]> git.saurik.com Git - apple/xnu.git/blobdiff - bsd/crypto/aes/aescrypt.c
xnu-1228.tar.gz
[apple/xnu.git] / bsd / crypto / aes / aescrypt.c
diff --git a/bsd/crypto/aes/aescrypt.c b/bsd/crypto/aes/aescrypt.c
deleted file mode 100644 (file)
index 31d4c81..0000000
+++ /dev/null
@@ -1,411 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
-   1. distributions of this source code include the above copyright
-      notice, this list of conditions and the following disclaimer;
-
-   2. distributions in binary form include the above copyright
-      notice, this list of conditions and the following disclaimer
-      in the documentation and/or other associated materials;
-
-   3. the copyright holder's name is not used to endorse products
-      built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue 28/01/2004
-
- This file contains the code for implementing encryption and decryption
- for AES (Rijndael) for block and key sizes of 16, 24 and 32 bytes. It
- can optionally be replaced by code written in assembler using NASM. For
- further details see the file aesopt.h
-*/
-
-#include "aesopt.h"
-#include "aestab.h"
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#define ki(y,x,k,c) (s(y,c) = s(x, c) ^ (k)[c])
-#define xo(y,x,c) (s(y,c) ^= s(x, c))
-#define si(y,x,c)   (s(y,c) = word_in(x, c))
-#define so(y,x,c)   word_out(y, c, s(x,c))
-
-#if defined(ARRAYS)
-#define locals(y,x)     x[4],y[4]
-#else
-#define locals(y,x)     x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
-#endif
-
-#define dtables(tab)     const aes_32t *tab##0, *tab##1, *tab##2, *tab##3
-#define itables(tab)     tab##0 = tab[0]; tab##1 = tab[1]; tab##2 = tab[2]; tab##3 = tab[3]
-
-#define l_copy(y, x)    s(y,0) = s(x,0); s(y,1) = s(x,1); \
-                        s(y,2) = s(x,2); s(y,3) = s(x,3);
-
-#define key_in(y,x,k)   ki(y,x,k,0); ki(y,x,k,1); ki(y,x,k,2); ki(y,x,k,3)
-#define cbc(y,x)        xo(y,x,0); xo(y,x,1); xo(y,x,2); xo(y,x,3)
-#define state_in(y,x)   si(y,x,0); si(y,x,1); si(y,x,2); si(y,x,3)
-#define state_out(y,x)  so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
-#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
-
-#if defined(ENCRYPTION) && !defined(AES_ASM)
-
-/* Visual C++ .Net v7.1 provides the fastest encryption code when using
-   Pentium optimiation with small code but this is poor for decryption
-   so we need to control this with the following VC++ pragmas
-*/
-
-#if defined(_MSC_VER)
-#pragma optimize( "s", on )
-#endif
-
-/* Given the column (c) of the output state variable, the following
-   macros give the input state variables which are needed in its
-   computation for each row (r) of the state. All the alternative
-   macros give the same end values but expand into different ways
-   of calculating these values.  In particular the complex macro
-   used for dynamically variable block sizes is designed to expand
-   to a compile time constant whenever possible but will expand to
-   conditional clauses on some branches (I am grateful to Frank
-   Yellin for this construction)
-*/
-
-#define fwd_var(x,r,c)\
- ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
- : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
- : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
- :          ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
-
-#if defined(FT4_SET)
-#undef  dec_fmvars
-#  if defined(ENC_ROUND_CACHE_TABLES)
-#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_cached_tables(x,t_fn,fwd_var,rf1,c))
-#  else
-#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_fn,fwd_var,rf1,c))
-#  endif
-#elif defined(FT1_SET)
-#undef  dec_fmvars
-#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_fn,fwd_var,rf1,c))
-#else
-#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_sbox,fwd_var,rf1,c)))
-#endif
-
-#if defined(FL4_SET)
-#  if defined(LAST_ENC_ROUND_CACHE_TABLES)
-#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_cached_tables(x,t_fl,fwd_var,rf1,c))
-#  else
-#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_fl,fwd_var,rf1,c))
-#  endif
-#elif defined(FL1_SET)
-#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_fl,fwd_var,rf1,c))
-#else
-#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_sbox,fwd_var,rf1,c))
-#endif
-
-aes_rval aes_encrypt_cbc(const unsigned char *in, const unsigned char *in_iv, unsigned int num_blk,
-                                        unsigned char *out, const aes_encrypt_ctx cx[1])
-{   aes_32t         locals(b0, b1);
-    const aes_32t   *kp;
-    const aes_32t   *kptr = cx->ks;
-#if defined(ENC_ROUND_CACHE_TABLES)
-       dtables(t_fn);
-#endif
-#if defined(LAST_ENC_ROUND_CACHE_TABLES)
-       dtables(t_fl);
-#endif
-
-#if defined( dec_fmvars )
-    dec_fmvars; /* declare variables for fwd_mcol() if needed */
-#endif
-
-#if defined( AES_ERR_CHK )
-    if( cx->rn != 10 && cx->rn != 12 && cx->rn != 14 )
-        return aes_error;
-#endif
-
-       // Load IV into b0.
-       state_in(b0, in_iv);
-
-       for (;num_blk; in += AES_BLOCK_SIZE, out += AES_BLOCK_SIZE, --num_blk)
-       {
-               kp = kptr;
-#if 0
-               // Read the plaintext into b1
-               state_in(b1, in);
-               // Do the CBC with b0 which is either the iv or the ciphertext of the previous block.
-               cbc(b1, b0);
-
-               // Xor b1 with the key schedule to get things started.
-               key_in(b0, b1, kp);
-#else
-               // Since xor is associative we mess with the ordering here to get the loads started early
-               key_in(b1, b0, kp);  // Xor b0(IV) with the key schedule and assign to b1
-               state_in(b0, in);    // Load block into b0
-               cbc(b0, b1);         // Xor b0 with b1 and store in b0
-#endif
-
-#if defined(ENC_ROUND_CACHE_TABLES)
-               itables(t_fn);
-#endif
-
-#if (ENC_UNROLL == FULL)
-
-               switch(cx->rn)
-               {
-               case 14:
-                       round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
-                       round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
-                       kp += 2 * N_COLS;
-               case 12:
-                       round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
-                       round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
-                       kp += 2 * N_COLS;
-               case 10:
-               default:
-                       round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
-                       round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
-                       round(fwd_rnd,  b1, b0, kp + 3 * N_COLS);
-                       round(fwd_rnd,  b0, b1, kp + 4 * N_COLS);
-                       round(fwd_rnd,  b1, b0, kp + 5 * N_COLS);
-                       round(fwd_rnd,  b0, b1, kp + 6 * N_COLS);
-                       round(fwd_rnd,  b1, b0, kp + 7 * N_COLS);
-                       round(fwd_rnd,  b0, b1, kp + 8 * N_COLS);
-                       round(fwd_rnd,  b1, b0, kp + 9 * N_COLS);
-#if defined(LAST_ENC_ROUND_CACHE_TABLES)
-                       itables(t_fl);
-#endif
-                       round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
-               }
-
-#else
-
-               {   aes_32t    rnd;
-#if (ENC_UNROLL == PARTIAL)
-                       for(rnd = 0; rnd < (cx->rn >> 1) - 1; ++rnd)
-                       {
-                               kp += N_COLS;
-                               round(fwd_rnd, b1, b0, kp);
-                               kp += N_COLS;
-                               round(fwd_rnd, b0, b1, kp);
-                       }
-                       kp += N_COLS;
-                       round(fwd_rnd,  b1, b0, kp);
-#else
-                       for(rnd = 0; rnd < cx->rn - 1; ++rnd)
-                       {
-                               kp += N_COLS;
-                               round(fwd_rnd, b1, b0, kp);
-                               l_copy(b0, b1);
-                       }
-#endif
-#if defined(LAST_ENC_ROUND_CACHE_TABLES)
-                       itables(t_fl);
-#endif
-                       kp += N_COLS;
-                       round(fwd_lrnd, b0, b1, kp);
-               }
-#endif
-       
-               state_out(out, b0);
-       }
-
-#if defined( AES_ERR_CHK )
-    return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(DECRYPTION) && !defined(AES_ASM)
-
-/* Visual C++ .Net v7.1 provides the fastest encryption code when using
-   Pentium optimiation with small code but this is poor for decryption
-   so we need to control this with the following VC++ pragmas
-*/
-
-#if defined(_MSC_VER)
-#pragma optimize( "t", on )
-#endif
-
-/* Given the column (c) of the output state variable, the following
-   macros give the input state variables which are needed in its
-   computation for each row (r) of the state. All the alternative
-   macros give the same end values but expand into different ways
-   of calculating these values.  In particular the complex macro
-   used for dynamically variable block sizes is designed to expand
-   to a compile time constant whenever possible but will expand to
-   conditional clauses on some branches (I am grateful to Frank
-   Yellin for this construction)
-*/
-
-#define inv_var(x,r,c)\
- ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
- : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
- : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
- :          ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
-
-#if defined(IT4_SET)
-#undef  dec_imvars
-#  if defined(DEC_ROUND_CACHE_TABLES)
-#define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_cached_tables(x,t_in,inv_var,rf1,c))
-#  else
-#define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_in,inv_var,rf1,c))
-#  endif
-#elif defined(IT1_SET)
-#undef  dec_imvars
-#define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_in,inv_var,rf1,c))
-#else
-#define inv_rnd(y,x,k,c)    (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_ibox,inv_var,rf1,c)))
-#endif
-
-#if defined(IL4_SET)
-#  if defined(LAST_DEC_ROUND_CACHE_TABLES)
-#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_cached_tables(x,t_il,inv_var,rf1,c))
-#  else
-#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_il,inv_var,rf1,c))
-#  endif
-#elif defined(IL1_SET)
-#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_il,inv_var,rf1,c))
-#else
-#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_ibox,inv_var,rf1,c))
-#endif
-
-aes_rval aes_decrypt_cbc(const unsigned char *in, const unsigned char *in_iv, unsigned int num_blk,
-                                        unsigned char *out, const aes_decrypt_ctx cx[1])
-{   aes_32t        locals(b0, b1);
-    const aes_32t *kptr = cx->ks + cx->rn * N_COLS;
-       const aes_32t *kp;
-#if defined(DEC_ROUND_CACHE_TABLES)
-       dtables(t_in);
-#endif
-#if defined(LAST_DEC_ROUND_CACHE_TABLES)
-       dtables(t_il);
-#endif
-
-#if defined( dec_imvars )
-    dec_imvars; /* declare variables for inv_mcol() if needed */
-#endif
-       
-#if defined( AES_ERR_CHK )
-    if( cx->rn != 10 && cx->rn != 12 && cx->rn != 14 )
-        return aes_error;
-#endif
-
-#if defined(DEC_ROUND_CACHE_TABLES)
-       itables(t_in);
-#endif 
-       
-       in += AES_BLOCK_SIZE * (num_blk - 1);
-       out += AES_BLOCK_SIZE * (num_blk - 1);
-       // Load the last block's ciphertext into b1
-       state_in(b1, in);
-
-       for (;num_blk; out -= AES_BLOCK_SIZE, --num_blk)
-       {
-               kp = kptr;
-               // Do the xor part of state_in, where b1 is the previous block's ciphertext.
-               key_in(b0, b1, kp);
-
-#if (DEC_UNROLL == FULL)
-       
-               switch(cx->rn)
-               {
-               case 14:
-                       round(inv_rnd,  b1, b0, kp -  1 * N_COLS);
-                       round(inv_rnd,  b0, b1, kp -  2 * N_COLS);
-                       kp -= 2 * N_COLS;
-               case 12:
-                       round(inv_rnd,  b1, b0, kp -  1 * N_COLS);
-                       round(inv_rnd,  b0, b1, kp -  2 * N_COLS);
-                       kp -= 2 * N_COLS;
-               case 10:
-               default:
-                       round(inv_rnd,  b1, b0, kp -  1 * N_COLS);
-                       round(inv_rnd,  b0, b1, kp -  2 * N_COLS);
-                       round(inv_rnd,  b1, b0, kp -  3 * N_COLS);
-                       round(inv_rnd,  b0, b1, kp -  4 * N_COLS);
-                       round(inv_rnd,  b1, b0, kp -  5 * N_COLS);
-                       round(inv_rnd,  b0, b1, kp -  6 * N_COLS);
-                       round(inv_rnd,  b1, b0, kp -  7 * N_COLS);
-                       round(inv_rnd,  b0, b1, kp -  8 * N_COLS);
-                       round(inv_rnd,  b1, b0, kp -  9 * N_COLS);
-#if defined(LAST_DEC_ROUND_CACHE_TABLES)
-                       itables(t_il);
-#endif 
-                       round(inv_lrnd, b0, b1, kp - 10 * N_COLS);
-               }
-
-#else
-       
-               {   aes_32t    rnd;
-#if (DEC_UNROLL == PARTIAL)
-                       for(rnd = 0; rnd < (cx->rn >> 1) - 1; ++rnd)
-                       {
-                               kp -= N_COLS;
-                               round(inv_rnd, b1, b0, kp);
-                               kp -= N_COLS;
-                               round(inv_rnd, b0, b1, kp);
-                       }
-                       kp -= N_COLS;
-                       round(inv_rnd, b1, b0, kp);
-#else
-                       for(rnd = 0; rnd < cx->rn - 1; ++rnd)
-                       {
-                               kp -= N_COLS;
-                               round(inv_rnd, b1, b0, kp);
-                               l_copy(b0, b1);
-                       }
-#endif
-#if defined(LAST_DEC_ROUND_CACHE_TABLES)
-                       itables(t_il);
-#endif 
-                       kp -= N_COLS;
-                       round(inv_lrnd, b0, b1, kp);
-               }
-#endif
-
-               if (num_blk == 1)
-               {
-                       // We are doing the first block so we need the IV rather than the previous
-                       // block for CBC (there is no previous block)
-                       state_in(b1, in_iv);
-               }
-               else
-               {
-                       in -= AES_BLOCK_SIZE;
-                       state_in(b1, in);
-               }
-
-               // Do the CBC with b1 which is either the IV or the ciphertext of the previous block.
-               cbc(b0, b1);
-
-               state_out(out, b0);
-       }
-#if defined( AES_ERR_CHK )
-    return aes_good;
-#endif
-}
-
-#endif
-
-#if defined(__cplusplus)
-}
-#endif