/*
- * Copyright (c) 1999-2005 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 1999-2010 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1991, 1993, 1994
#include <sys/kauth.h>
#include <sys/ubc.h>
+#include <sys/ubc_internal.h>
#include <sys/vnode_internal.h>
#include <sys/mount_internal.h>
#include <sys/sysctl.h>
#include <sys/paths.h>
#include <sys/utfconv.h>
#include <sys/kdebug.h>
+#include <sys/fslog.h>
#include <kern/locks.h>
#include <miscfs/specfs/specdev.h>
#include <hfs/hfs_mount.h>
+#include <libkern/crypto/md5.h>
+#include <uuid/uuid.h>
+
#include "hfs.h"
#include "hfs_catalog.h"
#include "hfs_cnode.h"
#include "hfscommon/headers/FileMgrInternal.h"
#include "hfscommon/headers/BTreesInternal.h"
-
#if HFS_DIAGNOSTIC
int hfs_dbg_all = 0;
int hfs_dbg_err = 0;
#endif
+/* Enable/disable debugging code for live volume resizing */
+int hfs_resize_debug = 0;
lck_grp_attr_t * hfs_group_attr;
lck_attr_t * hfs_lock_attr;
lck_grp_t * hfs_mutex_group;
lck_grp_t * hfs_rwlock_group;
-
extern struct vnodeopv_desc hfs_vnodeop_opv_desc;
+extern struct vnodeopv_desc hfs_std_vnodeop_opv_desc;
-extern void hfs_converterinit(void);
-
-extern void inittodr(time_t base);
-
-extern int hfs_write_access(struct vnode *, kauth_cred_t, struct proc *, Boolean);
-
+/* not static so we can re-use in hfs_readwrite.c for build_path calls */
+int hfs_vfs_vget(struct mount *mp, ino64_t ino, struct vnode **vpp, vfs_context_t context);
static int hfs_changefs(struct mount *mp, struct hfs_mount_args *args);
static int hfs_fhtovp(struct mount *mp, int fhlen, unsigned char *fhp, struct vnode **vpp, vfs_context_t context);
static int hfs_getmountpoint(struct vnode *vp, struct hfsmount **hfsmpp);
static int hfs_init(struct vfsconf *vfsp);
static int hfs_mount(struct mount *mp, vnode_t devvp, user_addr_t data, vfs_context_t context);
-static int hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, vfs_context_t context);
-static int hfs_reload(struct mount *mp, kauth_cred_t cred, struct proc *p);
+static int hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args, int journal_replay_only, vfs_context_t context);
+static int hfs_reload(struct mount *mp);
static int hfs_vfs_root(struct mount *mp, struct vnode **vpp, vfs_context_t context);
static int hfs_quotactl(struct mount *, int, uid_t, caddr_t, vfs_context_t context);
static int hfs_start(struct mount *mp, int flags, vfs_context_t context);
static int hfs_sysctl(int *name, u_int namelen, user_addr_t oldp, size_t *oldlenp,
user_addr_t newp, size_t newlen, vfs_context_t context);
static int hfs_unmount(struct mount *mp, int mntflags, vfs_context_t context);
-static int hfs_vfs_vget(struct mount *mp, ino64_t ino, struct vnode **vpp, vfs_context_t context);
static int hfs_vptofh(struct vnode *vp, int *fhlenp, unsigned char *fhp, vfs_context_t context);
-static int hfs_reclaimspace(struct hfsmount *hfsmp, u_long startblk, u_long reclaimblks);
-static int hfs_overlapped_overflow_extents(struct hfsmount *hfsmp, u_int32_t startblk,
- u_int32_t catblks, u_int32_t fileID, int rsrcfork);
+static int hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t reclaimblks, vfs_context_t context);
+static int hfs_overlapped_overflow_extents(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t fileID);
+static int hfs_journal_replay(vnode_t devvp, vfs_context_t context);
/*
ExtendedVCB *vcb;
struct vfsstatfs *vfsp;
int error;
-
- if ((error = hfs_mountfs(rvp, mp, NULL, context)))
+
+ if ((error = hfs_mountfs(rvp, mp, NULL, 0, context)))
return (error);
/* Init hfsmp */
struct hfsmount *hfsmp = NULL;
struct hfs_mount_args args;
int retval = E_NONE;
- uint32_t cmdflags;
+ u_int32_t cmdflags;
if ((retval = copyin(data, (caddr_t)&args, sizeof(args)))) {
return (retval);
}
- cmdflags = (uint32_t)vfs_flags(mp) & MNT_CMDFLAGS;
+ cmdflags = (u_int32_t)vfs_flags(mp) & MNT_CMDFLAGS;
if (cmdflags & MNT_UPDATE) {
hfsmp = VFSTOHFS(mp);
/* Reload incore data after an fsck. */
if (cmdflags & MNT_RELOAD) {
if (vfs_isrdonly(mp))
- return hfs_reload(mp, vfs_context_ucred(context), p);
+ return hfs_reload(mp);
else
return (EINVAL);
}
vfs_isrdonly(mp)) {
int flags;
+ /* Set flag to indicate that a downgrade to read-only
+ * is in progress and therefore block any further
+ * modifications to the file system.
+ */
+ hfs_global_exclusive_lock_acquire(hfsmp);
+ hfsmp->hfs_flags |= HFS_RDONLY_DOWNGRADE;
+ hfsmp->hfs_downgrading_proc = current_thread();
+ hfs_global_exclusive_lock_release(hfsmp);
+
/* use VFS_SYNC to push out System (btree) files */
retval = VFS_SYNC(mp, MNT_WAIT, context);
- if (retval && ((cmdflags & MNT_FORCE) == 0))
+ if (retval && ((cmdflags & MNT_FORCE) == 0)) {
+ hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
+ hfsmp->hfs_downgrading_proc = NULL;
goto out;
+ }
flags = WRITECLOSE;
if (cmdflags & MNT_FORCE)
flags |= FORCECLOSE;
- if ((retval = hfs_flushfiles(mp, flags, p)))
+ if ((retval = hfs_flushfiles(mp, flags, p))) {
+ hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
+ hfsmp->hfs_downgrading_proc = NULL;
goto out;
- hfsmp->hfs_flags |= HFS_READ_ONLY;
+ }
+
+ /* mark the volume cleanly unmounted */
+ hfsmp->vcbAtrb |= kHFSVolumeUnmountedMask;
retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
+ hfsmp->hfs_flags |= HFS_READ_ONLY;
/* also get the volume bitmap blocks */
if (!retval) {
}
}
if (retval) {
+ hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
+ hfsmp->hfs_downgrading_proc = NULL;
hfsmp->hfs_flags &= ~HFS_READ_ONLY;
goto out;
}
hfs_global_exclusive_lock_release(hfsmp);
}
+
+ hfsmp->hfs_downgrading_proc = NULL;
}
/* Change to a writable file system. */
if (vfs_iswriteupgrade(mp)) {
- retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
- if (retval != E_NONE)
+
+ /*
+ * On inconsistent disks, do not allow read-write mount
+ * unless it is the boot volume being mounted.
+ */
+ if (!(vfs_flags(mp) & MNT_ROOTFS) &&
+ (hfsmp->vcbAtrb & kHFSVolumeInconsistentMask)) {
+ retval = EINVAL;
goto out;
+ }
// If the journal was shut-down previously because we were
// asked to be read-only, let's start it back up again now
(hfsmp->jnl_start * HFSTOVCB(hfsmp)->blockSize) + (off_t)HFSTOVCB(hfsmp)->hfsPlusIOPosOffset,
hfsmp->jnl_size,
hfsmp->hfs_devvp,
- hfsmp->hfs_phys_block_size,
+ hfsmp->hfs_logical_block_size,
jflags,
0,
hfs_sync_metadata, hfsmp->hfs_mp);
}
- /* Only clear HFS_READ_ONLY after a successfull write */
+ /* See if we need to erase unused Catalog nodes due to <rdar://problem/6947811>. */
+ retval = hfs_erase_unused_nodes(hfsmp);
+ if (retval != E_NONE)
+ goto out;
+
+ /* Only clear HFS_READ_ONLY after a successful write */
hfsmp->hfs_flags &= ~HFS_READ_ONLY;
- if (!(hfsmp->hfs_flags & (HFS_READ_ONLY & HFS_STANDARD))) {
- /* setup private/hidden directory for unlinked files */
- FindMetaDataDirectory(HFSTOVCB(hfsmp));
+ /* If this mount point was downgraded from read-write
+ * to read-only, clear that information as we are now
+ * moving back to read-write.
+ */
+ hfsmp->hfs_flags &= ~HFS_RDONLY_DOWNGRADE;
+ hfsmp->hfs_downgrading_proc = NULL;
+
+ /* mark the volume dirty (clear clean unmount bit) */
+ hfsmp->vcbAtrb &= ~kHFSVolumeUnmountedMask;
+
+ retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
+ if (retval != E_NONE)
+ goto out;
+
+ if (!(hfsmp->hfs_flags & (HFS_READ_ONLY | HFS_STANDARD))) {
+ /* Setup private/hidden directories for hardlinks. */
+ hfs_privatedir_init(hfsmp, FILE_HARDLINKS);
+ hfs_privatedir_init(hfsmp, DIR_HARDLINKS);
+
hfs_remove_orphans(hfsmp);
/*
* Allow hot file clustering if conditions allow.
*/
- if (hfsmp->hfs_flags & HFS_METADATA_ZONE) {
+ if ((hfsmp->hfs_flags & HFS_METADATA_ZONE) &&
+ ((hfsmp->hfs_mp->mnt_kern_flag & MNTK_SSD) == 0)) {
(void) hfs_recording_init(hfsmp);
}
+ /* Force ACLs on HFS+ file systems. */
+ if (vfs_extendedsecurity(HFSTOVFS(hfsmp)) == 0) {
+ vfs_setextendedsecurity(HFSTOVFS(hfsmp));
+ }
}
}
} else /* not an update request */ {
/* Set the mount flag to indicate that we support volfs */
- vfs_setflags(mp, (uint64_t)((unsigned int)MNT_DOVOLFS));
+ vfs_setflags(mp, (u_int64_t)((unsigned int)MNT_DOVOLFS));
- retval = hfs_mountfs(devvp, mp, &args, context);
+ retval = hfs_mountfs(devvp, mp, &args, 0, context);
}
out:
if (retval == 0) {
struct cat_desc cndesc;
struct cat_attr cnattr;
struct hfs_changefs_cargs *args;
+ int lockflags;
+ int error;
args = (struct hfs_changefs_cargs *)cargs;
cp = VTOC(vp);
vcb = HFSTOVCB(args->hfsmp);
- if (cat_lookup(args->hfsmp, &cp->c_desc, 0, &cndesc, &cnattr, NULL, NULL)) {
+ lockflags = hfs_systemfile_lock(args->hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ error = cat_lookup(args->hfsmp, &cp->c_desc, 0, &cndesc, &cnattr, NULL, NULL);
+ hfs_systemfile_unlock(args->hfsmp, lockflags);
+ if (error) {
/*
* If we couldn't find this guy skip to the next one
*/
replace_desc(cp, &cndesc);
if (cndesc.cd_cnid == kHFSRootFolderID) {
- strncpy(vcb->vcbVN, cp->c_desc.cd_nameptr, NAME_MAX);
+ strlcpy((char *)vcb->vcbVN, (const char *)cp->c_desc.cd_nameptr, NAME_MAX+1);
cp->c_desc.cd_encoding = args->hfsmp->hfs_encoding;
}
} else {
ExtendedVCB *vcb;
hfs_to_unicode_func_t get_unicode_func;
unicode_to_hfs_func_t get_hfsname_func;
- u_long old_encoding = 0;
+ u_int32_t old_encoding = 0;
struct hfs_changefs_cargs cargs;
- uint32_t mount_flags;
+ u_int32_t mount_flags;
hfsmp = VFSTOHFS(mp);
vcb = HFSTOVCB(hfsmp);
mount_flags = (unsigned int)vfs_flags(mp);
+ hfsmp->hfs_flags |= HFS_IN_CHANGEFS;
+
permswitch = (((hfsmp->hfs_flags & HFS_UNKNOWN_PERMS) &&
((mount_flags & MNT_UNKNOWNPERMISSIONS) == 0)) ||
(((hfsmp->hfs_flags & HFS_UNKNOWN_PERMS) == 0) &&
/* The root filesystem must operate with actual permissions: */
if (permswitch && (mount_flags & MNT_ROOTFS) && (mount_flags & MNT_UNKNOWNPERMISSIONS)) {
- vfs_clearflags(mp, (uint64_t)((unsigned int)MNT_UNKNOWNPERMISSIONS)); /* Just say "No". */
- return EINVAL;
+ vfs_clearflags(mp, (u_int64_t)((unsigned int)MNT_UNKNOWNPERMISSIONS)); /* Just say "No". */
+ retval = EINVAL;
+ goto exit;
}
if (mount_flags & MNT_UNKNOWNPERMISSIONS)
hfsmp->hfs_flags |= HFS_UNKNOWN_PERMS;
namefix = permfix = 0;
+ /*
+ * Tracking of hot files requires up-to-date access times. So if
+ * access time updates are disabled, we must also disable hot files.
+ */
+ if (mount_flags & MNT_NOATIME) {
+ (void) hfs_recording_suspend(hfsmp);
+ }
+
/* Change the timezone (Note: this affects all hfs volumes and hfs+ volume create dates) */
if (args->hfs_timezone.tz_minuteswest != VNOVAL) {
gTimeZone = args->hfs_timezone;
/* Change the hfs encoding value (hfs only) */
if ((vcb->vcbSigWord == kHFSSigWord) &&
- (args->hfs_encoding != (u_long)VNOVAL) &&
+ (args->hfs_encoding != (u_int32_t)VNOVAL) &&
(hfsmp->hfs_encoding != args->hfs_encoding)) {
retval = hfs_getconverter(args->hfs_encoding, &get_unicode_func, &get_hfsname_func);
*
* hfs_changefs_callback will be called for each vnode
* hung off of this mount point
- * the vnode will be
- * properly referenced and unreferenced around the callback
+ *
+ * The vnode will be properly referenced and unreferenced
+ * around the callback
*/
cargs.hfsmp = hfsmp;
cargs.namefix = namefix;
(void) hfs_relconverter(old_encoding);
}
exit:
+ hfsmp->hfs_flags &= ~HFS_IN_CHANGEFS;
return (retval);
}
struct hfs_reload_cargs {
struct hfsmount *hfsmp;
- kauth_cred_t cred;
- struct proc *p;
int error;
};
{
struct cnode *cp;
struct hfs_reload_cargs *args;
+ int lockflags;
args = (struct hfs_reload_cargs *)cargs;
/*
datafork = cp->c_datafork ? &cp->c_datafork->ff_data : NULL;
/* lookup by fileID since name could have changed */
- if ((args->error = cat_idlookup(args->hfsmp, cp->c_fileid, &desc, &cp->c_attr, datafork)))
+ lockflags = hfs_systemfile_lock(args->hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ args->error = cat_idlookup(args->hfsmp, cp->c_fileid, 0, &desc, &cp->c_attr, datafork);
+ hfs_systemfile_unlock(args->hfsmp, lockflags);
+ if (args->error) {
return (VNODE_RETURNED_DONE);
+ }
/* update cnode's catalog descriptor */
(void) replace_desc(cp, &desc);
* re-read cnode data for all active vnodes.
*/
static int
-hfs_reload(struct mount *mountp, kauth_cred_t cred, struct proc *p)
+hfs_reload(struct mount *mountp)
{
register struct vnode *devvp;
struct buf *bp;
- int sectorsize;
int error, i;
struct hfsmount *hfsmp;
struct HFSPlusVolumeHeader *vhp;
struct filefork *forkp;
struct cat_desc cndesc;
struct hfs_reload_cargs args;
+ daddr64_t priIDSector;
hfsmp = VFSTOHFS(mountp);
vcb = HFSTOVCB(hfsmp);
panic("hfs_reload: dirty1");
args.hfsmp = hfsmp;
- args.cred = cred;
- args.p = p;
args.error = 0;
/*
* hfs_reload_callback will be called for each vnode
/*
* Re-read VolumeHeader from disk.
*/
- sectorsize = hfsmp->hfs_phys_block_size;
+ priIDSector = (daddr64_t)((vcb->hfsPlusIOPosOffset / hfsmp->hfs_logical_block_size) +
+ HFS_PRI_SECTOR(hfsmp->hfs_logical_block_size));
error = (int)buf_meta_bread(hfsmp->hfs_devvp,
- (daddr64_t)((vcb->hfsPlusIOPosOffset / sectorsize) + HFS_PRI_SECTOR(sectorsize)),
- sectorsize, NOCRED, &bp);
+ HFS_PHYSBLK_ROUNDDOWN(priIDSector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
if (error) {
if (bp != NULL)
buf_brelse(bp);
return (error);
}
- vhp = (HFSPlusVolumeHeader *) (buf_dataptr(bp) + HFS_PRI_OFFSET(sectorsize));
+ vhp = (HFSPlusVolumeHeader *) (buf_dataptr(bp) + HFS_PRI_OFFSET(hfsmp->hfs_physical_block_size));
/* Do a quick sanity check */
if ((SWAP_BE16(vhp->signature) != kHFSPlusSigWord &&
vcb->vcbWrCnt = SWAP_BE32 (vhp->writeCount);
vcb->vcbFilCnt = SWAP_BE32 (vhp->fileCount);
vcb->vcbDirCnt = SWAP_BE32 (vhp->folderCount);
- vcb->nextAllocation = SWAP_BE32 (vhp->nextAllocation);
+ HFS_UPDATE_NEXT_ALLOCATION(vcb, SWAP_BE32 (vhp->nextAllocation));
vcb->totalBlocks = SWAP_BE32 (vhp->totalBlocks);
vcb->freeBlocks = SWAP_BE32 (vhp->freeBlocks);
vcb->encodingsBitmap = SWAP_BE64 (vhp->encodingsBitmap);
}
/* Reload the volume name */
- if ((error = cat_idlookup(hfsmp, kHFSRootFolderID, &cndesc, NULL, NULL)))
+ if ((error = cat_idlookup(hfsmp, kHFSRootFolderID, 0, &cndesc, NULL, NULL)))
return (error);
vcb->volumeNameEncodingHint = cndesc.cd_encoding;
bcopy(cndesc.cd_nameptr, vcb->vcbVN, min(255, cndesc.cd_namelen));
cat_releasedesc(&cndesc);
- /* Re-establish private/hidden directory for unlinked files */
- FindMetaDataDirectory(vcb);
+ /* Re-establish private/hidden directories. */
+ hfs_privatedir_init(hfsmp, FILE_HARDLINKS);
+ hfs_privatedir_init(hfsmp, DIR_HARDLINKS);
/* In case any volume information changed to trigger a notification */
hfs_generate_volume_notifications(hfsmp);
}
+
+static void
+hfs_syncer(void *arg0, void *unused)
+{
+#pragma unused(unused)
+
+ struct hfsmount *hfsmp = arg0;
+ clock_sec_t secs;
+ clock_usec_t usecs;
+ uint32_t delay = HFS_META_DELAY;
+ uint64_t now;
+ static int no_max=1;
+
+ clock_get_calendar_microtime(&secs, &usecs);
+ now = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
+
+ //
+ // If the amount of pending writes is more than our limit, wait
+ // for 2/3 of it to drain and then flush the journal.
+ //
+ if (hfsmp->hfs_mp->mnt_pending_write_size > hfsmp->hfs_max_pending_io) {
+ int counter=0;
+ uint64_t pending_io, start, rate;
+
+ no_max = 0;
+
+ hfs_start_transaction(hfsmp); // so we hold off any new i/o's
+
+ pending_io = hfsmp->hfs_mp->mnt_pending_write_size;
+
+ clock_get_calendar_microtime(&secs, &usecs);
+ start = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
+
+ while(hfsmp->hfs_mp->mnt_pending_write_size > (pending_io/3) && counter++ < 500) {
+ tsleep((caddr_t)hfsmp, PRIBIO, "hfs-wait-for-io-to-drain", 10);
+ }
+
+ if (counter >= 500) {
+ printf("hfs: timed out waiting for io to drain (%lld)\n", (int64_t)hfsmp->hfs_mp->mnt_pending_write_size);
+ }
+
+ if (hfsmp->jnl) {
+ journal_flush(hfsmp->jnl);
+ } else {
+ hfs_sync(hfsmp->hfs_mp, MNT_WAIT, vfs_context_kernel());
+ }
+
+ clock_get_calendar_microtime(&secs, &usecs);
+ now = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
+ hfsmp->hfs_last_sync_time = now;
+ rate = ((pending_io * 1000000ULL) / (now - start)); // yields bytes per second
+
+ hfs_end_transaction(hfsmp);
+
+ //
+ // If a reasonable amount of time elapsed then check the
+ // i/o rate. If it's taking less than 1 second or more
+ // than 2 seconds, adjust hfs_max_pending_io so that we
+ // will allow about 1.5 seconds of i/o to queue up.
+ //
+ if ((now - start) >= 300000) {
+ uint64_t scale = (pending_io * 100) / rate;
+
+ if (scale < 100 || scale > 200) {
+ // set it so that it should take about 1.5 seconds to drain
+ hfsmp->hfs_max_pending_io = (rate * 150ULL) / 100ULL;
+ }
+ }
+
+ } else if ( ((now - hfsmp->hfs_last_sync_time) >= 5000000ULL)
+ || (((now - hfsmp->hfs_last_sync_time) >= 100000LL)
+ && ((now - hfsmp->hfs_last_sync_request_time) >= 100000LL)
+ && (hfsmp->hfs_active_threads == 0)
+ && (hfsmp->hfs_global_lock_nesting == 0))) {
+
+ //
+ // Flush the journal if more than 5 seconds elapsed since
+ // the last sync OR we have not sync'ed recently and the
+ // last sync request time was more than 100 milliseconds
+ // ago and no one is in the middle of a transaction right
+ // now. Else we defer the sync and reschedule it.
+ //
+ if (hfsmp->jnl) {
+ lck_rw_lock_shared(&hfsmp->hfs_global_lock);
+
+ journal_flush(hfsmp->jnl);
+
+ lck_rw_unlock_shared(&hfsmp->hfs_global_lock);
+ } else {
+ hfs_sync(hfsmp->hfs_mp, MNT_WAIT, vfs_context_kernel());
+ }
+
+ clock_get_calendar_microtime(&secs, &usecs);
+ now = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
+ hfsmp->hfs_last_sync_time = now;
+
+ } else if (hfsmp->hfs_active_threads == 0) {
+ uint64_t deadline;
+
+ clock_interval_to_deadline(delay, HFS_MILLISEC_SCALE, &deadline);
+ thread_call_enter_delayed(hfsmp->hfs_syncer, deadline);
+
+ // note: we intentionally return early here and do not
+ // decrement the sync_scheduled and sync_incomplete
+ // variables because we rescheduled the timer.
+
+ return;
+ }
+
+ //
+ // NOTE: we decrement these *after* we're done the journal_flush() since
+ // it can take a significant amount of time and so we don't want more
+ // callbacks scheduled until we're done this one.
+ //
+ OSDecrementAtomic((volatile SInt32 *)&hfsmp->hfs_sync_scheduled);
+ OSDecrementAtomic((volatile SInt32 *)&hfsmp->hfs_sync_incomplete);
+ wakeup((caddr_t)&hfsmp->hfs_sync_incomplete);
+}
+
+
+extern int IOBSDIsMediaEjectable( const char *cdev_name );
+
/*
* Common code for mount and mountroot
*/
static int
hfs_mountfs(struct vnode *devvp, struct mount *mp, struct hfs_mount_args *args,
- vfs_context_t context)
+ int journal_replay_only, vfs_context_t context)
{
struct proc *p = vfs_context_proc(context);
int retval = E_NONE;
- struct hfsmount *hfsmp;
+ struct hfsmount *hfsmp = NULL;
struct buf *bp;
dev_t dev;
- HFSMasterDirectoryBlock *mdbp;
+ HFSMasterDirectoryBlock *mdbp = NULL;
int ronly;
+#if QUOTA
int i;
+#endif
int mntwrapper;
kauth_cred_t cred;
u_int64_t disksize;
- daddr64_t blkcnt;
- u_int32_t blksize;
+ daddr64_t log_blkcnt;
+ u_int32_t log_blksize;
+ u_int32_t phys_blksize;
u_int32_t minblksize;
u_int32_t iswritable;
daddr64_t mdb_offset;
+ int isvirtual = 0;
+ int isroot = 0;
+
+ if (args == NULL) {
+ /* only hfs_mountroot passes us NULL as the 'args' argument */
+ isroot = 1;
+ }
ronly = vfs_isrdonly(mp);
dev = vnode_specrdev(devvp);
/* Advisory locking should be handled at the VFS layer */
vfs_setlocklocal(mp);
- /* Get the real physical block size. */
- if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, context)) {
+ /* Get the logical block size (treated as physical block size everywhere) */
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)&log_blksize, 0, context)) {
+ retval = ENXIO;
+ goto error_exit;
+ }
+ if (log_blksize == 0 || log_blksize > 1024*1024*1024) {
+ printf("hfs: logical block size 0x%x looks bad. Not mounting.\n", log_blksize);
+ retval = ENXIO;
+ goto error_exit;
+ }
+
+ /* Get the physical block size. */
+ retval = VNOP_IOCTL(devvp, DKIOCGETPHYSICALBLOCKSIZE, (caddr_t)&phys_blksize, 0, context);
+ if (retval) {
+ if ((retval != ENOTSUP) && (retval != ENOTTY)) {
+ retval = ENXIO;
+ goto error_exit;
+ }
+ /* If device does not support this ioctl, assume that physical
+ * block size is same as logical block size
+ */
+ phys_blksize = log_blksize;
+ }
+ if (phys_blksize == 0 || phys_blksize > 1024*1024*1024) {
+ printf("hfs: physical block size 0x%x looks bad. Not mounting.\n", phys_blksize);
retval = ENXIO;
goto error_exit;
}
+
/* Switch to 512 byte sectors (temporarily) */
- if (blksize > 512) {
+ if (log_blksize > 512) {
u_int32_t size512 = 512;
if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, context)) {
}
}
/* Get the number of 512 byte physical blocks. */
- if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, context)) {
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
+ /* resetting block size may fail if getting block count did */
+ (void)VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context);
+
retval = ENXIO;
goto error_exit;
}
/* Compute an accurate disk size (i.e. within 512 bytes) */
- disksize = (u_int64_t)blkcnt * (u_int64_t)512;
+ disksize = (u_int64_t)log_blkcnt * (u_int64_t)512;
/*
* On Tiger it is not necessary to switch the device
* block size to be 4k if there are more than 31-bits
* worth of blocks but to insure compatibility with
* pre-Tiger systems we have to do it.
+ *
+ * If the device size is not a multiple of 4K (8 * 512), then
+ * switching the logical block size isn't going to help because
+ * we will be unable to write the alternate volume header.
+ * In this case, just leave the logical block size unchanged.
*/
- if (blkcnt > (u_int64_t)0x000000007fffffff) {
- minblksize = blksize = 4096;
+ if (log_blkcnt > 0x000000007fffffff && (log_blkcnt & 7) == 0) {
+ minblksize = log_blksize = 4096;
+ if (phys_blksize < log_blksize)
+ phys_blksize = log_blksize;
}
- /* Now switch to our prefered physical block size. */
- if (blksize > 512) {
- if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, context)) {
+ /*
+ * The cluster layer is not currently prepared to deal with a logical
+ * block size larger than the system's page size. (It can handle
+ * blocks per page, but not multiple pages per block.) So limit the
+ * logical block size to the page size.
+ */
+ if (log_blksize > PAGE_SIZE)
+ log_blksize = PAGE_SIZE;
+
+ /* Now switch to our preferred physical block size. */
+ if (log_blksize > 512) {
+ if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) {
retval = ENXIO;
goto error_exit;
}
/* Get the count of physical blocks. */
- if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, context)) {
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
retval = ENXIO;
goto error_exit;
}
/*
* At this point:
* minblksize is the minimum physical block size
- * blksize has our prefered physical block size
- * blkcnt has the total number of physical blocks
+ * log_blksize has our preferred physical block size
+ * log_blkcnt has the total number of physical blocks
*/
- mdb_offset = (daddr64_t)HFS_PRI_SECTOR(blksize);
- if ((retval = (int)buf_meta_bread(devvp, mdb_offset, blksize, cred, &bp))) {
+ mdb_offset = (daddr64_t)HFS_PRI_SECTOR(log_blksize);
+ if ((retval = (int)buf_meta_bread(devvp,
+ HFS_PHYSBLK_ROUNDDOWN(mdb_offset, (phys_blksize/log_blksize)),
+ phys_blksize, cred, &bp))) {
goto error_exit;
}
MALLOC(mdbp, HFSMasterDirectoryBlock *, kMDBSize, M_TEMP, M_WAITOK);
- bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(blksize), mdbp, kMDBSize);
+ if (mdbp == NULL) {
+ retval = ENOMEM;
+ goto error_exit;
+ }
+ bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize), mdbp, kMDBSize);
buf_brelse(bp);
bp = NULL;
MALLOC(hfsmp, struct hfsmount *, sizeof(struct hfsmount), M_HFSMNT, M_WAITOK);
+ if (hfsmp == NULL) {
+ retval = ENOMEM;
+ goto error_exit;
+ }
bzero(hfsmp, sizeof(struct hfsmount));
+ hfs_chashinit_finish(hfsmp);
+
/*
* Init the volume information structure
*/
hfsmp->hfs_mp = mp; /* Make VFSTOHFS work */
hfsmp->hfs_raw_dev = vnode_specrdev(devvp);
hfsmp->hfs_devvp = devvp;
- hfsmp->hfs_phys_block_size = blksize;
- hfsmp->hfs_phys_block_count = blkcnt;
+ vnode_ref(devvp); /* Hold a ref on the device, dropped when hfsmp is freed. */
+ hfsmp->hfs_logical_block_size = log_blksize;
+ hfsmp->hfs_logical_block_count = log_blkcnt;
+ hfsmp->hfs_physical_block_size = phys_blksize;
+ hfsmp->hfs_log_per_phys = (phys_blksize / log_blksize);
hfsmp->hfs_flags |= HFS_WRITEABLE_MEDIA;
if (ronly)
hfsmp->hfs_flags |= HFS_READ_ONLY;
if (((unsigned int)vfs_flags(mp)) & MNT_UNKNOWNPERMISSIONS)
hfsmp->hfs_flags |= HFS_UNKNOWN_PERMS;
+
+#if QUOTA
for (i = 0; i < MAXQUOTAS; i++)
dqfileinit(&hfsmp->hfs_qfiles[i]);
+#endif
if (args) {
hfsmp->hfs_uid = (args->hfs_uid == (uid_t)VNOVAL) ? UNKNOWNUID : args->hfs_uid;
}
// record the current time at which we're mounting this volume
- {
- struct timeval tv;
- microtime(&tv);
- hfsmp->hfs_mount_time = tv.tv_sec;
- }
+ struct timeval tv;
+ microtime(&tv);
+ hfsmp->hfs_mount_time = tv.tv_sec;
/* Mount a standard HFS disk */
if ((SWAP_BE16(mdbp->drSigWord) == kHFSSigWord) &&
(mntwrapper || (SWAP_BE16(mdbp->drEmbedSigWord) != kHFSPlusSigWord))) {
+
+ /* On 10.6 and beyond, non read-only mounts for HFS standard vols get rejected */
+ if (vfs_isrdwr(mp)) {
+ retval = EROFS;
+ goto error_exit;
+ }
+ /* Treat it as if it's read-only and not writeable */
+ hfsmp->hfs_flags |= HFS_READ_ONLY;
+ hfsmp->hfs_flags &= ~HFS_WRITEABLE_MEDIA;
+
+ /* If only journal replay is requested, exit immediately */
+ if (journal_replay_only) {
+ retval = 0;
+ goto error_exit;
+ }
+
if ((vfs_flags(mp) & MNT_ROOTFS)) {
retval = EINVAL; /* Cannot root from HFS standard disks */
goto error_exit;
}
/* HFS disks can only use 512 byte physical blocks */
- if (blksize > kHFSBlockSize) {
- blksize = kHFSBlockSize;
- if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, context)) {
+ if (log_blksize > kHFSBlockSize) {
+ log_blksize = kHFSBlockSize;
+ if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) {
retval = ENXIO;
goto error_exit;
}
- if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, context)) {
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
retval = ENXIO;
goto error_exit;
}
- hfsmp->hfs_phys_block_size = blksize;
- hfsmp->hfs_phys_block_count = blkcnt;
+ hfsmp->hfs_logical_block_size = log_blksize;
+ hfsmp->hfs_logical_block_count = log_blkcnt;
+ hfsmp->hfs_physical_block_size = log_blksize;
+ hfsmp->hfs_log_per_phys = 1;
}
if (args) {
hfsmp->hfs_encoding = args->hfs_encoding;
* block size so everything will line up on a block
* boundary.
*/
- if ((embeddedOffset % blksize) != 0) {
- printf("HFS Mount: embedded volume offset not"
+ if ((embeddedOffset % log_blksize) != 0) {
+ printf("hfs_mountfs: embedded volume offset not"
" a multiple of physical block size (%d);"
- " switching to 512\n", blksize);
- blksize = 512;
+ " switching to 512\n", log_blksize);
+ log_blksize = 512;
if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE,
- (caddr_t)&blksize, FWRITE, context)) {
+ (caddr_t)&log_blksize, FWRITE, context)) {
retval = ENXIO;
goto error_exit;
}
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT,
- (caddr_t)&blkcnt, 0, context)) {
+ (caddr_t)&log_blkcnt, 0, context)) {
retval = ENXIO;
goto error_exit;
}
/* Note: relative block count adjustment */
- hfsmp->hfs_phys_block_count *=
- hfsmp->hfs_phys_block_size / blksize;
- hfsmp->hfs_phys_block_size = blksize;
+ hfsmp->hfs_logical_block_count *=
+ hfsmp->hfs_logical_block_size / log_blksize;
+
+ /* Update logical /physical block size */
+ hfsmp->hfs_logical_block_size = log_blksize;
+ hfsmp->hfs_physical_block_size = log_blksize;
+ phys_blksize = log_blksize;
+ hfsmp->hfs_log_per_phys = 1;
}
disksize = (u_int64_t)SWAP_BE16(mdbp->drEmbedExtent.blockCount) *
(u_int64_t)SWAP_BE32(mdbp->drAlBlkSiz);
- hfsmp->hfs_phys_block_count = disksize / blksize;
+ hfsmp->hfs_logical_block_count = disksize / log_blksize;
- mdb_offset = (daddr64_t)((embeddedOffset / blksize) + HFS_PRI_SECTOR(blksize));
- retval = (int)buf_meta_bread(devvp, mdb_offset, blksize, cred, &bp);
+ mdb_offset = (daddr64_t)((embeddedOffset / log_blksize) + HFS_PRI_SECTOR(log_blksize));
+ retval = (int)buf_meta_bread(devvp, HFS_PHYSBLK_ROUNDDOWN(mdb_offset, hfsmp->hfs_log_per_phys),
+ phys_blksize, cred, &bp);
if (retval)
goto error_exit;
- bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(blksize), mdbp, 512);
+ bcopy((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize), mdbp, 512);
buf_brelse(bp);
bp = NULL;
vhp = (HFSPlusVolumeHeader*) mdbp;
vhp = (HFSPlusVolumeHeader*) mdbp;
}
+ /*
+ * On inconsistent disks, do not allow read-write mount
+ * unless it is the boot volume being mounted. We also
+ * always want to replay the journal if the journal_replay_only
+ * flag is set because that will (most likely) get the
+ * disk into a consistent state before fsck_hfs starts
+ * looking at it.
+ */
+ if ( !(vfs_flags(mp) & MNT_ROOTFS)
+ && (SWAP_BE32(vhp->attributes) & kHFSVolumeInconsistentMask)
+ && !journal_replay_only
+ && !(hfsmp->hfs_flags & HFS_READ_ONLY)) {
+ retval = EINVAL;
+ goto error_exit;
+ }
+
+
// XXXdbg
//
hfsmp->jnl = NULL;
hfsmp->jvp = NULL;
- if (args != NULL && (args->flags & HFSFSMNT_EXTENDED_ARGS) && args->journal_disable) {
+ if (args != NULL && (args->flags & HFSFSMNT_EXTENDED_ARGS) &&
+ args->journal_disable) {
jnl_disable = 1;
}
// if we're able to init the journal, mark the mount
// point as journaled.
//
- if (hfs_early_journal_init(hfsmp, vhp, args, embeddedOffset, mdb_offset, mdbp, cred) == 0) {
- vfs_setflags(mp, (uint64_t)((unsigned int)MNT_JOURNALED));
+ if ((retval = hfs_early_journal_init(hfsmp, vhp, args, embeddedOffset, mdb_offset, mdbp, cred)) == 0) {
+ vfs_setflags(mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
} else {
+ if (retval == EROFS) {
+ // EROFS is a special error code that means the volume has an external
+ // journal which we couldn't find. in that case we do not want to
+ // rewrite the volume header - we'll just refuse to mount the volume.
+ retval = EINVAL;
+ goto error_exit;
+ }
+
// if the journal failed to open, then set the lastMountedVersion
// to be "FSK!" which fsck_hfs will see and force the fsck instead
// of just bailing out because the volume is journaled.
hfsmp->hfs_flags |= HFS_NEED_JNL_RESET;
if (mdb_offset == 0) {
- mdb_offset = (daddr64_t)((embeddedOffset / blksize) + HFS_PRI_SECTOR(blksize));
+ mdb_offset = (daddr64_t)((embeddedOffset / log_blksize) + HFS_PRI_SECTOR(log_blksize));
}
bp = NULL;
- retval = (int)buf_meta_bread(devvp, mdb_offset, blksize, cred, &bp);
+ retval = (int)buf_meta_bread(devvp,
+ HFS_PHYSBLK_ROUNDDOWN(mdb_offset, hfsmp->hfs_log_per_phys),
+ phys_blksize, cred, &bp);
if (retval == 0) {
- jvhp = (HFSPlusVolumeHeader *)(buf_dataptr(bp) + HFS_PRI_OFFSET(blksize));
+ jvhp = (HFSPlusVolumeHeader *)(buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize));
if (SWAP_BE16(jvhp->signature) == kHFSPlusSigWord || SWAP_BE16(jvhp->signature) == kHFSXSigWord) {
printf ("hfs(1): Journal replay fail. Writing lastMountVersion as FSK!\n");
}
// XXXdbg
+ /* Either the journal is replayed successfully, or there
+ * was nothing to replay, or no journal exists. In any case,
+ * return success.
+ */
+ if (journal_replay_only) {
+ retval = 0;
+ goto error_exit;
+ }
+
(void) hfs_getconverter(0, &hfsmp->hfs_get_unicode, &hfsmp->hfs_get_hfsname);
retval = hfs_MountHFSPlusVolume(hfsmp, vhp, embeddedOffset, disksize, p, args, cred);
* If the backend didn't like our physical blocksize
* then retry with physical blocksize of 512.
*/
- if ((retval == ENXIO) && (blksize > 512) && (blksize != minblksize)) {
- printf("HFS Mount: could not use physical block size "
- "(%d) switching to 512\n", blksize);
- blksize = 512;
- if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, context)) {
+ if ((retval == ENXIO) && (log_blksize > 512) && (log_blksize != minblksize)) {
+ printf("hfs_mountfs: could not use physical block size "
+ "(%d) switching to 512\n", log_blksize);
+ log_blksize = 512;
+ if (VNOP_IOCTL(devvp, DKIOCSETBLOCKSIZE, (caddr_t)&log_blksize, FWRITE, context)) {
retval = ENXIO;
goto error_exit;
}
- if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, context)) {
+ if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&log_blkcnt, 0, context)) {
retval = ENXIO;
goto error_exit;
}
- devvp->v_specsize = blksize;
+ devvp->v_specsize = log_blksize;
/* Note: relative block count adjustment (in case this is an embedded volume). */
- hfsmp->hfs_phys_block_count *= hfsmp->hfs_phys_block_size / blksize;
- hfsmp->hfs_phys_block_size = blksize;
+ hfsmp->hfs_logical_block_count *= hfsmp->hfs_logical_block_size / log_blksize;
+ hfsmp->hfs_logical_block_size = log_blksize;
+ hfsmp->hfs_log_per_phys = hfsmp->hfs_physical_block_size / log_blksize;
- if (hfsmp->jnl) {
+ if (hfsmp->jnl && hfsmp->jvp == devvp) {
// close and re-open this with the new block size
journal_close(hfsmp->jnl);
hfsmp->jnl = NULL;
if (hfs_early_journal_init(hfsmp, vhp, args, embeddedOffset, mdb_offset, mdbp, cred) == 0) {
- vfs_setflags(mp, (uint64_t)((unsigned int)MNT_JOURNALED));
+ vfs_setflags(mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
} else {
// if the journal failed to open, then set the lastMountedVersion
// to be "FSK!" which fsck_hfs will see and force the fsck instead
hfsmp->hfs_flags |= HFS_NEED_JNL_RESET;
if (mdb_offset == 0) {
- mdb_offset = (daddr64_t)((embeddedOffset / blksize) + HFS_PRI_SECTOR(blksize));
+ mdb_offset = (daddr64_t)((embeddedOffset / log_blksize) + HFS_PRI_SECTOR(log_blksize));
}
bp = NULL;
- retval = (int)buf_meta_bread(devvp, mdb_offset, blksize, cred, &bp);
+ retval = (int)buf_meta_bread(devvp, HFS_PHYSBLK_ROUNDDOWN(mdb_offset, hfsmp->hfs_log_per_phys),
+ phys_blksize, cred, &bp);
if (retval == 0) {
- jvhp = (HFSPlusVolumeHeader *)(buf_dataptr(bp) + HFS_PRI_OFFSET(blksize));
+ jvhp = (HFSPlusVolumeHeader *)(buf_dataptr(bp) + HFS_PRI_OFFSET(phys_blksize));
if (SWAP_BE16(jvhp->signature) == kHFSPlusSigWord || SWAP_BE16(jvhp->signature) == kHFSXSigWord) {
printf ("hfs(2): Journal replay fail. Writing lastMountVersion as FSK!\n");
mp->mnt_vfsstat.f_fsid.val[0] = (long)dev;
mp->mnt_vfsstat.f_fsid.val[1] = vfs_typenum(mp);
vfs_setmaxsymlen(mp, 0);
- mp->mnt_vtable->vfc_threadsafe = TRUE;
+
mp->mnt_vtable->vfc_vfsflags |= VFC_VFSNATIVEXATTR;
+#if NAMEDSTREAMS
+ mp->mnt_kern_flag |= MNTK_NAMED_STREAMS;
+#endif
+ if (!(hfsmp->hfs_flags & HFS_STANDARD)) {
+ /* Tell VFS that we support directory hard links. */
+ mp->mnt_vtable->vfc_vfsflags |= VFC_VFSDIRLINKS;
+ } else {
+ /* HFS standard doesn't support extended readdir! */
+ mp->mnt_vtable->vfc_vfsflags &= ~VFC_VFSREADDIR_EXTENDED;
+ }
if (args) {
/*
* Set the free space warning levels for a non-root volume:
*
- * Set the lower freespace limit (the level that will trigger a warning)
- * to 5% of the volume size or 250MB, whichever is less, and the desired
- * level (which will cancel the alert request) to 1/2 above that limit.
- * Start looking for free space to drop below this level and generate a
- * warning immediately if needed:
+ * Set the "danger" limit to 1% of the volume size or 100MB, whichever
+ * is less. Set the "warning" limit to 2% of the volume size or 150MB,
+ * whichever is less. And last, set the "desired" freespace level to
+ * to 3% of the volume size or 200MB, whichever is less.
*/
+ hfsmp->hfs_freespace_notify_dangerlimit =
+ MIN(HFS_VERYLOWDISKTRIGGERLEVEL / HFSTOVCB(hfsmp)->blockSize,
+ (HFSTOVCB(hfsmp)->totalBlocks / 100) * HFS_VERYLOWDISKTRIGGERFRACTION);
hfsmp->hfs_freespace_notify_warninglimit =
MIN(HFS_LOWDISKTRIGGERLEVEL / HFSTOVCB(hfsmp)->blockSize,
(HFSTOVCB(hfsmp)->totalBlocks / 100) * HFS_LOWDISKTRIGGERFRACTION);
/*
* Set the free space warning levels for the root volume:
*
- * Set the lower freespace limit (the level that will trigger a warning)
- * to 1% of the volume size or 50MB, whichever is less, and the desired
- * level (which will cancel the alert request) to 2% or 75MB, whichever is less.
+ * Set the "danger" limit to 5% of the volume size or 125MB, whichever
+ * is less. Set the "warning" limit to 10% of the volume size or 250MB,
+ * whichever is less. And last, set the "desired" freespace level to
+ * to 11% of the volume size or 375MB, whichever is less.
*/
+ hfsmp->hfs_freespace_notify_dangerlimit =
+ MIN(HFS_ROOTVERYLOWDISKTRIGGERLEVEL / HFSTOVCB(hfsmp)->blockSize,
+ (HFSTOVCB(hfsmp)->totalBlocks / 100) * HFS_ROOTVERYLOWDISKTRIGGERFRACTION);
hfsmp->hfs_freespace_notify_warninglimit =
MIN(HFS_ROOTLOWDISKTRIGGERLEVEL / HFSTOVCB(hfsmp)->blockSize,
(HFSTOVCB(hfsmp)->totalBlocks / 100) * HFS_ROOTLOWDISKTRIGGERFRACTION);
(HFSTOVCB(hfsmp)->totalBlocks / 100) * HFS_ROOTLOWDISKSHUTOFFFRACTION);
};
+ /* Check if the file system exists on virtual device, like disk image */
+ if (VNOP_IOCTL(devvp, DKIOCISVIRTUAL, (caddr_t)&isvirtual, 0, context) == 0) {
+ if (isvirtual) {
+ hfsmp->hfs_flags |= HFS_VIRTUAL_DEVICE;
+ }
+ }
+
+ /* do not allow ejectability checks on the root device */
+ if (isroot == 0) {
+ if ((hfsmp->hfs_flags & HFS_VIRTUAL_DEVICE) == 0 &&
+ IOBSDIsMediaEjectable(mp->mnt_vfsstat.f_mntfromname)) {
+ hfsmp->hfs_max_pending_io = 4096*1024; // a reasonable value to start with.
+ hfsmp->hfs_syncer = thread_call_allocate(hfs_syncer, hfsmp);
+ if (hfsmp->hfs_syncer == NULL) {
+ printf("hfs: failed to allocate syncer thread callback for %s (%s)\n",
+ mp->mnt_vfsstat.f_mntfromname, mp->mnt_vfsstat.f_mntonname);
+ }
+ }
+ }
+
/*
* Start looking for free space to drop below this level and generate a
* warning immediately if needed:
*/
hfsmp->hfs_notification_conditions = 0;
hfs_generate_volume_notifications(hfsmp);
-
+
if (ronly == 0) {
(void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
}
FREE(mdbp, M_TEMP);
if (hfsmp && hfsmp->jvp && hfsmp->jvp != hfsmp->hfs_devvp) {
- (void)VNOP_CLOSE(hfsmp->jvp, ronly ? FREAD : FREAD|FWRITE, context);
+ vnode_clearmountedon(hfsmp->jvp);
+ (void)VNOP_CLOSE(hfsmp->jvp, ronly ? FREAD : FREAD|FWRITE, vfs_context_kernel());
hfsmp->jvp = NULL;
}
if (hfsmp) {
+ if (hfsmp->hfs_devvp) {
+ vnode_rele(hfsmp->hfs_devvp);
+ }
+ hfs_delete_chash(hfsmp);
+
FREE(hfsmp, M_HFSMNT);
vfs_setfsprivate(mp, NULL);
}
if (hfsmp->hfs_flags & HFS_METADATA_ZONE)
(void) hfs_recording_suspend(hfsmp);
+ /*
+ * Cancel any pending timers for this volume. Then wait for any timers
+ * which have fired, but whose callbacks have not yet completed.
+ */
+ if (hfsmp->hfs_syncer)
+ {
+ struct timespec ts = {0, 100000000}; /* 0.1 seconds */
+
+ /*
+ * Cancel any timers that have been scheduled, but have not
+ * fired yet. NOTE: The kernel considers a timer complete as
+ * soon as it starts your callback, so the kernel does not
+ * keep track of the number of callbacks in progress.
+ */
+ if (thread_call_cancel(hfsmp->hfs_syncer))
+ OSDecrementAtomic((volatile SInt32 *)&hfsmp->hfs_sync_incomplete);
+ thread_call_free(hfsmp->hfs_syncer);
+ hfsmp->hfs_syncer = NULL;
+
+ /*
+ * This waits for all of the callbacks that were entered before
+ * we did thread_call_cancel above, but have not completed yet.
+ */
+ while(hfsmp->hfs_sync_incomplete > 0)
+ {
+ msleep((caddr_t)&hfsmp->hfs_sync_incomplete, NULL, PWAIT, "hfs_unmount", &ts);
+ }
+
+ if (hfsmp->hfs_sync_incomplete < 0)
+ panic("hfs_unmount: pm_sync_incomplete underflow!\n");
+ }
+
/*
* Flush out the b-trees, volume bitmap and Volume Header
*/
if ((hfsmp->hfs_flags & HFS_READ_ONLY) == 0) {
- hfs_start_transaction(hfsmp);
- started_tr = 1;
+ retval = hfs_start_transaction(hfsmp);
+ if (retval == 0) {
+ started_tr = 1;
+ } else if (!force) {
+ goto err_exit;
+ }
+
+ if (hfsmp->hfs_startup_vp) {
+ (void) hfs_lock(VTOC(hfsmp->hfs_startup_vp), HFS_EXCLUSIVE_LOCK);
+ retval = hfs_fsync(hfsmp->hfs_startup_vp, MNT_WAIT, 0, p);
+ hfs_unlock(VTOC(hfsmp->hfs_startup_vp));
+ if (retval && !force)
+ goto err_exit;
+ }
if (hfsmp->hfs_attribute_vp) {
(void) hfs_lock(VTOC(hfsmp->hfs_attribute_vp), HFS_EXCLUSIVE_LOCK);
if (retval && !force)
goto err_exit;
}
-#if 0
- /* See if this volume is damaged, is so do not unmount cleanly */
- if (HFSTOVCB(hfsmp)->vcbFlags & kHFS_DamagedVolume) {
+
+ /* If runtime corruption was detected, indicate that the volume
+ * was not unmounted cleanly.
+ */
+ if (hfsmp->vcbAtrb & kHFSVolumeInconsistentMask) {
HFSTOVCB(hfsmp)->vcbAtrb &= ~kHFSVolumeUnmountedMask;
} else {
HFSTOVCB(hfsmp)->vcbAtrb |= kHFSVolumeUnmountedMask;
}
-#else
- HFSTOVCB(hfsmp)->vcbAtrb |= kHFSVolumeUnmountedMask;
-#endif
+
+ if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
+ int i;
+ u_int32_t min_start = hfsmp->totalBlocks;
+
+ // set the nextAllocation pointer to the smallest free block number
+ // we've seen so on the next mount we won't rescan unnecessarily
+ for(i=0; i < (int)hfsmp->vcbFreeExtCnt; i++) {
+ if (hfsmp->vcbFreeExt[i].startBlock < min_start) {
+ min_start = hfsmp->vcbFreeExt[i].startBlock;
+ }
+ }
+ if (min_start < hfsmp->nextAllocation) {
+ hfsmp->nextAllocation = min_start;
+ }
+ }
+
+
retval = hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
if (retval) {
HFSTOVCB(hfsmp)->vcbAtrb &= ~kHFSVolumeUnmountedMask;
goto err_exit; /* could not flush everything */
}
- hfs_end_transaction(hfsmp);
- started_tr = 0;
+ if (started_tr) {
+ hfs_end_transaction(hfsmp);
+ started_tr = 0;
+ }
}
if (hfsmp->jnl) {
- journal_flush(hfsmp->jnl);
+ hfs_journal_flush(hfsmp);
}
/*
VNOP_FSYNC(hfsmp->hfs_devvp, MNT_WAIT, context);
if (hfsmp->jvp && hfsmp->jvp != hfsmp->hfs_devvp) {
+ vnode_clearmountedon(hfsmp->jvp);
retval = VNOP_CLOSE(hfsmp->jvp,
hfsmp->hfs_flags & HFS_READ_ONLY ? FREAD : FREAD|FWRITE,
- context);
+ vfs_context_kernel());
vnode_put(hfsmp->jvp);
hfsmp->jvp = NULL;
}
}
#endif /* HFS_SPARSE_DEV */
lck_mtx_destroy(&hfsmp->hfc_mutex, hfs_mutex_group);
+ vnode_rele(hfsmp->hfs_devvp);
+
+ hfs_delete_chash(hfsmp);
FREE(hfsmp, M_HFSMNT);
return (0);
/*
* Do operations associated with quotas
*/
+#if !QUOTA
+static int
+hfs_quotactl(__unused struct mount *mp, __unused int cmds, __unused uid_t uid, __unused caddr_t datap, __unused vfs_context_t context)
+{
+ return (ENOTSUP);
+}
+#else
static int
hfs_quotactl(struct mount *mp, int cmds, uid_t uid, caddr_t datap, vfs_context_t context)
{
struct proc *p = vfs_context_proc(context);
int cmd, type, error;
-#if !QUOTA
- return (ENOTSUP);
-#else
- if (uid == -1)
+ if (uid == ~0U)
uid = vfs_context_ucred(context)->cr_ruid;
cmd = cmds >> SUBCMDSHIFT;
vfs_unbusy(mp);
return (error);
-#endif /* QUOTA */
}
+#endif /* QUOTA */
/* Subtype is composite of bits */
#define HFS_SUBTYPE_JOURNALED 0x01
{
ExtendedVCB *vcb = VFSTOVCB(mp);
struct hfsmount *hfsmp = VFSTOHFS(mp);
- u_long freeCNIDs;
- uint16_t subtype = 0;
+ u_int32_t freeCNIDs;
+ u_int16_t subtype = 0;
- freeCNIDs = (u_long)0xFFFFFFFF - (u_long)vcb->vcbNxtCNID;
+ freeCNIDs = (u_int32_t)0xFFFFFFFF - (u_int32_t)vcb->vcbNxtCNID;
- sbp->f_bsize = (uint32_t)vcb->blockSize;
- sbp->f_iosize = (size_t)(MAX_UPL_TRANSFER * PAGE_SIZE);
- sbp->f_blocks = (uint64_t)((unsigned long)vcb->totalBlocks);
- sbp->f_bfree = (uint64_t)((unsigned long )hfs_freeblks(hfsmp, 0));
- sbp->f_bavail = (uint64_t)((unsigned long )hfs_freeblks(hfsmp, 1));
- sbp->f_files = (uint64_t)((unsigned long )(vcb->totalBlocks - 2)); /* max files is constrained by total blocks */
- sbp->f_ffree = (uint64_t)((unsigned long )(MIN(freeCNIDs, sbp->f_bavail)));
+ sbp->f_bsize = (u_int32_t)vcb->blockSize;
+ sbp->f_iosize = (size_t)cluster_max_io_size(mp, 0);
+ sbp->f_blocks = (u_int64_t)((u_int32_t)vcb->totalBlocks);
+ sbp->f_bfree = (u_int64_t)((u_int32_t )hfs_freeblks(hfsmp, 0));
+ sbp->f_bavail = (u_int64_t)((u_int32_t )hfs_freeblks(hfsmp, 1));
+ sbp->f_files = (u_int64_t)((u_int32_t )(vcb->totalBlocks - 2)); /* max files is constrained by total blocks */
+ sbp->f_ffree = (u_int64_t)((u_int32_t )(MIN(freeCNIDs, sbp->f_bavail)));
/*
* Subtypes (flavors) for HFS
struct hfsmount *hfsmp;
ExtendedVCB *vcb;
buf_t bp;
- int sectorsize, retval;
+ int retval;
daddr64_t priIDSector;
hfsmp = VFSTOHFS(mp);
vcb = HFSTOVCB(hfsmp);
// now make sure the super block is flushed
- sectorsize = hfsmp->hfs_phys_block_size;
- priIDSector = (daddr64_t)((vcb->hfsPlusIOPosOffset / sectorsize) +
- HFS_PRI_SECTOR(sectorsize));
- retval = (int)buf_meta_bread(hfsmp->hfs_devvp, priIDSector, sectorsize, NOCRED, &bp);
- if ((retval != 0) && (retval != ENXIO)) {
+ priIDSector = (daddr64_t)((vcb->hfsPlusIOPosOffset / hfsmp->hfs_logical_block_size) +
+ HFS_PRI_SECTOR(hfsmp->hfs_logical_block_size));
+
+ retval = (int)buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(priIDSector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
+ if ((retval != 0 ) && (retval != ENXIO)) {
printf("hfs_sync_metadata: can't read volume header at %d! (retval 0x%x)\n",
- priIDSector, retval);
+ (int)priIDSector, retval);
}
if (retval == 0 && ((buf_flags(bp) & (B_DELWRI | B_LOCKED)) == B_DELWRI)) {
// hfs_btreeio.c:FlushAlternate() should flag when it was
// written...
if (hfsmp->hfs_alt_id_sector) {
- retval = (int)buf_meta_bread(hfsmp->hfs_devvp, hfsmp->hfs_alt_id_sector, sectorsize, NOCRED, &bp);
+ retval = (int)buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(hfsmp->hfs_alt_id_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
if (retval == 0 && ((buf_flags(bp) & (B_DELWRI | B_LOCKED)) == B_DELWRI)) {
buf_bwrite(bp);
} else if (bp) {
int error, allerror = 0;
struct hfs_sync_cargs args;
+ hfsmp = VFSTOHFS(mp);
+
/*
- * During MNT_UPDATE hfs_changefs might be manipulating
- * vnodes so back off
+ * hfs_changefs might be manipulating vnodes so back off
*/
- if (((uint32_t)vfs_flags(mp)) & MNT_UPDATE) /* XXX MNT_UPDATE may not be visible here */
+ if (hfsmp->hfs_flags & HFS_IN_CHANGEFS)
return (0);
- hfsmp = VFSTOHFS(mp);
if (hfsmp->hfs_flags & HFS_READ_ONLY)
return (EROFS);
if (!lck_rw_try_lock_shared(&hfsmp->hfs_insync))
return 0;
- args.cred = vfs_context_proc(context);
+ args.cred = kauth_cred_get();
args.waitfor = waitfor;
args.p = p;
args.error = 0;
hfs_qsync(mp);
#endif /* QUOTA */
- hfs_hotfilesync(hfsmp, p);
+ hfs_hotfilesync(hfsmp, vfs_context_kernel());
+
/*
* Write back modified superblock.
*/
-
if (IsVCBDirty(vcb)) {
error = hfs_flushvolumeheader(hfsmp, waitfor, 0);
if (error)
}
if (hfsmp->jnl) {
- journal_flush(hfsmp->jnl);
+ hfs_journal_flush(hfsmp);
+ }
+
+ {
+ clock_sec_t secs;
+ clock_usec_t usecs;
+ uint64_t now;
+
+ clock_get_calendar_microtime(&secs, &usecs);
+ now = ((uint64_t)secs * 1000000ULL) + (uint64_t)usecs;
+ hfsmp->hfs_last_sync_time = now;
}
lck_rw_unlock_shared(&hfsmp->hfs_insync);
* those rights via. exflagsp and credanonp
*/
static int
-hfs_fhtovp(struct mount *mp, int fhlen, unsigned char *fhp, struct vnode **vpp, vfs_context_t context)
+hfs_fhtovp(struct mount *mp, int fhlen, unsigned char *fhp, struct vnode **vpp, __unused vfs_context_t context)
{
struct hfsfid *hfsfhp;
struct vnode *nvp;
*vpp = NULL;
hfsfhp = (struct hfsfid *)fhp;
- if (fhlen < sizeof(struct hfsfid))
+ if (fhlen < (int)sizeof(struct hfsfid))
return (EINVAL);
result = hfs_vget(VFSTOHFS(mp), ntohl(hfsfhp->hfsfid_cnid), &nvp, 0);
result = ESTALE;
return result;
}
-
- /* The createtime can be changed by hfs_setattr or hfs_setattrlist.
- * For NFS, we are assuming that only if the createtime was moved
- * forward would it mean the fileID got reused in that session by
- * wrapping. We don't have a volume ID or other unique identifier to
- * to use here for a generation ID across reboots, crashes where
- * metadata noting lastFileID didn't make it to disk but client has
- * it, or volume erasures where fileIDs start over again. Lastly,
- * with HFS allowing "wraps" of fileIDs now, this becomes more
- * error prone. Future, would be change the "wrap bit" to a unique
- * wrap number and use that for generation number. For now do this.
- */
- if ((ntohl(hfsfhp->hfsfid_gen) < VTOC(nvp)->c_itime)) {
- hfs_unlock(VTOC(nvp));
- vnode_put(nvp);
- return (ESTALE);
- }
+
+ /*
+ * We used to use the create time as the gen id of the file handle,
+ * but it is not static enough because it can change at any point
+ * via system calls. We still don't have another volume ID or other
+ * unique identifier to use for a generation ID across reboots that
+ * persists until the file is removed. Using only the CNID exposes
+ * us to the potential wrap-around case, but as of 2/2008, it would take
+ * over 2 months to wrap around if the machine did nothing but allocate
+ * CNIDs. Using some kind of wrap counter would only be effective if
+ * each file had the wrap counter associated with it. For now,
+ * we use only the CNID to identify the file as it's good enough.
+ */
+
*vpp = nvp;
hfs_unlock(VTOC(nvp));
*/
/* ARGSUSED */
static int
-hfs_vptofh(struct vnode *vp, int *fhlenp, unsigned char *fhp, vfs_context_t context)
+hfs_vptofh(struct vnode *vp, int *fhlenp, unsigned char *fhp, __unused vfs_context_t context)
{
struct cnode *cp;
struct hfsfid *hfsfhp;
cp = VTOC(vp);
hfsfhp = (struct hfsfid *)fhp;
+ /* only the CNID is used to identify the file now */
hfsfhp->hfsfid_cnid = htonl(cp->c_fileid);
- hfsfhp->hfsfid_gen = htonl(cp->c_itime);
+ hfsfhp->hfsfid_gen = htonl(cp->c_fileid);
*fhlenp = sizeof(struct hfsfid);
return (0);
done = 1;
hfs_chashinit();
hfs_converterinit();
-#if QUOTA
- dqinit();
-#endif /* QUOTA */
BTReserveSetup();
hfs_mutex_group = lck_grp_alloc_init("hfs-mutex", hfs_group_attr);
hfs_rwlock_group = lck_grp_alloc_init("hfs-rwlock", hfs_group_attr);
+#if HFS_COMPRESSION
+ decmpfs_init();
+#endif
return (0);
}
static int
-hfs_getmountpoint(vp, hfsmpp)
- struct vnode *vp;
- struct hfsmount **hfsmpp;
+hfs_getmountpoint(struct vnode *vp, struct hfsmount **hfsmpp)
{
struct hfsmount * hfsmp;
char fstypename[MFSNAMELEN];
return (EINVAL);
vnode_vfsname(vp, fstypename);
- if (strcmp(fstypename, "hfs") != 0)
+ if (strncmp(fstypename, "hfs", sizeof(fstypename)) != 0)
return (EINVAL);
hfsmp = VTOHFS(vp);
/* all sysctl names at this level are terminal */
if (name[0] == HFS_ENCODINGBIAS) {
- u_int32_t bias;
+ int bias;
bias = hfs_getencodingbias();
error = sysctl_int(oldp, oldlenp, newp, newlen, &bias);
} else if (name[0] == HFS_EXTEND_FS) {
u_int64_t newsize;
- vnode_t vp = p->p_fd->fd_cdir;
+ vnode_t vp = vfs_context_cwd(context);
- if (newp == USER_ADDR_NULL || vp == NULL)
+ if (newp == USER_ADDR_NULL || vp == NULLVP)
return (EINVAL);
if ((error = hfs_getmountpoint(vp, &hfsmp)))
return (error);
- error = sysctl_quad(oldp, oldlenp, newp, newlen, &newsize);
+ error = sysctl_quad(oldp, oldlenp, newp, newlen, (quad_t *)&newsize);
if (error)
return (error);
size_t bufsize;
size_t bytes;
u_int32_t hint;
- u_int16_t *unicode_name;
- char *filename;
+ u_int16_t *unicode_name = NULL;
+ char *filename = NULL;
+
+ if ((newlen <= 0) || (newlen > MAXPATHLEN))
+ return (EINVAL);
bufsize = MAX(newlen * 3, MAXPATHLEN);
MALLOC(filename, char *, newlen, M_TEMP, M_WAITOK);
+ if (filename == NULL) {
+ error = ENOMEM;
+ goto encodinghint_exit;
+ }
MALLOC(unicode_name, u_int16_t *, bufsize, M_TEMP, M_WAITOK);
+ if (filename == NULL) {
+ error = ENOMEM;
+ goto encodinghint_exit;
+ }
error = copyin(newp, (caddr_t)filename, newlen);
if (error == 0) {
- error = utf8_decodestr(filename, newlen - 1, unicode_name,
+ error = utf8_decodestr((u_int8_t *)filename, newlen - 1, unicode_name,
&bytes, bufsize, 0, UTF_DECOMPOSED);
if (error == 0) {
hint = hfs_pickencoding(unicode_name, bytes / 2);
- error = sysctl_int(oldp, oldlenp, USER_ADDR_NULL, 0, &hint);
+ error = sysctl_int(oldp, oldlenp, USER_ADDR_NULL, 0, (int32_t *)&hint);
}
}
- FREE(unicode_name, M_TEMP);
- FREE(filename, M_TEMP);
+
+encodinghint_exit:
+ if (unicode_name)
+ FREE(unicode_name, M_TEMP);
+ if (filename)
+ FREE(filename, M_TEMP);
return (error);
} else if (name[0] == HFS_ENABLE_JOURNALING) {
// make the file system journaled...
- struct vnode *vp = p->p_fd->fd_cdir, *jvp;
+ vnode_t vp = vfs_context_cwd(context);
+ vnode_t jvp;
ExtendedVCB *vcb;
struct cat_attr jnl_attr, jinfo_attr;
struct cat_fork jnl_fork, jinfo_fork;
if (!is_suser()) {
return (EPERM);
}
- if (vp == NULL)
+ if (vp == NULLVP)
return EINVAL;
hfsmp = VTOHFS(vp);
}
if (hfsmp->jnl) {
- printf("hfs: volume @ mp 0x%x is already journaled!\n", vnode_mount(vp));
+ printf("hfs: volume @ mp %p is already journaled!\n", vnode_mount(vp));
return EAGAIN;
}
printf("hfs: Initializing the journal (joffset 0x%llx sz 0x%llx)...\n",
(off_t)name[2], (off_t)name[3]);
+ //
+ // XXXdbg - note that currently (Sept, 08) hfs_util does not support
+ // enabling the journal on a separate device so it is safe
+ // to just copy hfs_devvp here. If hfs_util gets the ability
+ // to dynamically enable the journal on a separate device then
+ // we will have to do the same thing as hfs_early_journal_init()
+ // to locate and open the journal device.
+ //
jvp = hfsmp->hfs_devvp;
jnl = journal_create(jvp,
(off_t)name[2] * (off_t)HFSTOVCB(hfsmp)->blockSize
+ HFSTOVCB(hfsmp)->hfsPlusIOPosOffset,
(off_t)((unsigned)name[3]),
hfsmp->hfs_devvp,
- hfsmp->hfs_phys_block_size,
+ hfsmp->hfs_logical_block_size,
0,
0,
hfs_sync_metadata, hfsmp->hfs_mp);
if (jnl == NULL) {
printf("hfs: FAILED to create the journal!\n");
if (jvp && jvp != hfsmp->hfs_devvp) {
- VNOP_CLOSE(jvp, hfsmp->hfs_flags & HFS_READ_ONLY ? FREAD : FREAD|FWRITE, context);
+ vnode_clearmountedon(jvp);
+ VNOP_CLOSE(jvp, hfsmp->hfs_flags & HFS_READ_ONLY ? FREAD : FREAD|FWRITE, vfs_context_kernel());
}
jvp = NULL;
hfsmp->hfs_jnlinfoblkid = jinfo_attr.ca_fileid;
hfsmp->hfs_jnlfileid = jnl_attr.ca_fileid;
- vfs_setflags(hfsmp->hfs_mp, (uint64_t)((unsigned int)MNT_JOURNALED));
+ vfs_setflags(hfsmp->hfs_mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
hfs_global_exclusive_lock_release(hfsmp);
hfs_flushvolumeheader(hfsmp, MNT_WAIT, 1);
+ {
+ fsid_t fsid;
+
+ fsid.val[0] = (int32_t)hfsmp->hfs_raw_dev;
+ fsid.val[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp));
+ vfs_event_signal(&fsid, VQ_UPDATE, (intptr_t)NULL);
+ }
return 0;
} else if (name[0] == HFS_DISABLE_JOURNALING) {
// clear the journaling bit
- struct vnode *vp = p->p_fd->fd_cdir;
+ vnode_t vp = vfs_context_cwd(context);
/* Only root can disable journaling */
if (!is_suser()) {
return (EPERM);
}
- if (vp == NULL)
+ if (vp == NULLVP)
return EINVAL;
hfsmp = VTOHFS(vp);
- printf("hfs: disabling journaling for mount @ 0x%x\n", vnode_mount(vp));
+ /*
+ * Disabling journaling is disallowed on volumes with directory hard links
+ * because we have not tested the relevant code path.
+ */
+ if (hfsmp->hfs_private_attr[DIR_HARDLINKS].ca_entries != 0){
+ printf("hfs: cannot disable journaling on volumes with directory hardlinks\n");
+ return EPERM;
+ }
+
+ printf("hfs: disabling journaling for mount @ %p\n", vnode_mount(vp));
hfs_global_exclusive_lock_acquire(hfsmp);
hfsmp->jnl = NULL;
if (hfsmp->jvp && hfsmp->jvp != hfsmp->hfs_devvp) {
- VNOP_CLOSE(hfsmp->jvp, hfsmp->hfs_flags & HFS_READ_ONLY ? FREAD : FREAD|FWRITE, context);
+ vnode_clearmountedon(hfsmp->jvp);
+ VNOP_CLOSE(hfsmp->jvp, hfsmp->hfs_flags & HFS_READ_ONLY ? FREAD : FREAD|FWRITE, vfs_context_kernel());
+ vnode_put(hfsmp->jvp);
}
hfsmp->jvp = NULL;
- vfs_clearflags(hfsmp->hfs_mp, (uint64_t)((unsigned int)MNT_JOURNALED));
+ vfs_clearflags(hfsmp->hfs_mp, (u_int64_t)((unsigned int)MNT_JOURNALED));
hfsmp->jnl_start = 0;
hfsmp->hfs_jnlinfoblkid = 0;
hfsmp->hfs_jnlfileid = 0;
hfs_global_exclusive_lock_release(hfsmp);
hfs_flushvolumeheader(hfsmp, MNT_WAIT, 1);
+ {
+ fsid_t fsid;
+
+ fsid.val[0] = (int32_t)hfsmp->hfs_raw_dev;
+ fsid.val[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp));
+ vfs_event_signal(&fsid, VQ_UPDATE, (intptr_t)NULL);
+ }
return 0;
} else if (name[0] == HFS_GET_JOURNAL_INFO) {
- struct vnode *vp = p->p_fd->fd_cdir;
+ vnode_t vp = vfs_context_cwd(context);
off_t jnl_start, jnl_size;
- if (vp == NULL)
+ if (vp == NULLVP)
return EINVAL;
+ /* 64-bit processes won't work with this sysctl -- can't fit a pointer into an int! */
+ if (proc_is64bit(current_proc()))
+ return EINVAL;
+
hfsmp = VTOHFS(vp);
if (hfsmp->jnl == NULL) {
jnl_start = 0;
return 0;
} else if (name[0] == HFS_SET_PKG_EXTENSIONS) {
- return set_package_extensions_table((void *)name[1], name[2], name[3]);
+ return set_package_extensions_table((user_addr_t)((unsigned)name[1]), name[2], name[3]);
} else if (name[0] == VFS_CTL_QUERY) {
struct sysctl_req *req;
- struct vfsidctl vc;
- struct user_vfsidctl user_vc;
+ union union_vfsidctl vc;
struct mount *mp;
struct vfsquery vq;
- boolean_t is_64_bit;
- is_64_bit = proc_is64bit(p);
req = CAST_DOWN(struct sysctl_req *, oldp); /* we're new style vfs sysctl. */
- if (is_64_bit) {
- error = SYSCTL_IN(req, &user_vc, sizeof(user_vc));
- if (error) return (error);
-
- mp = vfs_getvfs(&user_vc.vc_fsid);
- }
- else {
- error = SYSCTL_IN(req, &vc, sizeof(vc));
- if (error) return (error);
-
- mp = vfs_getvfs(&vc.vc_fsid);
- }
+ error = SYSCTL_IN(req, &vc, proc_is64bit(p)? sizeof(vc.vc64):sizeof(vc.vc32));
+ if (error) return (error);
+
+ mp = vfs_getvfs(&vc.vc32.vc_fsid); /* works for 32 and 64 */
if (mp == NULL) return (ENOENT);
hfsmp = VFSTOHFS(mp);
bzero(&vq, sizeof(vq));
vq.vq_flags = hfsmp->hfs_notification_conditions;
return SYSCTL_OUT(req, &vq, sizeof(vq));;
- };
+ } else if (name[0] == HFS_REPLAY_JOURNAL) {
+ vnode_t devvp = NULL;
+ int device_fd;
+ if (namelen != 2) {
+ return (EINVAL);
+ }
+ device_fd = name[1];
+ error = file_vnode(device_fd, &devvp);
+ if (error) {
+ return error;
+ }
+ error = vnode_getwithref(devvp);
+ if (error) {
+ file_drop(device_fd);
+ return error;
+ }
+ error = hfs_journal_replay(devvp, context);
+ file_drop(device_fd);
+ vnode_put(devvp);
+ return error;
+ }
return (ENOTSUP);
}
+/*
+ * hfs_vfs_vget is not static since it is used in hfs_readwrite.c to support
+ * the build_path ioctl. We use it to leverage the code below that updates
+ * the origin list cache if necessary
+ */
-static int
+int
hfs_vfs_vget(struct mount *mp, ino64_t ino, struct vnode **vpp, __unused vfs_context_t context)
{
- return hfs_vget(VFSTOHFS(mp), (cnid_t)ino, vpp, 1);
-}
-
+ int error;
+ int lockflags;
+ struct hfsmount *hfsmp;
+
+ hfsmp = VFSTOHFS(mp);
+
+ error = hfs_vget(hfsmp, (cnid_t)ino, vpp, 1);
+ if (error)
+ return (error);
+
+ /*
+ * ADLs may need to have their origin state updated
+ * since build_path needs a valid parent. The same is true
+ * for hardlinked files as well. There isn't a race window here
+ * in re-acquiring the cnode lock since we aren't pulling any data
+ * out of the cnode; instead, we're going to the catalog.
+ */
+ if ((VTOC(*vpp)->c_flag & C_HARDLINK) &&
+ (hfs_lock(VTOC(*vpp), HFS_EXCLUSIVE_LOCK) == 0)) {
+ cnode_t *cp = VTOC(*vpp);
+ struct cat_desc cdesc;
+
+ if (!hfs_haslinkorigin(cp)) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ error = cat_findname(hfsmp, (cnid_t)ino, &cdesc);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error == 0) {
+ if ((cdesc.cd_parentcnid != hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid) &&
+ (cdesc.cd_parentcnid != hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid)) {
+ hfs_savelinkorigin(cp, cdesc.cd_parentcnid);
+ }
+ cat_releasedesc(&cdesc);
+ }
+ }
+ hfs_unlock(cp);
+ }
+ return (0);
+}
+
/*
* Look up an HFS object by ID.
int
hfs_vget(struct hfsmount *hfsmp, cnid_t cnid, struct vnode **vpp, int skiplock)
{
- struct vnode *vp = NULL;
+ struct vnode *vp = NULLVP;
struct cat_desc cndesc;
struct cat_attr cnattr;
struct cat_fork cnfork;
- struct componentname cn;
u_int32_t linkref = 0;
int error;
/* Check for cnids that should't be exported. */
- if ((cnid < kHFSFirstUserCatalogNodeID)
- && (cnid != kHFSRootFolderID && cnid != kHFSRootParentID))
+ if ((cnid < kHFSFirstUserCatalogNodeID) &&
+ (cnid != kHFSRootFolderID && cnid != kHFSRootParentID)) {
return (ENOENT);
-
- /* Don't export HFS Private Data dir. */
- if (cnid == hfsmp->hfs_privdir_desc.cd_cnid)
+ }
+ /* Don't export our private directories. */
+ if (cnid == hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid ||
+ cnid == hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid) {
return (ENOENT);
-
+ }
/*
* Check the hash first
*/
- vp = hfs_chash_getvnode(hfsmp->hfs_raw_dev, cnid, 0, skiplock);
+ vp = hfs_chash_getvnode(hfsmp, cnid, 0, skiplock);
if (vp) {
*vpp = vp;
return(0);
if (cnid == kHFSRootParentID) {
static char hfs_rootname[] = "/";
- cndesc.cd_nameptr = &hfs_rootname[0];
+ cndesc.cd_nameptr = (const u_int8_t *)&hfs_rootname[0];
cndesc.cd_namelen = 1;
cndesc.cd_parentcnid = kHFSRootParentID;
cndesc.cd_cnid = kHFSRootFolderID;
cndesc.cd_flags = CD_ISDIR;
cnattr.ca_fileid = kHFSRootFolderID;
- cnattr.ca_nlink = 2;
+ cnattr.ca_linkcount = 1;
cnattr.ca_entries = 1;
+ cnattr.ca_dircount = 1;
cnattr.ca_mode = (S_IFDIR | S_IRWXU | S_IRWXG | S_IRWXO);
} else {
int lockflags;
+ cnid_t pid;
+ const char *nameptr;
lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
- error = cat_idlookup(hfsmp, cnid, &cndesc, &cnattr, &cnfork);
+ error = cat_idlookup(hfsmp, cnid, 0, &cndesc, &cnattr, &cnfork);
hfs_systemfile_unlock(hfsmp, lockflags);
if (error) {
}
/*
- * If we just looked up a raw hardlink inode,
- * then finish initializing it.
+ * Check for a raw hardlink inode and save its linkref.
*/
- if ((cndesc.cd_parentcnid == hfsmp->hfs_privdir_desc.cd_cnid) &&
- (bcmp(cndesc.cd_nameptr, HFS_INODE_PREFIX, HFS_INODE_PREFIX_LEN) == 0)) {
- linkref = strtoul((const char*)&cndesc.cd_nameptr[HFS_INODE_PREFIX_LEN], NULL, 10);
- cnattr.ca_rdev = linkref;
+ pid = cndesc.cd_parentcnid;
+ nameptr = (const char *)cndesc.cd_nameptr;
+
+ if ((pid == hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid) &&
+ (bcmp(nameptr, HFS_INODE_PREFIX, HFS_INODE_PREFIX_LEN) == 0)) {
+ linkref = strtoul(&nameptr[HFS_INODE_PREFIX_LEN], NULL, 10);
+
+ } else if ((pid == hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid) &&
+ (bcmp(nameptr, HFS_DIRINODE_PREFIX, HFS_DIRINODE_PREFIX_LEN) == 0)) {
+ linkref = strtoul(&nameptr[HFS_DIRINODE_PREFIX_LEN], NULL, 10);
+
+ } else if ((pid == hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid) &&
+ (bcmp(nameptr, HFS_DELETE_PREFIX, HFS_DELETE_PREFIX_LEN) == 0)) {
+ *vpp = NULL;
+ cat_releasedesc(&cndesc);
+ return (ENOENT); /* open unlinked file */
}
}
/*
- * Supply hfs_getnewvnode with a component name.
+ * Finish initializing cnode descriptor for hardlinks.
+ *
+ * We need a valid name and parent for reverse lookups.
*/
- MALLOC_ZONE(cn.cn_pnbuf, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
- cn.cn_nameiop = LOOKUP;
- cn.cn_flags = ISLASTCN | HASBUF;
- cn.cn_context = NULL;
- cn.cn_pnlen = MAXPATHLEN;
- cn.cn_nameptr = cn.cn_pnbuf;
- cn.cn_namelen = cndesc.cd_namelen;
- cn.cn_hash = 0;
- cn.cn_consume = 0;
- bcopy(cndesc.cd_nameptr, cn.cn_nameptr, cndesc.cd_namelen + 1);
+ if (linkref) {
+ cnid_t nextlinkid;
+ cnid_t prevlinkid;
+ struct cat_desc linkdesc;
+ int lockflags;
+
+ cnattr.ca_linkref = linkref;
- /* XXX should we supply the parent as well... ? */
- error = hfs_getnewvnode(hfsmp, NULLVP, &cn, &cndesc, 0, &cnattr, &cnfork, &vp);
- if (error == 0 && linkref != 0) {
- VTOC(vp)->c_flag |= C_HARDLINK;
+ /*
+ * Pick up the first link in the chain and get a descriptor for it.
+ * This allows blind volfs paths to work for hardlinks.
+ */
+ if ((hfs_lookuplink(hfsmp, linkref, &prevlinkid, &nextlinkid) == 0) &&
+ (nextlinkid != 0)) {
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+ error = cat_findname(hfsmp, nextlinkid, &linkdesc);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error == 0) {
+ cat_releasedesc(&cndesc);
+ bcopy(&linkdesc, &cndesc, sizeof(linkdesc));
+ }
+ }
}
- FREE_ZONE(cn.cn_pnbuf, cn.cn_pnlen, M_NAMEI);
+ if (linkref) {
+ error = hfs_getnewvnode(hfsmp, NULL, NULL, &cndesc, 0, &cnattr, &cnfork, &vp);
+ if (error == 0) {
+ VTOC(vp)->c_flag |= C_HARDLINK;
+ vnode_setmultipath(vp);
+ }
+ } else {
+ struct componentname cn;
+
+ /* Supply hfs_getnewvnode with a component name. */
+ MALLOC_ZONE(cn.cn_pnbuf, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
+ cn.cn_nameiop = LOOKUP;
+ cn.cn_flags = ISLASTCN | HASBUF;
+ cn.cn_context = NULL;
+ cn.cn_pnlen = MAXPATHLEN;
+ cn.cn_nameptr = cn.cn_pnbuf;
+ cn.cn_namelen = cndesc.cd_namelen;
+ cn.cn_hash = 0;
+ cn.cn_consume = 0;
+ bcopy(cndesc.cd_nameptr, cn.cn_nameptr, cndesc.cd_namelen + 1);
+
+ error = hfs_getnewvnode(hfsmp, NULLVP, &cn, &cndesc, 0, &cnattr, &cnfork, &vp);
+ if (error == 0 && (VTOC(vp)->c_flag & C_HARDLINK)) {
+ hfs_savelinkorigin(VTOC(vp), cndesc.cd_parentcnid);
+ }
+ FREE_ZONE(cn.cn_pnbuf, cn.cn_pnlen, M_NAMEI);
+ }
cat_releasedesc(&cndesc);
+
*vpp = vp;
- if (vp && skiplock)
+ if (vp && skiplock) {
hfs_unlock(VTOC(vp));
+ }
return (error);
}
* Flush out all the files in a filesystem.
*/
static int
+#if QUOTA
hfs_flushfiles(struct mount *mp, int flags, struct proc *p)
+#else
+hfs_flushfiles(struct mount *mp, int flags, __unused struct proc *p)
+#endif /* QUOTA */
{
struct hfsmount *hfsmp;
struct vnode *skipvp = NULLVP;
+ int error;
+#if QUOTA
int quotafilecnt;
int i;
- int error;
+#endif
hfsmp = VFSTOHFS(mp);
}
/* Obtain the root vnode so we can skip over it. */
- skipvp = hfs_chash_getvnode(hfsmp->hfs_raw_dev, kHFSRootFolderID, 0, 0);
+ skipvp = hfs_chash_getvnode(hfsmp, kHFSRootFolderID, 0, 0);
}
#endif /* QUOTA */
#define kIndexMacUkrainian 48 /* MacUkrainian encoding is 152 */
#define kIndexMacFarsi 49 /* MacFarsi encoding is 140 */
- UInt32 index;
+ u_int32_t index;
switch (encoding) {
case kTextEncodingMacUkrainian:
break;
}
- if (index < 64) {
+ if (index < 64 && (hfsmp->encodingsBitmap & (u_int64_t)(1ULL << index)) == 0) {
HFS_MOUNT_LOCK(hfsmp, TRUE)
hfsmp->encodingsBitmap |= (u_int64_t)(1ULL << index);
- hfsmp->vcbFlags |= 0xFF00;
+ MarkVCBDirty(hfsmp);
HFS_MOUNT_UNLOCK(hfsmp, TRUE);
}
}
lck_mtx_lock(&hfsmp->hfs_mutex);
- hfsmp->vcbFlags |= 0xFF00;
+ MarkVCBDirty(hfsmp);
hfsmp->hfs_mtime = tv.tv_sec;
switch (op) {
int sectorsize;
ByteCount namelen;
- sectorsize = hfsmp->hfs_phys_block_size;
+ sectorsize = hfsmp->hfs_logical_block_size;
retval = (int)buf_bread(hfsmp->hfs_devvp, (daddr64_t)HFS_PRI_SECTOR(sectorsize), sectorsize, NOCRED, &bp);
if (retval) {
if (bp)
mdb->drNxtCNID = SWAP_BE32 (vcb->vcbNxtCNID);
mdb->drFreeBks = SWAP_BE16 (vcb->freeBlocks);
- namelen = strlen(vcb->vcbVN);
+ namelen = strlen((char *)vcb->vcbVN);
retval = utf8_to_hfs(vcb, namelen, vcb->vcbVN, mdb->drVN);
/* Retry with MacRoman in case that's how it was exported. */
if (retval)
{
ExtendedVCB *vcb = HFSTOVCB(hfsmp);
struct filefork *fp;
- HFSPlusVolumeHeader *volumeHeader;
+ HFSPlusVolumeHeader *volumeHeader, *altVH;
int retval;
- struct buf *bp;
+ struct buf *bp, *alt_bp;
int i;
- int sectorsize;
daddr64_t priIDSector;
- int critical = 0;
+ int critical;
u_int16_t signature;
u_int16_t hfsversion;
if (hfsmp->hfs_flags & HFS_READ_ONLY) {
return(0);
}
- if (vcb->vcbSigWord == kHFSSigWord)
+ if (hfsmp->hfs_flags & HFS_STANDARD) {
return hfs_flushMDB(hfsmp, waitfor, altflush);
-
- if (altflush)
- critical = 1;
- sectorsize = hfsmp->hfs_phys_block_size;
- priIDSector = (daddr64_t)((vcb->hfsPlusIOPosOffset / sectorsize) +
- HFS_PRI_SECTOR(sectorsize));
+ }
+ critical = altflush;
+ priIDSector = (daddr64_t)((vcb->hfsPlusIOPosOffset / hfsmp->hfs_logical_block_size) +
+ HFS_PRI_SECTOR(hfsmp->hfs_logical_block_size));
if (hfs_start_transaction(hfsmp) != 0) {
return EINVAL;
}
- retval = (int)buf_meta_bread(hfsmp->hfs_devvp, priIDSector, sectorsize, NOCRED, &bp);
- if (retval) {
- if (bp)
- buf_brelse(bp);
-
- hfs_end_transaction(hfsmp);
-
- printf("HFS: err %d reading VH blk (%s)\n", retval, vcb->vcbVN);
- return (retval);
- }
+ bp = NULL;
+ alt_bp = NULL;
- if (hfsmp->jnl) {
- journal_modify_block_start(hfsmp->jnl, bp);
+ retval = (int)buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(priIDSector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
+ if (retval) {
+ printf("hfs: err %d reading VH blk (%s)\n", retval, vcb->vcbVN);
+ goto err_exit;
}
- volumeHeader = (HFSPlusVolumeHeader *)((char *)buf_dataptr(bp) + HFS_PRI_OFFSET(sectorsize));
+ volumeHeader = (HFSPlusVolumeHeader *)((char *)buf_dataptr(bp) +
+ HFS_PRI_OFFSET(hfsmp->hfs_physical_block_size));
/*
- * Sanity check what we just read.
+ * Sanity check what we just read. If it's bad, try the alternate
+ * instead.
*/
signature = SWAP_BE16 (volumeHeader->signature);
hfsversion = SWAP_BE16 (volumeHeader->version);
if ((signature != kHFSPlusSigWord && signature != kHFSXSigWord) ||
(hfsversion < kHFSPlusVersion) || (hfsversion > 100) ||
(SWAP_BE32 (volumeHeader->blockSize) != vcb->blockSize)) {
-#if 1
- panic("HFS: corrupt VH on %s, sig 0x%04x, ver %d, blksize %d",
+ printf("hfs: corrupt VH on %s, sig 0x%04x, ver %d, blksize %d%s\n",
vcb->vcbVN, signature, hfsversion,
- SWAP_BE32 (volumeHeader->blockSize));
-#endif
- printf("HFS: corrupt VH blk (%s)\n", vcb->vcbVN);
- buf_brelse(bp);
- return (EIO);
+ SWAP_BE32 (volumeHeader->blockSize),
+ hfsmp->hfs_alt_id_sector ? "; trying alternate" : "");
+ hfs_mark_volume_inconsistent(hfsmp);
+
+ if (hfsmp->hfs_alt_id_sector) {
+ retval = buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(hfsmp->hfs_alt_id_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &alt_bp);
+ if (retval) {
+ printf("hfs: err %d reading alternate VH (%s)\n", retval, vcb->vcbVN);
+ goto err_exit;
+ }
+
+ altVH = (HFSPlusVolumeHeader *)((char *)buf_dataptr(alt_bp) +
+ HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size));
+ signature = SWAP_BE16(altVH->signature);
+ hfsversion = SWAP_BE16(altVH->version);
+
+ if ((signature != kHFSPlusSigWord && signature != kHFSXSigWord) ||
+ (hfsversion < kHFSPlusVersion) || (kHFSPlusVersion > 100) ||
+ (SWAP_BE32(altVH->blockSize) != vcb->blockSize)) {
+ printf("hfs: corrupt alternate VH on %s, sig 0x%04x, ver %d, blksize %d\n",
+ vcb->vcbVN, signature, hfsversion,
+ SWAP_BE32(altVH->blockSize));
+ retval = EIO;
+ goto err_exit;
+ }
+
+ /* The alternate is plausible, so use it. */
+ bcopy(altVH, volumeHeader, kMDBSize);
+ buf_brelse(alt_bp);
+ alt_bp = NULL;
+ } else {
+ /* No alternate VH, nothing more we can do. */
+ retval = EIO;
+ goto err_exit;
+ }
+ }
+
+ if (hfsmp->jnl) {
+ journal_modify_block_start(hfsmp->jnl, bp);
}
/*
struct buf *bp2;
HFSMasterDirectoryBlock *mdb;
- retval = (int)buf_meta_bread(hfsmp->hfs_devvp, (daddr64_t)HFS_PRI_SECTOR(sectorsize),
- sectorsize, NOCRED, &bp2);
+ retval = (int)buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(HFS_PRI_SECTOR(hfsmp->hfs_logical_block_size), hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp2);
if (retval) {
if (bp2)
buf_brelse(bp2);
retval = 0;
} else {
mdb = (HFSMasterDirectoryBlock *)(buf_dataptr(bp2) +
- HFS_PRI_OFFSET(sectorsize));
+ HFS_PRI_OFFSET(hfsmp->hfs_physical_block_size));
if ( SWAP_BE32 (mdb->drCrDate) != vcb->localCreateDate )
{
mdb->drCrDate = SWAP_BE32 (vcb->localCreateDate); /* pick up the new create date */
if (hfsmp->jnl) {
- journal_modify_block_end(hfsmp->jnl, bp2);
+ journal_modify_block_end(hfsmp->jnl, bp2, NULL, NULL);
} else {
(void) VNOP_BWRITE(bp2); /* write out the changes */
}
}
}
- if (1 /* hfsmp->jnl == 0 */) {
- lck_mtx_lock(&hfsmp->hfs_mutex);
- }
+ lck_mtx_lock(&hfsmp->hfs_mutex);
/* Note: only update the lower 16 bits worth of attributes */
volumeHeader->attributes = SWAP_BE32 (vcb->vcbAtrb);
critical = 1;
}
+ /*
+ * System files are only dirty when altflush is set.
+ */
+ if (altflush == 0) {
+ goto done;
+ }
+
/* Sync Extents over-flow file meta data */
fp = VTOF(vcb->extentsRefNum);
if (FTOC(fp)->c_flag & C_MODIFIED) {
volumeHeader->attributesFile.clumpSize = SWAP_BE32 (fp->ff_clumpsize);
}
- vcb->vcbFlags &= 0x00FF;
-
- if (1 /* hfsmp->jnl == 0 */) {
- lck_mtx_unlock(&hfsmp->hfs_mutex);
+ /* Sync Startup file meta data */
+ if (hfsmp->hfs_startup_vp) {
+ fp = VTOF(hfsmp->hfs_startup_vp);
+ if (FTOC(fp)->c_flag & C_MODIFIED) {
+ for (i = 0; i < kHFSPlusExtentDensity; i++) {
+ volumeHeader->startupFile.extents[i].startBlock =
+ SWAP_BE32 (fp->ff_extents[i].startBlock);
+ volumeHeader->startupFile.extents[i].blockCount =
+ SWAP_BE32 (fp->ff_extents[i].blockCount);
+ }
+ volumeHeader->startupFile.logicalSize = SWAP_BE64 (fp->ff_size);
+ volumeHeader->startupFile.totalBlocks = SWAP_BE32 (fp->ff_blocks);
+ volumeHeader->startupFile.clumpSize = SWAP_BE32 (fp->ff_clumpsize);
+ FTOC(fp)->c_flag &= ~C_MODIFIED;
+ }
}
+done:
+ MarkVCBClean(hfsmp);
+ lck_mtx_unlock(&hfsmp->hfs_mutex);
+
/* If requested, flush out the alternate volume header */
if (altflush && hfsmp->hfs_alt_id_sector) {
- struct buf *alt_bp = NULL;
-
- if (buf_meta_bread(hfsmp->hfs_devvp, hfsmp->hfs_alt_id_sector, sectorsize, NOCRED, &alt_bp) == 0) {
+ if (buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(hfsmp->hfs_alt_id_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &alt_bp) == 0) {
if (hfsmp->jnl) {
journal_modify_block_start(hfsmp->jnl, alt_bp);
}
- bcopy(volumeHeader, (char *)buf_dataptr(alt_bp) + HFS_ALT_OFFSET(sectorsize), kMDBSize);
+ bcopy(volumeHeader, (char *)buf_dataptr(alt_bp) +
+ HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size),
+ kMDBSize);
if (hfsmp->jnl) {
- journal_modify_block_end(hfsmp->jnl, alt_bp);
+ journal_modify_block_end(hfsmp->jnl, alt_bp, NULL, NULL);
} else {
(void) VNOP_BWRITE(alt_bp);
}
}
if (hfsmp->jnl) {
- journal_modify_block_end(hfsmp->jnl, bp);
+ journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL);
} else {
if (waitfor != MNT_WAIT)
buf_bawrite(bp);
hfs_end_transaction(hfsmp);
return (retval);
+
+err_exit:
+ if (alt_bp)
+ buf_brelse(alt_bp);
+ if (bp)
+ buf_brelse(bp);
+ hfs_end_transaction(hfsmp);
+ return retval;
}
u_int32_t addblks;
u_int64_t sectorcnt;
u_int32_t sectorsize;
+ u_int32_t phys_sectorsize;
daddr64_t prev_alt_sector;
daddr_t bitmapblks;
- int lockflags;
+ int lockflags = 0;
int error;
-
+ int64_t oldBitmapSize;
+ Boolean usedExtendFileC = false;
+ int transaction_begun = 0;
+
devvp = hfsmp->hfs_devvp;
vcb = HFSTOVCB(hfsmp);
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)§orsize, 0, context)) {
return (ENXIO);
}
- if (sectorsize != hfsmp->hfs_phys_block_size) {
+ if (sectorsize != hfsmp->hfs_logical_block_size) {
return (ENXIO);
}
if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)§orcnt, 0, context)) {
printf("hfs_extendfs: not enough space on device\n");
return (ENOSPC);
}
+ error = VNOP_IOCTL(devvp, DKIOCGETPHYSICALBLOCKSIZE, (caddr_t)&phys_sectorsize, 0, context);
+ if (error) {
+ if ((error != ENOTSUP) && (error != ENOTTY)) {
+ return (ENXIO);
+ }
+ /* If ioctl is not supported, force physical and logical sector size to be same */
+ phys_sectorsize = sectorsize;
+ }
oldsize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize;
/*
* Validate new size.
*/
- if ((newsize <= oldsize) || (newsize % sectorsize)) {
+ if ((newsize <= oldsize) || (newsize % sectorsize) || (newsize % phys_sectorsize)) {
printf("hfs_extendfs: invalid size\n");
return (EINVAL);
}
addblks = newblkcnt - vcb->totalBlocks;
printf("hfs_extendfs: growing %s by %d blocks\n", vcb->vcbVN, addblks);
+
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) {
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ error = EALREADY;
+ goto out;
+ }
+ hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+
+ /* Invalidate the current free extent cache */
+ invalidate_free_extent_cache(hfsmp);
+
/*
* Enclose changes inside a transaction.
*/
if (hfs_start_transaction(hfsmp) != 0) {
- return (EINVAL);
+ error = EINVAL;
+ goto out;
}
+ transaction_begun = 1;
- lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+ /*
+ * Note: we take the attributes lock in case we have an attribute data vnode
+ * which needs to change size.
+ */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
vp = vcb->allocationsRefNum;
fp = VTOF(vp);
bcopy(&fp->ff_data, &forkdata, sizeof(forkdata));
/*
* Calculate additional space required (if any) by allocation bitmap.
*/
- bitmapblks = roundup(newblkcnt / 8, vcb->vcbVBMIOSize) / vcb->blockSize;
+ oldBitmapSize = fp->ff_size;
+ bitmapblks = roundup((newblkcnt+7) / 8, vcb->vcbVBMIOSize) / vcb->blockSize;
if (bitmapblks > (daddr_t)fp->ff_blocks)
bitmapblks -= fp->ff_blocks;
else
if (bitmapblks > 0) {
daddr64_t blkno;
daddr_t blkcnt;
+ off_t bytesAdded;
/*
- * Add a new extent to the allocation bitmap file.
+ * Get the bitmap's current size (in allocation blocks) so we know
+ * where to start zero filling once the new space is added. We've
+ * got to do this before the bitmap is grown.
*/
- error = AddFileExtent(vcb, fp, vcb->totalBlocks, bitmapblks);
- if (error) {
- printf("hfs_extendfs: error %d adding extents\n", error);
- goto out;
- }
- blkcnt = bitmapblks;
blkno = (daddr64_t)fp->ff_blocks;
- fp->ff_blocks += bitmapblks;
+
+ /*
+ * Try to grow the allocation file in the normal way, using allocation
+ * blocks already existing in the file system. This way, we might be
+ * able to grow the bitmap contiguously, or at least in the metadata
+ * zone.
+ */
+ error = ExtendFileC(vcb, fp, bitmapblks * vcb->blockSize, 0,
+ kEFAllMask | kEFNoClumpMask | kEFReserveMask | kEFMetadataMask,
+ &bytesAdded);
+
+ if (error == 0) {
+ usedExtendFileC = true;
+ } else {
+ /*
+ * If the above allocation failed, fall back to allocating the new
+ * extent of the bitmap from the space we're going to add. Since those
+ * blocks don't yet belong to the file system, we have to update the
+ * extent list directly, and manually adjust the file size.
+ */
+ bytesAdded = 0;
+ error = AddFileExtent(vcb, fp, vcb->totalBlocks, bitmapblks);
+ if (error) {
+ printf("hfs_extendfs: error %d adding extents\n", error);
+ goto out;
+ }
+ fp->ff_blocks += bitmapblks;
+ VTOC(vp)->c_blocks = fp->ff_blocks;
+ VTOC(vp)->c_flag |= C_MODIFIED;
+ }
+
+ /*
+ * Update the allocation file's size to include the newly allocated
+ * blocks. Note that ExtendFileC doesn't do this, which is why this
+ * statement is outside the above "if" statement.
+ */
fp->ff_size += (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
- VTOC(vp)->c_blocks = fp->ff_blocks;
+
/*
* Zero out the new bitmap blocks.
*/
{
bp = NULL;
+ blkcnt = bitmapblks;
while (blkcnt > 0) {
error = (int)buf_meta_bread(vp, blkno, vcb->blockSize, NOCRED, &bp);
if (error) {
}
/*
* Mark the new bitmap space as allocated.
+ *
+ * Note that ExtendFileC will have marked any blocks it allocated, so
+ * this is only needed if we used AddFileExtent. Also note that this
+ * has to come *after* the zero filling of new blocks in the case where
+ * we used AddFileExtent (since the part of the bitmap we're touching
+ * is in those newly allocated blocks).
*/
- error = BlockMarkAllocated(vcb, vcb->totalBlocks, bitmapblks);
- if (error) {
- printf("hfs_extendfs: error %d setting bitmap\n", error);
- goto out;
+ if (!usedExtendFileC) {
+ error = BlockMarkAllocated(vcb, vcb->totalBlocks, bitmapblks);
+ if (error) {
+ printf("hfs_extendfs: error %d setting bitmap\n", error);
+ goto out;
+ }
+ vcb->freeBlocks -= bitmapblks;
}
}
/*
/*
* Adjust file system variables for new space.
*/
- prev_phys_block_count = hfsmp->hfs_phys_block_count;
+ prev_phys_block_count = hfsmp->hfs_logical_block_count;
prev_alt_sector = hfsmp->hfs_alt_id_sector;
vcb->totalBlocks += addblks;
- vcb->freeBlocks += addblks - bitmapblks;
- hfsmp->hfs_phys_block_count = newsize / sectorsize;
+ vcb->freeBlocks += addblks;
+ hfsmp->hfs_logical_block_count = newsize / sectorsize;
hfsmp->hfs_alt_id_sector = (hfsmp->hfsPlusIOPosOffset / sectorsize) +
- HFS_ALT_SECTOR(sectorsize, hfsmp->hfs_phys_block_count);
+ HFS_ALT_SECTOR(sectorsize, hfsmp->hfs_logical_block_count);
MarkVCBDirty(vcb);
error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
if (error) {
/*
* Restore to old state.
*/
- fp->ff_size -= (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
+ if (usedExtendFileC) {
+ (void) TruncateFileC(vcb, fp, oldBitmapSize, false);
+ } else {
+ fp->ff_blocks -= bitmapblks;
+ fp->ff_size -= (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
+ /*
+ * No need to mark the excess blocks free since those bitmap blocks
+ * are no longer part of the bitmap. But we do need to undo the
+ * effect of the "vcb->freeBlocks -= bitmapblks" above.
+ */
+ vcb->freeBlocks += bitmapblks;
+ }
vcb->totalBlocks -= addblks;
- vcb->freeBlocks -= addblks - bitmapblks;
- hfsmp->hfs_phys_block_count = prev_phys_block_count;
+ vcb->freeBlocks -= addblks;
+ hfsmp->hfs_logical_block_count = prev_phys_block_count;
hfsmp->hfs_alt_id_sector = prev_alt_sector;
MarkVCBDirty(vcb);
if (vcb->blockSize == 512)
*/
bp = NULL;
if (prev_alt_sector) {
- if (buf_meta_bread(hfsmp->hfs_devvp, prev_alt_sector, sectorsize,
- NOCRED, &bp) == 0) {
+ if (buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(prev_alt_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp) == 0) {
journal_modify_block_start(hfsmp->jnl, bp);
- bzero((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(sectorsize), kMDBSize);
+ bzero((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size), kMDBSize);
- journal_modify_block_end(hfsmp->jnl, bp);
+ journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL);
} else if (bp) {
buf_brelse(bp);
}
}
+
+ /*
+ * Update the metadata zone size based on current volume size
+ */
+ hfs_metadatazone_init(hfsmp);
+
+ /*
+ * Adjust the size of hfsmp->hfs_attrdata_vp
+ */
+ if (hfsmp->hfs_attrdata_vp) {
+ struct cnode *attr_cp;
+ struct filefork *attr_fp;
+
+ if (vnode_get(hfsmp->hfs_attrdata_vp) == 0) {
+ attr_cp = VTOC(hfsmp->hfs_attrdata_vp);
+ attr_fp = VTOF(hfsmp->hfs_attrdata_vp);
+
+ attr_cp->c_blocks = newblkcnt;
+ attr_fp->ff_blocks = newblkcnt;
+ attr_fp->ff_extents[0].blockCount = newblkcnt;
+ attr_fp->ff_size = (off_t) newblkcnt * hfsmp->blockSize;
+ ubc_setsize(hfsmp->hfs_attrdata_vp, attr_fp->ff_size);
+ vnode_put(hfsmp->hfs_attrdata_vp);
+ }
+ }
+
out:
if (error && fp) {
/* Restore allocation fork. */
VTOC(vp)->c_blocks = fp->ff_blocks;
}
- hfs_systemfile_unlock(hfsmp, lockflags);
- hfs_end_transaction(hfsmp);
+ /*
+ Regardless of whether or not the totalblocks actually increased,
+ we should reset the allocLimit field. If it changed, it will
+ get updated; if not, it will remain the same.
+ */
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
+ hfsmp->allocLimit = vcb->totalBlocks;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ if (lockflags) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ }
+ if (transaction_begun) {
+ hfs_end_transaction(hfsmp);
+ }
return (error);
}
*/
__private_extern__
int
-hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, __unused vfs_context_t context)
+hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context)
{
struct buf *bp = NULL;
u_int64_t oldsize;
u_int32_t newblkcnt;
- u_int32_t reclaimblks;
+ u_int32_t reclaimblks = 0;
int lockflags = 0;
int transaction_begun = 0;
+ Boolean updateFreeBlocks = false;
int error;
-
- lck_mtx_lock(&hfsmp->hfs_mutex);
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) {
- lck_mtx_unlock(&hfsmp->hfs_mutex);
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
return (EALREADY);
}
hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS;
hfsmp->hfs_resize_filesmoved = 0;
hfsmp->hfs_resize_totalfiles = 0;
- lck_mtx_unlock(&hfsmp->hfs_mutex);
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
/*
* - Journaled HFS Plus volumes only.
newblkcnt = newsize / hfsmp->blockSize;
reclaimblks = hfsmp->totalBlocks - newblkcnt;
+ if (hfs_resize_debug) {
+ printf ("hfs_truncatefs: old: size=%qu, blkcnt=%u, freeblks=%u\n", oldsize, hfsmp->totalBlocks, hfs_freeblks(hfsmp, 1));
+ printf ("hfs_truncatefs: new: size=%qu, blkcnt=%u, reclaimblks=%u\n", newsize, newblkcnt, reclaimblks);
+ }
+
/* Make sure new size is valid. */
if ((newsize < HFS_MIN_SIZE) ||
(newsize >= oldsize) ||
- (newsize % hfsmp->hfs_phys_block_size)) {
+ (newsize % hfsmp->hfs_logical_block_size) ||
+ (newsize % hfsmp->hfs_physical_block_size)) {
+ printf ("hfs_truncatefs: invalid size (newsize=%qu, oldsize=%qu)\n", newsize, oldsize);
error = EINVAL;
goto out;
}
- /* Make sure there's enough space to work with. */
+ /* Make sure that the file system has enough free blocks reclaim */
if (reclaimblks >= hfs_freeblks(hfsmp, 1)) {
+ printf("hfs_truncatefs: insufficient space (need %u blocks; have %u free blocks)\n", reclaimblks, hfs_freeblks(hfsmp, 1));
error = ENOSPC;
goto out;
}
+
+ /* Invalidate the current free extent cache */
+ invalidate_free_extent_cache(hfsmp);
+
/* Start with a clean journal. */
- journal_flush(hfsmp->jnl);
-
+ hfs_journal_flush(hfsmp);
+
if (hfs_start_transaction(hfsmp) != 0) {
error = EINVAL;
goto out;
transaction_begun = 1;
/*
- * Look for files that have blocks beyond newblkcnt.
+ * Prevent new allocations from using the part we're trying to truncate.
+ *
+ * NOTE: allocLimit is set to the allocation block number where the new
+ * alternate volume header will be. That way there will be no files to
+ * interfere with allocating the new alternate volume header, and no files
+ * in the allocation blocks beyond (i.e. the blocks we're trying to
+ * truncate away.
+ */
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if (hfsmp->blockSize == 512)
+ hfsmp->allocLimit = newblkcnt - 2;
+ else
+ hfsmp->allocLimit = newblkcnt - 1;
+ /*
+ * Update the volume free block count to reflect the total number
+ * of free blocks that will exist after a successful resize.
+ * Relocation of extents will result in no net change in the total
+ * free space on the disk. Therefore the code that allocates
+ * space for new extent and deallocates the old extent explicitly
+ * prevents updating the volume free block count. It will also
+ * prevent false disk full error when the number of blocks in
+ * an extent being relocated is more than the free blocks that
+ * will exist after the volume is resized.
+ */
+ hfsmp->freeBlocks -= reclaimblks;
+ updateFreeBlocks = true;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+
+ /*
+ * Update the metadata zone size, and, if required, disable it
+ */
+ hfs_metadatazone_init(hfsmp);
+
+ /*
+ * Look for files that have blocks at or beyond the location of the
+ * new alternate volume header
*/
- if (hfs_isallocated(hfsmp, newblkcnt, reclaimblks - 1)) {
+ if (hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks)) {
/*
* hfs_reclaimspace will use separate transactions when
* relocating files (so we don't overwhelm the journal).
transaction_begun = 0;
/* Attempt to reclaim some space. */
- if (hfs_reclaimspace(hfsmp, newblkcnt, reclaimblks) != 0) {
- printf("hfs_truncatefs: couldn't reclaim space on %s\n", hfsmp->vcbVN);
+ error = hfs_reclaimspace(hfsmp, hfsmp->allocLimit, reclaimblks, context);
+ if (error != 0) {
+ printf("hfs_truncatefs: couldn't reclaim space on %s (error=%d)\n", hfsmp->vcbVN, error);
error = ENOSPC;
goto out;
}
transaction_begun = 1;
/* Check if we're clear now. */
- if (hfs_isallocated(hfsmp, newblkcnt, reclaimblks - 1)) {
- printf("hfs_truncatefs: didn't reclaim enough space on %s\n", hfsmp->vcbVN);
+ error = hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks);
+ if (error != 0) {
+ printf("hfs_truncatefs: didn't reclaim enough space on %s (error=%d)\n", hfsmp->vcbVN, error);
error = EAGAIN; /* tell client to try again */
goto out;
}
}
- lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ /*
+ * Note: we take the attributes lock in case we have an attribute data vnode
+ * which needs to change size.
+ */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
/*
* Mark the old alternate volume header as free.
* We don't bother shrinking allocation bitmap file.
*/
- if (hfsmp->blockSize == 512)
+ if (hfsmp->blockSize == 512)
(void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 2, 2);
else
(void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 1, 1);
/*
- * Allocate last block for alternate volume header.
+ * Allocate last 1KB for alternate volume header.
*/
- if (hfsmp->blockSize == 512)
- error = BlockMarkAllocated(hfsmp, newblkcnt - 2, 2);
- else
- error = BlockMarkAllocated(hfsmp, newblkcnt - 1, 1);
-
+ error = BlockMarkAllocated(hfsmp, hfsmp->allocLimit, (hfsmp->blockSize == 512) ? 2 : 1);
if (error) {
+ printf("hfs_truncatefs: Error %d allocating new alternate volume header\n", error);
goto out;
}
/*
* Invalidate the existing alternate volume header.
*
- * Don't do this as a transaction (don't call journal_modify_block)
+ * Don't include this in a transaction (don't call journal_modify_block)
* since this block will be outside of the truncated file system!
*/
if (hfsmp->hfs_alt_id_sector) {
- if (buf_meta_bread(hfsmp->hfs_devvp, hfsmp->hfs_alt_id_sector,
- hfsmp->hfs_phys_block_size, NOCRED, &bp) == 0) {
-
- bzero((void*)((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(hfsmp->hfs_phys_block_size)), kMDBSize);
+ error = buf_meta_bread(hfsmp->hfs_devvp,
+ HFS_PHYSBLK_ROUNDDOWN(hfsmp->hfs_alt_id_sector, hfsmp->hfs_log_per_phys),
+ hfsmp->hfs_physical_block_size, NOCRED, &bp);
+ if (error == 0) {
+ bzero((void*)((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size)), kMDBSize);
(void) VNOP_BWRITE(bp);
- } else if (bp) {
- buf_brelse(bp);
+ } else {
+ if (bp) {
+ buf_brelse(bp);
+ }
}
bp = NULL;
}
/*
* Adjust file system variables and flush them to disk.
*/
- hfsmp->freeBlocks -= hfsmp->totalBlocks - newblkcnt;
hfsmp->totalBlocks = newblkcnt;
- hfsmp->hfs_phys_block_count = newsize / hfsmp->hfs_phys_block_size;
- hfsmp->hfs_alt_id_sector = HFS_ALT_SECTOR(hfsmp->hfs_phys_block_size, hfsmp->hfs_phys_block_count);
+ hfsmp->hfs_logical_block_count = newsize / hfsmp->hfs_logical_block_size;
+ hfsmp->hfs_alt_id_sector = HFS_ALT_SECTOR(hfsmp->hfs_logical_block_size, hfsmp->hfs_logical_block_count);
MarkVCBDirty(hfsmp);
error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
if (error)
panic("hfs_truncatefs: unexpected error flushing volume header (%d)\n", error);
+
+ /*
+ * Adjust the size of hfsmp->hfs_attrdata_vp
+ */
+ if (hfsmp->hfs_attrdata_vp) {
+ struct cnode *cp;
+ struct filefork *fp;
+
+ if (vnode_get(hfsmp->hfs_attrdata_vp) == 0) {
+ cp = VTOC(hfsmp->hfs_attrdata_vp);
+ fp = VTOF(hfsmp->hfs_attrdata_vp);
+
+ cp->c_blocks = newblkcnt;
+ fp->ff_blocks = newblkcnt;
+ fp->ff_extents[0].blockCount = newblkcnt;
+ fp->ff_size = (off_t) newblkcnt * hfsmp->blockSize;
+ ubc_setsize(hfsmp->hfs_attrdata_vp, fp->ff_size);
+ vnode_put(hfsmp->hfs_attrdata_vp);
+ }
+ }
+
out:
+ lck_mtx_lock(&hfsmp->hfs_mutex);
+ if (error && (updateFreeBlocks == true))
+ hfsmp->freeBlocks += reclaimblks;
+ hfsmp->allocLimit = hfsmp->totalBlocks;
+ if (hfsmp->nextAllocation >= hfsmp->allocLimit)
+ hfsmp->nextAllocation = hfsmp->hfs_metazone_end + 1;
+ hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+ /* On error, reset the metadata zone for original volume size */
+ if (error && (updateFreeBlocks == true)) {
+ hfs_metadatazone_init(hfsmp);
+ }
+
if (lockflags) {
hfs_systemfile_unlock(hfsmp, lockflags);
}
if (transaction_begun) {
hfs_end_transaction(hfsmp);
- journal_flush(hfsmp->jnl);
+ hfs_journal_flush(hfsmp);
+ /* Just to be sure, sync all data to the disk */
+ (void) VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
}
- lck_mtx_lock(&hfsmp->hfs_mutex);
- hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
- lck_mtx_unlock(&hfsmp->hfs_mutex);
-
return (error);
}
/*
- * Reclaim space at the end of a file system.
+ * Invalidate the physical block numbers associated with buffer cache blocks
+ * in the given extent of the given vnode.
*/
+struct hfs_inval_blk_no {
+ daddr64_t sectorStart;
+ daddr64_t sectorCount;
+};
static int
-hfs_reclaimspace(struct hfsmount *hfsmp, u_long startblk, u_long reclaimblks)
+hfs_invalidate_block_numbers_callback(buf_t bp, void *args_in)
{
- struct vnode *vp = NULL;
- FCB *fcb;
- struct BTreeIterator * iterator = NULL;
- struct FSBufferDescriptor btdata;
- struct HFSPlusCatalogFile filerec;
- struct filefork *fp;
- u_int32_t saved_next_allocation;
- cnid_t * cnidbufp;
- size_t cnidbufsize;
- int filecnt = 0;
- int maxfilecnt;
- u_long block;
- u_long datablks;
- u_long rsrcblks;
- u_long blkstomove = 0;
- int lockflags;
- int i;
- int error;
- int lastprogress = 0;
+ daddr64_t blkno;
+ struct hfs_inval_blk_no *args;
+
+ blkno = buf_blkno(bp);
+ args = args_in;
+
+ if (blkno >= args->sectorStart && blkno < args->sectorStart+args->sectorCount)
+ buf_setblkno(bp, buf_lblkno(bp));
+ return BUF_RETURNED;
+}
+static void
+hfs_invalidate_sectors(struct vnode *vp, daddr64_t sectorStart, daddr64_t sectorCount)
+{
+ struct hfs_inval_blk_no args;
+ args.sectorStart = sectorStart;
+ args.sectorCount = sectorCount;
+
+ buf_iterate(vp, hfs_invalidate_block_numbers_callback, BUF_SCAN_DIRTY|BUF_SCAN_CLEAN, &args);
+}
- /* Check if Attributes file overlaps reclaim area. */
- if (hfsmp->hfs_attribute_vp) {
- fp = VTOF(hfsmp->hfs_attribute_vp);
- datablks = 0;
- for (i = 0; i < kHFSPlusExtentDensity; ++i) {
- if (fp->ff_extents[i].blockCount == 0) {
- break;
- }
- datablks += fp->ff_extents[i].blockCount;
- block = fp->ff_extents[i].startBlock + fp->ff_extents[i].blockCount;
- if (block >= startblk) {
- printf("hfs_reclaimspace: Attributes file can't move\n");
- return (EPERM);
- }
+
+/*
+ * Copy the contents of an extent to a new location. Also invalidates the
+ * physical block number of any buffer cache block in the copied extent
+ * (so that if the block is written, it will go through VNOP_BLOCKMAP to
+ * determine the new physical block number).
+ */
+static int
+hfs_copy_extent(
+ struct hfsmount *hfsmp,
+ struct vnode *vp, /* The file whose extent is being copied. */
+ u_int32_t oldStart, /* The start of the source extent. */
+ u_int32_t newStart, /* The start of the destination extent. */
+ u_int32_t blockCount, /* The number of allocation blocks to copy. */
+ vfs_context_t context)
+{
+ int err = 0;
+ size_t bufferSize;
+ void *buffer = NULL;
+ struct vfsioattr ioattr;
+ buf_t bp = NULL;
+ off_t resid;
+ size_t ioSize;
+ u_int32_t ioSizeSectors; /* Device sectors in this I/O */
+ daddr64_t srcSector, destSector;
+ u_int32_t sectorsPerBlock = hfsmp->blockSize / hfsmp->hfs_logical_block_size;
+
+ /*
+ * Sanity check that we have locked the vnode of the file we're copying.
+ *
+ * But since hfs_systemfile_lock() doesn't actually take the lock on
+ * the allocation file if a journal is active, ignore the check if the
+ * file being copied is the allocation file.
+ */
+ struct cnode *cp = VTOC(vp);
+ if (cp != hfsmp->hfs_allocation_cp && cp->c_lockowner != current_thread())
+ panic("hfs_copy_extent: vp=%p (cp=%p) not owned?\n", vp, cp);
+
+ /*
+ * Determine the I/O size to use
+ *
+ * NOTE: Many external drives will result in an ioSize of 128KB.
+ * TODO: Should we use a larger buffer, doing several consecutive
+ * reads, then several consecutive writes?
+ */
+ vfs_ioattr(hfsmp->hfs_mp, &ioattr);
+ bufferSize = MIN(ioattr.io_maxreadcnt, ioattr.io_maxwritecnt);
+ if (kmem_alloc(kernel_map, (vm_offset_t*) &buffer, bufferSize))
+ return ENOMEM;
+
+ /* Get a buffer for doing the I/O */
+ bp = buf_alloc(hfsmp->hfs_devvp);
+ buf_setdataptr(bp, (uintptr_t)buffer);
+
+ resid = (off_t) blockCount * (off_t) hfsmp->blockSize;
+ srcSector = (daddr64_t) oldStart * hfsmp->blockSize / hfsmp->hfs_logical_block_size;
+ destSector = (daddr64_t) newStart * hfsmp->blockSize / hfsmp->hfs_logical_block_size;
+ while (resid > 0) {
+ ioSize = MIN(bufferSize, (size_t) resid);
+ ioSizeSectors = ioSize / hfsmp->hfs_logical_block_size;
+
+ /* Prepare the buffer for reading */
+ buf_reset(bp, B_READ);
+ buf_setsize(bp, ioSize);
+ buf_setcount(bp, ioSize);
+ buf_setblkno(bp, srcSector);
+ buf_setlblkno(bp, srcSector);
+
+ /* Do the read */
+ err = VNOP_STRATEGY(bp);
+ if (!err)
+ err = buf_biowait(bp);
+ if (err) {
+ printf("hfs_copy_extent: Error %d from VNOP_STRATEGY (read)\n", err);
+ break;
}
- if ((i == kHFSPlusExtentDensity) && (fp->ff_blocks > datablks)) {
- if (hfs_overlapped_overflow_extents(hfsmp, startblk, datablks, kHFSAttributesFileID, 0)) {
- printf("hfs_reclaimspace: Attributes file can't move\n");
- return (EPERM);
- }
+
+ /* Prepare the buffer for writing */
+ buf_reset(bp, B_WRITE);
+ buf_setsize(bp, ioSize);
+ buf_setcount(bp, ioSize);
+ buf_setblkno(bp, destSector);
+ buf_setlblkno(bp, destSector);
+ if (vnode_issystem(vp) && journal_uses_fua(hfsmp->jnl))
+ buf_markfua(bp);
+
+ /* Do the write */
+ vnode_startwrite(hfsmp->hfs_devvp);
+ err = VNOP_STRATEGY(bp);
+ if (!err)
+ err = buf_biowait(bp);
+ if (err) {
+ printf("hfs_copy_extent: Error %d from VNOP_STRATEGY (write)\n", err);
+ break;
+ }
+
+ resid -= ioSize;
+ srcSector += ioSizeSectors;
+ destSector += ioSizeSectors;
+ }
+ if (bp)
+ buf_free(bp);
+ if (buffer)
+ kmem_free(kernel_map, (vm_offset_t)buffer, bufferSize);
+
+ /* Make sure all writes have been flushed to disk. */
+ if (vnode_issystem(vp) && !journal_uses_fua(hfsmp->jnl)) {
+ err = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
+ if (err) {
+ printf("hfs_copy_extent: DKIOCSYNCHRONIZECACHE failed (%d)\n", err);
+ err = 0; /* Don't fail the copy. */
+ }
+ }
+
+ if (!err)
+ hfs_invalidate_sectors(vp, (daddr64_t)oldStart*sectorsPerBlock, (daddr64_t)blockCount*sectorsPerBlock);
+
+ return err;
+}
+
+
+static int
+hfs_relocate_callback(__unused HFSPlusExtentKey *key, HFSPlusExtentRecord *record, HFSPlusExtentRecord *state)
+{
+ bcopy(state, record, sizeof(HFSPlusExtentRecord));
+ return 0;
+}
+
+/*
+ * Reclaim space at the end of a volume, used by a given file.
+ *
+ * This routine attempts to move any extent which contains allocation blocks
+ * at or after "startblk." A separate transaction is used to do the move.
+ * The contents of any moved extents are read and written via the volume's
+ * device vnode -- NOT via "vp." During the move, moved blocks which are part
+ * of a transaction have their physical block numbers invalidated so they will
+ * eventually be written to their new locations.
+ *
+ * Inputs:
+ * hfsmp The volume being resized.
+ * startblk Blocks >= this allocation block need to be moved.
+ * locks Which locks need to be taken for the given system file.
+ * vp The vnode for the system file.
+ *
+ * The caller of this function, hfs_reclaimspace(), grabs cnode lock
+ * for non-system files before calling this function.
+ *
+ * Outputs:
+ * blks_moved Total number of allocation blocks moved by this routine.
+ */
+static int
+hfs_reclaim_file(struct hfsmount *hfsmp, struct vnode *vp, u_long startblk, int locks, u_int32_t *blks_moved, vfs_context_t context)
+{
+ int error;
+ int lockflags;
+ int i;
+ u_long datablks;
+ u_long end_block;
+ u_int32_t oldStartBlock;
+ u_int32_t newStartBlock;
+ u_int32_t oldBlockCount;
+ u_int32_t newBlockCount;
+ struct filefork *fp;
+ struct cnode *cp;
+ int is_sysfile;
+ int took_truncate_lock = 0;
+ struct BTreeIterator *iterator = NULL;
+ u_int8_t forktype;
+ u_int32_t fileID;
+ u_int32_t alloc_flags;
+
+ /* If there is no vnode for this file, then there's nothing to do. */
+ if (vp == NULL)
+ return 0;
+
+ cp = VTOC(vp);
+ fileID = cp->c_cnid;
+ is_sysfile = vnode_issystem(vp);
+ forktype = VNODE_IS_RSRC(vp) ? 0xFF : 0;
+
+ /* Flush all the buffer cache blocks and cluster pages associated with
+ * this vnode.
+ *
+ * If the current vnode is a system vnode, all the buffer cache blocks
+ * associated with it should already be sync'ed to the disk as part of
+ * journal flush in hfs_truncatefs(). Normally there should not be
+ * buffer cache blocks for regular files, but for objects like symlinks,
+ * we can have buffer cache blocks associated with the vnode. Therefore
+ * we call buf_flushdirtyblks() always. Resource fork data for directory
+ * hard links are directly written using buffer cache for device vnode,
+ * which should also be sync'ed as part of journal flush in hfs_truncatefs().
+ *
+ * Flushing cluster pages should be the normal case for regular files,
+ * and really should not do anything for system files. But just to be
+ * sure that all blocks associated with this vnode is sync'ed to the
+ * disk, we call both buffer cache and cluster layer functions.
+ */
+ buf_flushdirtyblks(vp, MNT_NOWAIT, 0, "hfs_reclaim_file");
+
+ if (!is_sysfile) {
+ /* The caller grabs cnode lock for non-system files only, therefore
+ * we unlock only non-system files before calling cluster layer.
+ */
+ hfs_unlock(cp);
+ hfs_lock_truncate(cp, TRUE);
+ took_truncate_lock = 1;
+ }
+ (void) cluster_push(vp, 0);
+ if (!is_sysfile) {
+ error = hfs_lock(cp, HFS_FORCE_LOCK);
+ if (error) {
+ hfs_unlock_truncate(cp, TRUE);
+ return error;
+ }
+
+ /* If the file no longer exists, nothing left to do */
+ if (cp->c_flag & C_NOEXISTS) {
+ hfs_unlock_truncate(cp, TRUE);
+ return 0;
+ }
+ }
+
+ /* Wait for any in-progress writes to this vnode to complete, so that we'll
+ * be copying consistent bits. (Otherwise, it's possible that an async
+ * write will complete to the old extent after we read from it. That
+ * could lead to corruption.)
+ */
+ error = vnode_waitforwrites(vp, 0, 0, 0, "hfs_reclaim_file");
+ if (error) {
+ printf("hfs_reclaim_file: Error %d from vnode_waitforwrites\n", error);
+ return error;
+ }
+
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_file: Start relocating %sfork for fileid=%u name=%.*s\n", (forktype ? "rsrc" : "data"), fileID, cp->c_desc.cd_namelen, cp->c_desc.cd_nameptr);
+ }
+
+ /* We always need the allocation bitmap and extents B-tree */
+ locks |= SFL_BITMAP | SFL_EXTENTS;
+
+ error = hfs_start_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_file: hfs_start_transaction returned %d\n", error);
+ if (took_truncate_lock) {
+ hfs_unlock_truncate(cp, TRUE);
}
+ return error;
}
- /* Check if Catalog file overlaps reclaim area. */
- fp = VTOF(hfsmp->hfs_catalog_vp);
+ lockflags = hfs_systemfile_lock(hfsmp, locks, HFS_EXCLUSIVE_LOCK);
+ fp = VTOF(vp);
datablks = 0;
+ *blks_moved = 0;
+
+ /* Relocate non-overflow extents */
for (i = 0; i < kHFSPlusExtentDensity; ++i) {
- if (fp->ff_extents[i].blockCount == 0) {
+ if (fp->ff_extents[i].blockCount == 0)
break;
+ oldStartBlock = fp->ff_extents[i].startBlock;
+ oldBlockCount = fp->ff_extents[i].blockCount;
+ datablks += oldBlockCount;
+ end_block = oldStartBlock + oldBlockCount;
+ /* Check if the file overlaps the target space */
+ if (end_block > startblk) {
+ alloc_flags = HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS;
+ if (is_sysfile) {
+ alloc_flags |= HFS_ALLOC_METAZONE;
+ }
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, alloc_flags, &newStartBlock, &newBlockCount);
+ if (error) {
+ if (!is_sysfile && ((error == dskFulErr) || (error == ENOSPC))) {
+ /* Try allocating again using the metadata zone */
+ alloc_flags |= HFS_ALLOC_METAZONE;
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, alloc_flags, &newStartBlock, &newBlockCount);
+ }
+ if (error) {
+ printf("hfs_reclaim_file: BlockAllocate(metazone) (error=%d) for fileID=%u %u:(%u,%u)\n", error, fileID, i, oldStartBlock, oldBlockCount);
+ goto fail;
+ } else {
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_file: BlockAllocate(metazone) success for fileID=%u %u:(%u,%u)\n", fileID, i, newStartBlock, newBlockCount);
+ }
+ }
+ }
+
+ /* Copy data from old location to new location */
+ error = hfs_copy_extent(hfsmp, vp, oldStartBlock, newStartBlock, newBlockCount, context);
+ if (error) {
+ printf("hfs_reclaim_file: hfs_copy_extent error=%d for fileID=%u %u:(%u,%u) to %u:(%u,%u)\n", error, fileID, i, oldStartBlock, oldBlockCount, i, newStartBlock, newBlockCount);
+ if (BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS)) {
+ hfs_mark_volume_inconsistent(hfsmp);
+ }
+ goto fail;
+ }
+ fp->ff_extents[i].startBlock = newStartBlock;
+ cp->c_flag |= C_MODIFIED;
+ *blks_moved += newBlockCount;
+
+ /* Deallocate the old extent */
+ error = BlockDeallocate(hfsmp, oldStartBlock, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (error) {
+ printf("hfs_reclaim_file: BlockDeallocate returned %d\n", error);
+ hfs_mark_volume_inconsistent(hfsmp);
+ goto fail;
+ }
+
+ /* If this is a system file, sync the volume header on disk */
+ if (is_sysfile) {
+ error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
+ if (error) {
+ printf("hfs_reclaim_file: hfs_flushvolumeheader returned %d\n", error);
+ hfs_mark_volume_inconsistent(hfsmp);
+ goto fail;
+ }
+ }
+
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_file: Relocated %u:(%u,%u) to %u:(%u,%u)\n", i, oldStartBlock, oldBlockCount, i, newStartBlock, newBlockCount);
+ }
}
- datablks += fp->ff_extents[i].blockCount;
- block = fp->ff_extents[i].startBlock + fp->ff_extents[i].blockCount;
- if (block >= startblk) {
- printf("hfs_reclaimspace: Catalog file can't move\n");
- return (EPERM);
+ }
+
+ /* Relocate overflow extents (if any) */
+ if (i == kHFSPlusExtentDensity && fp->ff_blocks > datablks) {
+ struct FSBufferDescriptor btdata;
+ HFSPlusExtentRecord record;
+ HFSPlusExtentKey *key;
+ FCB *fcb;
+ int overflow_count = 0;
+
+ if (kmem_alloc(kernel_map, (vm_offset_t*) &iterator, sizeof(*iterator))) {
+ printf("hfs_reclaim_file: kmem_alloc failed!\n");
+ error = ENOMEM;
+ goto fail;
+ }
+
+ bzero(iterator, sizeof(*iterator));
+ key = (HFSPlusExtentKey *) &iterator->key;
+ key->keyLength = kHFSPlusExtentKeyMaximumLength;
+ key->forkType = forktype;
+ key->fileID = fileID;
+ key->startBlock = datablks;
+
+ btdata.bufferAddress = &record;
+ btdata.itemSize = sizeof(record);
+ btdata.itemCount = 1;
+
+ fcb = VTOF(hfsmp->hfs_extents_vp);
+
+ error = BTSearchRecord(fcb, iterator, &btdata, NULL, iterator);
+ while (error == 0) {
+ /* Stop when we encounter a different file or fork. */
+ if ((key->fileID != fileID) ||
+ (key->forkType != forktype)) {
+ break;
+ }
+
+ /* Just track the overflow extent record number for debugging... */
+ if (hfs_resize_debug) {
+ overflow_count++;
+ }
+
+ /*
+ * Check if the file overlaps target space.
+ */
+ for (i = 0; i < kHFSPlusExtentDensity; ++i) {
+ if (record[i].blockCount == 0) {
+ goto fail;
+ }
+ oldStartBlock = record[i].startBlock;
+ oldBlockCount = record[i].blockCount;
+ end_block = oldStartBlock + oldBlockCount;
+ if (end_block > startblk) {
+ alloc_flags = HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS;
+ if (is_sysfile) {
+ alloc_flags |= HFS_ALLOC_METAZONE;
+ }
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, alloc_flags, &newStartBlock, &newBlockCount);
+ if (error) {
+ if (!is_sysfile && ((error == dskFulErr) || (error == ENOSPC))) {
+ /* Try allocating again using the metadata zone */
+ alloc_flags |= HFS_ALLOC_METAZONE;
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, alloc_flags, &newStartBlock, &newBlockCount);
+ }
+ if (error) {
+ printf("hfs_reclaim_file: BlockAllocate(metazone) (error=%d) for fileID=%u %u:(%u,%u)\n", error, fileID, i, oldStartBlock, oldBlockCount);
+ goto fail;
+ } else {
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_file: BlockAllocate(metazone) success for fileID=%u %u:(%u,%u)\n", fileID, i, newStartBlock, newBlockCount);
+ }
+ }
+ }
+ error = hfs_copy_extent(hfsmp, vp, oldStartBlock, newStartBlock, newBlockCount, context);
+ if (error) {
+ printf("hfs_reclaim_file: hfs_copy_extent error=%d for fileID=%u (%u,%u) to (%u,%u)\n", error, fileID, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount);
+ if (BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS)) {
+ hfs_mark_volume_inconsistent(hfsmp);
+ }
+ goto fail;
+ }
+ record[i].startBlock = newStartBlock;
+ cp->c_flag |= C_MODIFIED;
+ *blks_moved += newBlockCount;
+
+ /*
+ * NOTE: To support relocating overflow extents of the
+ * allocation file, we must update the BTree record BEFORE
+ * deallocating the old extent so that BlockDeallocate will
+ * use the extent's new location to calculate physical block
+ * numbers. (This is for the case where the old extent's
+ * bitmap bits actually reside in the extent being moved.)
+ */
+ error = BTUpdateRecord(fcb, iterator, (IterateCallBackProcPtr) hfs_relocate_callback, &record);
+ if (error) {
+ printf("hfs_reclaim_file: BTUpdateRecord returned %d\n", error);
+ hfs_mark_volume_inconsistent(hfsmp);
+ goto fail;
+ }
+ error = BlockDeallocate(hfsmp, oldStartBlock, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (error) {
+ printf("hfs_reclaim_file: BlockDeallocate returned %d\n", error);
+ hfs_mark_volume_inconsistent(hfsmp);
+ goto fail;
+ }
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_file: Relocated overflow#%d %u:(%u,%u) to %u:(%u,%u)\n", overflow_count, i, oldStartBlock, oldBlockCount, i, newStartBlock, newBlockCount);
+ }
+ }
+ }
+ /* Look for more records. */
+ error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
+ if (error == btNotFound) {
+ error = 0;
+ break;
+ }
}
}
- if ((i == kHFSPlusExtentDensity) && (fp->ff_blocks > datablks)) {
- if (hfs_overlapped_overflow_extents(hfsmp, startblk, datablks, kHFSCatalogFileID, 0)) {
- printf("hfs_reclaimspace: Catalog file can't move\n");
- return (EPERM);
+
+fail:
+ if (iterator) {
+ kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
+ }
+
+ (void) hfs_systemfile_unlock(hfsmp, lockflags);
+
+ if ((*blks_moved != 0) && (is_sysfile == false)) {
+ (void) hfs_update(vp, MNT_WAIT);
+ }
+
+ (void) hfs_end_transaction(hfsmp);
+
+ if (took_truncate_lock) {
+ hfs_unlock_truncate(cp, TRUE);
+ }
+
+ if (hfs_resize_debug) {
+ printf("hfs_reclaim_file: Finished relocating %sfork for fileid=%u (error=%d)\n", (forktype ? "rsrc" : "data"), fileID, error);
+ }
+
+ return error;
+}
+
+
+/*
+ * This journal_relocate callback updates the journal info block to point
+ * at the new journal location. This write must NOT be done using the
+ * transaction. We must write the block immediately. We must also force
+ * it to get to the media so that the new journal location will be seen by
+ * the replay code before we can safely let journaled blocks be written
+ * to their normal locations.
+ *
+ * The tests for journal_uses_fua below are mildly hacky. Since the journal
+ * and the file system are both on the same device, I'm leveraging what
+ * the journal has decided about FUA.
+ */
+struct hfs_journal_relocate_args {
+ struct hfsmount *hfsmp;
+ vfs_context_t context;
+ u_int32_t newStartBlock;
+};
+
+static errno_t
+hfs_journal_relocate_callback(void *_args)
+{
+ int error;
+ struct hfs_journal_relocate_args *args = _args;
+ struct hfsmount *hfsmp = args->hfsmp;
+ buf_t bp;
+ JournalInfoBlock *jibp;
+
+ error = buf_meta_bread(hfsmp->hfs_devvp,
+ hfsmp->vcbJinfoBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
+ hfsmp->blockSize, vfs_context_ucred(args->context), &bp);
+ if (error) {
+ printf("hfs_reclaim_journal_file: failed to read JIB (%d)\n", error);
+ return error;
+ }
+ jibp = (JournalInfoBlock*) buf_dataptr(bp);
+ jibp->offset = SWAP_BE64((u_int64_t)args->newStartBlock * hfsmp->blockSize);
+ jibp->size = SWAP_BE64(hfsmp->jnl_size);
+ if (journal_uses_fua(hfsmp->jnl))
+ buf_markfua(bp);
+ error = buf_bwrite(bp);
+ if (error) {
+ printf("hfs_reclaim_journal_file: failed to write JIB (%d)\n", error);
+ return error;
+ }
+ if (!journal_uses_fua(hfsmp->jnl)) {
+ error = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, args->context);
+ if (error) {
+ printf("hfs_reclaim_journal_file: DKIOCSYNCHRONIZECACHE failed (%d)\n", error);
+ error = 0; /* Don't fail the operation. */
}
}
+ return error;
+}
+
+
+static int
+hfs_reclaim_journal_file(struct hfsmount *hfsmp, vfs_context_t context)
+{
+ int error;
+ int lockflags;
+ u_int32_t oldStartBlock;
+ u_int32_t newStartBlock;
+ u_int32_t oldBlockCount;
+ u_int32_t newBlockCount;
+ struct cat_desc journal_desc;
+ struct cat_attr journal_attr;
+ struct cat_fork journal_fork;
+ struct hfs_journal_relocate_args callback_args;
+
+ error = hfs_start_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_file: hfs_start_transaction returned %d\n", error);
+ return error;
+ }
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ oldBlockCount = hfsmp->jnl_size / hfsmp->blockSize;
+
+ /* TODO: Allow the journal to change size based on the new volume size. */
+ error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
+ HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS,
+ &newStartBlock, &newBlockCount);
+ if (error) {
+ printf("hfs_reclaim_journal_file: BlockAllocate returned %d\n", error);
+ goto fail;
+ }
+ if (newBlockCount != oldBlockCount) {
+ printf("hfs_reclaim_journal_file: newBlockCount != oldBlockCount (%u, %u)\n", newBlockCount, oldBlockCount);
+ goto free_fail;
+ }
+
+ error = BlockDeallocate(hfsmp, hfsmp->jnl_start, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+ if (error) {
+ printf("hfs_reclaim_journal_file: BlockDeallocate returned %d\n", error);
+ goto free_fail;
+ }
+
+ /* Update the catalog record for .journal */
+ error = cat_idlookup(hfsmp, hfsmp->hfs_jnlfileid, 1, &journal_desc, &journal_attr, &journal_fork);
+ if (error) {
+ printf("hfs_reclaim_journal_file: cat_idlookup returned %d\n", error);
+ goto free_fail;
+ }
+ oldStartBlock = journal_fork.cf_extents[0].startBlock;
+ journal_fork.cf_size = newBlockCount * hfsmp->blockSize;
+ journal_fork.cf_extents[0].startBlock = newStartBlock;
+ journal_fork.cf_extents[0].blockCount = newBlockCount;
+ journal_fork.cf_blocks = newBlockCount;
+ error = cat_update(hfsmp, &journal_desc, &journal_attr, &journal_fork, NULL);
+ cat_releasedesc(&journal_desc); /* all done with cat descriptor */
+ if (error) {
+ printf("hfs_reclaim_journal_file: cat_update returned %d\n", error);
+ goto free_fail;
+ }
+ callback_args.hfsmp = hfsmp;
+ callback_args.context = context;
+ callback_args.newStartBlock = newStartBlock;
+
+ error = journal_relocate(hfsmp->jnl, (off_t)newStartBlock*hfsmp->blockSize,
+ (off_t)newBlockCount*hfsmp->blockSize, 0,
+ hfs_journal_relocate_callback, &callback_args);
+ if (error) {
+ /* NOTE: journal_relocate will mark the journal invalid. */
+ printf("hfs_reclaim_journal_file: journal_relocate returned %d\n", error);
+ goto fail;
+ }
+ hfsmp->jnl_start = newStartBlock;
+ hfsmp->jnl_size = (off_t)newBlockCount * hfsmp->blockSize;
+
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ error = hfs_end_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_file: hfs_end_transaction returned %d\n", error);
+ }
+
+ if (!error && hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_file: Successfully relocated journal from (%u,%u) to (%u,%u)\n", oldStartBlock, oldBlockCount, newStartBlock, newBlockCount);
+ }
+ return error;
+
+free_fail:
+ (void) BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS);
+fail:
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ (void) hfs_end_transaction(hfsmp);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_file: Error relocating journal file (error=%d)\n", error);
+ }
+ return error;
+}
+
+
+/*
+ * Move the journal info block to a new location. We have to make sure the
+ * new copy of the journal info block gets to the media first, then change
+ * the field in the volume header and the catalog record.
+ */
+static int
+hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, vfs_context_t context)
+{
+ int error;
+ int lockflags;
+ u_int32_t oldBlock;
+ u_int32_t newBlock;
+ u_int32_t blockCount;
+ struct cat_desc jib_desc;
+ struct cat_attr jib_attr;
+ struct cat_fork jib_fork;
+ buf_t old_bp, new_bp;
+
+ error = hfs_start_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: hfs_start_transaction returned %d\n", error);
+ return error;
+ }
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ error = BlockAllocate(hfsmp, 1, 1, 1,
+ HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS,
+ &newBlock, &blockCount);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: BlockAllocate returned %d\n", error);
+ goto fail;
+ }
+ if (blockCount != 1) {
+ printf("hfs_reclaim_journal_info_block: blockCount != 1 (%u)\n", blockCount);
+ goto free_fail;
+ }
+ error = BlockDeallocate(hfsmp, hfsmp->vcbJinfoBlock, 1, HFS_ALLOC_SKIPFREEBLKS);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error);
+ goto free_fail;
+ }
+
+ /* Copy the old journal info block content to the new location */
+ error = buf_meta_bread(hfsmp->hfs_devvp,
+ hfsmp->vcbJinfoBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
+ hfsmp->blockSize, vfs_context_ucred(context), &old_bp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: failed to read JIB (%d)\n", error);
+ goto free_fail;
+ }
+ new_bp = buf_getblk(hfsmp->hfs_devvp,
+ newBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
+ hfsmp->blockSize, 0, 0, BLK_META);
+ bcopy((char*)buf_dataptr(old_bp), (char*)buf_dataptr(new_bp), hfsmp->blockSize);
+ buf_brelse(old_bp);
+ if (journal_uses_fua(hfsmp->jnl))
+ buf_markfua(new_bp);
+ error = buf_bwrite(new_bp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: failed to write new JIB (%d)\n", error);
+ goto free_fail;
+ }
+ if (!journal_uses_fua(hfsmp->jnl)) {
+ error = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: DKIOCSYNCHRONIZECACHE failed (%d)\n", error);
+ /* Don't fail the operation. */
+ }
+ }
+
+ /* Update the catalog record for .journal_info_block */
+ error = cat_idlookup(hfsmp, hfsmp->hfs_jnlinfoblkid, 1, &jib_desc, &jib_attr, &jib_fork);
+ if (error) {
+ printf("hfs_reclaim_journal_file: cat_idlookup returned %d\n", error);
+ goto fail;
+ }
+ oldBlock = jib_fork.cf_extents[0].startBlock;
+ jib_fork.cf_size = hfsmp->blockSize;
+ jib_fork.cf_extents[0].startBlock = newBlock;
+ jib_fork.cf_extents[0].blockCount = 1;
+ jib_fork.cf_blocks = 1;
+ error = cat_update(hfsmp, &jib_desc, &jib_attr, &jib_fork, NULL);
+ cat_releasedesc(&jib_desc); /* all done with cat descriptor */
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: cat_update returned %d\n", error);
+ goto fail;
+ }
+
+ /* Update the pointer to the journal info block in the volume header. */
+ hfsmp->vcbJinfoBlock = newBlock;
+ error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: hfs_flushvolumeheader returned %d\n", error);
+ goto fail;
+ }
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ error = hfs_end_transaction(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: hfs_end_transaction returned %d\n", error);
+ }
+ error = hfs_journal_flush(hfsmp);
+ if (error) {
+ printf("hfs_reclaim_journal_info_block: journal_flush returned %d\n", error);
+ }
+
+ if (!error && hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_info_block: Successfully relocated journal info block from (%u,%u) to (%u,%u)\n", oldBlock, blockCount, newBlock, blockCount);
+ }
+ return error;
+
+free_fail:
+ (void) BlockDeallocate(hfsmp, newBlock, blockCount, HFS_ALLOC_SKIPFREEBLKS);
+fail:
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ (void) hfs_end_transaction(hfsmp);
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaim_journal_info_block: Error relocating journal info block (error=%d)\n", error);
+ }
+ return error;
+}
+
+
+/*
+ * Reclaim space at the end of a file system.
+ *
+ * Inputs -
+ * startblk - start block of the space being reclaimed
+ * reclaimblks - number of allocation blocks to reclaim
+ */
+static int
+hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t reclaimblks, vfs_context_t context)
+{
+ struct vnode *vp = NULL;
+ FCB *fcb;
+ struct BTreeIterator * iterator = NULL;
+ struct FSBufferDescriptor btdata;
+ struct HFSPlusCatalogFile filerec;
+ u_int32_t saved_next_allocation;
+ cnid_t * cnidbufp;
+ size_t cnidbufsize;
+ int filecnt = 0;
+ int maxfilecnt;
+ u_int32_t block;
+ int lockflags;
+ int i, j;
+ int error;
+ int lastprogress = 0;
+ u_int32_t blks_moved = 0;
+ u_int32_t total_blks_moved = 0;
+ Boolean need_relocate;
+
+ /* Relocate extents of the Allocation file if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_allocation_vp, startblk, SFL_BITMAP, &blks_moved, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim allocation file returned %d\n", error);
+ return error;
+ }
+ total_blks_moved += blks_moved;
+
+ /* Relocate extents of the Extents B-tree if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_extents_vp, startblk, SFL_EXTENTS, &blks_moved, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim extents b-tree returned %d\n", error);
+ return error;
+ }
+ total_blks_moved += blks_moved;
+
+ /* Relocate extents of the Catalog B-tree if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_catalog_vp, startblk, SFL_CATALOG, &blks_moved, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim catalog b-tree returned %d\n", error);
+ return error;
+ }
+ total_blks_moved += blks_moved;
+
+ /* Relocate extents of the Attributes B-tree if they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_attribute_vp, startblk, SFL_ATTRIBUTE, &blks_moved, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim attribute b-tree returned %d\n", error);
+ return error;
+ }
+ total_blks_moved += blks_moved;
+
+ /* Relocate extents of the Startup File if there is one and they're in the way. */
+ error = hfs_reclaim_file(hfsmp, hfsmp->hfs_startup_vp, startblk, SFL_STARTUP, &blks_moved, context);
+ if (error) {
+ printf("hfs_reclaimspace: reclaim startup file returned %d\n", error);
+ return error;
+ }
+ total_blks_moved += blks_moved;
+
+ /*
+ * We need to make sure the alternate volume header gets flushed if we moved
+ * any extents in the volume header. But we need to do that before
+ * shrinking the size of the volume, or else the journal code will panic
+ * with an invalid (too large) block number.
+ *
+ * Note that total_blks_moved will be set if ANY extent was moved, even
+ * if it was just an overflow extent. In this case, the journal_flush isn't
+ * strictly required, but shouldn't hurt.
+ */
+ if (total_blks_moved) {
+ hfs_journal_flush(hfsmp);
+ }
+
+ if (hfsmp->jnl_start + (hfsmp->jnl_size / hfsmp->blockSize) > startblk) {
+ error = hfs_reclaim_journal_file(hfsmp, context);
+ if (error) {
+ printf("hfs_reclaimspace: hfs_reclaim_journal_file failed (%d)\n", error);
+ return error;
+ }
+ }
+
+ if (hfsmp->vcbJinfoBlock >= startblk) {
+ error = hfs_reclaim_journal_info_block(hfsmp, context);
+ if (error) {
+ printf("hfs_reclaimspace: hfs_reclaim_journal_info_block failed (%d)\n", error);
+ return error;
+ }
+ }
+
/* For now move a maximum of 250,000 files. */
maxfilecnt = MIN(hfsmp->hfs_filecount, 250000);
- maxfilecnt = MIN((u_long)maxfilecnt, reclaimblks);
+ maxfilecnt = MIN((u_int32_t)maxfilecnt, reclaimblks);
cnidbufsize = maxfilecnt * sizeof(cnid_t);
if (kmem_alloc(kernel_map, (vm_offset_t *)&cnidbufp, cnidbufsize)) {
return (ENOMEM);
}
saved_next_allocation = hfsmp->nextAllocation;
- hfsmp->nextAllocation = hfsmp->hfs_metazone_start;
+ /* Always try allocating new blocks after the metadata zone */
+ HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_start);
fcb = VTOF(hfsmp->hfs_catalog_vp);
bzero(iterator, sizeof(*iterator));
}
/*
* Iterate over all the catalog records looking for files
- * that overlap into the space we're trying to free up.
+ * that overlap into the space we're trying to free up and
+ * the total number of blocks that will require relocation.
*/
for (filecnt = 0; filecnt < maxfilecnt; ) {
error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
if (filerec.recordType != kHFSPlusFileRecord) {
continue;
}
- datablks = rsrcblks = 0;
- /*
- * Check if either fork overlaps target space.
- */
+
+ need_relocate = false;
+ /* Check if data fork overlaps the target space */
for (i = 0; i < kHFSPlusExtentDensity; ++i) {
- if (filerec.dataFork.extents[i].blockCount != 0) {
- datablks += filerec.dataFork.extents[i].blockCount;
- block = filerec.dataFork.extents[i].startBlock +
- filerec.dataFork.extents[i].blockCount;
- if (block >= startblk) {
- if ((filerec.fileID == hfsmp->hfs_jnlfileid) ||
- (filerec.fileID == hfsmp->hfs_jnlinfoblkid)) {
- printf("hfs_reclaimspace: cannot move active journal\n");
- error = EPERM;
- goto end_iteration;
- }
- cnidbufp[filecnt++] = filerec.fileID;
- blkstomove += filerec.dataFork.totalBlocks;
- break;
- }
+ if (filerec.dataFork.extents[i].blockCount == 0) {
+ break;
}
- if (filerec.resourceFork.extents[i].blockCount != 0) {
- rsrcblks += filerec.resourceFork.extents[i].blockCount;
- block = filerec.resourceFork.extents[i].startBlock +
- filerec.resourceFork.extents[i].blockCount;
- if (block >= startblk) {
- cnidbufp[filecnt++] = filerec.fileID;
- blkstomove += filerec.resourceFork.totalBlocks;
- break;
+ block = filerec.dataFork.extents[i].startBlock +
+ filerec.dataFork.extents[i].blockCount;
+ if (block >= startblk) {
+ if ((filerec.fileID == hfsmp->hfs_jnlfileid) ||
+ (filerec.fileID == hfsmp->hfs_jnlinfoblkid)) {
+ printf("hfs_reclaimspace: cannot move active journal\n");
+ error = EPERM;
+ goto end_iteration;
}
+ need_relocate = true;
+ goto save_fileid;
}
}
- /*
- * Check for any overflow extents that overlap.
- */
- if (i == kHFSPlusExtentDensity) {
- if (filerec.dataFork.totalBlocks > datablks) {
- if (hfs_overlapped_overflow_extents(hfsmp, startblk, datablks, filerec.fileID, 0)) {
- cnidbufp[filecnt++] = filerec.fileID;
- blkstomove += filerec.dataFork.totalBlocks;
- }
- } else if (filerec.resourceFork.totalBlocks > rsrcblks) {
- if (hfs_overlapped_overflow_extents(hfsmp, startblk, rsrcblks, filerec.fileID, 1)) {
- cnidbufp[filecnt++] = filerec.fileID;
- blkstomove += filerec.resourceFork.totalBlocks;
- }
+
+ /* Check if resource fork overlaps the target space */
+ for (j = 0; j < kHFSPlusExtentDensity; ++j) {
+ if (filerec.resourceFork.extents[j].blockCount == 0) {
+ break;
+ }
+ block = filerec.resourceFork.extents[j].startBlock +
+ filerec.resourceFork.extents[j].blockCount;
+ if (block >= startblk) {
+ need_relocate = true;
+ goto save_fileid;
+ }
+ }
+
+ /* Check if any forks' overflow extents overlap the target space */
+ if ((i == kHFSPlusExtentDensity) || (j == kHFSPlusExtentDensity)) {
+ if (hfs_overlapped_overflow_extents(hfsmp, startblk, filerec.fileID)) {
+ need_relocate = true;
+ goto save_fileid;
+ }
+ }
+
+save_fileid:
+ if (need_relocate == true) {
+ cnidbufp[filecnt++] = filerec.fileID;
+ if (hfs_resize_debug) {
+ printf ("hfs_reclaimspace: Will relocate extents for fileID=%u\n", filerec.fileID);
}
}
}
end_iteration:
- if (filecnt == 0) {
+ /* If no regular file was found to be relocated and
+ * no system file was moved, we probably do not have
+ * enough space to relocate the system files, or
+ * something else went wrong.
+ */
+ if ((filecnt == 0) && (total_blks_moved == 0)) {
+ printf("hfs_reclaimspace: no files moved\n");
error = ENOSPC;
}
/* All done with catalog. */
hfs_systemfile_unlock(hfsmp, lockflags);
- if (error)
+ if (error || filecnt == 0)
goto out;
- /*
- * Double check space requirements to make sure
- * there is enough space to relocate any files
- * that reside in the reclaim area.
- *
- * Blocks To Move --------------
- * | | |
- * V V V
- * ------------------------------------------------------------------------
- * | | / /// // |
- * | | / /// // |
- * | | / /// // |
- * ------------------------------------------------------------------------
- *
- * <------------------- New Total Blocks ------------------><-- Reclaim -->
- *
- * <------------------------ Original Total Blocks ----------------------->
- *
- */
- if ((reclaimblks + blkstomove) >= hfs_freeblks(hfsmp, 1)) {
- error = ENOSPC;
- goto out;
- }
hfsmp->hfs_resize_filesmoved = 0;
hfsmp->hfs_resize_totalfiles = filecnt;
/* Now move any files that are in the way. */
for (i = 0; i < filecnt; ++i) {
- struct vnode * rvp;
+ struct vnode *rvp;
+ struct cnode *cp;
+ struct filefork *datafork;
if (hfs_vget(hfsmp, cnidbufp[i], &vp, 0) != 0)
continue;
+
+ cp = VTOC(vp);
+ datafork = VTOF(vp);
- /* Relocate any data fork blocks. */
- if (VTOF(vp)->ff_blocks > 0) {
- error = hfs_relocate(vp, hfsmp->hfs_metazone_end + 1, kauth_cred_get(), current_proc());
+ /* Relocating directory hard links is not supported, so we punt (see radar 6217026). */
+ if ((cp->c_flag & C_HARDLINK) && vnode_isdir(vp)) {
+ printf("hfs_reclaimspace: Unable to relocate directory hard link id=%d\n", cp->c_cnid);
+ error = EINVAL;
+ goto out;
}
- if (error)
- break;
- /* Relocate any resource fork blocks. */
- if ((VTOC((vp))->c_blocks - VTOF((vp))->ff_blocks) > 0) {
- error = hfs_vgetrsrc(hfsmp, vp, &rvp, current_proc());
- if (error)
+ /* Relocate any overlapping data fork blocks. */
+ if (datafork && datafork->ff_blocks > 0) {
+ error = hfs_reclaim_file(hfsmp, vp, startblk, 0, &blks_moved, context);
+ if (error) {
+ printf ("hfs_reclaimspace: Error reclaiming datafork blocks of fileid=%u (error=%d)\n", cnidbufp[i], error);
break;
- error = hfs_relocate(rvp, hfsmp->hfs_metazone_end + 1, kauth_cred_get(), current_proc());
- vnode_put(rvp);
- if (error)
+ }
+ total_blks_moved += blks_moved;
+ }
+
+ /* Relocate any overlapping resource fork blocks. */
+ if ((cp->c_blocks - (datafork ? datafork->ff_blocks : 0)) > 0) {
+ error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE, TRUE);
+ if (error) {
+ printf ("hfs_reclaimspace: Error looking up rvp for fileid=%u (error=%d)\n", cnidbufp[i], error);
+ break;
+ }
+ error = hfs_reclaim_file(hfsmp, rvp, startblk, 0, &blks_moved, context);
+ VTOC(rvp)->c_flag |= C_NEED_RVNODE_PUT;
+ if (error) {
+ printf ("hfs_reclaimspace: Error reclaiming rsrcfork blocks of fileid=%u (error=%d)\n", cnidbufp[i], error);
break;
+ }
+ total_blks_moved += blks_moved;
}
- hfs_unlock(VTOC(vp));
+ hfs_unlock(cp);
vnode_put(vp);
vp = NULL;
vp = NULL;
}
if (hfsmp->hfs_resize_filesmoved != 0) {
- printf("hfs_reclaimspace: relocated %d files on \"%s\"\n",
- (int)hfsmp->hfs_resize_filesmoved, hfsmp->vcbVN);
+ printf("hfs_reclaimspace: relocated %u blocks from %d files on \"%s\"\n",
+ total_blks_moved, (int)hfsmp->hfs_resize_filesmoved, hfsmp->vcbVN);
}
out:
kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
* (but only if we didn't move any files)
*/
if (error && hfsmp->hfs_resize_filesmoved == 0) {
- hfsmp->nextAllocation = saved_next_allocation;
+ HFS_UPDATE_NEXT_ALLOCATION(hfsmp, saved_next_allocation);
}
return (error);
}
/*
- * Check if there are any overflow extents that overlap.
+ * Check if there are any overflow data or resource fork extents that overlap
+ * into the disk space that is being reclaimed.
+ *
+ * Output -
+ * 1 - One of the overflow extents need to be relocated
+ * 0 - No overflow extents need to be relocated, or there was an error
*/
static int
-hfs_overlapped_overflow_extents(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t catblks, u_int32_t fileID, int rsrcfork)
+hfs_overlapped_overflow_extents(struct hfsmount *hfsmp, u_int32_t startblk, u_int32_t fileID)
{
struct BTreeIterator * iterator = NULL;
struct FSBufferDescriptor btdata;
HFSPlusExtentRecord extrec;
HFSPlusExtentKey *extkeyptr;
FCB *fcb;
- u_int32_t block;
- u_int8_t forktype;
int overlapped = 0;
int i;
int error;
- forktype = rsrcfork ? 0xFF : 0;
if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
- return (0);
+ return 0;
}
bzero(iterator, sizeof(*iterator));
extkeyptr = (HFSPlusExtentKey *)&iterator->key;
extkeyptr->keyLength = kHFSPlusExtentKeyMaximumLength;
- extkeyptr->forkType = forktype;
+ extkeyptr->forkType = 0;
extkeyptr->fileID = fileID;
- extkeyptr->startBlock = catblks;
+ extkeyptr->startBlock = 0;
btdata.bufferAddress = &extrec;
btdata.itemSize = sizeof(extrec);
fcb = VTOF(hfsmp->hfs_extents_vp);
+ /* This will position the iterator just before the first overflow
+ * extent record for given fileID. It will always return btNotFound,
+ * so we special case the error code.
+ */
error = BTSearchRecord(fcb, iterator, &btdata, NULL, iterator);
+ if (error && (error != btNotFound)) {
+ goto out;
+ }
+
+ /* BTIterateRecord() might return error if the btree is empty, and
+ * therefore we return that the extent does not overflow to the caller
+ */
+ error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
while (error == 0) {
/* Stop when we encounter a different file. */
- if ((extkeyptr->fileID != fileID) ||
- (extkeyptr->forkType != forktype)) {
+ if (extkeyptr->fileID != fileID) {
break;
}
- /*
- * Check if the file overlaps target space.
- */
+ /* Check if any of the forks exist in the target space. */
for (i = 0; i < kHFSPlusExtentDensity; ++i) {
if (extrec[i].blockCount == 0) {
break;
}
- block = extrec[i].startBlock + extrec[i].blockCount;
- if (block >= startblk) {
+ if ((extrec[i].startBlock + extrec[i].blockCount) >= startblk) {
overlapped = 1;
- break;
+ goto out;
}
}
/* Look for more records. */
error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
}
+out:
kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
- return (overlapped);
+ return overlapped;
}
}
+/*
+ * Creates a UUID from a unique "name" in the HFS UUID Name space.
+ * See version 3 UUID.
+ */
+static void
+hfs_getvoluuid(struct hfsmount *hfsmp, uuid_t result)
+{
+ MD5_CTX md5c;
+ uint8_t rawUUID[8];
+
+ ((uint32_t *)rawUUID)[0] = hfsmp->vcbFndrInfo[6];
+ ((uint32_t *)rawUUID)[1] = hfsmp->vcbFndrInfo[7];
+
+ MD5Init( &md5c );
+ MD5Update( &md5c, HFS_UUID_NAMESPACE_ID, sizeof( uuid_t ) );
+ MD5Update( &md5c, rawUUID, sizeof (rawUUID) );
+ MD5Final( result, &md5c );
+
+ result[6] = 0x30 | ( result[6] & 0x0F );
+ result[8] = 0x80 | ( result[8] & 0x3F );
+}
+
/*
* Get file system attributes.
*/
static int
hfs_vfs_getattr(struct mount *mp, struct vfs_attr *fsap, __unused vfs_context_t context)
{
+#define HFS_ATTR_CMN_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_NAMEDATTRCOUNT | ATTR_CMN_NAMEDATTRLIST))
+#define HFS_ATTR_FILE_VALIDMASK (ATTR_FILE_VALIDMASK & ~(ATTR_FILE_FILETYPE | ATTR_FILE_FORKCOUNT | ATTR_FILE_FORKLIST))
+
ExtendedVCB *vcb = VFSTOVCB(mp);
struct hfsmount *hfsmp = VFSTOHFS(mp);
- u_long freeCNIDs;
-
- freeCNIDs = (u_long)0xFFFFFFFF - (u_long)hfsmp->vcbNxtCNID;
-
- VFSATTR_RETURN(fsap, f_objcount, (uint64_t)hfsmp->vcbFilCnt + (uint64_t)hfsmp->vcbDirCnt);
- VFSATTR_RETURN(fsap, f_filecount, (uint64_t)hfsmp->vcbFilCnt);
- VFSATTR_RETURN(fsap, f_dircount, (uint64_t)hfsmp->vcbDirCnt);
- VFSATTR_RETURN(fsap, f_maxobjcount, (uint64_t)0xFFFFFFFF);
- VFSATTR_RETURN(fsap, f_iosize, (size_t)(MAX_UPL_TRANSFER * PAGE_SIZE));
- VFSATTR_RETURN(fsap, f_blocks, (uint64_t)hfsmp->totalBlocks);
- VFSATTR_RETURN(fsap, f_bfree, (uint64_t)hfs_freeblks(hfsmp, 0));
- VFSATTR_RETURN(fsap, f_bavail, (uint64_t)hfs_freeblks(hfsmp, 1));
- VFSATTR_RETURN(fsap, f_bsize, (uint32_t)vcb->blockSize);
+ u_int32_t freeCNIDs;
+
+ freeCNIDs = (u_int32_t)0xFFFFFFFF - (u_int32_t)hfsmp->vcbNxtCNID;
+
+ VFSATTR_RETURN(fsap, f_objcount, (u_int64_t)hfsmp->vcbFilCnt + (u_int64_t)hfsmp->vcbDirCnt);
+ VFSATTR_RETURN(fsap, f_filecount, (u_int64_t)hfsmp->vcbFilCnt);
+ VFSATTR_RETURN(fsap, f_dircount, (u_int64_t)hfsmp->vcbDirCnt);
+ VFSATTR_RETURN(fsap, f_maxobjcount, (u_int64_t)0xFFFFFFFF);
+ VFSATTR_RETURN(fsap, f_iosize, (size_t)cluster_max_io_size(mp, 0));
+ VFSATTR_RETURN(fsap, f_blocks, (u_int64_t)hfsmp->totalBlocks);
+ VFSATTR_RETURN(fsap, f_bfree, (u_int64_t)hfs_freeblks(hfsmp, 0));
+ VFSATTR_RETURN(fsap, f_bavail, (u_int64_t)hfs_freeblks(hfsmp, 1));
+ VFSATTR_RETURN(fsap, f_bsize, (u_int32_t)vcb->blockSize);
/* XXX needs clarification */
VFSATTR_RETURN(fsap, f_bused, hfsmp->totalBlocks - hfs_freeblks(hfsmp, 1));
/* Maximum files is constrained by total blocks. */
- VFSATTR_RETURN(fsap, f_files, (uint64_t)(hfsmp->totalBlocks - 2));
- VFSATTR_RETURN(fsap, f_ffree, MIN((uint64_t)freeCNIDs, (uint64_t)hfs_freeblks(hfsmp, 1)));
+ VFSATTR_RETURN(fsap, f_files, (u_int64_t)(hfsmp->totalBlocks - 2));
+ VFSATTR_RETURN(fsap, f_ffree, MIN((u_int64_t)freeCNIDs, (u_int64_t)hfs_freeblks(hfsmp, 1)));
fsap->f_fsid.val[0] = hfsmp->hfs_raw_dev;
fsap->f_fsid.val[1] = vfs_typenum(mp);
cap->capabilities[VOL_CAPABILITIES_FORMAT] =
VOL_CAP_FMT_PERSISTENTOBJECTIDS |
VOL_CAP_FMT_CASE_PRESERVING |
- VOL_CAP_FMT_FAST_STATFS;
+ VOL_CAP_FMT_FAST_STATFS |
+ VOL_CAP_FMT_HIDDEN_FILES |
+ VOL_CAP_FMT_PATH_FROM_ID;
} else {
cap->capabilities[VOL_CAPABILITIES_FORMAT] =
VOL_CAP_FMT_PERSISTENTOBJECTIDS |
VOL_CAP_FMT_SYMBOLICLINKS |
VOL_CAP_FMT_HARDLINKS |
VOL_CAP_FMT_JOURNAL |
+ VOL_CAP_FMT_ZERO_RUNS |
(hfsmp->jnl ? VOL_CAP_FMT_JOURNAL_ACTIVE : 0) |
(hfsmp->hfs_flags & HFS_CASE_SENSITIVE ? VOL_CAP_FMT_CASE_SENSITIVE : 0) |
VOL_CAP_FMT_CASE_PRESERVING |
VOL_CAP_FMT_FAST_STATFS |
- VOL_CAP_FMT_2TB_FILESIZE;
+ VOL_CAP_FMT_2TB_FILESIZE |
+ VOL_CAP_FMT_HIDDEN_FILES |
+#if HFS_COMPRESSION
+ VOL_CAP_FMT_PATH_FROM_ID |
+ VOL_CAP_FMT_DECMPFS_COMPRESSION;
+#else
+ VOL_CAP_FMT_PATH_FROM_ID;
+#endif
}
cap->capabilities[VOL_CAPABILITIES_INTERFACES] =
VOL_CAP_INT_SEARCHFS |
VOL_CAP_INT_ALLOCATE |
VOL_CAP_INT_VOL_RENAME |
VOL_CAP_INT_ADVLOCK |
- VOL_CAP_INT_FLOCK;
+ VOL_CAP_INT_FLOCK |
+#if NAMEDSTREAMS
+ VOL_CAP_INT_EXTENDED_ATTR |
+ VOL_CAP_INT_NAMEDSTREAMS;
+#else
+ VOL_CAP_INT_EXTENDED_ATTR;
+#endif
cap->capabilities[VOL_CAPABILITIES_RESERVED1] = 0;
cap->capabilities[VOL_CAPABILITIES_RESERVED2] = 0;
VOL_CAP_FMT_CASE_SENSITIVE |
VOL_CAP_FMT_CASE_PRESERVING |
VOL_CAP_FMT_FAST_STATFS |
- VOL_CAP_FMT_2TB_FILESIZE;
+ VOL_CAP_FMT_2TB_FILESIZE |
+ VOL_CAP_FMT_OPENDENYMODES |
+ VOL_CAP_FMT_HIDDEN_FILES |
+#if HFS_COMPRESSION
+ VOL_CAP_FMT_PATH_FROM_ID |
+ VOL_CAP_FMT_DECMPFS_COMPRESSION;
+#else
+ VOL_CAP_FMT_PATH_FROM_ID;
+#endif
cap->valid[VOL_CAPABILITIES_INTERFACES] =
VOL_CAP_INT_SEARCHFS |
VOL_CAP_INT_ATTRLIST |
VOL_CAP_INT_ALLOCATE |
VOL_CAP_INT_VOL_RENAME |
VOL_CAP_INT_ADVLOCK |
- VOL_CAP_INT_FLOCK;
+ VOL_CAP_INT_FLOCK |
+ VOL_CAP_INT_MANLOCK |
+#if NAMEDSTREAMS
+ VOL_CAP_INT_EXTENDED_ATTR |
+ VOL_CAP_INT_NAMEDSTREAMS;
+#else
+ VOL_CAP_INT_EXTENDED_ATTR;
+#endif
cap->valid[VOL_CAPABILITIES_RESERVED1] = 0;
cap->valid[VOL_CAPABILITIES_RESERVED2] = 0;
VFSATTR_SET_SUPPORTED(fsap, f_capabilities);
if (VFSATTR_IS_ACTIVE(fsap, f_attributes)) {
vol_attributes_attr_t *attrp = &fsap->f_attributes;
- attrp->validattr.commonattr = ATTR_CMN_VALIDMASK;
+ attrp->validattr.commonattr = HFS_ATTR_CMN_VALIDMASK;
attrp->validattr.volattr = ATTR_VOL_VALIDMASK & ~ATTR_VOL_INFO;
attrp->validattr.dirattr = ATTR_DIR_VALIDMASK;
- attrp->validattr.fileattr = ATTR_FILE_VALIDMASK;
+ attrp->validattr.fileattr = HFS_ATTR_FILE_VALIDMASK;
attrp->validattr.forkattr = 0;
- attrp->nativeattr.commonattr = ATTR_CMN_VALIDMASK;
+ attrp->nativeattr.commonattr = HFS_ATTR_CMN_VALIDMASK;
attrp->nativeattr.volattr = ATTR_VOL_VALIDMASK & ~ATTR_VOL_INFO;
attrp->nativeattr.dirattr = ATTR_DIR_VALIDMASK;
- attrp->nativeattr.fileattr = ATTR_FILE_VALIDMASK;
+ attrp->nativeattr.fileattr = HFS_ATTR_FILE_VALIDMASK;
attrp->nativeattr.forkattr = 0;
VFSATTR_SET_SUPPORTED(fsap, f_attributes);
}
fsap->f_backup_time.tv_nsec = 0;
VFSATTR_SET_SUPPORTED(fsap, f_backup_time);
if (VFSATTR_IS_ACTIVE(fsap, f_fssubtype)) {
- uint16_t subtype = 0;
+ u_int16_t subtype = 0;
/*
* Subtypes (flavors) for HFS
}
if (VFSATTR_IS_ACTIVE(fsap, f_vol_name)) {
- strncpy(fsap->f_vol_name, hfsmp->vcbVN, MAXPATHLEN);
- fsap->f_vol_name[MAXPATHLEN - 1] = 0;
+ strlcpy(fsap->f_vol_name, (char *) hfsmp->vcbVN, MAXPATHLEN);
VFSATTR_SET_SUPPORTED(fsap, f_vol_name);
}
+ if (VFSATTR_IS_ACTIVE(fsap, f_uuid)) {
+ hfs_getvoluuid(hfsmp, fsap->f_uuid);
+ VFSATTR_SET_SUPPORTED(fsap, f_uuid);
+ }
return (0);
}
todir_desc.cd_cnid = kHFSRootFolderID;
todir_desc.cd_flags = CD_ISDIR;
- to_desc.cd_nameptr = name;
+ to_desc.cd_nameptr = (const u_int8_t *)name;
to_desc.cd_namelen = strlen(name);
to_desc.cd_parentcnid = kHFSRootParentID;
to_desc.cd_cnid = cp->c_cnid;
* If successful, update the name in the VCB, ensure it's terminated.
*/
if (!error) {
- strncpy(vcb->vcbVN, name, sizeof(vcb->vcbVN));
- vcb->vcbVN[sizeof(vcb->vcbVN) - 1] = 0;
+ strlcpy((char *)vcb->vcbVN, name, sizeof(vcb->vcbVN));
}
hfs_systemfile_unlock(hfsmp, lockflags);
cat_postflight(hfsmp, &cookie, p);
if (error)
- vcb->vcbFlags |= 0xFF00;
+ MarkVCBDirty(vcb);
(void) hfs_flushvolumeheader(hfsmp, MNT_WAIT, 0);
}
hfs_end_transaction(hfsmp);
if (!error) {
/* Release old allocated name buffer */
if (cp->c_desc.cd_flags & CD_HASBUF) {
- char *name = cp->c_desc.cd_nameptr;
+ const char *tmp_name = (const char *)cp->c_desc.cd_nameptr;
cp->c_desc.cd_nameptr = 0;
cp->c_desc.cd_namelen = 0;
cp->c_desc.cd_flags &= ~CD_HASBUF;
- vfs_removename(name);
+ vfs_removename(tmp_name);
}
/* Update cnode's catalog descriptor */
replace_desc(cp, &new_desc);
return error;
}
+/* If a runtime corruption is detected, set the volume inconsistent
+ * bit in the volume attributes. The volume inconsistent bit is a persistent
+ * bit which represents that the volume is corrupt and needs repair.
+ * The volume inconsistent bit can be set from the kernel when it detects
+ * runtime corruption or from file system repair utilities like fsck_hfs when
+ * a repair operation fails. The bit should be cleared only from file system
+ * verify/repair utility like fsck_hfs when a verify/repair succeeds.
+ */
+void hfs_mark_volume_inconsistent(struct hfsmount *hfsmp)
+{
+ HFS_MOUNT_LOCK(hfsmp, TRUE);
+ if ((hfsmp->vcbAtrb & kHFSVolumeInconsistentMask) == 0) {
+ hfsmp->vcbAtrb |= kHFSVolumeInconsistentMask;
+ MarkVCBDirty(hfsmp);
+ }
+ if ((hfsmp->hfs_flags & HFS_READ_ONLY)==0) {
+ /* Log information to ASL log */
+ fslog_fs_corrupt(hfsmp->hfs_mp);
+ printf("hfs: Runtime corruption detected on %s, fsck will be forced on next mount.\n", hfsmp->vcbVN);
+ }
+ HFS_MOUNT_UNLOCK(hfsmp, TRUE);
+}
+
+/* Replay the journal on the device node provided. Returns zero if
+ * journal replay succeeded or no journal was supposed to be replayed.
+ */
+static int hfs_journal_replay(vnode_t devvp, vfs_context_t context)
+{
+ int retval = 0;
+ struct mount *mp = NULL;
+ struct hfs_mount_args *args = NULL;
+
+ /* Replay allowed only on raw devices */
+ if (!vnode_ischr(devvp)) {
+ retval = EINVAL;
+ goto out;
+ }
+
+ /* Create dummy mount structures */
+ MALLOC(mp, struct mount *, sizeof(struct mount), M_TEMP, M_WAITOK);
+ if (mp == NULL) {
+ retval = ENOMEM;
+ goto out;
+ }
+ bzero(mp, sizeof(struct mount));
+ mount_lock_init(mp);
+
+ MALLOC(args, struct hfs_mount_args *, sizeof(struct hfs_mount_args), M_TEMP, M_WAITOK);
+ if (args == NULL) {
+ retval = ENOMEM;
+ goto out;
+ }
+ bzero(args, sizeof(struct hfs_mount_args));
+
+ retval = hfs_mountfs(devvp, mp, args, 1, context);
+ buf_flushdirtyblks(devvp, MNT_WAIT, 0, "hfs_journal_replay");
+
+out:
+ if (mp) {
+ mount_lock_destroy(mp);
+ FREE(mp, M_TEMP);
+ }
+ if (args) {
+ FREE(args, M_TEMP);
+ }
+ return retval;
+}
/*
* hfs vfs operations.
hfs_vptofh,
hfs_init,
hfs_sysctl,
- hfs_vfs_setattr
+ hfs_vfs_setattr,
+ {NULL}
};