--- /dev/null
+/*
+ * Copyright (c) 2007 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
+ * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
+ */
+
+/*************
+ * These functions implement RPCSEC_GSS security for the NFS client and server.
+ * The code is specific to the use of Kerberos v5 and the use of DES MAC MD5
+ * protection as described in Internet RFC 2203 and 2623.
+ *
+ * In contrast to the original AUTH_SYS authentication, RPCSEC_GSS is stateful.
+ * It requires the client and server negotiate a secure connection as part of a
+ * security context. The context state is maintained in client and server structures.
+ * On the client side, each user of an NFS mount is assigned their own context,
+ * identified by UID, on their first use of the mount, and it persists until the
+ * unmount or until the context is renewed. Each user context has a corresponding
+ * server context which the server maintains until the client destroys it, or
+ * until the context expires.
+ *
+ * The client and server contexts are set up dynamically. When a user attempts
+ * to send an NFS request, if there is no context for the user, then one is
+ * set up via an exchange of NFS null procedure calls as described in RFC 2203.
+ * During this exchange, the client and server pass a security token that is
+ * forwarded via Mach upcall to the gssd, which invokes the GSS-API to authenticate
+ * the user to the server (and vice-versa). The client and server also receive
+ * a unique session key that can be used to digitally sign the credentials and
+ * verifier or optionally to provide data integrity and/or privacy.
+ *
+ * Once the context is complete, the client and server enter a normal data
+ * exchange phase - beginning with the NFS request that prompted the context
+ * creation. During this phase, the client's RPC header contains an RPCSEC_GSS
+ * credential and verifier, and the server returns a verifier as well.
+ * For simple authentication, the verifier contains a signed checksum of the
+ * RPC header, including the credential. The server's verifier has a signed
+ * checksum of the current sequence number.
+ *
+ * Each client call contains a sequence number that nominally increases by one
+ * on each request. The sequence number is intended to prevent replay attacks.
+ * Since the protocol can be used over UDP, there is some allowance for
+ * out-of-sequence requests, so the server checks whether the sequence numbers
+ * are within a sequence "window". If a sequence number is outside the lower
+ * bound of the window, the server silently drops the request. This has some
+ * implications for retransmission. If a request needs to be retransmitted, the
+ * client must bump the sequence number even if the request XID is unchanged.
+ *
+ * When the NFS mount is unmounted, the client sends a "destroy" credential
+ * to delete the server's context for each user of the mount. Since it's
+ * possible for the client to crash or disconnect without sending the destroy
+ * message, the server has a thread that reaps contexts that have been idle
+ * too long.
+ */
+
+#include <stdint.h>
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/proc.h>
+#include <sys/kauth.h>
+#include <sys/kernel.h>
+#include <sys/mount_internal.h>
+#include <sys/vnode.h>
+#include <sys/ubc.h>
+#include <sys/malloc.h>
+#include <sys/kpi_mbuf.h>
+
+#include <kern/host.h>
+#include <libkern/libkern.h>
+
+#include <mach/task.h>
+#include <mach/task_special_ports.h>
+#include <mach/host_priv.h>
+#include <mach/thread_act.h>
+#include <mach/mig_errors.h>
+#include <mach/vm_map.h>
+#include <vm/vm_map.h>
+#include <vm/vm_kern.h>
+#include <gssd/gssd_mach.h>
+
+#include <nfs/rpcv2.h>
+#include <nfs/nfsproto.h>
+#include <nfs/nfs.h>
+#include <nfs/nfsnode.h>
+#include <nfs/nfs_gss.h>
+#include <nfs/nfsmount.h>
+#include <nfs/xdr_subs.h>
+#include <nfs/nfsm_subs.h>
+#include <nfs/nfs_gss.h>
+
+#define NFS_GSS_MACH_MAX_RETRIES 3
+
+#if NFSSERVER
+u_long nfs_gss_svc_ctx_hash;
+struct nfs_gss_svc_ctx_hashhead *nfs_gss_svc_ctx_hashtbl;
+lck_mtx_t *nfs_gss_svc_ctx_mutex;
+lck_grp_t *nfs_gss_svc_grp;
+#endif /* NFSSERVER */
+
+#if NFSCLIENT
+lck_grp_t *nfs_gss_clnt_grp;
+#endif /* NFSCLIENT */
+
+/*
+ * These octet strings are used to encode/decode ASN.1 tokens
+ * in the RPCSEC_GSS verifiers.
+ */
+static u_char krb5_tokhead[] = { 0x60, 0x23 };
+static u_char krb5_mech[] = { 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x01, 0x02, 0x02 };
+static u_char krb5_mic[] = { 0x01, 0x01, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff };
+static u_char krb5_wrap[] = { 0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff };
+static u_char iv0[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // DES MAC Initialization Vector
+
+/*
+ * The size of the Kerberos v5 ASN.1 token
+ * in the verifier.
+ *
+ * Note that the second octet of the krb5_tokhead (0x23) is a
+ * DER-encoded size field that has variable length. If the size
+ * is 128 bytes or greater, then it uses two bytes, three bytes
+ * if 65536 or greater, and so on. Since the MIC tokens are
+ * separate from the data, the size is always the same: 35 bytes (0x23).
+ * However, the wrap token is different. Its size field includes the
+ * size of the token + the encrypted data that follows. So the size
+ * field may be two, three or four bytes.
+ */
+#define KRB5_SZ_TOKHEAD sizeof(krb5_tokhead)
+#define KRB5_SZ_MECH sizeof(krb5_mech)
+#define KRB5_SZ_ALG sizeof(krb5_mic) // 8 - same as krb5_wrap
+#define KRB5_SZ_SEQ 8
+#define KRB5_SZ_CKSUM 8
+#define KRB5_SZ_EXTRA 3 // a wrap token may be longer by up to this many octets
+#define KRB5_SZ_TOKEN (KRB5_SZ_TOKHEAD + KRB5_SZ_MECH + KRB5_SZ_ALG + KRB5_SZ_SEQ + KRB5_SZ_CKSUM)
+#define KRB5_SZ_TOKMAX (KRB5_SZ_TOKEN + KRB5_SZ_EXTRA)
+
+#if NFSCLIENT
+static int nfs_gss_clnt_ctx_find(struct nfsreq *);
+static int nfs_gss_clnt_ctx_failover(struct nfsreq *);
+static int nfs_gss_clnt_ctx_init(struct nfsreq *, struct nfs_gss_clnt_ctx *);
+static int nfs_gss_clnt_ctx_callserver(struct nfsreq *, struct nfs_gss_clnt_ctx *);
+static char *nfs_gss_clnt_svcname(struct nfsmount *);
+static int nfs_gss_clnt_gssd_upcall(struct nfsreq *, struct nfs_gss_clnt_ctx *);
+static void nfs_gss_clnt_ctx_remove(struct nfsmount *, struct nfs_gss_clnt_ctx *);
+static int nfs_gss_clnt_ctx_delay(struct nfsreq *, int *);
+#endif /* NFSCLIENT */
+
+#if NFSSERVER
+static struct nfs_gss_svc_ctx *nfs_gss_svc_ctx_find(uint32_t);
+static void nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx *);
+static void nfs_gss_svc_ctx_timer(void *, void *);
+static int nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx *);
+static int nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx *, uint32_t);
+#endif /* NFSSERVER */
+
+static void task_release_special_port(mach_port_t);
+static mach_port_t task_copy_special_port(mach_port_t);
+static void nfs_gss_mach_alloc_buffer(u_char *, uint32_t, vm_map_copy_t *);
+static int nfs_gss_mach_vmcopyout(vm_map_copy_t, uint32_t, u_char *);
+static int nfs_gss_token_get(des_key_schedule, u_char *, u_char *, int, uint32_t *, u_char *);
+static int nfs_gss_token_put(des_key_schedule, u_char *, u_char *, int, int, u_char *);
+static int nfs_gss_der_length_size(int);
+static void nfs_gss_der_length_put(u_char **, int);
+static int nfs_gss_der_length_get(u_char **);
+static int nfs_gss_mchain_length(mbuf_t);
+static int nfs_gss_append_chain(struct nfsm_chain *, mbuf_t);
+static void nfs_gss_nfsm_chain(struct nfsm_chain *, mbuf_t);
+static void nfs_gss_cksum_mchain(des_key_schedule, mbuf_t, u_char *, int, int, u_char *);
+static void nfs_gss_cksum_chain(des_key_schedule, struct nfsm_chain *, u_char *, int, int, u_char *);
+static void nfs_gss_cksum_rep(des_key_schedule, uint32_t, u_char *);
+static void nfs_gss_encrypt_mchain(u_char *, mbuf_t, int, int, int);
+static void nfs_gss_encrypt_chain(u_char *, struct nfsm_chain *, int, int, int);
+static DES_LONG des_cbc_cksum(des_cblock *, des_cblock *, long, des_key_schedule, des_cblock *);
+static void des_cbc_encrypt(des_cblock *, des_cblock *, long, des_key_schedule,
+ des_cblock *, des_cblock *, int);
+
+#if NFSSERVER
+thread_call_t nfs_gss_svc_ctx_timer_call;
+int nfs_gss_timer_on = 0;
+uint32_t nfs_gss_ctx_count = 0;
+const uint32_t nfs_gss_ctx_max = GSS_SVC_MAXCONTEXTS;
+#endif /* NFSSERVER */
+
+/*
+ * Initialization when NFS starts
+ */
+void
+nfs_gss_init(void)
+{
+#if NFSCLIENT
+ nfs_gss_clnt_grp = lck_grp_alloc_init("rpcsec_gss_clnt", LCK_GRP_ATTR_NULL);
+#endif /* NFSCLIENT */
+
+#if NFSSERVER
+ nfs_gss_svc_grp = lck_grp_alloc_init("rpcsec_gss_svc", LCK_GRP_ATTR_NULL);
+
+ nfs_gss_svc_ctx_hashtbl = hashinit(SVC_CTX_HASHSZ, M_TEMP, &nfs_gss_svc_ctx_hash);
+ nfs_gss_svc_ctx_mutex = lck_mtx_alloc_init(nfs_gss_svc_grp, LCK_ATTR_NULL);
+
+ nfs_gss_svc_ctx_timer_call = thread_call_allocate(nfs_gss_svc_ctx_timer, NULL);
+#endif /* NFSSERVER */
+}
+
+#if NFSCLIENT
+
+/*
+ * Find the context for a particular user.
+ *
+ * If the context doesn't already exist
+ * then create a new context for this user.
+ *
+ * Note that the code allows superuser (uid == 0)
+ * to adopt the context of another user.
+ */
+static int
+nfs_gss_clnt_ctx_find(struct nfsreq *req)
+{
+ struct nfsmount *nmp = req->r_nmp;
+ struct nfs_gss_clnt_ctx *cp;
+ uid_t uid = kauth_cred_getuid(req->r_cred);
+ int error = 0;
+ int retrycnt = 0;
+
+retry:
+ lck_mtx_lock(&nmp->nm_lock);
+ TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) {
+ if (cp->gss_clnt_uid == uid) {
+ if (cp->gss_clnt_flags & GSS_CTX_INVAL)
+ continue;
+ lck_mtx_unlock(&nmp->nm_lock);
+ nfs_gss_clnt_ctx_ref(req, cp);
+ return (0);
+ }
+ }
+
+ if (uid == 0) {
+ /*
+ * If superuser is trying to get access, then co-opt
+ * the first valid context in the list.
+ * XXX Ultimately, we need to allow superuser to
+ * go ahead and attempt to set up its own context
+ * in case one is set up for it.
+ */
+ TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) {
+ if (!(cp->gss_clnt_flags & GSS_CTX_INVAL)) {
+ lck_mtx_unlock(&nmp->nm_lock);
+ nfs_gss_clnt_ctx_ref(req, cp);
+ return (0);
+ }
+ }
+ }
+
+ /*
+ * Not found - create a new context
+ */
+
+ /*
+ * If the thread is async, then it cannot get
+ * kerberos creds and set up a proper context.
+ * If no sec= mount option is given, attempt
+ * to failover to sec=sys.
+ */
+ if (req->r_thread == NULL) {
+ if ((nmp->nm_flag & NFSMNT_SECGIVEN) == 0) {
+ error = nfs_gss_clnt_ctx_failover(req);
+ } else {
+ printf("nfs_gss_clnt_ctx_find: no context for async\n");
+ error = EAUTH;
+ }
+
+ lck_mtx_unlock(&nmp->nm_lock);
+ return (error);
+ }
+
+
+ MALLOC(cp, struct nfs_gss_clnt_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO);
+ if (cp == NULL) {
+ lck_mtx_unlock(&nmp->nm_lock);
+ return (ENOMEM);
+ }
+
+ cp->gss_clnt_uid = uid;
+ cp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL);
+ cp->gss_clnt_thread = current_thread();
+ nfs_gss_clnt_ctx_ref(req, cp);
+ TAILQ_INSERT_TAIL(&nmp->nm_gsscl, cp, gss_clnt_entries);
+ lck_mtx_unlock(&nmp->nm_lock);
+
+ error = nfs_gss_clnt_ctx_init(req, cp);
+ if (error)
+ nfs_gss_clnt_ctx_unref(req);
+
+ if (error == ENEEDAUTH) {
+ error = nfs_gss_clnt_ctx_delay(req, &retrycnt);
+ if (!error)
+ goto retry;
+ }
+
+ /*
+ * If we failed to set up a Kerberos context for this
+ * user and no sec= mount option was given then set
+ * up a dummy context that allows this user to attempt
+ * sec=sys calls.
+ */
+ if (error && (nmp->nm_flag & NFSMNT_SECGIVEN) == 0) {
+ lck_mtx_lock(&nmp->nm_lock);
+ error = nfs_gss_clnt_ctx_failover(req);
+ lck_mtx_unlock(&nmp->nm_lock);
+ }
+
+ return (error);
+}
+
+/*
+ * Set up a dummy context to allow the use of sec=sys
+ * for this user, if the server allows sec=sys.
+ * The context is valid for GSS_CLNT_SYS_VALID seconds,
+ * so that the user will periodically attempt to fail back
+ * and get a real credential.
+ *
+ * Assumes context list (nm_lock) is locked
+ */
+static int
+nfs_gss_clnt_ctx_failover(struct nfsreq *req)
+{
+ struct nfsmount *nmp = req->r_nmp;
+ struct nfs_gss_clnt_ctx *cp;
+ uid_t uid = kauth_cred_getuid(req->r_cred);
+ struct timeval now;
+
+ MALLOC(cp, struct nfs_gss_clnt_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO);
+ if (cp == NULL)
+ return (ENOMEM);
+
+ cp->gss_clnt_service = RPCSEC_GSS_SVC_SYS;
+ cp->gss_clnt_uid = uid;
+ cp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL);
+ microuptime(&now);
+ cp->gss_clnt_ctime = now.tv_sec; // time stamp
+ nfs_gss_clnt_ctx_ref(req, cp);
+ TAILQ_INSERT_TAIL(&nmp->nm_gsscl, cp, gss_clnt_entries);
+
+ return (0);
+}
+
+/*
+ * Inserts an RPCSEC_GSS credential into an RPC header.
+ * After the credential is inserted, the code continues
+ * to build the verifier which contains a signed checksum
+ * of the RPC header.
+ */
+int
+nfs_gss_clnt_cred_put(struct nfsreq *req, struct nfsm_chain *nmc, mbuf_t args)
+{
+ struct nfsmount *nmp = req->r_nmp;
+ struct nfs_gss_clnt_ctx *cp;
+ uint32_t seqnum = 0;
+ int error = 0;
+ int slpflag = 0;
+ int start, len, offset = 0;
+ int pad, toklen;
+ struct nfsm_chain nmc_tmp;
+ struct gss_seq *gsp;
+ u_char tokbuf[KRB5_SZ_TOKMAX];
+ u_char cksum[8];
+ struct timeval now;
+
+retry:
+ if (req->r_gss_ctx == NULL) {
+ /*
+ * Find the context for this user.
+ * If no context is found, one will
+ * be created.
+ */
+ error = nfs_gss_clnt_ctx_find(req);
+ if (error)
+ return (error);
+ }
+ cp = req->r_gss_ctx;
+
+ /*
+ * If it's a dummy context for a user that's using
+ * a fallback to sec=sys, then just return an error
+ * so rpchead can encode an RPCAUTH_UNIX cred.
+ */
+ if (cp->gss_clnt_service == RPCSEC_GSS_SVC_SYS) {
+ /*
+ * The dummy context is valid for just
+ * GSS_CLNT_SYS_VALID seconds. If the context
+ * is older than this, mark it invalid and try
+ * again to get a real one.
+ */
+ lck_mtx_lock(cp->gss_clnt_mtx);
+ microuptime(&now);
+ if (now.tv_sec > cp->gss_clnt_ctime + GSS_CLNT_SYS_VALID) {
+ cp->gss_clnt_flags |= GSS_CTX_INVAL;
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+ nfs_gss_clnt_ctx_unref(req);
+ goto retry;
+ }
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+ return (ENEEDAUTH);
+ }
+
+ /*
+ * If the context thread isn't null, then the context isn't
+ * yet complete and is for the exclusive use of the thread
+ * doing the context setup. Wait until the context thread
+ * is null.
+ */
+ lck_mtx_lock(cp->gss_clnt_mtx);
+ if (cp->gss_clnt_thread && cp->gss_clnt_thread != current_thread()) {
+ cp->gss_clnt_flags |= GSS_NEEDCTX;
+ slpflag = (PZERO-1) | PDROP | (((nmp->nm_flag & NFSMNT_INT) && req->r_thread) ? PCATCH : 0);
+ msleep(cp, cp->gss_clnt_mtx, slpflag, "ctxwait", NULL);
+ if ((error = nfs_sigintr(nmp, req, req->r_thread, 0)))
+ return (error);
+ nfs_gss_clnt_ctx_unref(req);
+ goto retry;
+ }
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+
+ if (cp->gss_clnt_flags & GSS_CTX_COMPLETE) {
+ /*
+ * Get a sequence number for this request.
+ * Check whether the oldest request in the window is complete.
+ * If it's still pending, then wait until it's done before
+ * we allocate a new sequence number and allow this request
+ * to proceed.
+ */
+ lck_mtx_lock(cp->gss_clnt_mtx);
+ while (win_getbit(cp->gss_clnt_seqbits,
+ ((cp->gss_clnt_seqnum - cp->gss_clnt_seqwin) + 1) % cp->gss_clnt_seqwin)) {
+ cp->gss_clnt_flags |= GSS_NEEDSEQ;
+ slpflag = (PZERO-1) | (((nmp->nm_flag & NFSMNT_INT) && req->r_thread) ? PCATCH : 0);
+ msleep(cp, cp->gss_clnt_mtx, slpflag, "seqwin", NULL);
+ if ((error = nfs_sigintr(nmp, req, req->r_thread, 0))) {
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+ return (error);
+ }
+ if (cp->gss_clnt_flags & GSS_CTX_INVAL) {
+ /* Renewed while while we were waiting */
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+ nfs_gss_clnt_ctx_unref(req);
+ goto retry;
+ }
+ }
+ seqnum = ++cp->gss_clnt_seqnum;
+ win_setbit(cp->gss_clnt_seqbits, seqnum % cp->gss_clnt_seqwin);
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+
+ MALLOC(gsp, struct gss_seq *, sizeof(*gsp), M_TEMP, M_WAITOK|M_ZERO);
+ if (gsp == NULL)
+ return (ENOMEM);
+ gsp->gss_seqnum = seqnum;
+ SLIST_INSERT_HEAD(&req->r_gss_seqlist, gsp, gss_seqnext);
+ }
+
+ /* Insert the credential */
+ nfsm_chain_add_32(error, nmc, RPCSEC_GSS);
+ nfsm_chain_add_32(error, nmc, 5 * NFSX_UNSIGNED + cp->gss_clnt_handle_len);
+ nfsm_chain_add_32(error, nmc, RPCSEC_GSS_VERS_1);
+ nfsm_chain_add_32(error, nmc, cp->gss_clnt_proc);
+ nfsm_chain_add_32(error, nmc, seqnum);
+ nfsm_chain_add_32(error, nmc, cp->gss_clnt_service);
+ nfsm_chain_add_32(error, nmc, cp->gss_clnt_handle_len);
+ nfsm_chain_add_opaque(error, nmc, cp->gss_clnt_handle, cp->gss_clnt_handle_len);
+
+ /*
+ * Now add the verifier
+ */
+ if (cp->gss_clnt_proc == RPCSEC_GSS_INIT ||
+ cp->gss_clnt_proc == RPCSEC_GSS_CONTINUE_INIT) {
+ /*
+ * If the context is still being created
+ * then use a null verifier.
+ */
+ nfsm_chain_add_32(error, nmc, RPCAUTH_NULL); // flavor
+ nfsm_chain_add_32(error, nmc, 0); // length
+ nfsm_chain_build_done(error, nmc);
+ if (!error)
+ nfs_gss_append_chain(nmc, args);
+ return (error);
+ }
+
+ offset = nmp->nm_sotype == SOCK_STREAM ? NFSX_UNSIGNED : 0; // record mark
+ nfsm_chain_build_done(error, nmc);
+ nfs_gss_cksum_chain(cp->gss_clnt_sched, nmc, krb5_mic, offset, 0, cksum);
+
+ toklen = nfs_gss_token_put(cp->gss_clnt_sched, krb5_mic, tokbuf, 1, 0, cksum);
+ nfsm_chain_add_32(error, nmc, RPCSEC_GSS); // flavor
+ nfsm_chain_add_32(error, nmc, toklen); // length
+ nfsm_chain_add_opaque(error, nmc, tokbuf, toklen);
+ nfsm_chain_build_done(error, nmc);
+ if (error)
+ return (error);
+
+ /*
+ * Now we may have to compute integrity or encrypt the call args
+ * per RFC 2203 Section 5.3.2
+ */
+ switch (cp->gss_clnt_service) {
+ case RPCSEC_GSS_SVC_NONE:
+ nfs_gss_append_chain(nmc, args);
+ break;
+ case RPCSEC_GSS_SVC_INTEGRITY:
+ len = nfs_gss_mchain_length(args); // Find args length
+ req->r_gss_arglen = len; // Stash the args len
+ len += NFSX_UNSIGNED; // Add seqnum length
+ nfsm_chain_add_32(error, nmc, len); // and insert it
+ start = nfsm_chain_offset(nmc);
+ nfsm_chain_add_32(error, nmc, seqnum); // Insert seqnum
+ req->r_gss_argoff = nfsm_chain_offset(nmc); // Offset to args
+ nfsm_chain_build_done(error, nmc);
+ if (error)
+ return (error);
+ nfs_gss_append_chain(nmc, args); // Append the args mbufs
+
+ /* Now compute a checksum over the seqnum + args */
+ nfs_gss_cksum_chain(cp->gss_clnt_sched, nmc, krb5_mic, start, len, cksum);
+
+ /* Insert it into a token and append to the request */
+ toklen = nfs_gss_token_put(cp->gss_clnt_sched, krb5_mic, tokbuf, 1, 0, cksum);
+ nfsm_chain_finish_mbuf(error, nmc); // force checksum into new mbuf
+ nfsm_chain_add_32(error, nmc, toklen);
+ nfsm_chain_add_opaque(error, nmc, tokbuf, toklen);
+ nfsm_chain_build_done(error, nmc);
+ break;
+ case RPCSEC_GSS_SVC_PRIVACY:
+ /* Prepend a new mbuf with the confounder & sequence number */
+ nfsm_chain_build_alloc_init(error, &nmc_tmp, 3 * NFSX_UNSIGNED);
+ nfsm_chain_add_32(error, &nmc_tmp, random()); // confounder bytes 1-4
+ nfsm_chain_add_32(error, &nmc_tmp, random()); // confounder bytes 4-8
+ nfsm_chain_add_32(error, &nmc_tmp, seqnum);
+ nfsm_chain_build_done(error, &nmc_tmp);
+ if (error)
+ return (error);
+ nfs_gss_append_chain(&nmc_tmp, args); // Append the args mbufs
+
+ len = nfs_gss_mchain_length(args); // Find args length
+ len += 3 * NFSX_UNSIGNED; // add confounder & seqnum
+ req->r_gss_arglen = len; // Stash length
+
+ /*
+ * Append a pad trailer - per RFC 1964 section 1.2.2.3
+ * Since XDR data is always 32-bit aligned, it
+ * needs to be padded either by 4 bytes or 8 bytes.
+ */
+ nfsm_chain_finish_mbuf(error, &nmc_tmp); // force padding into new mbuf
+ if (len % 8 > 0) {
+ nfsm_chain_add_32(error, &nmc_tmp, 0x04040404);
+ len += NFSX_UNSIGNED;
+ } else {
+ nfsm_chain_add_32(error, &nmc_tmp, 0x08080808);
+ nfsm_chain_add_32(error, &nmc_tmp, 0x08080808);
+ len += 2 * NFSX_UNSIGNED;
+ }
+ nfsm_chain_build_done(error, &nmc_tmp);
+
+ /* Now compute a checksum over the confounder + seqnum + args */
+ nfs_gss_cksum_chain(cp->gss_clnt_sched, &nmc_tmp, krb5_wrap, 0, len, cksum);
+
+ /* Insert it into a token */
+ toklen = nfs_gss_token_put(cp->gss_clnt_sched, krb5_wrap, tokbuf, 1, len, cksum);
+ nfsm_chain_add_32(error, nmc, toklen + len); // token + args length
+ nfsm_chain_add_opaque_nopad(error, nmc, tokbuf, toklen);
+ req->r_gss_argoff = nfsm_chain_offset(nmc); // Stash offset
+ nfsm_chain_build_done(error, nmc);
+ if (error)
+ return (error);
+ nfs_gss_append_chain(nmc, nmc_tmp.nmc_mhead); // Append the args mbufs
+
+ /* Finally, encrypt the args */
+ nfs_gss_encrypt_chain(cp->gss_clnt_skey, &nmc_tmp, 0, len, DES_ENCRYPT);
+
+ /* Add null XDR pad if the ASN.1 token misaligned the data */
+ pad = nfsm_pad(toklen + len);
+ if (pad > 0) {
+ nfsm_chain_add_opaque_nopad(error, nmc, iv0, pad);
+ nfsm_chain_build_done(error, nmc);
+ }
+ break;
+ }
+
+ return (error);
+}
+
+/*
+ * When receiving a reply, the client checks the verifier
+ * returned by the server. Check that the verifier is the
+ * correct type, then extract the sequence number checksum
+ * from the token in the credential and compare it with a
+ * computed checksum of the sequence number in the request
+ * that was sent.
+ */
+int
+nfs_gss_clnt_verf_get(
+ struct nfsreq *req,
+ struct nfsm_chain *nmc,
+ uint32_t verftype,
+ uint32_t verflen,
+ uint32_t *accepted_statusp)
+{
+ u_char tokbuf[KRB5_SZ_TOKMAX];
+ u_char cksum1[8], cksum2[8];
+ uint32_t seqnum = 0;
+ struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx;
+ struct nfsm_chain nmc_tmp;
+ struct gss_seq *gsp;
+ uint32_t reslen, start, cksumlen, toklen;
+ int error = 0;
+
+ reslen = cksumlen = 0;
+ *accepted_statusp = 0;
+
+ if (cp == NULL)
+ return (EAUTH);
+ /*
+ * If it's not an RPCSEC_GSS verifier, then it has to
+ * be a null verifier that resulted from either
+ * a CONTINUE_NEEDED reply during context setup or
+ * from the reply to an AUTH_UNIX call from a dummy
+ * context that resulted from a fallback to sec=sys.
+ */
+ if (verftype != RPCSEC_GSS) {
+ if (verftype != RPCAUTH_NULL)
+ return (EAUTH);
+ if (cp->gss_clnt_flags & GSS_CTX_COMPLETE &&
+ cp->gss_clnt_service != RPCSEC_GSS_SVC_SYS)
+ return (EAUTH);
+ if (verflen > 0)
+ nfsm_chain_adv(error, nmc, nfsm_rndup(verflen));
+ nfsm_chain_get_32(error, nmc, *accepted_statusp);
+ return (error);
+ }
+
+ if (verflen != KRB5_SZ_TOKEN)
+ return (EAUTH);
+
+ /*
+ * If we received an RPCSEC_GSS verifier but the
+ * context isn't yet complete, then it must be
+ * the context complete message from the server.
+ * The verifier will contain an encrypted checksum
+ * of the window but we don't have the session key
+ * yet so we can't decrypt it. Stash the verifier
+ * and check it later in nfs_gss_clnt_ctx_init() when
+ * the context is complete.
+ */
+ if (!(cp->gss_clnt_flags & GSS_CTX_COMPLETE)) {
+ MALLOC(cp->gss_clnt_verf, u_char *, verflen, M_TEMP, M_WAITOK|M_ZERO);
+ if (cp->gss_clnt_verf == NULL)
+ return (ENOMEM);
+ nfsm_chain_get_opaque(error, nmc, verflen, cp->gss_clnt_verf);
+ nfsm_chain_get_32(error, nmc, *accepted_statusp);
+ return (error);
+ }
+
+ /*
+ * Get the 8 octet sequence number
+ * checksum out of the verifier token.
+ */
+ nfsm_chain_get_opaque(error, nmc, verflen, tokbuf);
+ if (error)
+ goto nfsmout;
+ error = nfs_gss_token_get(cp->gss_clnt_sched, krb5_mic, tokbuf, 0, NULL, cksum1);
+ if (error)
+ goto nfsmout;
+
+ /*
+ * Search the request sequence numbers for this reply, starting
+ * with the most recent, looking for a checksum that matches
+ * the one in the verifier returned by the server.
+ */
+ SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) {
+ nfs_gss_cksum_rep(cp->gss_clnt_sched, gsp->gss_seqnum, cksum2);
+ if (bcmp(cksum1, cksum2, 8) == 0)
+ break;
+ }
+ if (gsp == NULL)
+ return (EAUTH);
+
+ /*
+ * Get the RPC accepted status
+ */
+ nfsm_chain_get_32(error, nmc, *accepted_statusp);
+ if (*accepted_statusp != RPC_SUCCESS)
+ return (0);
+
+ /*
+ * Now we may have to check integrity or decrypt the results
+ * per RFC 2203 Section 5.3.2
+ */
+ switch (cp->gss_clnt_service) {
+ case RPCSEC_GSS_SVC_NONE:
+ /* nothing to do */
+ break;
+ case RPCSEC_GSS_SVC_INTEGRITY:
+ /*
+ * Here's what we expect in the integrity results:
+ *
+ * - length of seq num + results (4 bytes)
+ * - sequence number (4 bytes)
+ * - results (variable bytes)
+ * - length of checksum token (37)
+ * - checksum of seqnum + results (37 bytes)
+ */
+ nfsm_chain_get_32(error, nmc, reslen); // length of results
+ if (reslen > NFS_MAXPACKET) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+
+ /* Compute a checksum over the sequence number + results */
+ start = nfsm_chain_offset(nmc);
+ nfs_gss_cksum_chain(cp->gss_clnt_sched, nmc, krb5_mic, start, reslen, cksum1);
+
+ /*
+ * Get the sequence number prepended to the results
+ * and compare it against the list in the request.
+ */
+ nfsm_chain_get_32(error, nmc, seqnum);
+ SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) {
+ if (seqnum == gsp->gss_seqnum)
+ break;
+ }
+ if (gsp == NULL) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+
+ /*
+ * Advance to the end of the results and
+ * fetch the checksum computed by the server.
+ */
+ nmc_tmp = *nmc;
+ reslen -= NFSX_UNSIGNED; // already skipped seqnum
+ nfsm_chain_adv(error, &nmc_tmp, reslen); // skip over the results
+ nfsm_chain_get_32(error, &nmc_tmp, cksumlen); // length of checksum
+ if (cksumlen != KRB5_SZ_TOKEN) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+ nfsm_chain_get_opaque(error, &nmc_tmp, cksumlen, tokbuf);
+ if (error)
+ goto nfsmout;
+ error = nfs_gss_token_get(cp->gss_clnt_sched, krb5_mic, tokbuf, 0,
+ NULL, cksum2);
+ if (error)
+ goto nfsmout;
+
+ /* Verify that the checksums are the same */
+ if (bcmp(cksum1, cksum2, 8) != 0) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+ break;
+ case RPCSEC_GSS_SVC_PRIVACY:
+ /*
+ * Here's what we expect in the privacy results:
+ *
+ * - length of confounder + seq num + token + results
+ * - wrap token (37-40 bytes)
+ * - confounder (8 bytes)
+ * - sequence number (4 bytes)
+ * - results (encrypted)
+ */
+ nfsm_chain_get_32(error, nmc, reslen); // length of results
+ if (reslen > NFS_MAXPACKET) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+
+ /* Get the token that prepends the encrypted results */
+ nfsm_chain_get_opaque(error, nmc, KRB5_SZ_TOKMAX, tokbuf);
+ if (error)
+ goto nfsmout;
+ error = nfs_gss_token_get(cp->gss_clnt_sched, krb5_wrap, tokbuf, 0,
+ &toklen, cksum1);
+ if (error)
+ goto nfsmout;
+ nfsm_chain_reverse(nmc, nfsm_pad(toklen));
+ reslen -= toklen; // size of confounder + seqnum + results
+
+ /* decrypt the confounder + sequence number + results */
+ start = nfsm_chain_offset(nmc);
+ nfs_gss_encrypt_chain(cp->gss_clnt_skey, nmc, start, reslen, DES_DECRYPT);
+
+ /* Compute a checksum over the confounder + sequence number + results */
+ nfs_gss_cksum_chain(cp->gss_clnt_sched, nmc, krb5_wrap, start, reslen, cksum2);
+
+ /* Verify that the checksums are the same */
+ if (bcmp(cksum1, cksum2, 8) != 0) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+
+ nfsm_chain_adv(error, nmc, 8); // skip over the confounder
+
+ /*
+ * Get the sequence number prepended to the results
+ * and compare it against the list in the request.
+ */
+ nfsm_chain_get_32(error, nmc, seqnum);
+ SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) {
+ if (seqnum == gsp->gss_seqnum)
+ break;
+ }
+ if (gsp == NULL) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+
+ break;
+ }
+nfsmout:
+ return (error);
+}
+
+/*
+ * An RPCSEC_GSS request with no integrity or privacy consists
+ * of just the header mbufs followed by the arg mbufs.
+ *
+ * However, integrity or privacy both trailer mbufs to the args,
+ * which means we have to do some work to restore the arg mbuf
+ * chain to its previous state in case we need to retransmit.
+ *
+ * The location and length of the args is marked by two fields
+ * in the request structure: r_gss_argoff and r_gss_arglen,
+ * which are stashed when the NFS request is built.
+ */
+int
+nfs_gss_clnt_args_restore(struct nfsreq *req)
+{
+ struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx;
+ struct nfsm_chain mchain, *nmc = &mchain;
+ int len, error = 0;
+
+ if (cp == NULL)
+ return (EAUTH);
+
+ if ((cp->gss_clnt_flags & GSS_CTX_COMPLETE) == 0)
+ return (ENEEDAUTH);
+
+ nfsm_chain_dissect_init(error, nmc, req->r_mhead); // start at RPC header
+ nfsm_chain_adv(error, nmc, req->r_gss_argoff); // advance to args
+ if (error)
+ return (error);
+
+ switch (cp->gss_clnt_service) {
+ case RPCSEC_GSS_SVC_NONE:
+ /* nothing to do */
+ break;
+ case RPCSEC_GSS_SVC_INTEGRITY:
+ /*
+ * All we have to do here is remove the appended checksum mbufs.
+ * We know that the checksum starts in a new mbuf beyond the end
+ * of the args.
+ */
+ nfsm_chain_adv(error, nmc, req->r_gss_arglen); // adv to last args mbuf
+ if (error)
+ return (error);
+
+ mbuf_freem(mbuf_next(nmc->nmc_mcur)); // free the cksum mbuf
+ error = mbuf_setnext(nmc->nmc_mcur, NULL);
+ break;
+ case RPCSEC_GSS_SVC_PRIVACY:
+ /*
+ * The args are encrypted along with prepended confounders and seqnum.
+ * First we decrypt, the confounder, seqnum and args then skip to the
+ * final mbuf of the args.
+ * The arglen includes 8 bytes of confounder and 4 bytes of seqnum.
+ * Finally, we remove between 4 and 8 bytes of encryption padding
+ * as well as any alignment padding in the trailing mbuf.
+ */
+ len = req->r_gss_arglen;
+ len += len % 8 > 0 ? 4 : 8; // add DES padding length
+ nfs_gss_encrypt_chain(cp->gss_clnt_skey, nmc,
+ req->r_gss_argoff, len, DES_DECRYPT);
+ nfsm_chain_adv(error, nmc, req->r_gss_arglen);
+ if (error)
+ return (error);
+ mbuf_freem(mbuf_next(nmc->nmc_mcur)); // free the pad mbuf
+ error = mbuf_setnext(nmc->nmc_mcur, NULL);
+ break;
+ }
+
+ return (error);
+}
+
+/*
+ * This function sets up a new context on the client.
+ * Context setup alternates upcalls to the gssd with NFS nullproc calls
+ * to the server. Each of these calls exchanges an opaque token, obtained
+ * via the gssd's calls into the GSS-API on either the client or the server.
+ * This cycle of calls ends when the client's upcall to the gssd and the
+ * server's response both return GSS_S_COMPLETE. At this point, the client
+ * should have its session key and a handle that it can use to refer to its
+ * new context on the server.
+ */
+static int
+nfs_gss_clnt_ctx_init(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp)
+{
+ struct nfsmount *nmp = req->r_nmp;
+ int client_complete = 0;
+ int server_complete = 0;
+ u_char cksum1[8], cksum2[8];
+ int error = 0;
+ struct timeval now;
+
+ /* Initialize a new client context */
+
+ cp->gss_clnt_svcname = nfs_gss_clnt_svcname(nmp);
+ if (cp->gss_clnt_svcname == NULL) {
+ error = EAUTH;
+ goto nfsmout;
+ }
+ cp->gss_clnt_proc = RPCSEC_GSS_INIT;
+
+ cp->gss_clnt_service =
+ nmp->nm_auth == RPCAUTH_KRB5 ? RPCSEC_GSS_SVC_NONE :
+ nmp->nm_auth == RPCAUTH_KRB5I ? RPCSEC_GSS_SVC_INTEGRITY :
+ nmp->nm_auth == RPCAUTH_KRB5P ? RPCSEC_GSS_SVC_PRIVACY : 0;
+
+ /*
+ * Now loop around alternating gss_init_sec_context and
+ * gss_accept_sec_context upcalls to the gssd on the client
+ * and server side until the context is complete - or fails.
+ */
+ for (;;) {
+
+ /* Upcall to the gss_init_sec_context in the gssd */
+ error = nfs_gss_clnt_gssd_upcall(req, cp);
+ if (error)
+ goto nfsmout;
+
+ if (cp->gss_clnt_major == GSS_S_COMPLETE) {
+ client_complete = 1;
+ if (server_complete)
+ break;
+ } else if (cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) {
+ error = EAUTH;
+ goto nfsmout;
+ }
+
+ /*
+ * Pass the token to the server.
+ */
+ error = nfs_gss_clnt_ctx_callserver(req, cp);
+ if (error)
+ goto nfsmout;
+
+ if (cp->gss_clnt_major == GSS_S_COMPLETE) {
+ server_complete = 1;
+ if (client_complete)
+ break;
+ } else if (cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) {
+ error = EAUTH;
+ goto nfsmout;
+ }
+
+ cp->gss_clnt_proc = RPCSEC_GSS_CONTINUE_INIT;
+ }
+
+ /*
+ * The context is apparently established successfully
+ */
+ cp->gss_clnt_flags |= GSS_CTX_COMPLETE;
+ cp->gss_clnt_proc = RPCSEC_GSS_DATA;
+ microuptime(&now);
+ cp->gss_clnt_ctime = now.tv_sec; // time stamp
+
+ /*
+ * Construct a key schedule from our shiny new session key
+ */
+ error = des_key_sched((des_cblock *) cp->gss_clnt_skey, cp->gss_clnt_sched);
+ if (error) {
+ error = EAUTH;
+ goto nfsmout;
+ }
+
+ /*
+ * Compute checksum of the server's window
+ */
+ nfs_gss_cksum_rep(cp->gss_clnt_sched, cp->gss_clnt_seqwin, cksum1);
+
+ /*
+ * and see if it matches the one in the
+ * verifier the server returned.
+ */
+ error = nfs_gss_token_get(cp->gss_clnt_sched, krb5_mic, cp->gss_clnt_verf, 0,
+ NULL, cksum2);
+ FREE(cp->gss_clnt_verf, M_TEMP);
+ cp->gss_clnt_verf = NULL;
+
+ if (error || bcmp(cksum1, cksum2, 8) != 0) {
+ error = EAUTH;
+ goto nfsmout;
+ }
+
+ /*
+ * Set an initial sequence number somewhat randomized.
+ * Start small so we don't overflow GSS_MAXSEQ too quickly.
+ * Add the size of the sequence window so seqbits arithmetic
+ * doesn't go negative.
+ */
+ cp->gss_clnt_seqnum = (random() & 0xffff) + cp->gss_clnt_seqwin;
+
+ /*
+ * Allocate a bitmap to keep track of which requests
+ * are pending within the sequence number window.
+ */
+ MALLOC(cp->gss_clnt_seqbits, uint32_t *,
+ nfsm_rndup((cp->gss_clnt_seqwin + 7) / 8), M_TEMP, M_WAITOK|M_ZERO);
+ if (cp->gss_clnt_seqbits == NULL)
+ error = EAUTH;
+nfsmout:
+ /*
+ * If there's an error, just mark it as invalid.
+ * It will be removed when the reference count
+ * drops to zero.
+ */
+ if (error)
+ cp->gss_clnt_flags |= GSS_CTX_INVAL;
+
+ /*
+ * Wake any threads waiting to use the context
+ */
+ lck_mtx_lock(cp->gss_clnt_mtx);
+ cp->gss_clnt_thread = NULL;
+ if (cp->gss_clnt_flags & GSS_NEEDCTX) {
+ cp->gss_clnt_flags &= ~GSS_NEEDCTX;
+ wakeup(cp);
+ }
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+
+ return (error);
+}
+
+/*
+ * Call the NFS server using a null procedure for context setup.
+ * Even though it's a null procedure and nominally has no arguments
+ * RFC 2203 requires that the GSS-API token be passed as an argument
+ * and received as a reply.
+ */
+static int
+nfs_gss_clnt_ctx_callserver(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp)
+{
+ struct nfsmount *nmp = req->r_nmp;
+ struct nfsm_chain nmreq, nmrep;
+ int error = 0, status;
+ u_int64_t xid;
+ int sz;
+
+ nfsm_chain_null(&nmreq);
+ nfsm_chain_null(&nmrep);
+ sz = NFSX_UNSIGNED + nfsm_rndup(cp->gss_clnt_tokenlen);
+ nfsm_chain_build_alloc_init(error, &nmreq, sz);
+ nfsm_chain_add_32(error, &nmreq, cp->gss_clnt_tokenlen);
+ nfsm_chain_add_opaque(error, &nmreq, cp->gss_clnt_token, cp->gss_clnt_tokenlen);
+ nfsm_chain_build_done(error, &nmreq);
+ if (error)
+ goto nfsmout;
+
+ /* Call the server */
+ error = nfs_request2(NULL, nmp->nm_mountp, &nmreq, NFSPROC_NULL,
+ req->r_thread, req->r_cred, 0, &nmrep, &xid, &status);
+ if (cp->gss_clnt_token != NULL) {
+ FREE(cp->gss_clnt_token, M_TEMP);
+ cp->gss_clnt_token = NULL;
+ }
+ if (!error)
+ error = status;
+ if (error)
+ goto nfsmout;
+
+ /* Get the server's reply */
+
+ nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_handle_len);
+ if (cp->gss_clnt_handle != NULL)
+ FREE(cp->gss_clnt_handle, M_TEMP);
+ if (cp->gss_clnt_handle_len > 0) {
+ MALLOC(cp->gss_clnt_handle, u_char *, cp->gss_clnt_handle_len, M_TEMP, M_WAITOK);
+ if (cp->gss_clnt_handle == NULL) {
+ error = ENOMEM;
+ goto nfsmout;
+ }
+ nfsm_chain_get_opaque(error, &nmrep, cp->gss_clnt_handle_len, cp->gss_clnt_handle);
+ }
+ nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_major);
+ nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_minor);
+ nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_seqwin);
+ nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_tokenlen);
+ if (error)
+ goto nfsmout;
+ if (cp->gss_clnt_tokenlen > 0) {
+ MALLOC(cp->gss_clnt_token, u_char *, cp->gss_clnt_tokenlen, M_TEMP, M_WAITOK);
+ if (cp->gss_clnt_token == NULL) {
+ error = ENOMEM;
+ goto nfsmout;
+ }
+ nfsm_chain_get_opaque(error, &nmrep, cp->gss_clnt_tokenlen, cp->gss_clnt_token);
+ }
+
+ /*
+ * Make sure any unusual errors are expanded and logged by gssd
+ */
+ if (cp->gss_clnt_major != GSS_S_COMPLETE &&
+ cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) {
+ char who[] = "server";
+
+ (void) mach_gss_log_error(
+ cp->gss_clnt_mport,
+ vfs_statfs(nmp->nm_mountp)->f_mntfromname,
+ cp->gss_clnt_uid,
+ who,
+ cp->gss_clnt_major,
+ cp->gss_clnt_minor);
+ }
+
+nfsmout:
+ nfsm_chain_cleanup(&nmreq);
+ nfsm_chain_cleanup(&nmrep);
+
+ return (error);
+}
+
+/*
+ * Ugly hack to get the service principal from the f_mntfromname field in
+ * the statfs struct. We assume a format of server:path. We don't currently
+ * support url's or other bizarre formats like path@server. A better solution
+ * here might be to allow passing the service principal down in the mount args.
+ * For kerberos we just use the default realm.
+ */
+static char *
+nfs_gss_clnt_svcname(struct nfsmount *nmp)
+{
+ char *svcname, *d;
+ char* mntfromhere = &vfs_statfs(nmp->nm_mountp)->f_mntfromname[0];
+ int len;
+
+ len = strlen(mntfromhere) + 5; /* "nfs/" plus null */
+ MALLOC(svcname, char *, len, M_TEMP, M_NOWAIT);
+ if (svcname == NULL)
+ return (NULL);
+ strlcpy(svcname, "nfs/", len);
+ strlcat(svcname, mntfromhere, len);
+ d = strchr(svcname, ':');
+ if (d)
+ *d = '\0';
+
+ return (svcname);
+}
+
+/*
+ * Make an upcall to the gssd using Mach RPC
+ * The upcall is made using a task special port.
+ * This allows launchd to fire up the gssd in the
+ * user's session. This is important, since gssd
+ * must have access to the user's credential cache.
+ */
+static int
+nfs_gss_clnt_gssd_upcall(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp)
+{
+ kern_return_t kr;
+ byte_buffer okey = NULL;
+ uint32_t skeylen = 0;
+ int retry_cnt = 0;
+ vm_map_copy_t itoken = NULL;
+ byte_buffer otoken = NULL;
+ int error = 0;
+ char uprinc[1];
+
+ /*
+ * NFS currently only supports default principals or
+ * principals based on the uid of the caller.
+ *
+ * N.B. Note we define a one character array for the principal
+ * so that we can hold an empty string required by mach, since
+ * the kernel is being compiled with -Wwrite-strings.
+ */
+ uprinc[0] = '\0';
+ if (cp->gss_clnt_mport == NULL) {
+ kr = task_get_gssd_port(get_threadtask(req->r_thread), &cp->gss_clnt_mport);
+ if (kr != KERN_SUCCESS) {
+ printf("nfs_gss_clnt_gssd_upcall: can't get gssd port, status %d\n", kr);
+ return (EAUTH);
+ }
+ if (!IPC_PORT_VALID(cp->gss_clnt_mport)) {
+ printf("nfs_gss_clnt_gssd_upcall: gssd port not valid\n");
+ cp->gss_clnt_mport = NULL;
+ return (EAUTH);
+ }
+ }
+
+ if (cp->gss_clnt_tokenlen > 0)
+ nfs_gss_mach_alloc_buffer(cp->gss_clnt_token, cp->gss_clnt_tokenlen, &itoken);
+
+retry:
+ kr = mach_gss_init_sec_context(
+ cp->gss_clnt_mport,
+ KRB5_MECH,
+ (byte_buffer) itoken, (mach_msg_type_number_t) cp->gss_clnt_tokenlen,
+ cp->gss_clnt_uid,
+ uprinc,
+ cp->gss_clnt_svcname,
+ GSSD_MUTUAL_FLAG | GSSD_NO_UI,
+ &cp->gss_clnt_gssd_verf,
+ &cp->gss_clnt_context,
+ &cp->gss_clnt_cred_handle,
+ &okey, (mach_msg_type_number_t *) &skeylen,
+ &otoken, (mach_msg_type_number_t *) &cp->gss_clnt_tokenlen,
+ &cp->gss_clnt_major,
+ &cp->gss_clnt_minor);
+
+ if (kr != 0) {
+ printf("nfs_gss_clnt_gssd_upcall: mach_gss_init_sec_context failed: %x\n", kr);
+ if (kr == MIG_SERVER_DIED && cp->gss_clnt_cred_handle == 0 &&
+ retry_cnt++ < NFS_GSS_MACH_MAX_RETRIES)
+ goto retry;
+ task_release_special_port(cp->gss_clnt_mport);
+ cp->gss_clnt_mport = NULL;
+ return (EAUTH);
+ }
+
+ /*
+ * Make sure any unusual errors are expanded and logged by gssd
+ */
+ if (cp->gss_clnt_major != GSS_S_COMPLETE &&
+ cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) {
+ char who[] = "client";
+
+ (void) mach_gss_log_error(
+ cp->gss_clnt_mport,
+ vfs_statfs(req->r_nmp->nm_mountp)->f_mntfromname,
+ cp->gss_clnt_uid,
+ who,
+ cp->gss_clnt_major,
+ cp->gss_clnt_minor);
+ }
+
+ if (skeylen > 0) {
+ if (skeylen != SKEYLEN) {
+ printf("nfs_gss_clnt_gssd_upcall: bad key length (%d)\n", skeylen);
+ return (EAUTH);
+ }
+ error = nfs_gss_mach_vmcopyout((vm_map_copy_t) okey, skeylen, cp->gss_clnt_skey);
+ if (error)
+ return (EAUTH);
+ }
+
+ if (cp->gss_clnt_tokenlen > 0) {
+ MALLOC(cp->gss_clnt_token, u_char *, cp->gss_clnt_tokenlen, M_TEMP, M_WAITOK);
+ if (cp->gss_clnt_token == NULL)
+ return (ENOMEM);
+ error = nfs_gss_mach_vmcopyout((vm_map_copy_t) otoken, cp->gss_clnt_tokenlen,
+ cp->gss_clnt_token);
+ if (error)
+ return (EAUTH);
+ }
+
+ return (0);
+}
+
+/*
+ * Invoked at the completion of an RPC call that uses an RPCSEC_GSS
+ * credential. The sequence number window that the server returns
+ * at context setup indicates the maximum number of client calls that
+ * can be outstanding on a context. The client maintains a bitmap that
+ * represents the server's window. Each pending request has a bit set
+ * in the window bitmap. When a reply comes in or times out, we reset
+ * the bit in the bitmap and if there are any other threads waiting for
+ * a context slot we notify the waiting thread(s).
+ *
+ * Note that if a request is retransmitted, it will have a single XID
+ * but it may be associated with multiple sequence numbers. So we
+ * may have to reset multiple sequence number bits in the window bitmap.
+ */
+void
+nfs_gss_clnt_rpcdone(struct nfsreq *req)
+{
+ struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx;
+ struct gss_seq *gsp, *ngsp;
+ int i = 0;
+
+ if (cp == NULL || !(cp->gss_clnt_flags & GSS_CTX_COMPLETE))
+ return; // no context - don't bother
+ /*
+ * Reset the bit for this request in the
+ * sequence number window to indicate it's done.
+ * We do this even if the request timed out.
+ */
+ lck_mtx_lock(cp->gss_clnt_mtx);
+ gsp = SLIST_FIRST(&req->r_gss_seqlist);
+ if (gsp && gsp->gss_seqnum > (cp->gss_clnt_seqnum - cp->gss_clnt_seqwin))
+ win_resetbit(cp->gss_clnt_seqbits,
+ gsp->gss_seqnum % cp->gss_clnt_seqwin);
+
+ /*
+ * Limit the seqnum list to GSS_CLNT_SEQLISTMAX entries
+ */
+ SLIST_FOREACH_SAFE(gsp, &req->r_gss_seqlist, gss_seqnext, ngsp) {
+ if (++i > GSS_CLNT_SEQLISTMAX) {
+ SLIST_REMOVE(&req->r_gss_seqlist, gsp, gss_seq, gss_seqnext);
+ FREE(gsp, M_TEMP);
+ }
+ }
+
+ /*
+ * If there's a thread waiting for
+ * the window to advance, wake it up.
+ */
+ if (cp->gss_clnt_flags & GSS_NEEDSEQ) {
+ cp->gss_clnt_flags &= ~GSS_NEEDSEQ;
+ wakeup(cp);
+ }
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+}
+
+/*
+ * Create a reference to a context from a request
+ * and bump the reference count
+ */
+void
+nfs_gss_clnt_ctx_ref(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp)
+{
+ req->r_gss_ctx = cp;
+
+ lck_mtx_lock(cp->gss_clnt_mtx);
+ cp->gss_clnt_refcnt++;
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+}
+
+/*
+ * Remove a context reference from a request
+ * If the reference count drops to zero, and the
+ * context is invalid, destroy the context
+ */
+void
+nfs_gss_clnt_ctx_unref(struct nfsreq *req)
+{
+ struct nfsmount *nmp = req->r_nmp;
+ struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx;
+
+ if (cp == NULL)
+ return;
+
+ req->r_gss_ctx = NULL;
+
+ lck_mtx_lock(cp->gss_clnt_mtx);
+ if (--cp->gss_clnt_refcnt == 0
+ && cp->gss_clnt_flags & GSS_CTX_INVAL) {
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+
+ if (nmp)
+ lck_mtx_lock(&nmp->nm_lock);
+ nfs_gss_clnt_ctx_remove(nmp, cp);
+ if (nmp)
+ lck_mtx_unlock(&nmp->nm_lock);
+
+ return;
+ }
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+}
+
+/*
+ * Remove a context
+ */
+static void
+nfs_gss_clnt_ctx_remove(struct nfsmount *nmp, struct nfs_gss_clnt_ctx *cp)
+{
+ /*
+ * If dequeueing, assume nmp->nm_lock is held
+ */
+ if (nmp != NULL)
+ TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries);
+
+ if (cp->gss_clnt_mport)
+ task_release_special_port(cp->gss_clnt_mport);
+ if (cp->gss_clnt_mtx)
+ lck_mtx_destroy(cp->gss_clnt_mtx, nfs_gss_clnt_grp);
+ if (cp->gss_clnt_handle)
+ FREE(cp->gss_clnt_handle, M_TEMP);
+ if (cp->gss_clnt_seqbits)
+ FREE(cp->gss_clnt_seqbits, M_TEMP);
+ if (cp->gss_clnt_token)
+ FREE(cp->gss_clnt_token, M_TEMP);
+ if (cp->gss_clnt_svcname)
+ FREE(cp->gss_clnt_svcname, M_TEMP);
+ FREE(cp, M_TEMP);
+}
+
+/*
+ * The context for a user is invalid.
+ * Mark the context as invalid, then
+ * create a new context.
+ */
+int
+nfs_gss_clnt_ctx_renew(struct nfsreq *req)
+{
+ struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx;
+ struct nfsmount *nmp = req->r_nmp;
+ struct nfs_gss_clnt_ctx *ncp;
+ int error = 0;
+ uid_t saved_uid;
+ mach_port_t saved_mport;
+ int retrycnt = 0;
+
+ if (cp == NULL || !(cp->gss_clnt_flags & GSS_CTX_COMPLETE))
+ return (0);
+
+ lck_mtx_lock(cp->gss_clnt_mtx);
+ if (cp->gss_clnt_flags & GSS_CTX_INVAL) {
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+ nfs_gss_clnt_ctx_unref(req);
+ return (0); // already being renewed
+ }
+ saved_uid = cp->gss_clnt_uid;
+ saved_mport = task_copy_special_port(cp->gss_clnt_mport);
+
+ /* Remove the old context */
+ lck_mtx_lock(&nmp->nm_lock);
+ cp->gss_clnt_flags |= GSS_CTX_INVAL;
+ lck_mtx_unlock(&nmp->nm_lock);
+
+ /*
+ * If there's a thread waiting
+ * in the old context, wake it up.
+ */
+ if (cp->gss_clnt_flags & (GSS_NEEDCTX | GSS_NEEDSEQ)) {
+ cp->gss_clnt_flags &= ~GSS_NEEDSEQ;
+ wakeup(cp);
+ }
+ lck_mtx_unlock(cp->gss_clnt_mtx);
+
+retry:
+ /*
+ * Create a new context
+ */
+ MALLOC(ncp, struct nfs_gss_clnt_ctx *, sizeof(*ncp),
+ M_TEMP, M_WAITOK|M_ZERO);
+ if (ncp == NULL) {
+ return (ENOMEM);
+ }
+
+ ncp->gss_clnt_uid = saved_uid;
+ ncp->gss_clnt_mport = task_copy_special_port(saved_mport); // re-use the gssd port
+ ncp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL);
+ ncp->gss_clnt_thread = current_thread();
+ lck_mtx_lock(&nmp->nm_lock);
+ TAILQ_INSERT_TAIL(&nmp->nm_gsscl, ncp, gss_clnt_entries);
+ lck_mtx_unlock(&nmp->nm_lock);
+
+ /* Adjust reference counts to new and old context */
+ nfs_gss_clnt_ctx_unref(req);
+ nfs_gss_clnt_ctx_ref(req, ncp);
+
+ error = nfs_gss_clnt_ctx_init(req, ncp); // Initialize new context
+ if (error == ENEEDAUTH) {
+ error = nfs_gss_clnt_ctx_delay(req, &retrycnt);
+ if (!error)
+ goto retry;
+ }
+
+ task_release_special_port(saved_mport);
+ if (error)
+ nfs_gss_clnt_ctx_unref(req);
+
+ return (error);
+}
+
+/*
+ * Destroy all the contexts associated with a mount.
+ * The contexts are also destroyed by the server.
+ */
+void
+nfs_gss_clnt_ctx_unmount(struct nfsmount *nmp, int mntflags)
+{
+ struct nfs_gss_clnt_ctx *cp;
+ struct ucred temp_cred;
+ kauth_cred_t cred;
+ struct nfsm_chain nmreq, nmrep;
+ u_int64_t xid;
+ int error, status;
+ struct nfsreq req;
+
+ bzero((caddr_t) &temp_cred, sizeof(temp_cred));
+ temp_cred.cr_ngroups = 1;
+ req.r_nmp = nmp;
+
+ for (;;) {
+ lck_mtx_lock(&nmp->nm_lock);
+ cp = TAILQ_FIRST(&nmp->nm_gsscl);
+ lck_mtx_unlock(&nmp->nm_lock);
+ if (cp == NULL)
+ break;
+
+ nfs_gss_clnt_ctx_ref(&req, cp);
+
+ /*
+ * Tell the server to destroy its context.
+ * But don't bother if it's a forced unmount
+ * or if it's a dummy sec=sys context.
+ */
+ if (!(mntflags & MNT_FORCE) && cp->gss_clnt_service != RPCSEC_GSS_SVC_SYS) {
+ temp_cred.cr_uid = cp->gss_clnt_uid;
+ cred = kauth_cred_create(&temp_cred);
+ cp->gss_clnt_proc = RPCSEC_GSS_DESTROY;
+
+ error = 0;
+ nfsm_chain_null(&nmreq);
+ nfsm_chain_null(&nmrep);
+ nfsm_chain_build_alloc_init(error, &nmreq, 0);
+ nfsm_chain_build_done(error, &nmreq);
+ if (!error)
+ nfs_request2(NULL, nmp->nm_mountp, &nmreq, NFSPROC_NULL,
+ current_thread(), cred, 0, &nmrep, &xid, &status);
+ nfsm_chain_cleanup(&nmreq);
+ nfsm_chain_cleanup(&nmrep);
+ kauth_cred_unref(&cred);
+ }
+
+ /*
+ * Mark the context invalid then drop
+ * the reference to remove it if its
+ * refcount is zero.
+ */
+ cp->gss_clnt_flags |= GSS_CTX_INVAL;
+ nfs_gss_clnt_ctx_unref(&req);
+ }
+}
+
+/*
+ * If we get a failure in trying to establish a context we need to wait a
+ * little while to see if the server is feeling better. In our case this is
+ * probably a failure in directory services not coming up in a timely fashion.
+ * This routine sort of mimics receiving a jukebox error.
+ */
+static int
+nfs_gss_clnt_ctx_delay(struct nfsreq *req, int *retry)
+{
+ int timeo = (1 << *retry) * NFS_TRYLATERDEL;
+ int error = 0;
+ struct nfsmount *nmp = req->r_nmp;
+ struct timeval now;
+ time_t waituntil;
+
+ if ((nmp->nm_flag & NFSMNT_SOFT) && *retry > nmp->nm_retry)
+ return (ETIMEDOUT);
+ if (timeo > 60)
+ timeo = 60;
+
+ microuptime(&now);
+ waituntil = now.tv_sec + timeo;
+ while (now.tv_sec < waituntil) {
+ tsleep(&lbolt, PSOCK, "nfs_gss_clnt_ctx_delay", 0);
+ error = nfs_sigintr(nmp, req, current_thread(), 0);
+ if (error)
+ break;
+ microuptime(&now);
+ }
+ *retry += 1;
+
+ return (error);
+}
+
+
+#endif /* NFSCLIENT */
+
+/*************
+ *
+ * Server functions
+ */
+
+#if NFSSERVER
+
+/*
+ * Find a server context based on a handle value received
+ * in an RPCSEC_GSS credential.
+ */
+static struct nfs_gss_svc_ctx *
+nfs_gss_svc_ctx_find(uint32_t handle)
+{
+ struct nfs_gss_svc_ctx_hashhead *head;
+ struct nfs_gss_svc_ctx *cp;
+
+ head = &nfs_gss_svc_ctx_hashtbl[SVC_CTX_HASH(handle)];
+
+ lck_mtx_lock(nfs_gss_svc_ctx_mutex);
+ LIST_FOREACH(cp, head, gss_svc_entries)
+ if (cp->gss_svc_handle == handle)
+ break;
+ lck_mtx_unlock(nfs_gss_svc_ctx_mutex);
+
+ return (cp);
+}
+
+/*
+ * Insert a new server context into the hash table
+ * and start the context reap thread if necessary.
+ */
+static void
+nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx *cp)
+{
+ struct nfs_gss_svc_ctx_hashhead *head;
+
+ head = &nfs_gss_svc_ctx_hashtbl[SVC_CTX_HASH(cp->gss_svc_handle)];
+
+ lck_mtx_lock(nfs_gss_svc_ctx_mutex);
+ LIST_INSERT_HEAD(head, cp, gss_svc_entries);
+ nfs_gss_ctx_count++;
+
+ if (!nfs_gss_timer_on) {
+ nfs_gss_timer_on = 1;
+ nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call,
+ GSS_TIMER_PERIOD * MSECS_PER_SEC);
+ }
+ lck_mtx_unlock(nfs_gss_svc_ctx_mutex);
+}
+
+/*
+ * This function is called via the kernel's callout
+ * mechanism. It runs only when there are
+ * cached RPCSEC_GSS contexts.
+ */
+void
+nfs_gss_svc_ctx_timer(__unused void *param1, __unused void *param2)
+{
+ struct nfs_gss_svc_ctx_hashhead *head;
+ struct nfs_gss_svc_ctx *cp, *next;
+ uint64_t timenow;
+ int contexts = 0;
+ int i;
+
+ lck_mtx_lock(nfs_gss_svc_ctx_mutex);
+ clock_get_uptime(&timenow);
+
+ /*
+ * Scan all the hash chains
+ * Assume nfs_gss_svc_ctx_mutex is held
+ */
+ for (i = 0; i < SVC_CTX_HASHSZ; i++) {
+ /*
+ * For each hash chain, look for entries
+ * that haven't been used in a while.
+ */
+ head = &nfs_gss_svc_ctx_hashtbl[i];
+ for (cp = LIST_FIRST(head); cp; cp = next) {
+ contexts++;
+ next = LIST_NEXT(cp, gss_svc_entries);
+ if (timenow > cp->gss_svc_expiretime) {
+ /*
+ * A stale context - remove it
+ */
+ LIST_REMOVE(cp, gss_svc_entries);
+ if (cp->gss_svc_seqbits)
+ FREE(cp->gss_svc_seqbits, M_TEMP);
+ lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp);
+ FREE(cp, M_TEMP);
+ contexts--;
+ }
+ }
+ }
+
+ nfs_gss_ctx_count = contexts;
+
+ /*
+ * If there are still some cached contexts left,
+ * set up another callout to check on them later.
+ */
+ nfs_gss_timer_on = nfs_gss_ctx_count > 0;
+ if (nfs_gss_timer_on)
+ nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call,
+ GSS_TIMER_PERIOD * MSECS_PER_SEC);
+
+ lck_mtx_unlock(nfs_gss_svc_ctx_mutex);
+}
+
+/*
+ * Here the server receives an RPCSEC_GSS credential in an
+ * RPC call header. First there's some checking to make sure
+ * the credential is appropriate - whether the context is still
+ * being set up, or is complete. Then we use the handle to find
+ * the server's context and validate the verifier, which contains
+ * a signed checksum of the RPC header. If the verifier checks
+ * out, we extract the user's UID and groups from the context
+ * and use it to set up a UNIX credential for the user's request.
+ */
+int
+nfs_gss_svc_cred_get(struct nfsrv_descript *nd, struct nfsm_chain *nmc)
+{
+ uint32_t vers, proc, seqnum, service;
+ uint32_t handle, handle_len;
+ struct nfs_gss_svc_ctx *cp = NULL;
+ uint32_t flavor = 0, verflen = 0;
+ int error = 0;
+ uint32_t arglen, start, toklen, cksumlen;
+ u_char tokbuf[KRB5_SZ_TOKMAX];
+ u_char cksum1[8], cksum2[8];
+ struct nfsm_chain nmc_tmp;
+
+ vers = proc = seqnum = service = handle_len = 0;
+ arglen = cksumlen = 0;
+
+ nfsm_chain_get_32(error, nmc, vers);
+ if (vers != RPCSEC_GSS_VERS_1) {
+ error = NFSERR_AUTHERR | AUTH_REJECTCRED;
+ goto nfsmout;
+ }
+
+ nfsm_chain_get_32(error, nmc, proc);
+ nfsm_chain_get_32(error, nmc, seqnum);
+ nfsm_chain_get_32(error, nmc, service);
+ nfsm_chain_get_32(error, nmc, handle_len);
+ if (error)
+ goto nfsmout;
+
+ /*
+ * Make sure context setup/destroy is being done with a nullproc
+ */
+ if (proc != RPCSEC_GSS_DATA && nd->nd_procnum != NFSPROC_NULL) {
+ error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM;
+ goto nfsmout;
+ }
+
+ /*
+ * If the sequence number is greater than the max
+ * allowable, reject and have the client init a
+ * new context.
+ */
+ if (seqnum > GSS_MAXSEQ) {
+ error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM;
+ goto nfsmout;
+ }
+
+ nd->nd_sec =
+ service == RPCSEC_GSS_SVC_NONE ? RPCAUTH_KRB5 :
+ service == RPCSEC_GSS_SVC_INTEGRITY ? RPCAUTH_KRB5I :
+ service == RPCSEC_GSS_SVC_PRIVACY ? RPCAUTH_KRB5P : 0;
+
+ if (proc == RPCSEC_GSS_INIT) {
+ /*
+ * Limit the total number of contexts
+ */
+ if (nfs_gss_ctx_count > nfs_gss_ctx_max) {
+ error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM;
+ goto nfsmout;
+ }
+
+ /*
+ * Set up a new context
+ */
+ MALLOC(cp, struct nfs_gss_svc_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO);
+ if (cp == NULL) {
+ error = ENOMEM;
+ goto nfsmout;
+ }
+ } else {
+
+ /*
+ * Use the handle to find the context
+ */
+ if (handle_len != sizeof(handle)) {
+ error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM;
+ goto nfsmout;
+ }
+ nfsm_chain_get_32(error, nmc, handle);
+ if (error)
+ goto nfsmout;
+ cp = nfs_gss_svc_ctx_find(handle);
+ if (cp == NULL) {
+ error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM;
+ goto nfsmout;
+ }
+ }
+
+ cp->gss_svc_proc = proc;
+
+ if (proc == RPCSEC_GSS_DATA || proc == RPCSEC_GSS_DESTROY) {
+ struct ucred temp_cred;
+
+ if (cp->gss_svc_seqwin == 0) {
+ /*
+ * Context isn't complete
+ */
+ error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM;
+ goto nfsmout;
+ }
+
+ if (!nfs_gss_svc_seqnum_valid(cp, seqnum)) {
+ /*
+ * Sequence number is bad
+ */
+ error = EINVAL; // drop the request
+ goto nfsmout;
+ }
+
+ /* Now compute the client's call header checksum */
+ nfs_gss_cksum_chain(cp->gss_svc_sched, nmc, krb5_mic, 0, 0, cksum1);
+
+ /*
+ * Validate the verifier.
+ * The verifier contains an encrypted checksum
+ * of the call header from the XID up to and
+ * including the credential. We compute the
+ * checksum and compare it with what came in
+ * the verifier.
+ */
+ nfsm_chain_get_32(error, nmc, flavor);
+ nfsm_chain_get_32(error, nmc, verflen);
+ if (flavor != RPCSEC_GSS || verflen != KRB5_SZ_TOKEN)
+ error = NFSERR_AUTHERR | AUTH_BADVERF;
+ nfsm_chain_get_opaque(error, nmc, verflen, tokbuf);
+ if (error)
+ goto nfsmout;
+
+ /* Get the checksum from the token inside the verifier */
+ error = nfs_gss_token_get(cp->gss_svc_sched, krb5_mic, tokbuf, 1,
+ NULL, cksum2);
+ if (error)
+ goto nfsmout;
+
+ if (bcmp(cksum1, cksum2, 8) != 0) {
+ error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM;
+ goto nfsmout;
+ }
+
+ nd->nd_gss_seqnum = seqnum;
+
+ /*
+ * Set up the user's cred
+ */
+ bzero(&temp_cred, sizeof(temp_cred));
+ temp_cred.cr_uid = cp->gss_svc_uid;
+ bcopy(cp->gss_svc_gids, temp_cred.cr_groups,
+ sizeof(gid_t) * cp->gss_svc_ngroups);
+ temp_cred.cr_ngroups = cp->gss_svc_ngroups;
+
+ nd->nd_cr = kauth_cred_create(&temp_cred);
+ if (nd->nd_cr == NULL) {
+ error = ENOMEM;
+ goto nfsmout;
+ }
+ clock_interval_to_deadline(GSS_CTX_EXPIRE, NSEC_PER_SEC,
+ &cp->gss_svc_expiretime);
+
+ /*
+ * If the call arguments are integrity or privacy protected
+ * then we need to check them here.
+ */
+ switch (service) {
+ case RPCSEC_GSS_SVC_NONE:
+ /* nothing to do */
+ break;
+ case RPCSEC_GSS_SVC_INTEGRITY:
+ /*
+ * Here's what we expect in the integrity call args:
+ *
+ * - length of seq num + call args (4 bytes)
+ * - sequence number (4 bytes)
+ * - call args (variable bytes)
+ * - length of checksum token (37)
+ * - checksum of seqnum + call args (37 bytes)
+ */
+ nfsm_chain_get_32(error, nmc, arglen); // length of args
+ if (arglen > NFS_MAXPACKET) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+
+ /* Compute the checksum over the call args */
+ start = nfsm_chain_offset(nmc);
+ nfs_gss_cksum_chain(cp->gss_svc_sched, nmc, krb5_mic, start, arglen, cksum1);
+
+ /*
+ * Get the sequence number prepended to the args
+ * and compare it against the one sent in the
+ * call credential.
+ */
+ nfsm_chain_get_32(error, nmc, seqnum);
+ if (seqnum != nd->nd_gss_seqnum) {
+ error = EBADRPC; // returns as GARBAGEARGS
+ goto nfsmout;
+ }
+
+ /*
+ * Advance to the end of the args and
+ * fetch the checksum computed by the client.
+ */
+ nmc_tmp = *nmc;
+ arglen -= NFSX_UNSIGNED; // skipped seqnum
+ nfsm_chain_adv(error, &nmc_tmp, arglen); // skip args
+ nfsm_chain_get_32(error, &nmc_tmp, cksumlen); // length of checksum
+ if (cksumlen != KRB5_SZ_TOKEN) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+ nfsm_chain_get_opaque(error, &nmc_tmp, cksumlen, tokbuf);
+ if (error)
+ goto nfsmout;
+ error = nfs_gss_token_get(cp->gss_svc_sched, krb5_mic, tokbuf, 1,
+ NULL, cksum2);
+
+ /* Verify that the checksums are the same */
+ if (error || bcmp(cksum1, cksum2, 8) != 0) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+ break;
+ case RPCSEC_GSS_SVC_PRIVACY:
+ /*
+ * Here's what we expect in the privacy call args:
+ *
+ * - length of confounder + seq num + token + call args
+ * - wrap token (37-40 bytes)
+ * - confounder (8 bytes)
+ * - sequence number (4 bytes)
+ * - call args (encrypted)
+ */
+ nfsm_chain_get_32(error, nmc, arglen); // length of args
+ if (arglen > NFS_MAXPACKET) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+
+ /* Get the token that prepends the encrypted args */
+ nfsm_chain_get_opaque(error, nmc, KRB5_SZ_TOKMAX, tokbuf);
+ if (error)
+ goto nfsmout;
+ error = nfs_gss_token_get(cp->gss_svc_sched, krb5_wrap, tokbuf, 1,
+ &toklen, cksum1);
+ if (error)
+ goto nfsmout;
+ nfsm_chain_reverse(nmc, nfsm_pad(toklen));
+
+ /* decrypt the 8 byte confounder + seqnum + args */
+ start = nfsm_chain_offset(nmc);
+ arglen -= toklen;
+ nfs_gss_encrypt_chain(cp->gss_svc_skey, nmc, start, arglen, DES_DECRYPT);
+
+ /* Compute a checksum over the sequence number + results */
+ nfs_gss_cksum_chain(cp->gss_svc_sched, nmc, krb5_wrap, start, arglen, cksum2);
+
+ /* Verify that the checksums are the same */
+ if (bcmp(cksum1, cksum2, 8) != 0) {
+ error = EBADRPC;
+ goto nfsmout;
+ }
+
+ /*
+ * Get the sequence number prepended to the args
+ * and compare it against the one sent in the
+ * call credential.
+ */
+ nfsm_chain_adv(error, nmc, 8); // skip over the confounder
+ nfsm_chain_get_32(error, nmc, seqnum);
+ if (seqnum != nd->nd_gss_seqnum) {
+ error = EBADRPC; // returns as GARBAGEARGS
+ goto nfsmout;
+ }
+ break;
+ }
+ } else {
+ /*
+ * If the proc is RPCSEC_GSS_INIT or RPCSEC_GSS_CONTINUE_INIT
+ * then we expect a null verifier.
+ */
+ nfsm_chain_get_32(error, nmc, flavor);
+ nfsm_chain_get_32(error, nmc, verflen);
+ if (error || flavor != RPCAUTH_NULL || verflen > 0)
+ error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM;
+ if (error)
+ goto nfsmout;
+ }
+
+ nd->nd_gss_context = cp;
+nfsmout:
+ return (error);
+}
+
+/*
+ * Insert the server's verifier into the RPC reply header.
+ * It contains a signed checksum of the sequence number that
+ * was received in the RPC call.
+ * Then go on to add integrity or privacy if necessary.
+ */
+int
+nfs_gss_svc_verf_put(struct nfsrv_descript *nd, struct nfsm_chain *nmc)
+{
+ struct nfs_gss_svc_ctx *cp;
+ int error = 0;
+ u_char tokbuf[KRB5_SZ_TOKEN];
+ int toklen;
+ u_char cksum[8];
+
+ cp = nd->nd_gss_context;
+
+ if (cp->gss_svc_major != GSS_S_COMPLETE) {
+ /*
+ * If the context isn't yet complete
+ * then return a null verifier.
+ */
+ nfsm_chain_add_32(error, nmc, RPCAUTH_NULL);
+ nfsm_chain_add_32(error, nmc, 0);
+ return (error);
+ }
+
+ /*
+ * Compute checksum of the request seq number
+ * If it's the final reply of context setup
+ * then return the checksum of the context
+ * window size.
+ */
+ if (cp->gss_svc_proc == RPCSEC_GSS_INIT ||
+ cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT)
+ nfs_gss_cksum_rep(cp->gss_svc_sched, cp->gss_svc_seqwin, cksum);
+ else
+ nfs_gss_cksum_rep(cp->gss_svc_sched, nd->nd_gss_seqnum, cksum);
+ /*
+ * Now wrap it in a token and add
+ * the verifier to the reply.
+ */
+ toklen = nfs_gss_token_put(cp->gss_svc_sched, krb5_mic, tokbuf, 0, 0, cksum);
+ nfsm_chain_add_32(error, nmc, RPCSEC_GSS);
+ nfsm_chain_add_32(error, nmc, toklen);
+ nfsm_chain_add_opaque(error, nmc, tokbuf, toklen);
+
+ return (error);
+}
+
+/*
+ * The results aren't available yet, but if they need to be
+ * checksummed for integrity protection or encrypted, then
+ * we can record the start offset here, insert a place-holder
+ * for the results length, as well as the sequence number.
+ * The rest of the work is done later by nfs_gss_svc_protect_reply()
+ * when the results are available.
+ */
+int
+nfs_gss_svc_prepare_reply(struct nfsrv_descript *nd, struct nfsm_chain *nmc)
+{
+ struct nfs_gss_svc_ctx *cp = nd->nd_gss_context;
+ int error = 0;
+
+ if (cp->gss_svc_proc == RPCSEC_GSS_INIT ||
+ cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT)
+ return (0);
+
+ switch (nd->nd_sec) {
+ case RPCAUTH_KRB5:
+ /* Nothing to do */
+ break;
+ case RPCAUTH_KRB5I:
+ nd->nd_gss_mb = nmc->nmc_mcur; // record current mbuf
+ nfsm_chain_finish_mbuf(error, nmc); // split the chain here
+ nfsm_chain_add_32(error, nmc, nd->nd_gss_seqnum); // req sequence number
+ break;
+ case RPCAUTH_KRB5P:
+ nd->nd_gss_mb = nmc->nmc_mcur; // record current mbuf
+ nfsm_chain_finish_mbuf(error, nmc); // split the chain here
+ nfsm_chain_add_32(error, nmc, random()); // confounder bytes 1-4
+ nfsm_chain_add_32(error, nmc, random()); // confounder bytes 5-8
+ nfsm_chain_add_32(error, nmc, nd->nd_gss_seqnum); // req sequence number
+ break;
+ }
+
+ return (error);
+}
+
+/*
+ * The results are checksummed or encrypted for return to the client
+ */
+int
+nfs_gss_svc_protect_reply(struct nfsrv_descript *nd, mbuf_t mrep)
+{
+ struct nfs_gss_svc_ctx *cp = nd->nd_gss_context;
+ struct nfsm_chain nmrep_res, *nmc_res = &nmrep_res;
+ struct nfsm_chain nmrep_pre, *nmc_pre = &nmrep_pre;
+ mbuf_t mb, results;
+ uint32_t reslen;
+ u_char tokbuf[KRB5_SZ_TOKMAX];
+ int pad, toklen;
+ u_char cksum[8];
+ int error = 0;
+
+ /*
+ * Using a reference to the mbuf where we previously split the reply
+ * mbuf chain, we split the mbuf chain argument into two mbuf chains,
+ * one that allows us to prepend a length field or token, (nmc_pre)
+ * and the second which holds just the results that we're going to
+ * checksum and/or encrypt. When we're done, we join the chains back
+ * together.
+ */
+ nfs_gss_nfsm_chain(nmc_res, mrep); // set up the results chain
+ mb = nd->nd_gss_mb; // the mbuf where we split
+ results = mbuf_next(mb); // first mbuf in the results
+ reslen = nfs_gss_mchain_length(results); // length of results
+ error = mbuf_setnext(mb, NULL); // disconnect the chains
+ if (error)
+ return (error);
+ nfs_gss_nfsm_chain(nmc_pre, mb); // set up the prepend chain
+
+ if (nd->nd_sec == RPCAUTH_KRB5I) {
+ nfsm_chain_add_32(error, nmc_pre, reslen);
+ nfsm_chain_build_done(error, nmc_pre);
+ if (error)
+ return (error);
+ nfs_gss_append_chain(nmc_pre, results); // Append the results mbufs
+
+ /* Now compute the checksum over the results data */
+ nfs_gss_cksum_mchain(cp->gss_svc_sched, results, krb5_mic, 0, reslen, cksum);
+
+ /* Put it into a token and append to the request */
+ toklen = nfs_gss_token_put(cp->gss_svc_sched, krb5_mic, tokbuf, 0, 0, cksum);
+ nfsm_chain_add_32(error, nmc_res, toklen);
+ nfsm_chain_add_opaque(error, nmc_res, tokbuf, toklen);
+ nfsm_chain_build_done(error, nmc_res);
+ } else {
+ /* RPCAUTH_KRB5P */
+ /*
+ * Append a pad trailer - per RFC 1964 section 1.2.2.3
+ * Since XDR data is always 32-bit aligned, it
+ * needs to be padded either by 4 bytes or 8 bytes.
+ */
+ if (reslen % 8 > 0) {
+ nfsm_chain_add_32(error, nmc_res, 0x04040404);
+ reslen += NFSX_UNSIGNED;
+ } else {
+ nfsm_chain_add_32(error, nmc_res, 0x08080808);
+ nfsm_chain_add_32(error, nmc_res, 0x08080808);
+ reslen += 2 * NFSX_UNSIGNED;
+ }
+ nfsm_chain_build_done(error, nmc_res);
+
+ /* Now compute the checksum over the results data */
+ nfs_gss_cksum_mchain(cp->gss_svc_sched, results, krb5_wrap, 0, reslen, cksum);
+
+ /* Put it into a token and insert in the reply */
+ toklen = nfs_gss_token_put(cp->gss_svc_sched, krb5_wrap, tokbuf, 0, reslen, cksum);
+ nfsm_chain_add_32(error, nmc_pre, toklen + reslen);
+ nfsm_chain_add_opaque_nopad(error, nmc_pre, tokbuf, toklen);
+ nfsm_chain_build_done(error, nmc_pre);
+ if (error)
+ return (error);
+ nfs_gss_append_chain(nmc_pre, results); // Append the results mbufs
+
+ /* Encrypt the confounder + seqnum + results */
+ nfs_gss_encrypt_mchain(cp->gss_svc_skey, results, 0, reslen, DES_ENCRYPT);
+
+ /* Add null XDR pad if the ASN.1 token misaligned the data */
+ pad = nfsm_pad(toklen + reslen);
+ if (pad > 0) {
+ nfsm_chain_add_opaque_nopad(error, nmc_pre, iv0, pad);
+ nfsm_chain_build_done(error, nmc_pre);
+ }
+ }
+
+ return (error);
+}
+
+/*
+ * This function handles the context setup calls from the client.
+ * Essentially, it implements the NFS null procedure calls when
+ * an RPCSEC_GSS credential is used.
+ * This is the context maintenance function. It creates and
+ * destroys server contexts at the whim of the client.
+ * During context creation, it receives GSS-API tokens from the
+ * client, passes them up to gssd, and returns a received token
+ * back to the client in the null procedure reply.
+ */
+int
+nfs_gss_svc_ctx_init(struct nfsrv_descript *nd, struct nfsrv_sock *slp, mbuf_t *mrepp)
+{
+ struct nfs_gss_svc_ctx *cp = NULL;
+ uint32_t handle = 0;
+ int error = 0;
+ int autherr = 0;
+ struct nfsm_chain *nmreq, nmrep;
+ int sz;
+
+ nmreq = &nd->nd_nmreq;
+ nfsm_chain_null(&nmrep);
+ *mrepp = NULL;
+ cp = nd->nd_gss_context;
+ nd->nd_repstat = 0;
+
+ switch (cp->gss_svc_proc) {
+ case RPCSEC_GSS_INIT:
+ /*
+ * Give the client a random handle so that
+ * if we reboot it's unlikely the client
+ * will get a bad context match.
+ * Make sure it's not zero, or already assigned.
+ */
+ do {
+ handle = random();
+ } while (nfs_gss_svc_ctx_find(handle) != NULL || handle == 0);
+ cp->gss_svc_handle = handle;
+ cp->gss_svc_mtx = lck_mtx_alloc_init(nfs_gss_svc_grp, LCK_ATTR_NULL);
+ clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC,
+ &cp->gss_svc_expiretime);
+
+ nfs_gss_svc_ctx_insert(cp);
+
+ /* FALLTHRU */
+
+ case RPCSEC_GSS_CONTINUE_INIT:
+ /* Get the token from the request */
+ nfsm_chain_get_32(error, nmreq, cp->gss_svc_tokenlen);
+ if (cp->gss_svc_tokenlen == 0) {
+ autherr = RPCSEC_GSS_CREDPROBLEM;
+ break;
+ }
+ MALLOC(cp->gss_svc_token, u_char *, cp->gss_svc_tokenlen, M_TEMP, M_WAITOK);
+ if (cp->gss_svc_token == NULL) {
+ autherr = RPCSEC_GSS_CREDPROBLEM;
+ break;
+ }
+ nfsm_chain_get_opaque(error, nmreq, cp->gss_svc_tokenlen, cp->gss_svc_token);
+
+ /* Use the token in a gss_accept_sec_context upcall */
+ error = nfs_gss_svc_gssd_upcall(cp);
+ if (error) {
+ autherr = RPCSEC_GSS_CREDPROBLEM;
+ if (error == EAUTH)
+ error = 0;
+ break;
+ }
+
+ /*
+ * If the context isn't complete, pass the new token
+ * back to the client for another round.
+ */
+ if (cp->gss_svc_major != GSS_S_COMPLETE)
+ break;
+
+ /*
+ * Now the server context is complete.
+ * Finish setup.
+ */
+ clock_interval_to_deadline(GSS_CTX_EXPIRE, NSEC_PER_SEC,
+ &cp->gss_svc_expiretime);
+ cp->gss_svc_seqwin = GSS_SVC_SEQWINDOW;
+ MALLOC(cp->gss_svc_seqbits, uint32_t *,
+ nfsm_rndup((cp->gss_svc_seqwin + 7) / 8), M_TEMP, M_WAITOK|M_ZERO);
+ if (cp->gss_svc_seqbits == NULL) {
+ autherr = RPCSEC_GSS_CREDPROBLEM;
+ break;
+ }
+
+ /*
+ * Generate a key schedule from our shiny new DES key
+ */
+ error = des_key_sched((des_cblock *) cp->gss_svc_skey, cp->gss_svc_sched);
+ if (error) {
+ autherr = RPCSEC_GSS_CREDPROBLEM;
+ error = 0;
+ break;
+ }
+ break;
+
+ case RPCSEC_GSS_DATA:
+ /* Just a nullproc ping - do nothing */
+ break;
+
+ case RPCSEC_GSS_DESTROY:
+ /*
+ * Don't destroy the context immediately because
+ * other active requests might still be using it.
+ * Instead, schedule it for destruction after
+ * GSS_CTX_PEND time has elapsed.
+ */
+ cp = nfs_gss_svc_ctx_find(cp->gss_svc_handle);
+ if (cp != NULL) {
+ cp->gss_svc_handle = 0; // so it can't be found
+ lck_mtx_lock(cp->gss_svc_mtx);
+ clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC,
+ &cp->gss_svc_expiretime);
+ lck_mtx_unlock(cp->gss_svc_mtx);
+ }
+ break;
+ default:
+ autherr = RPCSEC_GSS_CREDPROBLEM;
+ break;
+ }
+
+ /* Now build the reply */
+
+ if (nd->nd_repstat == 0)
+ nd->nd_repstat = autherr ? (NFSERR_AUTHERR | autherr) : NFSERR_RETVOID;
+ sz = 7 * NFSX_UNSIGNED + nfsm_rndup(cp->gss_svc_tokenlen); // size of results
+ error = nfsrv_rephead(nd, slp, &nmrep, sz);
+ *mrepp = nmrep.nmc_mhead;
+ if (error || autherr)
+ goto nfsmout;
+
+ if (cp->gss_svc_proc == RPCSEC_GSS_INIT ||
+ cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) {
+ nfsm_chain_add_32(error, &nmrep, sizeof(cp->gss_svc_handle));
+ nfsm_chain_add_32(error, &nmrep, cp->gss_svc_handle);
+
+ nfsm_chain_add_32(error, &nmrep, cp->gss_svc_major);
+ nfsm_chain_add_32(error, &nmrep, cp->gss_svc_minor);
+ nfsm_chain_add_32(error, &nmrep, cp->gss_svc_seqwin);
+
+ nfsm_chain_add_32(error, &nmrep, cp->gss_svc_tokenlen);
+ nfsm_chain_add_opaque(error, &nmrep, cp->gss_svc_token, cp->gss_svc_tokenlen);
+ if (cp->gss_svc_token != NULL) {
+ FREE(cp->gss_svc_token, M_TEMP);
+ cp->gss_svc_token = NULL;
+ }
+ }
+
+nfsmout:
+ if (autherr != 0) {
+ LIST_REMOVE(cp, gss_svc_entries);
+ if (cp->gss_svc_seqbits != NULL)
+ FREE(cp->gss_svc_seqbits, M_TEMP);
+ if (cp->gss_svc_token != NULL)
+ FREE(cp->gss_svc_token, M_TEMP);
+ lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp);
+ FREE(cp, M_TEMP);
+ }
+
+ nfsm_chain_build_done(error, &nmrep);
+ if (error) {
+ nfsm_chain_cleanup(&nmrep);
+ *mrepp = NULL;
+ }
+ return (error);
+}
+
+/*
+ * This is almost a mirror-image of the client side upcall.
+ * It passes and receives a token, but invokes gss_accept_sec_context.
+ * If it's the final call of the context setup, then gssd also returns
+ * the session key and the user's UID.
+ */
+static int
+nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx *cp)
+{
+ kern_return_t kr;
+ mach_port_t mp;
+ int retry_cnt = 0;
+ byte_buffer okey = NULL;
+ uint32_t skeylen = 0;
+ vm_map_copy_t itoken = NULL;
+ byte_buffer otoken = NULL;
+ int error = 0;
+ char svcname[] = "nfs";
+
+ kr = task_get_gssd_port(get_threadtask(current_thread()), &mp);
+ if (kr != KERN_SUCCESS) {
+ printf("nfs_gss_svc_gssd_upcall: can't get gssd port, status 0x%08x\n", kr);
+ return (EAUTH);
+ }
+ if (!IPC_PORT_VALID(mp)) {
+ printf("nfs_gss_svc_gssd_upcall: gssd port not valid\n");
+ return (EAUTH);
+ }
+
+ if (cp->gss_svc_tokenlen > 0)
+ nfs_gss_mach_alloc_buffer(cp->gss_svc_token, cp->gss_svc_tokenlen, &itoken);
+
+retry:
+ kr = mach_gss_accept_sec_context(
+ mp,
+ (byte_buffer) itoken, (mach_msg_type_number_t) cp->gss_svc_tokenlen,
+ svcname,
+ 0,
+ &cp->gss_svc_gssd_verf,
+ &cp->gss_svc_context,
+ &cp->gss_svc_cred_handle,
+ &cp->gss_svc_uid,
+ cp->gss_svc_gids,
+ &cp->gss_svc_ngroups,
+ &okey, (mach_msg_type_number_t *) &skeylen,
+ &otoken, (mach_msg_type_number_t *) &cp->gss_svc_tokenlen,
+ &cp->gss_svc_major,
+ &cp->gss_svc_minor);
+
+ if (kr != KERN_SUCCESS) {
+ printf("nfs_gss_svc_gssd_upcall failed: %d\n", kr);
+ if (kr == MIG_SERVER_DIED && cp->gss_svc_context == 0 &&
+ retry_cnt++ < NFS_GSS_MACH_MAX_RETRIES)
+ goto retry;
+ task_release_special_port(mp);
+ return (EAUTH);
+ }
+
+ task_release_special_port(mp);
+ if (skeylen > 0) {
+ if (skeylen != SKEYLEN) {
+ printf("nfs_gss_svc_gssd_upcall: bad key length (%d)\n", skeylen);
+ return (EAUTH);
+ }
+ error = nfs_gss_mach_vmcopyout((vm_map_copy_t) okey, skeylen, cp->gss_svc_skey);
+ if (error)
+ return (EAUTH);
+ }
+
+ if (cp->gss_svc_tokenlen > 0) {
+ MALLOC(cp->gss_svc_token, u_char *, cp->gss_svc_tokenlen, M_TEMP, M_WAITOK);
+ if (cp->gss_svc_token == NULL)
+ return (ENOMEM);
+ error = nfs_gss_mach_vmcopyout((vm_map_copy_t) otoken, cp->gss_svc_tokenlen,
+ cp->gss_svc_token);
+ if (error)
+ return (EAUTH);
+ }
+
+ return (kr);
+}
+
+/*
+ * Validate the sequence number in the credential as described
+ * in RFC 2203 Section 5.3.3.1
+ *
+ * Here the window of valid sequence numbers is represented by
+ * a bitmap. As each sequence number is received, its bit is
+ * set in the bitmap. An invalid sequence number lies below
+ * the lower bound of the window, or is within the window but
+ * has its bit already set.
+ */
+static int
+nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx *cp, uint32_t seq)
+{
+ uint32_t *bits = cp->gss_svc_seqbits;
+ uint32_t win = cp->gss_svc_seqwin;
+ uint32_t i;
+
+ lck_mtx_lock(cp->gss_svc_mtx);
+
+ /*
+ * If greater than the window upper bound,
+ * move the window up, and set the bit.
+ */
+ if (seq > cp->gss_svc_seqmax) {
+ if (seq - cp->gss_svc_seqmax > win)
+ bzero(bits, nfsm_rndup((win + 7) / 8));
+ else
+ for (i = cp->gss_svc_seqmax + 1; i < seq; i++)
+ win_resetbit(bits, i % win);
+ win_setbit(bits, seq % win);
+ cp->gss_svc_seqmax = seq;
+ lck_mtx_unlock(cp->gss_svc_mtx);
+ return (1);
+ }
+
+ /*
+ * Invalid if below the lower bound of the window
+ */
+ if (seq <= cp->gss_svc_seqmax - win) {
+ lck_mtx_unlock(cp->gss_svc_mtx);
+ return (0);
+ }
+
+ /*
+ * In the window, invalid if the bit is already set
+ */
+ if (win_getbit(bits, seq % win)) {
+ lck_mtx_unlock(cp->gss_svc_mtx);
+ return (0);
+ }
+ win_setbit(bits, seq % win);
+ lck_mtx_unlock(cp->gss_svc_mtx);
+ return (1);
+}
+
+/*
+ * Called at NFS server shutdown - destroy all contexts
+ */
+void
+nfs_gss_svc_cleanup(void)
+{
+ struct nfs_gss_svc_ctx_hashhead *head;
+ struct nfs_gss_svc_ctx *cp, *ncp;
+ int i;
+
+ lck_mtx_lock(nfs_gss_svc_ctx_mutex);
+
+ /*
+ * Run through all the buckets
+ */
+ for (i = 0; i < SVC_CTX_HASHSZ; i++) {
+ /*
+ * Remove and free all entries in the bucket
+ */
+ head = &nfs_gss_svc_ctx_hashtbl[i];
+ LIST_FOREACH_SAFE(cp, head, gss_svc_entries, ncp) {
+ LIST_REMOVE(cp, gss_svc_entries);
+ if (cp->gss_svc_seqbits)
+ FREE(cp->gss_svc_seqbits, M_TEMP);
+ lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp);
+ FREE(cp, M_TEMP);
+ }
+ }
+
+ lck_mtx_unlock(nfs_gss_svc_ctx_mutex);
+}
+
+#endif /* NFSSERVER */
+
+
+/*************
+ * The following functions are used by both client and server.
+ */
+
+/*
+ * Release a task special port that was obtained by task_get_special_port
+ * or one of its macros (task_get_gssd_port in this case).
+ * This really should be in a public kpi.
+ */
+
+/* This should be in a public header if this routine is not */
+extern void ipc_port_release_send(ipc_port_t);
+extern ipc_port_t ipc_port_copy_send(ipc_port_t);
+
+static void
+task_release_special_port(mach_port_t mp)
+{
+
+ ipc_port_release_send(mp);
+}
+
+static mach_port_t
+task_copy_special_port(mach_port_t mp)
+{
+ return ipc_port_copy_send(mp);
+}
+
+/*
+ * The token that is sent and received in the gssd upcall
+ * has unbounded variable length. Mach RPC does not pass
+ * the token in-line. Instead it uses page mapping to handle
+ * these parameters. This function allocates a VM buffer
+ * to hold the token for an upcall and copies the token
+ * (received from the client) into it. The VM buffer is
+ * marked with a src_destroy flag so that the upcall will
+ * automatically de-allocate the buffer when the upcall is
+ * complete.
+ */
+static void
+nfs_gss_mach_alloc_buffer(u_char *buf, uint32_t buflen, vm_map_copy_t *addr)
+{
+ kern_return_t kr;
+ vm_offset_t kmem_buf;
+ vm_size_t tbuflen;
+
+ *addr = NULL;
+ if (buf == NULL || buflen == 0)
+ return;
+
+ tbuflen = round_page(buflen);
+ kr = vm_allocate(ipc_kernel_map, &kmem_buf, tbuflen, VM_FLAGS_ANYWHERE);
+ if (kr != 0) {
+ printf("nfs_gss_mach_alloc_buffer: vm_allocate failed\n");
+ return;
+ }
+
+ kr = vm_map_wire(ipc_kernel_map, vm_map_trunc_page(kmem_buf),
+ vm_map_round_page(kmem_buf + tbuflen),
+ VM_PROT_READ|VM_PROT_WRITE, FALSE);
+
+ bcopy(buf, (void *) kmem_buf, buflen);
+
+ kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(kmem_buf),
+ vm_map_round_page(kmem_buf + tbuflen), FALSE);
+ if (kr != 0) {
+ printf("nfs_gss_mach_alloc_buffer: vm_map_unwire failed\n");
+ return;
+ }
+
+ kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t) kmem_buf,
+ (vm_map_size_t) buflen, TRUE, addr);
+ if (kr != 0) {
+ printf("nfs_gss_mach_alloc_buffer: vm_map_copyin failed\n");
+ return;
+ }
+
+ if (buflen != tbuflen)
+ kmem_free(ipc_kernel_map, kmem_buf + buflen, tbuflen - buflen);
+}
+
+/*
+ * Here we handle a token received from the gssd via an upcall.
+ * The received token resides in an allocate VM buffer.
+ * We copy the token out of this buffer to a chunk of malloc'ed
+ * memory of the right size, then de-allocate the VM buffer.
+ */
+static int
+nfs_gss_mach_vmcopyout(vm_map_copy_t in, uint32_t len, u_char *out)
+{
+ vm_map_offset_t map_data;
+ vm_offset_t data;
+ int error;
+
+ error = vm_map_copyout(ipc_kernel_map, &map_data, in);
+ if (error)
+ return (error);
+
+ data = CAST_DOWN(vm_offset_t, map_data);
+ bcopy((void *) data, out, len);
+ vm_deallocate(ipc_kernel_map, data, len);
+
+ return (0);
+}
+
+/*
+ * Encode an ASN.1 token to be wrapped in an RPCSEC_GSS verifier.
+ * Returns the size of the token, since it contains a variable
+ * length DER encoded size field.
+ */
+static int
+nfs_gss_token_put(
+ des_key_schedule sched,
+ u_char *alg,
+ u_char *p,
+ int initiator,
+ int datalen,
+ u_char *cksum)
+{
+ static uint32_t seqnum = 0;
+ u_char *psave = p;
+ u_char plain[8];
+ int toklen, i;
+
+ /*
+ * Fill in the token header: 2 octets.
+ * This is 0x06 - an ASN.1 tag for APPLICATION, 0, SEQUENCE
+ * followed by the length of the token: 35 + 0 octets for a
+ * MIC token, or 35 + encrypted octets for a wrap token;
+ */
+ *p++ = 0x060;
+ toklen = KRB5_SZ_MECH + KRB5_SZ_ALG + KRB5_SZ_SEQ + KRB5_SZ_CKSUM;
+ nfs_gss_der_length_put(&p, toklen + datalen);
+
+ /*
+ * Fill in the DER encoded mech OID for Kerberos v5.
+ * This represents the Kerberos OID 1.2.840.113554.1.2.2
+ * described in RFC 2623, section 4.2
+ */
+ bcopy(krb5_mech, p, sizeof(krb5_mech));
+ p += sizeof(krb5_mech);
+
+ /*
+ * Now at the token described in RFC 1964, section 1.2.1
+ * Fill in the token ID, integrity algorithm indicator,
+ * for DES MAC MD5, and four filler octets.
+ * The alg string encodes the bytes to represent either
+ * a MIC token or a WRAP token for Kerberos.
+ */
+ bcopy(alg, p, KRB5_SZ_ALG);
+ p += KRB5_SZ_ALG;
+
+ /*
+ * Now encode the sequence number according to
+ * RFC 1964, section 1.2.1.2 which dictates 4 octets
+ * of sequence number followed by 4 bytes of direction
+ * indicator: 0x00 for initiator or 0xff for acceptor.
+ * We DES CBC encrypt the sequence number using the first
+ * 8 octets of the checksum field as an initialization
+ * vector.
+ * Note that this sequence number is not at all related
+ * to the RPCSEC_GSS protocol sequence number. This
+ * number is private to the ASN.1 token. The only
+ * requirement is that it not be repeated in case the
+ * server has replay detection on, which normally should
+ * not be the case, since RFC 2203 section 5.2.3 says that
+ * replay detection and sequence checking must be turned off.
+ */
+ seqnum++;
+ for (i = 0; i < 4; i++)
+ plain[i] = (u_char) ((seqnum >> (i * 8)) & 0xff);
+ for (i = 4; i < 8; i++)
+ plain[i] = initiator ? 0x00 : 0xff;
+ des_cbc_encrypt((des_cblock *) plain, (des_cblock *) p, 8,
+ sched, (des_cblock *) cksum, NULL, DES_ENCRYPT);
+ p += 8;
+
+ /*
+ * Finally, append 8 octets of DES MAC MD5
+ * checksum of the alg + plaintext data.
+ * The plaintext could be an RPC call header,
+ * the window value, or a sequence number.
+ */
+ bcopy(cksum, p, 8);
+ p += 8;
+
+ return (p - psave);
+}
+
+/*
+ * Determine size of ASN.1 DER length
+ */
+static int
+nfs_gss_der_length_size(int len)
+{
+ return
+ len < (1 << 7) ? 1 :
+ len < (1 << 8) ? 2 :
+ len < (1 << 16) ? 3 :
+ len < (1 << 24) ? 4 : 5;
+}
+
+/*
+ * Encode an ASN.1 DER length field
+ */
+static void
+nfs_gss_der_length_put(u_char **pp, int len)
+{
+ int sz = nfs_gss_der_length_size(len);
+ u_char *p = *pp;
+
+ if (sz == 1) {
+ *p++ = (u_char) len;
+ } else {
+ *p++ = (u_char) ((sz-1) | 0x80);
+ sz -= 1;
+ while (sz--)
+ *p++ = (u_char) ((len >> (sz * 8)) & 0xff);
+ }
+
+ *pp = p;
+}
+
+/*
+ * Decode an ASN.1 DER length field
+ */
+static int
+nfs_gss_der_length_get(u_char **pp)
+{
+ u_char *p = *pp;
+ uint32_t flen, len = 0;
+
+ flen = *p & 0x7f;
+
+ if ((*p++ & 0x80) == 0)
+ len = flen;
+ else {
+ if (flen > sizeof(uint32_t))
+ return (-1);
+ while (flen--)
+ len = (len << 8) + *p++;
+ }
+ *pp = p;
+ return (len);
+}
+
+/*
+ * Decode an ASN.1 token from an RPCSEC_GSS verifier.
+ */
+static int
+nfs_gss_token_get(
+ des_key_schedule sched,
+ u_char *alg,
+ u_char *p,
+ int initiator,
+ uint32_t *len,
+ u_char *cksum)
+{
+ u_char d, plain[8];
+ u_char *psave = p;
+ int seqnum, i;
+
+ /*
+ * Check that we have a valid token header
+ */
+ if (*p++ != 0x60)
+ return (AUTH_BADCRED);
+ (void) nfs_gss_der_length_get(&p); // ignore the size
+
+ /*
+ * Check that we have the DER encoded Kerberos v5 mech OID
+ */
+ if (bcmp(p, krb5_mech, sizeof(krb5_mech) != 0))
+ return (AUTH_BADCRED);
+ p += sizeof(krb5_mech);
+
+ /*
+ * Now check the token ID, DES MAC MD5 algorithm
+ * indicator, and filler octets.
+ */
+ if (bcmp(p, alg, KRB5_SZ_ALG) != 0)
+ return (AUTH_BADCRED);
+ p += KRB5_SZ_ALG;
+
+ /*
+ * Now decrypt the sequence number.
+ * Note that the DES CBC decryption uses the first 8 octets
+ * of the checksum field as an initialization vector (p + 8).
+ * Per RFC 2203 section 5.2.2 we don't check the sequence number
+ * in the ASN.1 token because the RPCSEC_GSS protocol has its
+ * own sequence number described in section 5.3.3.1
+ */
+ seqnum = 0;
+ des_cbc_encrypt((des_cblock *) p, (des_cblock *) plain, 8,
+ sched, (des_cblock *) (p + 8), NULL, DES_DECRYPT);
+ p += 8;
+ for (i = 0; i < 4; i++)
+ seqnum |= plain[i] << (i * 8);
+
+ /*
+ * Make sure the direction
+ * indicator octets are correct.
+ */
+ d = initiator ? 0x00 : 0xff;
+ for (i = 4; i < 8; i++)
+ if (plain[i] != d)
+ return (AUTH_BADCRED);
+
+ /*
+ * Finally, get the checksum
+ */
+ bcopy(p, cksum, 8);
+ p += 8;
+
+ if (len != NULL)
+ *len = p - psave;
+
+ return (0);
+}
+
+/*
+ * Return the number of bytes in an mbuf chain.
+ */
+static int
+nfs_gss_mchain_length(mbuf_t mhead)
+{
+ mbuf_t mb;
+ int len = 0;
+
+ for (mb = mhead; mb; mb = mbuf_next(mb))
+ len += mbuf_len(mb);
+
+ return (len);
+}
+
+/*
+ * Append an args or results mbuf chain to the header chain
+ */
+static int
+nfs_gss_append_chain(struct nfsm_chain *nmc, mbuf_t mc)
+{
+ int error = 0;
+ mbuf_t mb, tail;
+
+ /* Connect the mbuf chains */
+ error = mbuf_setnext(nmc->nmc_mcur, mc);
+ if (error)
+ return (error);
+
+ /* Find the last mbuf in the chain */
+ tail = NULL;
+ for (mb = mc; mb; mb = mbuf_next(mb))
+ tail = mb;
+
+ nmc->nmc_mcur = tail;
+ nmc->nmc_ptr = (caddr_t) mbuf_data(tail) + mbuf_len(tail);
+ nmc->nmc_left = mbuf_trailingspace(tail);
+
+ return (0);
+}
+
+/*
+ * Convert an mbuf chain to an NFS mbuf chain
+ */
+static void
+nfs_gss_nfsm_chain(struct nfsm_chain *nmc, mbuf_t mc)
+{
+ mbuf_t mb, tail;
+
+ /* Find the last mbuf in the chain */
+ tail = NULL;
+ for (mb = mc; mb; mb = mbuf_next(mb))
+ tail = mb;
+
+ nmc->nmc_mhead = mc;
+ nmc->nmc_mcur = tail;
+ nmc->nmc_ptr = (caddr_t) mbuf_data(tail) + mbuf_len(tail);
+ nmc->nmc_left = mbuf_trailingspace(tail);
+ nmc->nmc_flags = 0;
+}
+
+
+/*
+ * Compute a checksum over an mbuf chain.
+ * Start building an MD5 digest at the given offset and keep
+ * going until the end of data in the current mbuf is reached.
+ * Then convert the 16 byte MD5 digest to an 8 byte DES CBC
+ * checksum.
+ */
+static void
+nfs_gss_cksum_mchain(
+ des_key_schedule sched,
+ mbuf_t mhead,
+ u_char *alg,
+ int offset,
+ int len,
+ u_char *cksum)
+{
+ mbuf_t mb;
+ u_char *ptr;
+ int left, bytes;
+ MD5_CTX context;
+ u_char digest[16];
+
+ MD5Init(&context);
+
+ /*
+ * Logically prepend the first 8 bytes of the algorithm
+ * field as required by RFC 1964, section 1.2.1.1
+ */
+ MD5Update(&context, alg, KRB5_SZ_ALG);
+
+ /*
+ * Move down the mbuf chain until we reach the given
+ * byte offset, then start MD5 on the mbuf data until
+ * we've done len bytes.
+ */
+
+ for (mb = mhead; mb && len > 0; mb = mbuf_next(mb)) {
+ ptr = mbuf_data(mb);
+ left = mbuf_len(mb);
+ if (offset >= left) {
+ /* Offset not yet reached */
+ offset -= left;
+ continue;
+ }
+ /* At or beyond offset - checksum data */
+ ptr += offset;
+ left -= offset;
+ offset = 0;
+
+ bytes = left < len ? left : len;
+ if (bytes > 0)
+ MD5Update(&context, ptr, bytes);
+ len -= bytes;
+ }
+
+ MD5Final(digest, &context);
+
+ /*
+ * Now get the DES CBC checksum for the digest.
+ */
+ (void) des_cbc_cksum((des_cblock *) digest, (des_cblock *) cksum,
+ sizeof(digest), sched, (des_cblock *) iv0);
+}
+
+/*
+ * Compute a checksum over an NFS mbuf chain.
+ * Start building an MD5 digest at the given offset and keep
+ * going until the end of data in the current mbuf is reached.
+ * Then convert the 16 byte MD5 digest to an 8 byte DES CBC
+ * checksum.
+ */
+static void
+nfs_gss_cksum_chain(
+ des_key_schedule sched,
+ struct nfsm_chain *nmc,
+ u_char *alg,
+ int offset,
+ int len,
+ u_char *cksum)
+{
+ /*
+ * If the length parameter is zero, then we need
+ * to use the length from the offset to the current
+ * encode/decode offset.
+ */
+ if (len == 0)
+ len = nfsm_chain_offset(nmc) - offset;
+
+ return (nfs_gss_cksum_mchain(sched, nmc->nmc_mhead, alg, offset, len, cksum));
+}
+
+/*
+ * Compute a checksum of the sequence number (or sequence window)
+ * of an RPCSEC_GSS reply.
+ */
+static void
+nfs_gss_cksum_rep(des_key_schedule sched, uint32_t seqnum, u_char *cksum)
+{
+ MD5_CTX context;
+ u_char digest[16];
+ uint32_t val = htonl(seqnum);
+
+ MD5Init(&context);
+
+ /*
+ * Logically prepend the first 8 bytes of the MIC
+ * token as required by RFC 1964, section 1.2.1.1
+ */
+ MD5Update(&context, krb5_mic, KRB5_SZ_ALG);
+
+ /*
+ * Compute the digest of the seqnum in network order
+ */
+ MD5Update(&context, (u_char *) &val, 4);
+ MD5Final(digest, &context);
+
+ /*
+ * Now get the DES CBC checksum for the digest.
+ */
+ (void) des_cbc_cksum((des_cblock *) digest, (des_cblock *) cksum,
+ sizeof(digest), sched, (des_cblock *) iv0);
+}
+
+/*
+ * Encrypt or decrypt data in an mbuf chain with des-cbc.
+ */
+static void
+nfs_gss_encrypt_mchain(
+ u_char *key,
+ mbuf_t mhead,
+ int offset,
+ int len,
+ int encrypt)
+{
+ des_key_schedule sched;
+ mbuf_t mb, mbn;
+ u_char *ptr, *nptr;
+ u_char tmp[8], ivec[8];
+ int i, left, left8, remain;
+
+ /*
+ * Make the key schedule per RFC 1964 section 1.2.2.3
+ */
+ for (i = 0; i < 8; i++)
+ tmp[i] = key[i] ^ 0xf0;
+ bzero(ivec, 8);
+
+ (void) des_key_sched((des_cblock *) tmp, sched);
+
+ /*
+ * Move down the mbuf chain until we reach the given
+ * byte offset, then start encrypting the mbuf data until
+ * we've done len bytes.
+ */
+
+ for (mb = mhead; mb && len > 0; mb = mbn) {
+ mbn = mbuf_next(mb);
+ ptr = mbuf_data(mb);
+ left = mbuf_len(mb);
+ if (offset >= left) {
+ /* Offset not yet reached */
+ offset -= left;
+ continue;
+ }
+ /* At or beyond offset - encrypt data */
+ ptr += offset;
+ left -= offset;
+ offset = 0;
+
+ /*
+ * DES CBC has to encrypt 8 bytes at a time.
+ * If the number of bytes to be encrypted in this
+ * mbuf isn't some multiple of 8 bytes, encrypt all
+ * the 8 byte blocks, then combine the remaining
+ * bytes with enough from the next mbuf to make up
+ * an 8 byte block and encrypt that block separately,
+ * i.e. that block is split across two mbufs.
+ */
+ remain = left % 8;
+ left8 = left - remain;
+ left = left8 < len ? left8 : len;
+ if (left > 0) {
+ des_cbc_encrypt((des_cblock *) ptr, (des_cblock *) ptr, left, sched,
+ (des_cblock *) ivec, (des_cblock *) ivec, encrypt);
+ len -= left;
+ }
+
+ if (mbn && remain > 0) {
+ nptr = mbuf_data(mbn);
+ offset = 8 - remain;
+ bcopy(ptr + left, tmp, remain); // grab from this mbuf
+ bcopy(nptr, tmp + remain, offset); // grab from next mbuf
+ des_cbc_encrypt((des_cblock *) tmp, (des_cblock *) tmp, 8, sched,
+ (des_cblock *) ivec, (des_cblock *) ivec, encrypt);
+ bcopy(tmp, ptr + left, remain); // return to this mbuf
+ bcopy(tmp + remain, nptr, offset); // return to next mbuf
+ len -= 8;
+ }
+ }
+}
+
+/*
+ * Encrypt or decrypt data in an NFS mbuf chain with des-cbc.
+ */
+static void
+nfs_gss_encrypt_chain(
+ u_char *key,
+ struct nfsm_chain *nmc,
+ int offset,
+ int len,
+ int encrypt)
+{
+ /*
+ * If the length parameter is zero, then we need
+ * to use the length from the offset to the current
+ * encode/decode offset.
+ */
+ if (len == 0)
+ len = nfsm_chain_offset(nmc) - offset;
+
+ return (nfs_gss_encrypt_mchain(key, nmc->nmc_mhead, offset, len, encrypt));
+}
+
+/*
+ * XXX This function borrowed from OpenBSD.
+ * It will likely be moved into kernel crypto.
+ */
+static DES_LONG
+des_cbc_cksum(input, output, length, schedule, ivec)
+ des_cblock (*input);
+ des_cblock (*output);
+ long length;
+ des_key_schedule schedule;
+ des_cblock (*ivec);
+{
+ register unsigned long tout0,tout1,tin0,tin1;
+ register long l=length;
+ unsigned long tin[2];
+ unsigned char *in,*out,*iv;
+
+ in=(unsigned char *)input;
+ out=(unsigned char *)output;
+ iv=(unsigned char *)ivec;
+
+ c2l(iv,tout0);
+ c2l(iv,tout1);
+ for (; l>0; l-=8) {
+ if (l >= 8) {
+ c2l(in,tin0);
+ c2l(in,tin1);
+ } else
+ c2ln(in,tin0,tin1,l);
+
+ tin0^=tout0; tin[0]=tin0;
+ tin1^=tout1; tin[1]=tin1;
+ des_encrypt1((DES_LONG *)tin,schedule,DES_ENCRYPT);
+ /* fix 15/10/91 eay - thanks to keithr@sco.COM */
+ tout0=tin[0];
+ tout1=tin[1];
+ }
+ if (out != NULL) {
+ l2c(tout0,out);
+ l2c(tout1,out);
+ }
+ tout0=tin0=tin1=tin[0]=tin[1]=0;
+ return(tout1);
+}
+
+/*
+ * XXX This function borrowed from OpenBSD.
+ * It will likely be moved into kernel crypto.
+ */
+static void
+des_cbc_encrypt(input, output, length, schedule, ivec, retvec, encrypt)
+ des_cblock (*input);
+ des_cblock (*output);
+ long length;
+ des_key_schedule schedule;
+ des_cblock (*ivec);
+ des_cblock (*retvec);
+ int encrypt;
+{
+ register unsigned long tin0,tin1;
+ register unsigned long tout0,tout1,xor0,xor1;
+ register unsigned char *in,*out,*retval;
+ register long l=length;
+ unsigned long tin[2];
+ unsigned char *iv;
+ tin0 = tin1 = 0;
+
+ in=(unsigned char *)input;
+ out=(unsigned char *)output;
+ retval=(unsigned char *)retvec;
+ iv=(unsigned char *)ivec;
+
+ if (encrypt) {
+ c2l(iv,tout0);
+ c2l(iv,tout1);
+ for (l-=8; l>=0; l-=8) {
+ c2l(in,tin0);
+ c2l(in,tin1);
+ tin0^=tout0; tin[0]=tin0;
+ tin1^=tout1; tin[1]=tin1;
+ des_encrypt1((DES_LONG *)tin,schedule,DES_ENCRYPT);
+ tout0=tin[0]; l2c(tout0,out);
+ tout1=tin[1]; l2c(tout1,out);
+ }
+ if (l != -8) {
+ c2ln(in,tin0,tin1,l+8);
+ tin0^=tout0; tin[0]=tin0;
+ tin1^=tout1; tin[1]=tin1;
+ des_encrypt1((DES_LONG *)tin,schedule,DES_ENCRYPT);
+ tout0=tin[0]; l2c(tout0,out);
+ tout1=tin[1]; l2c(tout1,out);
+ }
+ if (retval) {
+ l2c(tout0,retval);
+ l2c(tout1,retval);
+ }
+ } else {
+ c2l(iv,xor0);
+ c2l(iv,xor1);
+ for (l-=8; l>=0; l-=8) {
+ c2l(in,tin0); tin[0]=tin0;
+ c2l(in,tin1); tin[1]=tin1;
+ des_encrypt1((DES_LONG *)tin,schedule,DES_DECRYPT);
+ tout0=tin[0]^xor0;
+ tout1=tin[1]^xor1;
+ l2c(tout0,out);
+ l2c(tout1,out);
+ xor0=tin0;
+ xor1=tin1;
+ }
+ if (l != -8) {
+ c2l(in,tin0); tin[0]=tin0;
+ c2l(in,tin1); tin[1]=tin1;
+ des_encrypt1((DES_LONG *)tin,schedule,DES_DECRYPT);
+ tout0=tin[0]^xor0;
+ tout1=tin[1]^xor1;
+ l2cn(tout0,tout1,out,l+8);
+ /* xor0=tin0;
+ xor1=tin1; */
+ }
+ if (retval) {
+ l2c(tin0,retval);
+ l2c(tin1,retval);
+ }
+ }
+ tin0=tin1=tout0=tout1=xor0=xor1=0;
+ tin[0]=tin[1]=0;
+}