/*
- * Copyright (c) 2003-2004 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2003-2007 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <vm/vm_kern.h>
+#include <kern/kalloc.h>
#include <mach/machine.h>
#include <i386/cpu_threads.h>
#include <i386/cpuid.h>
#include <i386/machine_cpu.h>
#include <i386/lock.h>
#include <i386/perfmon.h>
+#include <i386/pmCPU.h>
+
+#define bitmask(h,l) ((bit(h)|(bit(h)-1)) & ~(bit(l)-1))
+#define bitfield(x,h,l) (((x) & bitmask(h,l)) >> l)
/*
* Kernel parameter determining whether threads are halted unconditionally
*/
int idlehalt = 1;
+x86_pkg_t *x86_pkgs = NULL;
+uint32_t num_packages = 0;
+uint32_t num_Lx_caches[MAX_CACHE_DEPTH] = { 0 };
+
+static x86_pkg_t *free_pkgs = NULL;
+static x86_core_t *free_cores = NULL;
+
+static x86_cpu_cache_t *x86_caches = NULL;
+static uint32_t num_caches = 0;
+
+decl_simple_lock_data(, x86_topo_lock);
+
+static x86_cpu_cache_t *
+x86_cache_alloc(void)
+{
+ x86_cpu_cache_t *cache;
+ int i;
+
+ if (x86_caches == NULL) {
+ cache = kalloc(sizeof(x86_cpu_cache_t) + (MAX_CPUS * sizeof(x86_lcpu_t *)));
+ if (cache == NULL)
+ return(NULL);
+ } else {
+ cache = x86_caches;
+ x86_caches = cache->next;
+ cache->next = NULL;
+ }
+
+ bzero(cache, sizeof(x86_cpu_cache_t));
+ cache->next = NULL;
+ cache->maxcpus = MAX_CPUS;
+ for (i = 0; i < cache->maxcpus; i += 1) {
+ cache->cpus[i] = NULL;
+ }
+
+ num_caches += 1;
+
+ return(cache);
+}
+
+static void
+x86_cache_free(x86_cpu_cache_t *cache)
+{
+ num_caches -= 1;
+ if (cache->level > 0 && cache->level <= MAX_CACHE_DEPTH)
+ num_Lx_caches[cache->level - 1] -= 1;
+ cache->next = x86_caches;
+ x86_caches = cache;
+}
+
+/*
+ * This returns a list of cache structures that represent the
+ * caches for a CPU. Some of the structures may have to be
+ * "freed" if they are actually shared between CPUs.
+ */
+static x86_cpu_cache_t *
+x86_cache_list(void)
+{
+ x86_cpu_cache_t *root = NULL;
+ x86_cpu_cache_t *cur = NULL;
+ x86_cpu_cache_t *last = NULL;
+ uint32_t index;
+ uint32_t cache_info[4];
+ uint32_t nsets;
+
+ do_cpuid(0, cache_info);
+
+ if (cache_info[eax] < 4) {
+ /*
+ * Processor does not support deterministic
+ * cache information. Don't report anything
+ */
+ return NULL;
+ }
+
+ for (index = 0; ; index += 1) {
+ cache_info[eax] = 4;
+ cache_info[ecx] = index;
+ cache_info[ebx] = 0;
+ cache_info[edx] = 0;
+
+ cpuid(cache_info);
+
+ /*
+ * See if all levels have been queried.
+ */
+ if (bitfield(cache_info[eax], 4, 0) == 0)
+ break;
+
+ cur = x86_cache_alloc();
+ if (cur == NULL) {
+ break;
+ }
+
+ cur->type = bitfield(cache_info[eax], 4, 0);
+ cur->level = bitfield(cache_info[eax], 7, 5);
+ cur->nlcpus = bitfield(cache_info[eax], 25, 14) + 1;
+ cur->line_size = bitfield(cache_info[ebx], 11, 0) + 1;
+ cur->partitions = bitfield(cache_info[ebx], 21, 12) + 1;
+ cur->ways = bitfield(cache_info[ebx], 31, 22) + 1;
+ nsets = bitfield(cache_info[ecx], 31, 0) + 1;
+ cur->cache_size = cur->line_size * cur->ways * cur->partitions * nsets;
+
+ if (last == NULL) {
+ root = cur;
+ last = cur;
+ } else {
+ last->next = cur;
+ last = cur;
+ }
+
+ num_Lx_caches[cur->level - 1] += 1;
+ }
+
+ return(root);
+}
static boolean_t
cpu_is_hyperthreaded(void)
{
- if (cpuid_features() & CPUID_FEATURE_HTT)
- return (cpuid_info()->cpuid_logical_per_package /
- cpuid_info()->cpuid_cores_per_package) > 1;
- else
- return FALSE;
+ if (cpuid_features() & CPUID_FEATURE_HTT)
+ return (cpuid_info()->cpuid_logical_per_package /
+ cpuid_info()->cpuid_cores_per_package) > 1;
+ else
+ return FALSE;
+}
+
+static void
+x86_lcpu_init(int cpu)
+{
+ cpu_data_t *cpup;
+ x86_lcpu_t *lcpu;
+ int i;
+
+ cpup = cpu_datap(cpu);
+
+ lcpu = &cpup->lcpu;
+ lcpu->lcpu = lcpu;
+ lcpu->cpu = cpup;
+ lcpu->next = NULL;
+ lcpu->core = NULL;
+ lcpu->lnum = cpu;
+ lcpu->pnum = cpup->cpu_phys_number;
+ lcpu->halted = FALSE; /* XXX is this correct? */
+ lcpu->idle = FALSE; /* XXX is this correct? */
+ for (i = 0; i < MAX_CACHE_DEPTH; i += 1)
+ lcpu->caches[i] = NULL;
+
+ lcpu->master = (lcpu->pnum == (unsigned int) master_cpu);
+ lcpu->primary = (lcpu->pnum % cpuid_info()->cpuid_logical_per_package) == 0;
+}
+
+static x86_core_t *
+x86_core_alloc(int cpu)
+{
+ x86_core_t *core;
+ cpu_data_t *cpup;
+ uint32_t cpu_in_pkg;
+ uint32_t lcpus_per_core;
+
+ cpup = cpu_datap(cpu);
+
+ simple_lock(&x86_topo_lock);
+ if (free_cores != NULL) {
+ core = free_cores;
+ free_cores = core->next;
+ core->next = NULL;
+ simple_unlock(&x86_topo_lock);
+ } else {
+ simple_unlock(&x86_topo_lock);
+ core = kalloc(sizeof(x86_core_t));
+ if (core == NULL)
+ panic("x86_core_alloc() kalloc of x86_core_t failed!\n");
+ }
+
+ bzero((void *) core, sizeof(x86_core_t));
+
+ cpu_in_pkg = cpu % cpuid_info()->cpuid_logical_per_package;
+ lcpus_per_core = cpuid_info()->cpuid_logical_per_package /
+ cpuid_info()->cpuid_cores_per_package;
+
+ core->pcore_num = cpup->cpu_phys_number / lcpus_per_core;
+ core->lcore_num = core->pcore_num % cpuid_info()->cpuid_cores_per_package;
+
+ core->flags = X86CORE_FL_PRESENT | X86CORE_FL_READY;
+
+ return(core);
+}
+
+static void
+x86_core_free(x86_core_t *core)
+{
+ simple_lock(&x86_topo_lock);
+ core->next = free_cores;
+ free_cores = core;
+ simple_unlock(&x86_topo_lock);
+}
+
+static x86_pkg_t *
+x86_package_find(int cpu)
+{
+ x86_pkg_t *pkg;
+ cpu_data_t *cpup;
+ uint32_t pkg_num;
+
+ cpup = cpu_datap(cpu);
+
+ pkg_num = cpup->cpu_phys_number / cpuid_info()->cpuid_logical_per_package;
+
+ pkg = x86_pkgs;
+ while (pkg != NULL) {
+ if (pkg->ppkg_num == pkg_num)
+ break;
+ pkg = pkg->next;
+ }
+
+ return(pkg);
+}
+
+static x86_core_t *
+x86_core_find(int cpu)
+{
+ x86_core_t *core;
+ x86_pkg_t *pkg;
+ cpu_data_t *cpup;
+ uint32_t core_num;
+
+ cpup = cpu_datap(cpu);
+
+ core_num = cpup->cpu_phys_number
+ / (cpuid_info()->cpuid_logical_per_package
+ / cpuid_info()->cpuid_cores_per_package);
+
+ pkg = x86_package_find(cpu);
+ if (pkg == NULL)
+ return(NULL);
+
+ core = pkg->cores;
+ while (core != NULL) {
+ if (core->pcore_num == core_num)
+ break;
+ core = core->next;
+ }
+
+ return(core);
+}
+
+static void
+x86_core_add_lcpu(x86_core_t *core, x86_lcpu_t *lcpu)
+{
+ x86_cpu_cache_t *list;
+ x86_cpu_cache_t *cur;
+ x86_core_t *cur_core;
+ x86_lcpu_t *cur_lcpu;
+ boolean_t found;
+ int level;
+ int i;
+ uint32_t cpu_mask;
+
+ assert(core != NULL);
+ assert(lcpu != NULL);
+
+ /*
+ * Add the cache data to the topology.
+ */
+ list = x86_cache_list();
+
+ simple_lock(&x86_topo_lock);
+
+ while (list != NULL) {
+ /*
+ * Remove the cache from the front of the list.
+ */
+ cur = list;
+ list = cur->next;
+ cur->next = NULL;
+ level = cur->level - 1;
+
+ /*
+ * If the cache isn't shared then just put it where it
+ * belongs.
+ */
+ if (cur->nlcpus == 1) {
+ goto found_first;
+ }
+
+ /*
+ * We'll assume that all of the caches at a particular level
+ * have the same sharing. So if we have a cache already at
+ * this level, we'll just skip looking for the match.
+ */
+ if (lcpu->caches[level] != NULL) {
+ x86_cache_free(cur);
+ continue;
+ }
+
+ /*
+ * This is a shared cache, so we have to figure out if
+ * this is the first time we've seen this cache. We do
+ * this by searching through the package and seeing if
+ * a related core is already describing this cache.
+ *
+ * NOTE: This assumes that CPUs whose ID mod <# sharing cache>
+ * are indeed sharing the cache.
+ */
+ cpu_mask = lcpu->pnum & ~(cur->nlcpus - 1);
+ cur_core = core->package->cores;
+ found = FALSE;
+
+ while (cur_core != NULL && !found) {
+ cur_lcpu = cur_core->lcpus;
+ while (cur_lcpu != NULL && !found) {
+ if ((cur_lcpu->pnum & ~(cur->nlcpus - 1)) == cpu_mask) {
+ lcpu->caches[level] = cur_lcpu->caches[level];
+ found = TRUE;
+ x86_cache_free(cur);
+
+ /*
+ * Put the new CPU into the list of the cache.
+ */
+ cur = lcpu->caches[level];
+ for (i = 0; i < cur->nlcpus; i += 1) {
+ if (cur->cpus[i] == NULL) {
+ cur->cpus[i] = lcpu;
+ break;
+ }
+ }
+ }
+ cur_lcpu = cur_lcpu->next;
+ }
+
+ cur_core = cur_core->next;
+ }
+
+ if (!found) {
+found_first:
+ cur->next = lcpu->caches[level];
+ lcpu->caches[level] = cur;
+ cur->cpus[0] = lcpu;
+ }
+ }
+
+ /*
+ * Add the Logical CPU to the core.
+ */
+ lcpu->next = core->lcpus;
+ lcpu->core = core;
+ core->lcpus = lcpu;
+ core->num_lcpus += 1;
+
+ simple_unlock(&x86_topo_lock);
+}
+
+static x86_pkg_t *
+x86_package_alloc(int cpu)
+{
+ x86_pkg_t *pkg;
+ cpu_data_t *cpup;
+
+ cpup = cpu_datap(cpu);
+
+ simple_lock(&x86_topo_lock);
+ if (free_pkgs != NULL) {
+ pkg = free_pkgs;
+ free_pkgs = pkg->next;
+ pkg->next = NULL;
+ simple_unlock(&x86_topo_lock);
+ } else {
+ simple_unlock(&x86_topo_lock);
+ pkg = kalloc(sizeof(x86_pkg_t));
+ if (pkg == NULL)
+ panic("x86_package_alloc() kalloc of x86_pkg_t failed!\n");
+ }
+
+ bzero((void *) pkg, sizeof(x86_pkg_t));
+
+ pkg->ppkg_num = cpup->cpu_phys_number
+ / cpuid_info()->cpuid_logical_per_package;
+
+ pkg->lpkg_num = num_packages;
+ atomic_incl((long *) &num_packages, 1);
+
+ pkg->flags = X86PKG_FL_PRESENT | X86PKG_FL_READY;
+ return(pkg);
+}
+
+static void
+x86_package_free(x86_pkg_t *pkg)
+{
+ simple_lock(&x86_topo_lock);
+ pkg->next = free_pkgs;
+ free_pkgs = pkg;
+ atomic_decl((long *) &num_packages, 1);
+ simple_unlock(&x86_topo_lock);
+}
+
+static void
+x86_package_add_core(x86_pkg_t *pkg, x86_core_t *core)
+{
+ assert(pkg != NULL);
+ assert(core != NULL);
+
+ core->next = pkg->cores;
+ core->package = pkg;
+ pkg->cores = core;
+ pkg->num_cores += 1;
}
void *
cpu_thread_alloc(int cpu)
{
- int core_base_cpu;
- int ret;
- cpu_core_t *core;
+ x86_core_t *core;
+ x86_pkg_t *pkg;
+ cpu_data_t *cpup;
+ uint32_t phys_cpu;
+ cpup = cpu_datap(cpu);
+
+ phys_cpu = cpup->cpu_phys_number;
+
+ x86_lcpu_init(cpu);
+
+ /*
+ * Assume that all cpus have the same features.
+ */
+ if (cpu_is_hyperthreaded()) {
+ cpup->cpu_threadtype = CPU_THREADTYPE_INTEL_HTT;
+ } else {
+ cpup->cpu_threadtype = CPU_THREADTYPE_NONE;
+ }
+
+ /*
+ * Only allow one to manipulate the topology at a time.
+ */
+ simple_lock(&x86_topo_lock);
+
+ /*
+ * Get the core for this logical CPU.
+ */
+ core_again:
+ core = x86_core_find(cpu);
+ if (core == NULL) {
/*
- * Assume that all cpus have the same features.
+ * Core structure hasn't been created yet, do it now.
+ *
+ * Get the package that the core is part of.
*/
- if (cpu_is_hyperthreaded()) {
- /*
- * Get the cpu number of the base thread in the core.
- */
- core_base_cpu = cpu_to_core_cpu(cpu);
- cpu_datap(cpu)->cpu_threadtype = CPU_THREADTYPE_INTEL_HTT;
- } else {
- core_base_cpu = cpu;
- cpu_datap(cpu)->cpu_threadtype = CPU_THREADTYPE_NONE;
+ package_again:
+ pkg = x86_package_find(cpu);
+ if (pkg == NULL) {
+ /*
+ * Package structure hasn't been created yet, do it now.
+ */
+ simple_unlock(&x86_topo_lock);
+ pkg = x86_package_alloc(cpu);
+ simple_lock(&x86_topo_lock);
+ if (x86_package_find(cpu) != NULL) {
+ x86_package_free(pkg);
+ goto package_again;
+ }
+
+ /*
+ * Add the new package to the global list of packages.
+ */
+ pkg->next = x86_pkgs;
+ x86_pkgs = pkg;
}
- core = (cpu_core_t *) cpu_to_core(core_base_cpu);
- if (core == NULL) {
- ret = kmem_alloc(kernel_map,
- (void *) &core, sizeof(cpu_core_t));
- if (ret != KERN_SUCCESS)
- panic("cpu_thread_alloc() kmem_alloc ret=%d\n", ret);
- bzero((void *) core, sizeof(cpu_core_t));
+ /*
+ * Allocate the core structure now.
+ */
+ simple_unlock(&x86_topo_lock);
+ core = x86_core_alloc(cpu);
+ simple_lock(&x86_topo_lock);
+ if (x86_core_find(cpu) != NULL) {
+ x86_core_free(core);
+ goto core_again;
+ }
- core->base_cpu = core_base_cpu;
+ /*
+ * Add it to the package.
+ */
+ x86_package_add_core(pkg, core);
+ machine_info.physical_cpu_max += 1;
- atomic_incl((long *) &machine_info.physical_cpu_max, 1);
+ /*
+ * Allocate performance counter structure.
+ */
+ simple_unlock(&x86_topo_lock);
+ core->pmc = pmc_alloc();
+ simple_lock(&x86_topo_lock);
+ }
+
+ /*
+ * Done manipulating the topology, so others can get in.
+ */
+ machine_info.logical_cpu_max += 1;
+ simple_unlock(&x86_topo_lock);
- /* Allocate performance counter data area (if available) */
- core->pmc = pmc_alloc();
- }
- atomic_incl((long *) &machine_info.logical_cpu_max, 1);
+ x86_core_add_lcpu(core, &cpup->lcpu);
- return (void *) core;
+ return (void *) core;
}
void
cpu_thread_init(void)
{
- int my_cpu = get_cpu_number();
- cpu_core_t *my_core;
+ int my_cpu = get_cpu_number();
+ cpu_data_t *cpup = current_cpu_datap();
+ x86_core_t *core;
+ static int initialized = 0;
+
+ /*
+ * If we're the boot processor, we do all of the initialization of
+ * the CPU topology infrastructure.
+ */
+ if (my_cpu == master_cpu && !initialized) {
+ simple_lock_init(&x86_topo_lock, 0);
/*
- * If we're the boot processor we allocate the core structure here.
- * Otherwise the core has already been allocated (by the boot cpu).
+ * Put this logical CPU into the physical CPU topology.
*/
- if (my_cpu == master_cpu)
- cpu_to_core(master_cpu) = cpu_thread_alloc(master_cpu);
+ cpup->lcpu.core = cpu_thread_alloc(my_cpu);
+
+ initialized = 1;
+ }
- my_core = cpu_core();
- if (my_core == NULL)
- panic("cpu_thread_init() no core allocated for cpu %d", my_cpu);
+ /*
+ * Do the CPU accounting.
+ */
+ core = cpup->lcpu.core;
+ simple_lock(&x86_topo_lock);
+ machine_info.logical_cpu += 1;
+ if (core->active_lcpus == 0)
+ machine_info.physical_cpu += 1;
+ core->active_lcpus += 1;
+ cpup->lcpu.halted = FALSE;
+ cpup->lcpu.idle = FALSE;
+ simple_unlock(&x86_topo_lock);
- atomic_incl((long *) &my_core->active_threads, 1);
- atomic_incl((long *) &machine_info.logical_cpu, 1);
- /* Note: cpus are started serially so this isn't as racey as it looks */
- if (my_core->num_threads == 0)
- atomic_incl((long *) &machine_info.physical_cpu, 1);
- atomic_incl((long *) &my_core->num_threads, 1);
+ pmCPUMarkRunning(cpup);
+ etimer_resync_deadlines();
}
/*
void
cpu_thread_halt(void)
{
- cpu_core_t *my_core = cpu_core();
+ x86_core_t *core;
+ cpu_data_t *cpup = current_cpu_datap();
- atomic_decl((long *) &machine_info.logical_cpu, 1);
- atomic_decl((long *) &my_core->active_threads, 1);
- if (atomic_decl_and_test((long *) &my_core->num_threads, 1))
- atomic_decl((long *) &machine_info.physical_cpu, 1);
+ simple_lock(&x86_topo_lock);
+ machine_info.logical_cpu -= 1;
+ cpup->lcpu.idle = TRUE;
+ core = cpup->lcpu.core;
+ core->active_lcpus -= 1;
+ if (core->active_lcpus == 0)
+ machine_info.physical_cpu -= 1;
+ simple_unlock(&x86_topo_lock);
- cpu_halt();
+ /*
+ * Let the power management code determine the best way to "stop"
+ * the processor.
+ */
+ ml_set_interrupts_enabled(FALSE);
+ while (1) {
+ pmCPUHalt(PM_HALT_NORMAL);
+ }
+ /* NOT REACHED */
}