_list: (p)->node->psets)
+
+/*
+ * choose_next_pset:
+ *
+ * Return the next sibling pset containing
+ * available processors.
+ *
+ * Returns the original pset if none other is
+ * suitable.
+ */
+static processor_set_t
+choose_next_pset(
+ processor_set_t pset)
+{
+ processor_set_t nset = pset;
+
+ do {
+ nset = next_pset(nset);
+ } while (nset->processor_count < 1 && nset != pset);
+
+ return ((nset != pset)? nset: pset);
+}
+
+/*
+ * choose_processor:
+ *
+ * Choose a processor for the thread, beginning at
+ * the pset.
+ *
+ * Returns a processor, possibly from a different pset.
+ *
+ * The thread must be locked. The pset must be locked,
+ * and the resulting pset is locked on return.
+ */
+static processor_t
+choose_processor(
+ processor_set_t pset,
+ thread_t thread)
+{
+ processor_set_t nset, cset = pset;
+ processor_t processor;
+
+ /*
+ * Iterate through the processor sets to locate
+ * an appropriate processor.
+ */
+ do {
/*
- * Next pick any idle processor
- * in the processor set.
+ * Choose an idle processor.
*/
- if (pset->idle_count > 0) {
- processor = (processor_t)dequeue_head(&pset->idle_queue);
- pset->idle_count--;
- processor->next_thread = new_thread;
- if (new_thread->sched_pri >= BASEPRI_RTQUEUES)
- processor->deadline = new_thread->realtime.deadline;
- else
- processor->deadline = UINT64_MAX;
- processor->state = PROCESSOR_DISPATCHING;
- dispatch_counts.idle_pset_any++;
- simple_unlock(&pset->sched_lock);
- if (processor != current_processor())
- machine_signal_idle(processor);
- return;
- }
+ if (!queue_empty(&cset->idle_queue))
+ return ((processor_t)queue_first(&cset->idle_queue));
- if (new_thread->sched_pri >= BASEPRI_RTQUEUES)
- realtime_schedule_insert(pset, new_thread);
+ if (thread->sched_pri >= BASEPRI_RTQUEUES) {
+ /*
+ * For an RT thread, iterate through active processors, first fit.
+ */
+ processor = (processor_t)queue_first(&cset->active_queue);
+ while (!queue_end(&cset->active_queue, (queue_entry_t)processor)) {
+ if (thread->sched_pri > processor->current_pri ||
+ thread->realtime.deadline < processor->deadline)
+ return (processor);
+
+ processor = (processor_t)queue_next((queue_entry_t)processor);
+ }
+ }
else {
- if (!run_queue_enqueue(&pset->runq, new_thread, options))
- preempt = AST_NONE;
+ /*
+ * Choose the low hint processor in the processor set if available.
+ */
+ processor = cset->low_hint;
+ if (processor != PROCESSOR_NULL &&
+ processor->state != PROCESSOR_SHUTDOWN && processor->state != PROCESSOR_OFF_LINE)
+ return (processor);
/*
- * Update the timesharing quanta.
+ * Choose any active processor if the hint was invalid.
*/
- timeshare_quanta_update(pset);
+ processor = (processor_t)dequeue_head(&cset->active_queue);
+ if (processor != PROCESSOR_NULL) {
+ enqueue_tail(&cset->active_queue, (queue_entry_t)processor);
+ return (processor);
+ }
+ }
+
+ /*
+ * Move onto the next processor set.
+ */
+ nset = next_pset(cset);
+
+ if (nset != pset) {
+ pset_unlock(cset);
+
+ cset = nset;
+ pset_lock(cset);
+ }
+ } while (nset != pset);
+
+ /*
+ * If all else fails choose the current processor,
+ * this routine must return a running processor.
+ */
+ processor = current_processor();
+ if (cset != processor->processor_set) {
+ pset_unlock(cset);
+
+ cset = processor->processor_set;
+ pset_lock(cset);
+ }
+
+ return (processor);
+}
+
+/*
+ * thread_setrun:
+ *
+ * Dispatch thread for execution, onto an idle
+ * processor or run queue, and signal a preemption
+ * as appropriate.
+ *
+ * Thread must be locked.
+ */
+void
+thread_setrun(
+ thread_t thread,
+ integer_t options)
+{
+ processor_t processor;
+ processor_set_t pset;
+
+#if DEBUG
+ assert(thread_runnable(thread));
+#endif
+ /*
+ * Update priority if needed.
+ */
+ if (thread->sched_stamp != sched_tick)
+ update_priority(thread);
+
+ assert(thread->runq == PROCESSOR_NULL);
+
+ if (thread->bound_processor == PROCESSOR_NULL) {
+ /*
+ * Unbound case.
+ */
+ if (thread->affinity_set != AFFINITY_SET_NULL) {
+ /*
+ * Use affinity set policy hint.
+ */
+ pset = thread->affinity_set->aset_pset;
+ pset_lock(pset);
+
+ processor = choose_processor(pset, thread);
+ }
+ else
+ if (thread->last_processor != PROCESSOR_NULL) {
+ /*
+ * Simple (last processor) affinity case.
+ */
+ processor = thread->last_processor;
+ pset = processor->processor_set;
+ pset_lock(pset);
+
/*
- * Preempt check.
+ * Choose a different processor in certain cases.
*/
- if (preempt != AST_NONE) {
+ if (processor->state == PROCESSOR_SHUTDOWN || processor->state == PROCESSOR_OFF_LINE)
+ processor = choose_processor(pset, thread);
+ else
+ if (thread->sched_pri >= BASEPRI_RTQUEUES) {
/*
- * First try the current processor
- * if it is a member of the correct
- * processor set.
+ * If the processor is executing an RT thread with
+ * an earlier deadline, choose another.
*/
- processor = current_processor();
- thread = processor->active_thread;
- if ( pset == processor->processor_set &&
- csw_needed(thread, processor) ) {
- dispatch_counts.pset_self++;
- simple_unlock(&pset->sched_lock);
-
- ast_on(preempt);
- return;
- }
+ if (thread->sched_pri <= processor->current_pri ||
+ thread->realtime.deadline >= processor->deadline)
+ processor = choose_processor(pset, thread);
+ }
+ else
+ if (processor->state != PROCESSOR_IDLE && pset->idle_count > 0) {
+ processor = choose_processor(pset, thread);
+ }
+ else {
+ processor_set_t nset = choose_next_pset(pset);
/*
- * If that failed and we have other
- * processors available keep trying.
+ * Bump into a lesser loaded processor set if appropriate.
*/
- if ( pset->processor_count > 1 ||
- pset != processor->processor_set ) {
- queue_t queue = &pset->active_queue;
- processor_t myprocessor, lastprocessor;
- queue_entry_t next;
-
- /*
- * Next try the last processor
- * dispatched on.
- */
- myprocessor = processor;
- processor = new_thread->last_processor;
- if ( processor != myprocessor &&
- processor != PROCESSOR_NULL &&
- processor->processor_set == pset &&
- processor->state == PROCESSOR_RUNNING &&
- new_thread->sched_pri > processor->current_pri ) {
- dispatch_counts.pset_last++;
- cause_ast_check(processor);
- simple_unlock(&pset->sched_lock);
- return;
- }
+ if (pset != nset && (nset->low_hint == PROCESSOR_NULL ||
+ (pset->idle_count == 0 && nset->idle_count > 0) ||
+ processor->runq.count > nset->low_hint->runq.count)) {
+ pset_unlock(pset);
- /*
- * Lastly, pick any other
- * available processor.
- */
- lastprocessor = processor;
- processor = (processor_t)queue_first(queue);
- while (!queue_end(queue, (queue_entry_t)processor)) {
- next = queue_next((queue_entry_t)processor);
-
- if ( processor != myprocessor &&
- processor != lastprocessor &&
- new_thread->sched_pri >
- processor->current_pri ) {
- if (!queue_end(queue, next)) {
- remqueue(queue, (queue_entry_t)processor);
- enqueue_tail(queue, (queue_entry_t)processor);
- }
- dispatch_counts.pset_other++;
- cause_ast_check(processor);
- simple_unlock(&pset->sched_lock);
- return;
- }
+ pset = nset;
+ pset_lock(pset);
- processor = (processor_t)next;
- }
+ processor = choose_processor(pset, thread);
}
}
+ }
+ else {
+ /*
+ * No Affinity case:
+ *
+ * Choose a processor from the current processor set.
+ */
+ processor = current_processor();
+ pset = processor->processor_set;
+ pset_lock(pset);
- simple_unlock(&pset->sched_lock);
+ processor = choose_processor(pset, thread);
}
}
else {
- /*
- * Bound, can only run on bound processor. Have to lock
- * processor here because it may not be the current one.
- */
- processor_lock(processor);
+ /*
+ * Bound case:
+ *
+ * Unconditionally dispatch on the processor.
+ */
+ processor = thread->bound_processor;
pset = processor->processor_set;
- if (pset != PROCESSOR_SET_NULL) {
- simple_lock(&pset->sched_lock);
- if (processor->state == PROCESSOR_IDLE) {
- remqueue(&pset->idle_queue, (queue_entry_t)processor);
- pset->idle_count--;
- processor->next_thread = new_thread;
- processor->deadline = UINT64_MAX;
- processor->state = PROCESSOR_DISPATCHING;
- dispatch_counts.idle_bound++;
- simple_unlock(&pset->sched_lock);
- processor_unlock(processor);
- if (processor != current_processor())
- machine_signal_idle(processor);
- return;
- }
- }
-
- if (!run_queue_enqueue(&processor->runq, new_thread, options))
- preempt = AST_NONE;
-
- if (preempt != AST_NONE) {
- if (processor == current_processor()) {
- thread = processor->active_thread;
- if (csw_needed(thread, processor)) {
- dispatch_counts.bound_self++;
- ast_on(preempt);
+ pset_lock(pset);
+ }
+
+ /*
+ * Dispatch the thread on the choosen processor.
+ */
+ if (thread->sched_pri >= BASEPRI_RTQUEUES)
+ realtime_setrun(processor, thread);
+ else
+ processor_setrun(processor, thread, options);
+}
+
+/*
+ * processor_queue_shutdown:
+ *
+ * Shutdown a processor run queue by moving
+ * non-bound threads to the current processor.
+ *
+ * Associated pset must be locked, and is
+ * returned unlocked.
+ */
+void
+processor_queue_shutdown(
+ processor_t processor)
+{
+ processor_set_t pset = processor->processor_set;
+ run_queue_t rq = &processor->runq;
+ queue_t queue = rq->queues + rq->highq;
+ int pri = rq->highq, count = rq->count;
+ thread_t next, thread;
+ queue_head_t tqueue;
+
+ queue_init(&tqueue);
+
+ while (count > 0) {
+ thread = (thread_t)queue_first(queue);
+ while (!queue_end(queue, (queue_entry_t)thread)) {
+ next = (thread_t)queue_next((queue_entry_t)thread);
+
+ if (thread->bound_processor != processor) {
+ remqueue(queue, (queue_entry_t)thread);
+
+ thread->runq = PROCESSOR_NULL;
+ rq->count--;
+ if (thread->sched_mode & TH_MODE_PREEMPT)
+ rq->urgency--;
+ if (queue_empty(queue)) {
+ if (pri != IDLEPRI)
+ clrbit(MAXPRI - pri, rq->bitmap);
+ rq->highq = MAXPRI - ffsbit(rq->bitmap);
}
+
+ enqueue_tail(&tqueue, (queue_entry_t)thread);
}
- else
- if ( processor->state == PROCESSOR_RUNNING &&
- new_thread->sched_pri > processor->current_pri ) {
- dispatch_counts.bound_other++;
- cause_ast_check(processor);
- }
+ count--;
+
+ thread = next;
}
- if (pset != PROCESSOR_SET_NULL)
- simple_unlock(&pset->sched_lock);
+ queue--; pri--;
+ }
+
+ pset_unlock(pset);
+
+ processor = current_processor();
+ pset = processor->processor_set;
+
+ while ((thread = (thread_t)dequeue_head(&tqueue)) != THREAD_NULL) {
+ thread_lock(thread);
+ thread->last_processor = PROCESSOR_NULL;
- processor_unlock(processor);
+ pset_lock(pset);
+
+ processor_enqueue(processor, thread, SCHED_TAILQ);
+
+ pset_unlock(pset);
+
+ thread_unlock(thread);
}
}
run_queue_t runq;
if (first_timeslice(processor)) {
- runq = &processor->processor_set->runq;
+ runq = &rt_runq;
if (runq->highq >= BASEPRI_RTQUEUES)
return (AST_PREEMPT | AST_URGENT);
}
}
else {
- runq = &processor->processor_set->runq;
+ runq = &rt_runq;
if (runq->highq >= current_pri) {
if (runq->urgency > 0)
return (AST_PREEMPT | AST_URGENT);
*/
void
set_sched_pri(
- thread_t thread,
- int priority)
+ thread_t thread,
+ int priority)
{
- register struct run_queue *rq = run_queue_remove(thread);
+ boolean_t removed = run_queue_remove(thread);
if ( !(thread->sched_mode & TH_MODE_TIMESHARE) &&
(priority >= BASEPRI_PREEMPT ||
thread->sched_mode &= ~TH_MODE_PREEMPT;
thread->sched_pri = priority;
- if (rq != RUN_QUEUE_NULL)
+ if (removed)
thread_setrun(thread, SCHED_PREEMPT | SCHED_TAILQ);
else
if (thread->state & TH_RUN) {
/*
* run_queue_remove:
*
- * Remove a thread from its current run queue and
- * return the run queue if successful.
+ * Remove a thread from a current run queue and
+ * return TRUE if successful.
*
* Thread must be locked.
*/
-run_queue_t
+boolean_t
run_queue_remove(
- thread_t thread)
+ thread_t thread)
{
- register run_queue_t rq = thread->runq;
+ processor_t processor = thread->runq;
/*
- * If rq is RUN_QUEUE_NULL, the thread will stay out of the
+ * If processor is PROCESSOR_NULL, the thread will stay out of the
* run queues because the caller locked the thread. Otherwise
* the thread is on a run queue, but could be chosen for dispatch
* and removed.
*/
- if (rq != RUN_QUEUE_NULL) {
- processor_set_t pset = thread->processor_set;
- processor_t processor = thread->bound_processor;
+ if (processor != PROCESSOR_NULL) {
+ void * rqlock;
+ run_queue_t rq;
/*
- * The run queues are locked by the pset scheduling
- * lock, except when a processor is off-line the
- * local run queue is locked by the processor lock.
+ * The processor run queues are locked by the
+ * processor set. Real-time priorities use a
+ * global queue with a dedicated lock.
*/
- if (processor != PROCESSOR_NULL) {
- processor_lock(processor);
- pset = processor->processor_set;
+ if (thread->sched_pri < BASEPRI_RTQUEUES) {
+ rqlock = &processor->processor_set->sched_lock;
+ rq = &processor->runq;
+ }
+ else {
+ rqlock = &rt_lock; rq = &rt_runq;
}
- if (pset != PROCESSOR_SET_NULL)
- simple_lock(&pset->sched_lock);
+ simple_lock(rqlock);
- if (rq == thread->runq) {
+ if (processor == thread->runq) {
/*
* Thread is on a run queue and we have a lock on
* that run queue.
rq->highq = MAXPRI - ffsbit(rq->bitmap);
}
- thread->runq = RUN_QUEUE_NULL;
+ thread->runq = PROCESSOR_NULL;
}
else {
/*
* The thread left the run queue before we could
* lock the run queue.
*/
- assert(thread->runq == RUN_QUEUE_NULL);
- rq = RUN_QUEUE_NULL;
+ assert(thread->runq == PROCESSOR_NULL);
+ processor = PROCESSOR_NULL;
}
- if (pset != PROCESSOR_SET_NULL)
- simple_unlock(&pset->sched_lock);
-
- if (processor != PROCESSOR_NULL)
- processor_unlock(processor);
+ simple_unlock(rqlock);
}
- return (rq);
+ return (processor != PROCESSOR_NULL);
}
/*
* choose_thread:
*
- * Remove a thread to execute from the run queues
- * and return it.
+ * Choose a thread to execute from the run queues
+ * and return it. May steal a thread from another
+ * processor.
*
- * Called with pset scheduling lock held.
+ * Called with pset scheduling lock and rt lock held,
+ * released on return.
*/
static thread_t
choose_thread(
- processor_set_t pset,
processor_t processor)
{
- register run_queue_t runq;
- register thread_t thread;
- register queue_t q;
+ processor_set_t pset = processor->processor_set;
+ thread_t thread;
- runq = &processor->runq;
-
- if (runq->count > 0 && runq->highq >= pset->runq.highq) {
- q = runq->queues + runq->highq;
-
- thread = (thread_t)q->next;
- ((queue_entry_t)thread)->next->prev = q;
- q->next = ((queue_entry_t)thread)->next;
- thread->runq = RUN_QUEUE_NULL;
- runq->count--;
- if (thread->sched_mode & TH_MODE_PREEMPT)
- runq->urgency--;
- assert(runq->urgency >= 0);
- if (queue_empty(q)) {
- if (runq->highq != IDLEPRI)
- clrbit(MAXPRI - runq->highq, runq->bitmap);
- runq->highq = MAXPRI - ffsbit(runq->bitmap);
- }
+ if (processor->runq.count > 0 && processor->runq.highq >= rt_runq.highq) {
+ simple_unlock(&rt_lock);
- processor->deadline = UINT64_MAX;
+ pset_hint_low(pset, processor);
- return (thread);
- }
+ if (pset->high_hint != PROCESSOR_NULL) {
+ if (processor != pset->high_hint) {
+ if (processor->runq.count >= pset->high_hint->runq.count)
+ pset->high_hint = processor;
+ else
+ if (pset->high_hint->runq.highq > processor->runq.highq) {
+ thread = steal_thread(pset->high_hint);
+ if (thread != THREAD_NULL) {
+ processor->deadline = UINT64_MAX;
+ pset_unlock(pset);
- runq = &pset->runq;
+ return (thread);
+ }
+ }
+ }
+ }
+ else
+ pset->high_hint = processor;
- assert(runq->count > 0);
- q = runq->queues + runq->highq;
+ thread = run_queue_dequeue(&processor->runq, SCHED_HEADQ);
- thread = (thread_t)q->next;
- ((queue_entry_t)thread)->next->prev = q;
- q->next = ((queue_entry_t)thread)->next;
- thread->runq = RUN_QUEUE_NULL;
- runq->count--;
- if (runq->highq >= BASEPRI_RTQUEUES)
- processor->deadline = thread->realtime.deadline;
- else
processor->deadline = UINT64_MAX;
- if (thread->sched_mode & TH_MODE_PREEMPT)
- runq->urgency--;
- assert(runq->urgency >= 0);
- if (queue_empty(q)) {
- if (runq->highq != IDLEPRI)
- clrbit(MAXPRI - runq->highq, runq->bitmap);
- runq->highq = MAXPRI - ffsbit(runq->bitmap);
+ pset_unlock(pset);
+
+ return (thread);
}
- timeshare_quanta_update(pset);
+ thread = run_queue_dequeue(&rt_runq, SCHED_HEADQ);
+ simple_unlock(&rt_lock);
+
+ processor->deadline = thread->realtime.deadline;
+ pset_unlock(pset);
return (thread);
}
-static processor_t
-delay_idle(
- processor_t processor,
- thread_t self)
+/*
+ * steal_thread:
+ *
+ * Steal a thread from a processor and return it.
+ *
+ * Associated pset must be locked. Returns THREAD_NULL
+ * on failure.
+ */
+static thread_t
+steal_thread(
+ processor_t processor)
{
- int *gcount, *lcount;
- uint64_t abstime, spin, limit;
-
- lcount = &processor->runq.count;
- gcount = &processor->processor_set->runq.count;
-
- abstime = mach_absolute_time();
- limit = abstime + delay_idle_limit;
- spin = abstime + delay_idle_spin;
-
- timer_event((uint32_t)abstime, &processor->idle_thread->system_timer);
-
- self->options |= TH_OPT_DELAYIDLE;
-
- while ( *gcount == 0 && *lcount == 0 &&
- (self->state & TH_WAIT) != 0 &&
- abstime < limit ) {
- if (abstime >= spin) {
- (void)spllo();
-
- (void)splsched();
- processor = current_processor();
- lcount = &processor->runq.count;
- gcount = &processor->processor_set->runq.count;
+ run_queue_t rq = &processor->runq;
+ queue_t queue = rq->queues + rq->highq;
+ int pri = rq->highq, count = rq->count;
+ thread_t thread = THREAD_NULL;
+
+ while (count > 0) {
+ thread = (thread_t)queue_first(queue);
+ while (!queue_end(queue, (queue_entry_t)thread)) {
+ if (thread->bound_processor != processor) {
+ remqueue(queue, (queue_entry_t)thread);
+
+ thread->runq = PROCESSOR_NULL;
+ rq->count--;
+ if (thread->sched_mode & TH_MODE_PREEMPT)
+ rq->urgency--;
+ if (queue_empty(queue)) {
+ if (pri != IDLEPRI)
+ clrbit(MAXPRI - pri, rq->bitmap);
+ rq->highq = MAXPRI - ffsbit(rq->bitmap);
+ }
- abstime = mach_absolute_time();
- spin = abstime + delay_idle_spin;
+ return (thread);
+ }
+ count--;
- timer_event((uint32_t)abstime, &processor->idle_thread->system_timer);
+ thread = (thread_t)queue_next((queue_entry_t)thread);
}
- else {
- cpu_pause();
- abstime = mach_absolute_time();
- }
- }
-
- timer_event((uint32_t)abstime, &self->system_timer);
- self->options &= ~TH_OPT_DELAYIDLE;
+ queue--; pri--;
+ }
- return (processor);
+ return (THREAD_NULL);
}
/*
- * no_dispatch_count counts number of times processors go non-idle
- * without being dispatched. This should be very rare.
- */
-int no_dispatch_count = 0;
-
-/*
- * This is the idle processor thread, which just looks for other threads
- * to execute.
+ * This is the processor idle loop, which just looks for other threads
+ * to execute. Processor idle threads invoke this without supplying a
+ * current thread to idle without an asserted wait state.
+ *
+ * Returns a the next thread to execute if dispatched directly.
*/
-void
-idle_thread(void)
+static thread_t
+processor_idle(
+ thread_t thread,
+ processor_t processor)
{
- register processor_t processor;
- register thread_t *threadp;
- register int *gcount;
- register int *lcount;
- register thread_t new_thread;
- register int state;
- register processor_set_t pset;
- ast_t *myast = ast_pending();
-
- processor = current_processor();
+ processor_set_t pset = processor->processor_set;
+ thread_t new_thread;
+ int state;
- threadp = &processor->next_thread;
- lcount = &processor->runq.count;
- gcount = &processor->processor_set->runq.count;
+ (void)splsched();
+#ifdef __ppc__
+ pmsDown(); /* Step power down */
+#endif
- (void)splsched(); /* Turn interruptions off */
+ KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_START, (int)thread, 0, 0, 0, 0);
- pmsDown(); /* Step power down. Note: interruptions must be disabled for this call */
+ timer_switch(&PROCESSOR_DATA(processor, system_state),
+ mach_absolute_time(), &PROCESSOR_DATA(processor, idle_state));
+ PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, idle_state);
- while ( (*threadp == THREAD_NULL) &&
- (*gcount == 0) && (*lcount == 0) ) {
+ while (processor->next_thread == THREAD_NULL && processor->runq.count == 0 &&
+ (thread == THREAD_NULL || ((thread->state & (TH_WAIT|TH_SUSP)) == TH_WAIT && !thread->wake_active))) {
+ volatile processor_t hint;
- /* check for ASTs while we wait */
- if (*myast &~ (AST_SCHEDULING | AST_BSD)) {
- /* no ASTs for us */
- *myast &= AST_NONE;
- (void)spllo();
- }
- else
- machine_idle();
+ machine_idle();
(void)splsched();
+
+ if (pset->low_hint == PROCESSOR_NULL)
+ break;
+
+ hint = pset->high_hint;
+ if (hint != PROCESSOR_NULL && hint->runq.count > 0)
+ break;
}
- /*
- * This is not a switch statement to avoid the
- * bounds checking code in the common case.
- */
- pset = processor->processor_set;
- simple_lock(&pset->sched_lock);
+ KERNEL_DEBUG_CONSTANT(
+ MACHDBG_CODE(DBG_MACH_SCHED,MACH_IDLE) | DBG_FUNC_END, (int)thread, 0, 0, 0, 0);
+
+ timer_switch(&PROCESSOR_DATA(processor, idle_state),
+ mach_absolute_time(), &PROCESSOR_DATA(processor, system_state));
+ PROCESSOR_DATA(processor, current_state) = &PROCESSOR_DATA(processor, system_state);
- pmsStep(0); /* Step up out of idle power, may start timer for next step */
+ pset_lock(pset);
+
+#ifdef __ppc__
+ pmsStep(0); /* Step up out of idle power */
+#endif
state = processor->state;
if (state == PROCESSOR_DISPATCHING) {
/*
* Commmon case -- cpu dispatched.
*/
- new_thread = *threadp;
- *threadp = (volatile thread_t) THREAD_NULL;
+ new_thread = processor->next_thread;
+ processor->next_thread = THREAD_NULL;
processor->state = PROCESSOR_RUNNING;
- enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
-
- if ( pset->runq.highq >= BASEPRI_RTQUEUES &&
- new_thread->sched_pri >= BASEPRI_RTQUEUES ) {
- register run_queue_t runq = &pset->runq;
- register queue_t q;
-
- q = runq->queues + runq->highq;
- if (((thread_t)q->next)->realtime.deadline <
- processor->deadline) {
- thread_t thread = new_thread;
-
- new_thread = (thread_t)q->next;
- ((queue_entry_t)new_thread)->next->prev = q;
- q->next = ((queue_entry_t)new_thread)->next;
- new_thread->runq = RUN_QUEUE_NULL;
- processor->deadline = new_thread->realtime.deadline;
- assert(new_thread->sched_mode & TH_MODE_PREEMPT);
- runq->count--; runq->urgency--;
- if (queue_empty(q)) {
- if (runq->highq != IDLEPRI)
- clrbit(MAXPRI - runq->highq, runq->bitmap);
- runq->highq = MAXPRI - ffsbit(runq->bitmap);
- }
- dispatch_counts.missed_realtime++;
- simple_unlock(&pset->sched_lock);
-
- thread_lock(thread);
- thread_setrun(thread, SCHED_HEADQ);
- thread_unlock(thread);
-
- counter(c_idle_thread_handoff++);
- thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread);
- /*NOTREACHED*/
- }
- simple_unlock(&pset->sched_lock);
- counter(c_idle_thread_handoff++);
- thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread);
- /*NOTREACHED*/
- }
-
- if ( processor->runq.highq > new_thread->sched_pri ||
- pset->runq.highq > new_thread->sched_pri ) {
- thread_t thread = new_thread;
+ if ( processor->runq.highq > new_thread->sched_pri ||
+ rt_runq.highq >= new_thread->sched_pri ) {
+ processor->deadline = UINT64_MAX;
- new_thread = choose_thread(pset, processor);
- dispatch_counts.missed_other++;
- simple_unlock(&pset->sched_lock);
+ pset_unlock(pset);
- thread_lock(thread);
- thread_setrun(thread, SCHED_HEADQ);
- thread_unlock(thread);
+ thread_lock(new_thread);
+ thread_setrun(new_thread, SCHED_HEADQ);
+ thread_unlock(new_thread);
- counter(c_idle_thread_handoff++);
- thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread);
- /* NOTREACHED */
+ return (THREAD_NULL);
}
- else {
- simple_unlock(&pset->sched_lock);
- counter(c_idle_thread_handoff++);
- thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread);
- /* NOTREACHED */
- }
+ pset_unlock(pset);
+
+ return (new_thread);
}
else
if (state == PROCESSOR_IDLE) {
- /*
- * Processor was not dispatched (Rare).
- * Set it running again and force a
- * reschedule.
- */
- no_dispatch_count++;
- pset->idle_count--;
remqueue(&pset->idle_queue, (queue_entry_t)processor);
- processor->state = PROCESSOR_RUNNING;
- enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
- simple_unlock(&pset->sched_lock);
+ pset->idle_count--;
- counter(c_idle_thread_block++);
- thread_block((thread_continue_t)idle_thread);
- /* NOTREACHED */
+ processor->state = PROCESSOR_RUNNING;
+ enqueue_head(&pset->active_queue, (queue_entry_t)processor);
}
else
if (state == PROCESSOR_SHUTDOWN) {
* Going off-line. Force a
* reschedule.
*/
- if ((new_thread = (thread_t)*threadp) != THREAD_NULL) {
- *threadp = (volatile thread_t) THREAD_NULL;
+ if ((new_thread = processor->next_thread) != THREAD_NULL) {
+ processor->next_thread = THREAD_NULL;
processor->deadline = UINT64_MAX;
- simple_unlock(&pset->sched_lock);
+
+ pset_unlock(pset);
thread_lock(new_thread);
thread_setrun(new_thread, SCHED_HEADQ);
thread_unlock(new_thread);
- }
- else
- simple_unlock(&pset->sched_lock);
- counter(c_idle_thread_block++);
- thread_block((thread_continue_t)idle_thread);
- /* NOTREACHED */
+ return (THREAD_NULL);
+ }
}
- simple_unlock(&pset->sched_lock);
+ pset_unlock(pset);
+
+ return (THREAD_NULL);
+}
+
+void
+idle_thread(void)
+{
+ processor_t processor = current_processor();
+ thread_t new_thread;
+
+ new_thread = processor_idle(THREAD_NULL, processor);
+ if (new_thread != THREAD_NULL) {
+ thread_run(processor->idle_thread, (thread_continue_t)idle_thread, NULL, new_thread);
+ /*NOTREACHED*/
+ }
- panic("idle_thread: state %d\n", processor->state);
+ thread_block((thread_continue_t)idle_thread);
/*NOTREACHED*/
}
*/
thread_update_scan();
+ if (pm_tick_callout != NULL)
+ (*pm_tick_callout)();
+
clock_deadline_for_periodic_event(sched_tick_interval, abstime,
&sched_tick_deadline);
static void
thread_update_scan(void)
{
- register boolean_t restart_needed;
- register processor_set_t pset = &default_pset;
- register processor_t processor;
- register thread_t thread;
- spl_t s;
+ boolean_t restart_needed = FALSE;
+ processor_t processor = processor_list;
+ processor_set_t pset;
+ thread_t thread;
+ spl_t s;
do {
- s = splsched();
- simple_lock(&pset->sched_lock);
- restart_needed = runq_scan(&pset->runq);
- simple_unlock(&pset->sched_lock);
-
- if (!restart_needed) {
- simple_lock(&pset->sched_lock);
- processor = (processor_t)queue_first(&pset->processors);
- while (!queue_end(&pset->processors, (queue_entry_t)processor)) {
- if ((restart_needed = runq_scan(&processor->runq)) != 0)
- break;
+ do {
+ pset = processor->processor_set;
- thread = processor->idle_thread;
- if (thread->sched_stamp != sched_tick) {
- if (thread_update_count == THREAD_UPDATE_SIZE) {
- restart_needed = TRUE;
- break;
- }
+ s = splsched();
+ pset_lock(pset);
- thread_update_array[thread_update_count++] = thread;
- thread_reference_internal(thread);
+ restart_needed = runq_scan(&processor->runq);
+
+ pset_unlock(pset);
+ splx(s);
+
+ if (restart_needed)
+ break;
+
+ thread = processor->idle_thread;
+ if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) {
+ if (thread_update_count == THREAD_UPDATE_SIZE) {
+ restart_needed = TRUE;
+ break;
}
- processor = (processor_t)queue_next(&processor->processors);
+ thread_update_array[thread_update_count++] = thread;
+ thread_reference_internal(thread);
}
- simple_unlock(&pset->sched_lock);
- }
- splx(s);
+ } while ((processor = processor->processor_list) != NULL);
/*
* Ok, we now have a collection of candidates -- fix them.
#if MACH_COUNTERS
iprintf("Thread block: calls %d\n",
c_thread_block_calls);
- iprintf("Idle thread:\n\thandoff %d block %d no_dispatch %d\n",
+ iprintf("Idle thread:\n\thandoff %d block %d\n",
c_idle_thread_handoff,
- c_idle_thread_block, no_dispatch_count);
+ c_idle_thread_block);
iprintf("Sched thread blocks: %d\n", c_sched_thread_block);
#endif /* MACH_COUNTERS */
db_indent -= 2;