]> git.saurik.com Git - apple/xnu.git/blobdiff - bsd/kern/kern_fork.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / bsd / kern / kern_fork.c
index 58aa6ecf4f4a0b15083b924b0e9ebb53571c0947..e48cffe6d0d0bade3c25c4d0d28fb14b1a4e0686 100644 (file)
@@ -1,23 +1,29 @@
 /*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
- *
- * @APPLE_LICENSE_HEADER_START@
- * 
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License").  You may not use this file except in compliance with the
- * License.  Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
- * 
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.  Please see the
- * License for the specific language governing rights and limitations
- * under the License.
- * 
- * @APPLE_LICENSE_HEADER_END@
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
 /*
  *
  *     @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
  */
+/*
+ * NOTICE: This file was modified by McAfee Research in 2004 to introduce
+ * support for mandatory and extensible security protections.  This notice
+ * is included in support of clause 2.2 (b) of the Apple Public License,
+ * Version 2.0.
+ */
+/*
+ * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
+ * support for mandatory and extensible security protections.  This notice
+ * is included in support of clause 2.2 (b) of the Apple Public License,
+ * Version 2.0.
+ */
 
+#include <kern/assert.h>
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/filedesc.h>
 #include <sys/kernel.h>
 #include <sys/malloc.h>
-#include <sys/proc.h>
+#include <sys/proc_internal.h>
+#include <sys/kauth.h>
 #include <sys/user.h>
+#include <sys/reason.h>
 #include <sys/resourcevar.h>
-#include <sys/vnode.h>
-#include <sys/file.h>
+#include <sys/vnode_internal.h>
+#include <sys/file_internal.h>
 #include <sys/acct.h>
-#include <sys/ktrace.h>
+#include <sys/codesign.h>
+#include <sys/sysproto.h>
+#if CONFIG_PERSONAS
+#include <sys/persona.h>
+#endif
+#include <sys/doc_tombstone.h>
+#if CONFIG_DTRACE
+/* Do not include dtrace.h, it redefines kmem_[alloc/free] */
+extern void (*dtrace_proc_waitfor_exec_ptr)(proc_t);
+extern void dtrace_proc_fork(proc_t, proc_t, int);
+
+/*
+ * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c,
+ * we will store its value before actually calling it.
+ */
+static void (*dtrace_proc_waitfor_hook)(proc_t) = NULL;
+
+#include <sys/dtrace_ptss.h>
+#endif
+
+#include <security/audit/audit.h>
 
 #include <mach/mach_types.h>
+#include <kern/coalition.h>
+#include <kern/kern_types.h>
+#include <kern/kalloc.h>
 #include <kern/mach_param.h>
+#include <kern/task.h>
+#include <kern/thread.h>
+#include <kern/thread_call.h>
+#include <kern/zalloc.h>
+
+#include <os/log.h>
+
+#if CONFIG_MACF
+#include <security/mac_framework.h>
+#include <security/mac_mach_internal.h>
+#endif
+
+#include <vm/vm_map.h>
+#include <vm/vm_protos.h>
+#include <vm/vm_shared_region.h>
 
-#include <machine/spl.h>
+#include <sys/shm_internal.h>   /* for shmfork() */
+#include <mach/task.h>          /* for thread_create() */
+#include <mach/thread_act.h>    /* for thread_resume() */
 
-thread_t cloneproc(struct proc *, int); 
-struct proc * forkproc(struct proc *, int);
-thread_t procdup();
+#include <sys/sdt.h>
 
-#define        DOFORK  0x1     /* fork() system call */
-#define        DOVFORK 0x2     /* vfork() system call */
-static int fork1(struct proc *, long, register_t *);
+#if CONFIG_MEMORYSTATUS
+#include <sys/kern_memorystatus.h>
+#endif
+
+/* XXX routines which should have Mach prototypes, but don't */
+void thread_set_parent(thread_t parent, int pid);
+extern void act_thread_catt(void *ctx);
+void thread_set_child(thread_t child, int pid);
+void *act_thread_csave(void);
+extern boolean_t task_is_exec_copy(task_t);
+int nextpidversion = 0;
+
+
+thread_t cloneproc(task_t, coalition_t *, proc_t, int, int);
+proc_t forkproc(proc_t);
+void forkproc_free(proc_t);
+thread_t fork_create_child(task_t parent_task,
+    coalition_t *parent_coalitions,
+    proc_t child,
+    int inherit_memory,
+    int is_64bit_addr,
+    int is_64bit_data,
+    int in_exec);
+void proc_vfork_begin(proc_t parent_proc);
+void proc_vfork_end(proc_t parent_proc);
+
+static LCK_GRP_DECLARE(rethrottle_lock_grp, "rethrottle");
+static ZONE_DECLARE(uthread_zone, "uthreads",
+    sizeof(struct uthread), ZC_ZFREE_CLEARMEM);
+
+SECURITY_READ_ONLY_LATE(zone_t) proc_zone;
+ZONE_INIT(&proc_zone, "proc", sizeof(struct proc), ZC_ZFREE_CLEARMEM,
+    ZONE_ID_PROC, NULL);
+
+ZONE_DECLARE(proc_stats_zone, "pstats",
+    sizeof(struct pstats), ZC_NOENCRYPT | ZC_ZFREE_CLEARMEM);
+
+ZONE_DECLARE(proc_sigacts_zone, "sigacts",
+    sizeof(struct sigacts), ZC_NOENCRYPT);
+
+#define DOFORK  0x1     /* fork() system call */
+#define DOVFORK 0x2     /* vfork() system call */
 
 /*
- * fork system call.
+ * proc_vfork_begin
+ *
+ * Description:        start a vfork on a process
+ *
+ * Parameters: parent_proc             process (re)entering vfork state
+ *
+ * Returns:    (void)
+ *
+ * Notes:      Although this function increments a count, a count in
+ *             excess of 1 is not currently supported.  According to the
+ *             POSIX standard, calling anything other than execve() or
+ *             _exit() following a vfork(), including calling vfork()
+ *             itself again, will result in undefined behaviour
+ */
+void
+proc_vfork_begin(proc_t parent_proc)
+{
+       proc_lock(parent_proc);
+       parent_proc->p_lflag  |= P_LVFORK;
+       parent_proc->p_vforkcnt++;
+       proc_unlock(parent_proc);
+}
+
+/*
+ * proc_vfork_end
+ *
+ * Description:        stop a vfork on a process
+ *
+ * Parameters: parent_proc             process leaving vfork state
+ *
+ * Returns:    (void)
+ *
+ * Notes:      Decrements the count; currently, reentrancy of vfork()
+ *             is unsupported on the current process
+ */
+void
+proc_vfork_end(proc_t parent_proc)
+{
+       proc_lock(parent_proc);
+       parent_proc->p_vforkcnt--;
+       if (parent_proc->p_vforkcnt < 0) {
+               panic("vfork cnt is -ve");
+       }
+       if (parent_proc->p_vforkcnt == 0) {
+               parent_proc->p_lflag  &= ~P_LVFORK;
+       }
+       proc_unlock(parent_proc);
+}
+
+
+/*
+ * vfork
+ *
+ * Description:        vfork system call
+ *
+ * Parameters: void                    [no arguments]
+ *
+ * Retval:     0                       (to child process)
+ *             !0                      pid of child (to parent process)
+ *             -1                      error (see "Returns:")
+ *
+ * Returns:    EAGAIN                  Administrative limit reached
+ *             EINVAL                  vfork() called during vfork()
+ *             ENOMEM                  Failed to allocate new process
+ *
+ * Note:       After a successful call to this function, the parent process
+ *             has its task, thread, and uthread lent to the child process,
+ *             and control is returned to the caller; if this function is
+ *             invoked as a system call, the return is to user space, and
+ *             is effectively running on the child process.
+ *
+ *             Subsequent calls that operate on process state are permitted,
+ *             though discouraged, and will operate on the child process; any
+ *             operations on the task, thread, or uthread will result in
+ *             changes in the parent state, and, if inheritable, the child
+ *             state, when a task, thread, and uthread are realized for the
+ *             child process at execve() time, will also be effected.  Given
+ *             this, it's recemmended that people use the posix_spawn() call
+ *             instead.
+ *
+ * BLOCK DIAGRAM OF VFORK
+ *
+ * Before:
+ *
+ *     ,----------------.         ,-------------.
+ *     |                |   task  |             |
+ *     | parent_thread  | ------> | parent_task |
+ *     |                | <.list. |             |
+ *     `----------------'         `-------------'
+ *    uthread |  ^             bsd_info |  ^
+ *            v  | vc_thread            v  | task
+ *     ,----------------.         ,-------------.
+ *     |                |         |             |
+ *     | parent_uthread | <.list. | parent_proc | <-- current_proc()
+ *     |                |         |             |
+ *     `----------------'         `-------------'
+ *    uu_proc |
+ *            v
+ *           NULL
+ *
+ * After:
+ *
+ *                 ,----------------.         ,-------------.
+ *                 |                |   task  |             |
+ *          ,----> | parent_thread  | ------> | parent_task |
+ *          |      |                | <.list. |             |
+ *          |      `----------------'         `-------------'
+ *          |     uthread |  ^             bsd_info |  ^
+ *          |             v  | vc_thread            v  | task
+ *          |      ,----------------.         ,-------------.
+ *          |      |                |         |             |
+ *          |      | parent_uthread | <.list. | parent_proc |
+ *          |      |                |         |             |
+ *          |      `----------------'         `-------------'
+ *          |     uu_proc |  . list
+ *          |             v  v
+ *          |      ,----------------.
+ *          `----- |                |
+ *      p_vforkact | child_proc     | <-- current_proc()
+ *                 |                |
+ *                 `----------------'
  */
 int
-fork(p, uap, retval)
-       struct proc *p;
-       void *uap;
-       register_t *retval;
+vfork(proc_t parent_proc, __unused struct vfork_args *uap, int32_t *retval)
 {
-       return (fork1(p, (long)DOFORK, retval));
+       thread_t child_thread;
+       int err;
+
+       if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_VFORK, NULL)) != 0) {
+               retval[1] = 0;
+       } else {
+               uthread_t ut = get_bsdthread_info(current_thread());
+               proc_t child_proc = ut->uu_proc;
+
+               retval[0] = child_proc->p_pid;
+               retval[1] = 1;          /* flag child return for user space */
+
+               /*
+                * Drop the signal lock on the child which was taken on our
+                * behalf by forkproc()/cloneproc() to prevent signals being
+                * received by the child in a partially constructed state.
+                */
+               proc_signalend(child_proc, 0);
+               proc_transend(child_proc, 0);
+
+               proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid);
+               DTRACE_PROC1(create, proc_t, child_proc);
+               ut->uu_flag &= ~UT_VFORKING;
+       }
+
+       return err;
 }
 
+
 /*
- * vfork system call
+ * fork1
+ *
+ * Description:        common code used by all new process creation other than the
+ *             bootstrap of the initial process on the system
+ *
+ * Parameters: parent_proc             parent process of the process being
+ *             child_threadp           pointer to location to receive the
+ *                                     Mach thread_t of the child process
+ *                                     created
+ *             kind                    kind of creation being requested
+ *             coalitions              if spawn, the set of coalitions the
+ *                                     child process should join, or NULL to
+ *                                     inherit the parent's. On non-spawns,
+ *                                     this param is ignored and the child
+ *                                     always inherits the parent's
+ *                                     coalitions.
+ *
+ * Notes:      Permissable values for 'kind':
+ *
+ *             PROC_CREATE_FORK        Create a complete process which will
+ *                                     return actively running in both the
+ *                                     parent and the child; the child copies
+ *                                     the parent address space.
+ *             PROC_CREATE_SPAWN       Create a complete process which will
+ *                                     return actively running in the parent
+ *                                     only after returning actively running
+ *                                     in the child; the child address space
+ *                                     is newly created by an image activator,
+ *                                     after which the child is run.
+ *             PROC_CREATE_VFORK       Creates a partial process which will
+ *                                     borrow the parent task, thread, and
+ *                                     uthread to return running in the child;
+ *                                     the child address space and other parts
+ *                                     are lazily created at execve() time, or
+ *                                     the child is terminated, and the parent
+ *                                     does not actively run until that
+ *                                     happens.
+ *
+ *             At first it may seem strange that we return the child thread
+ *             address rather than process structure, since the process is
+ *             the only part guaranteed to be "new"; however, since we do
+ *             not actualy adjust other references between Mach and BSD (see
+ *             the block diagram above the implementation of vfork()), this
+ *             is the only method which guarantees us the ability to get
+ *             back to the other information.
  */
 int
-vfork(p, uap, retval)
-       struct proc *p;
-       void *uap;
-       register_t *retval;
+fork1(proc_t parent_proc, thread_t *child_threadp, int kind, coalition_t *coalitions)
 {
-       register struct proc * newproc;
-       register uid_t uid;
-       thread_act_t cur_act = (thread_act_t)current_act();
-       int count;
-       task_t t;
-       uthread_t ut;
-       
+       thread_t parent_thread = (thread_t)current_thread();
+       uthread_t parent_uthread = (uthread_t)get_bsdthread_info(parent_thread);
+       proc_t child_proc = NULL;       /* set in switch, but compiler... */
+       thread_t child_thread = NULL;
+       uid_t uid;
+       size_t count;
+       int err = 0;
+       int spawn = 0;
+       rlim_t rlimit_nproc_cur;
+
        /*
         * Although process entries are dynamically created, we still keep
         * a global limit on the maximum number we will create.  Don't allow
@@ -121,278 +406,811 @@ vfork(p, uap, retval)
         * exceed the limit. The variable nprocs is the current number of
         * processes, maxproc is the limit.
         */
-       uid = p->p_cred->p_ruid;
+       uid = kauth_getruid();
+       proc_list_lock();
        if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
+#if (DEVELOPMENT || DEBUG) && !defined(XNU_TARGET_OS_OSX)
+               /*
+                * On the development kernel, panic so that the fact that we hit
+                * the process limit is obvious, as this may very well wedge the
+                * system.
+                */
+               panic("The process table is full; parent pid=%d", parent_proc->p_pid);
+#endif
+               proc_list_unlock();
                tablefull("proc");
-               retval[1] = 0;
-               return (EAGAIN);
+               return EAGAIN;
        }
+       proc_list_unlock();
 
        /*
         * Increment the count of procs running with this uid. Don't allow
-        * a nonprivileged user to exceed their current limit.
+        * a nonprivileged user to exceed their current limit, which is
+        * always less than what an rlim_t can hold.
+        * (locking protection is provided by list lock held in chgproccnt)
         */
        count = chgproccnt(uid, 1);
-       if (uid != 0 && count > p->p_rlimit[RLIMIT_NPROC].rlim_cur) {
-               (void)chgproccnt(uid, -1);
-               return (EAGAIN);
+       rlimit_nproc_cur = proc_limitgetcur(parent_proc, RLIMIT_NPROC, TRUE);
+       if (uid != 0 &&
+           (rlim_t)count > rlimit_nproc_cur) {
+#if (DEVELOPMENT || DEBUG) && !defined(XNU_TARGET_OS_OSX)
+               /*
+                * On the development kernel, panic so that the fact that we hit
+                * the per user process limit is obvious.  This may be less dire
+                * than hitting the global process limit, but we cannot rely on
+                * that.
+                */
+               panic("The per-user process limit has been hit; parent pid=%d, uid=%d", parent_proc->p_pid, uid);
+#endif
+               err = EAGAIN;
+               goto bad;
        }
 
-       ut = (struct uthread *)get_bsdthread_info(cur_act);
-       if (ut->uu_flag & P_VFORK) {
-               printf("vfork called recursively by %s\n", p->p_comm);
-               return (EINVAL);
+#if CONFIG_MACF
+       /*
+        * Determine if MAC policies applied to the process will allow
+        * it to fork.  This is an advisory-only check.
+        */
+       err = mac_proc_check_fork(parent_proc);
+       if (err != 0) {
+               goto bad;
        }
-       p->p_flag  |= P_VFORK;
-       p->p_vforkcnt++;
+#endif
 
-       /* The newly created process comes with signal lock held */
-       newproc = (struct proc *)forkproc(p,1);
+       switch (kind) {
+       case PROC_CREATE_VFORK:
+               /*
+                * Prevent a vfork while we are in vfork(); we should
+                * also likely preventing a fork here as well, and this
+                * check should then be outside the switch statement,
+                * since the proc struct contents will copy from the
+                * child and the tash/thread/uthread from the parent in
+                * that case.  We do not support vfork() in vfork()
+                * because we don't have to; the same non-requirement
+                * is true of both fork() and posix_spawn() and any
+                * call  other than execve() amd _exit(), but we've
+                * been historically lenient, so we continue to be so
+                * (for now).
+                *
+                * <rdar://6640521> Probably a source of random panics
+                */
+               if (parent_uthread->uu_flag & UT_VFORK) {
+                       printf("fork1 called within vfork by %s\n", parent_proc->p_comm);
+                       err = EINVAL;
+                       goto bad;
+               }
 
-       LIST_INSERT_AFTER(p, newproc, p_pglist);
-       newproc->p_pptr = p;
-       newproc->task = p->task;
-       LIST_INSERT_HEAD(&p->p_children, newproc, p_sibling);
-       LIST_INIT(&newproc->p_children);
-       LIST_INSERT_HEAD(&allproc, newproc, p_list);
-       LIST_INSERT_HEAD(PIDHASH(newproc->p_pid), newproc, p_hash);
-       TAILQ_INIT(& newproc->p_evlist);
-       newproc->p_stat = SRUN;
-       newproc->p_flag  |= P_INVFORK;
-       newproc->p_vforkact = cur_act;
+               /*
+                * Flag us in progress; if we chose to support vfork() in
+                * vfork(), we would chain our parent at this point (in
+                * effect, a stack push).  We don't, since we actually want
+                * to disallow everything not specified in the standard
+                */
+               proc_vfork_begin(parent_proc);
+
+               /* The newly created process comes with signal lock held */
+               if ((child_proc = forkproc(parent_proc)) == NULL) {
+                       /* Failed to allocate new process */
+                       proc_vfork_end(parent_proc);
+                       err = ENOMEM;
+                       goto bad;
+               }
 
-       ut->uu_flag |= P_VFORK;
-       ut->uu_proc = newproc;
-       ut->uu_userstate = (void *)act_thread_csave();
+// XXX BEGIN: wants to move to be common code (and safe)
+#if CONFIG_MACF
+               /*
+                * allow policies to associate the credential/label that
+                * we referenced from the parent ... with the child
+                * JMM - this really isn't safe, as we can drop that
+                *       association without informing the policy in other
+                *       situations (keep long enough to get policies changed)
+                */
+               mac_cred_label_associate_fork(child_proc->p_ucred, child_proc);
+#endif
 
-       thread_set_child(cur_act, newproc->p_pid);
+               /*
+                * Propogate change of PID - may get new cred if auditing.
+                *
+                * NOTE: This has no effect in the vfork case, since
+                *      child_proc->task != current_task(), but we duplicate it
+                *      because this is probably, ultimately, wrong, since we
+                *      will be running in the "child" which is the parent task
+                *      with the wrong token until we get to the execve() or
+                *      _exit() call; a lot of "undefined" can happen before
+                *      that.
+                *
+                * <rdar://6640530> disallow everything but exeve()/_exit()?
+                */
+               set_security_token(child_proc);
 
-       newproc->p_stats->p_start = time;
-       newproc->p_acflag = AFORK;
+               AUDIT_ARG(pid, child_proc->p_pid);
 
-       /*
-        * Preserve synchronization semantics of vfork.  If waiting for
-        * child to exec or exit, set P_PPWAIT on child, and sleep on our
-        * proc (in case of exit).
-        */
-       newproc->p_flag |= P_PPWAIT;
+// XXX END: wants to move to be common code (and safe)
+
+               /*
+                * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
+                *
+                * Note: this is where we would "push" state instead of setting
+                * it for nested vfork() support (see proc_vfork_end() for
+                * description if issues here).
+                */
+               child_proc->task = parent_proc->task;
+
+               child_proc->p_lflag  |= P_LINVFORK;
+               child_proc->p_vforkact = parent_thread;
+               child_proc->p_stat = SRUN;
+
+               /*
+                * Until UT_VFORKING is cleared at the end of the vfork
+                * syscall, the process identity of this thread is slightly
+                * murky.
+                *
+                * As long as UT_VFORK and it's associated field (uu_proc)
+                * is set, current_proc() will always return the child process.
+                *
+                * However dtrace_proc_selfpid() returns the parent pid to
+                * ensure that e.g. the proc:::create probe actions accrue
+                * to the parent.  (Otherwise the child magically seems to
+                * have created itself!)
+                */
+               parent_uthread->uu_flag |= UT_VFORK | UT_VFORKING;
+               parent_uthread->uu_proc = child_proc;
+               parent_uthread->uu_userstate = (void *)act_thread_csave();
+               parent_uthread->uu_vforkmask = parent_uthread->uu_sigmask;
+
+               /* temporarily drop thread-set-id state */
+               if (parent_uthread->uu_flag & UT_SETUID) {
+                       parent_uthread->uu_flag |= UT_WASSETUID;
+                       parent_uthread->uu_flag &= ~UT_SETUID;
+               }
+
+               /* blow thread state information */
+               /* XXX is this actually necessary, given syscall return? */
+               thread_set_child(parent_thread, child_proc->p_pid);
+
+               child_proc->p_acflag = AFORK;   /* forked but not exec'ed */
+
+               /*
+                * Preserve synchronization semantics of vfork.  If
+                * waiting for child to exec or exit, set P_PPWAIT
+                * on child, and sleep on our proc (in case of exit).
+                */
+               child_proc->p_lflag |= P_LPPWAIT;
+               pinsertchild(parent_proc, child_proc);  /* set visible */
+
+               break;
+
+       case PROC_CREATE_SPAWN:
+               /*
+                * A spawned process differs from a forked process in that
+                * the spawned process does not carry around the parents
+                * baggage with regard to address space copying, dtrace,
+                * and so on.
+                */
+               spawn = 1;
+
+               OS_FALLTHROUGH;
+
+       case PROC_CREATE_FORK:
+               /*
+                * When we clone the parent process, we are going to inherit
+                * its task attributes and memory, since when we fork, we
+                * will, in effect, create a duplicate of it, with only minor
+                * differences.  Contrarily, spawned processes do not inherit.
+                */
+               if ((child_thread = cloneproc(parent_proc->task,
+                   spawn ? coalitions : NULL,
+                   parent_proc,
+                   spawn ? FALSE : TRUE,
+                   FALSE)) == NULL) {
+                       /* Failed to create thread */
+                       err = EAGAIN;
+                       goto bad;
+               }
+
+               /* copy current thread state into the child thread (only for fork) */
+               if (!spawn) {
+                       thread_dup(child_thread);
+               }
+
+               /* child_proc = child_thread->task->proc; */
+               child_proc = (proc_t)(get_bsdtask_info(get_threadtask(child_thread)));
 
-       /* drop the signal lock on the child */
-       signal_unlock(newproc);
+// XXX BEGIN: wants to move to be common code (and safe)
+#if CONFIG_MACF
+               /*
+                * allow policies to associate the credential/label that
+                * we referenced from the parent ... with the child
+                * JMM - this really isn't safe, as we can drop that
+                *       association without informing the policy in other
+                *       situations (keep long enough to get policies changed)
+                */
+               mac_cred_label_associate_fork(child_proc->p_ucred, child_proc);
+#endif
+
+               /*
+                * Propogate change of PID - may get new cred if auditing.
+                *
+                * NOTE: This has no effect in the vfork case, since
+                *      child_proc->task != current_task(), but we duplicate it
+                *      because this is probably, ultimately, wrong, since we
+                *      will be running in the "child" which is the parent task
+                *      with the wrong token until we get to the execve() or
+                *      _exit() call; a lot of "undefined" can happen before
+                *      that.
+                *
+                * <rdar://6640530> disallow everything but exeve()/_exit()?
+                */
+               set_security_token(child_proc);
+
+               AUDIT_ARG(pid, child_proc->p_pid);
 
-       retval[0] = newproc->p_pid;
-       retval[1] = 1;                  /* mark child */
+// XXX END: wants to move to be common code (and safe)
+
+               /*
+                * Blow thread state information; this is what gives the child
+                * process its "return" value from a fork() call.
+                *
+                * Note: this should probably move to fork() proper, since it
+                * is not relevent to spawn, and the value won't matter
+                * until we resume the child there.  If you are in here
+                * refactoring code, consider doing this at the same time.
+                */
+               thread_set_child(child_thread, child_proc->p_pid);
+
+               child_proc->p_acflag = AFORK;   /* forked but not exec'ed */
+
+#if CONFIG_DTRACE
+               dtrace_proc_fork(parent_proc, child_proc, spawn);
+#endif  /* CONFIG_DTRACE */
+               if (!spawn) {
+                       /*
+                        * Of note, we need to initialize the bank context behind
+                        * the protection of the proc_trans lock to prevent a race with exit.
+                        */
+                       task_bank_init(get_threadtask(child_thread));
+               }
+
+               break;
+
+       default:
+               panic("fork1 called with unknown kind %d", kind);
+               break;
+       }
 
-       return (0);
+
+       /* return the thread pointer to the caller */
+       *child_threadp = child_thread;
+
+bad:
+       /*
+        * In the error case, we return a 0 value for the returned pid (but
+        * it is ignored in the trampoline due to the error return); this
+        * is probably not necessary.
+        */
+       if (err) {
+               (void)chgproccnt(uid, -1);
+       }
+
+       return err;
 }
 
+
 /*
- * Return to parent vfork ehread()
+ * vfork_return
+ *
+ * Description:        "Return" to parent vfork thread() following execve/_exit;
+ *             this is done by reassociating the parent process structure
+ *             with the task, thread, and uthread.
+ *
+ *             Refer to the ASCII art above vfork() to figure out the
+ *             state we're undoing.
+ *
+ * Parameters: child_proc              Child process
+ *             retval                  System call return value array
+ *             rval                    Return value to present to parent
+ *
+ * Returns:    void
+ *
+ * Notes:      The caller resumes or exits the parent, as appropriate, after
+ *             calling this function.
  */
 void
-vfork_return(th_act, p, p2, retval)
-       thread_act_t th_act;
-       struct proc * p;
-       struct proc *p2;
-       register_t *retval;
+vfork_return(proc_t child_proc, int32_t *retval, int rval)
 {
-       long flags;
-       register uid_t uid;
-       thread_t newth, self = current_thread();
-       thread_act_t cur_act = (thread_act_t)current_act();
-       int s, count;
-       task_t t;
-       uthread_t ut;
-       
-       ut = (struct uthread *)get_bsdthread_info(cur_act);
-
-       act_thread_catt(ut->uu_userstate);
-
-       /* Make sure only one at this time */
-       p->p_vforkcnt--;
-       if (p->p_vforkcnt <0)
-               panic("vfork cnt is -ve");
-       if (p->p_vforkcnt <=0)
-               p->p_flag  &= ~P_VFORK;
-       ut->uu_userstate = 0;
-       ut->uu_flag &= ~P_VFORK;
-       ut->uu_proc = 0;
-       p2->p_flag  &= ~P_INVFORK;
-       p2->p_vforkact = (void *)0;
+       task_t parent_task = get_threadtask(child_proc->p_vforkact);
+       proc_t parent_proc = get_bsdtask_info(parent_task);
+       thread_t th = current_thread();
+       uthread_t uth = get_bsdthread_info(th);
+
+       act_thread_catt(uth->uu_userstate);
+
+       /* clear vfork state in parent proc structure */
+       proc_vfork_end(parent_proc);
+
+       /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
+       uth->uu_userstate = 0;
+       uth->uu_flag &= ~UT_VFORK;
+       /* restore thread-set-id state */
+       if (uth->uu_flag & UT_WASSETUID) {
+               uth->uu_flag |= UT_SETUID;
+               uth->uu_flag &= ~UT_WASSETUID;
+       }
+       uth->uu_proc = 0;
+       uth->uu_sigmask = uth->uu_vforkmask;
+
+       proc_lock(child_proc);
+       child_proc->p_lflag &= ~P_LINVFORK;
+       child_proc->p_vforkact = 0;
+       proc_unlock(child_proc);
 
-       thread_set_parent(cur_act, p2->p_pid);
+       thread_set_parent(th, rval);
 
        if (retval) {
-               retval[0] = p2->p_pid;
-               retval[1] = 0;                  /* mark parent */
+               retval[0] = rval;
+               retval[1] = 0;                  /* mark parent */
        }
-
-       return;
 }
 
+
+/*
+ * fork_create_child
+ *
+ * Description:        Common operations associated with the creation of a child
+ *             process
+ *
+ * Parameters: parent_task             parent task
+ *             parent_coalitions       parent's set of coalitions
+ *             child_proc                      child process
+ *             inherit_memory          TRUE, if the parents address space is
+ *                                                     to be inherited by the child
+ *             is_64bit_addr           TRUE, if the child being created will
+ *                                                     be associated with a 64 bit address space
+ *             is_64bit_data           TRUE if the child being created will use a
+ *                                                       64-bit register state
+ *             in_exec                         TRUE, if called from execve or posix spawn set exec
+ *                                                     FALSE, if called from fork or vfexec
+ *
+ * Note:       This code is called in the fork() case, from the execve() call
+ *             graph, if implementing an execve() following a vfork(), from
+ *             the posix_spawn() call graph (which implicitly includes a
+ *             vfork() equivalent call, and in the system bootstrap case.
+ *
+ *             It creates a new task and thread (and as a side effect of the
+ *             thread creation, a uthread) in the parent coalition set, which is
+ *             then associated with the process 'child'.  If the parent
+ *             process address space is to be inherited, then a flag
+ *             indicates that the newly created task should inherit this from
+ *             the child task.
+ *
+ *             As a special concession to bootstrapping the initial process
+ *             in the system, it's possible for 'parent_task' to be TASK_NULL;
+ *             in this case, 'inherit_memory' MUST be FALSE.
+ */
 thread_t
-procdup(
-       struct proc             *child,
-       struct proc             *parent)
+fork_create_child(task_t parent_task,
+    coalition_t *parent_coalitions,
+    proc_t child_proc,
+    int inherit_memory,
+    int is_64bit_addr,
+    int is_64bit_data,
+    int in_exec)
 {
-       thread_t                thread;
-       task_t                  task;
-       kern_return_t   result;
-       extern task_t kernel_task;
-
-       if (parent->task == kernel_task)
-               result = task_create_local(TASK_NULL, FALSE, FALSE, &task);
-       else
-               result = task_create_local(parent->task, TRUE, FALSE, &task);
-       if (result != KERN_SUCCESS)
-           printf("fork/procdup: task_create failed. Code: 0x%x\n", result);
-       child->task = task;
-       /* task->proc = child; */
-       set_bsdtask_info(task, child);
-       if (child->p_nice != 0)
-               resetpriority(child);
-       result = thread_create(task, &thread);
-       if (result != KERN_SUCCESS)
-           printf("fork/procdup: thread_create failed. Code: 0x%x\n", result);
-
-       return(thread);
-}
+       thread_t        child_thread = NULL;
+       task_t          child_task;
+       kern_return_t   result;
+
+       /* Create a new task for the child process */
+       result = task_create_internal(parent_task,
+           parent_coalitions,
+           inherit_memory,
+           is_64bit_addr,
+           is_64bit_data,
+           TF_NONE,
+           in_exec ? TPF_EXEC_COPY : TPF_NONE,                        /* Mark the task exec copy if in execve */
+           (TRW_LRETURNWAIT | TRW_LRETURNWAITER),                     /* All created threads will wait in task_wait_to_return */
+           &child_task);
+       if (result != KERN_SUCCESS) {
+               printf("%s: task_create_internal failed.  Code: %d\n",
+                   __func__, result);
+               goto bad;
+       }
 
+       if (!in_exec) {
+               /*
+                * Set the child process task to the new task if not in exec,
+                * will set the task for exec case in proc_exec_switch_task after image activation.
+                */
+               child_proc->task = child_task;
+       }
 
-static int
-fork1(p1, flags, retval)
-       struct proc *p1;
-       long flags;
-       register_t *retval;
-{
-       register struct proc *p2;
-       register uid_t uid;
-       thread_t newth, self = current_thread();
-       int s, count;
-        task_t t;
+       /* Set child task process to child proc */
+       set_bsdtask_info(child_task, child_proc);
+
+       /* Propagate CPU limit timer from parent */
+       if (timerisset(&child_proc->p_rlim_cpu)) {
+               task_vtimer_set(child_task, TASK_VTIMER_RLIM);
+       }
 
        /*
-        * Although process entries are dynamically created, we still keep
-        * a global limit on the maximum number we will create.  Don't allow
-        * a nonprivileged user to use the last process; don't let root
-        * exceed the limit. The variable nprocs is the current number of
-        * processes, maxproc is the limit.
+        * Set child process BSD visible scheduler priority if nice value
+        * inherited from parent
         */
-       uid = p1->p_cred->p_ruid;
-       if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
-               tablefull("proc");
-               retval[1] = 0;
-               return (EAGAIN);
+       if (child_proc->p_nice != 0) {
+               resetpriority(child_proc);
        }
 
        /*
-        * Increment the count of procs running with this uid. Don't allow
-        * a nonprivileged user to exceed their current limit.
+        * Create a new thread for the child process. Pin it and make it immovable.
+        * The new thread is waiting on the event triggered by 'task_clear_return_wait'
         */
-       count = chgproccnt(uid, 1);
-       if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
-               (void)chgproccnt(uid, -1);
-               return (EAGAIN);
+       result = thread_create_waiting(child_task,
+           (thread_continue_t)task_wait_to_return,
+           task_get_return_wait_event(child_task),
+           TH_CREATE_WAITING_OPTION_PINNED | TH_CREATE_WAITING_OPTION_IMMOVABLE,
+           &child_thread);
+
+       if (result != KERN_SUCCESS) {
+               printf("%s: thread_create failed. Code: %d\n",
+                   __func__, result);
+               task_deallocate(child_task);
+               child_task = NULL;
        }
 
-       /* The newly created process comes with signal lock held */
-       newth = cloneproc(p1, 1);
-       thread_dup(current_act(), newth);
-       /* p2 = newth->task->proc; */
-       p2 = (struct proc *)(get_bsdtask_info(get_threadtask(newth)));
+       /*
+        * Tag thread as being the first thread in its task.
+        */
+       thread_set_tag(child_thread, THREAD_TAG_MAINTHREAD);
 
-       thread_set_child(newth, p2->p_pid);
+bad:
+       thread_yield_internal(1);
 
-       s = splhigh();
-       p2->p_stats->p_start = time;
-       splx(s);
-       p2->p_acflag = AFORK;
+       return child_thread;
+}
 
-       /*
-        * Preserve synchronization semantics of vfork.  If waiting for
-        * child to exec or exit, set P_PPWAIT on child, and sleep on our
-        * proc (in case of exit).
-        */
-       if (flags == DOVFORK)
-               p2->p_flag |= P_PPWAIT;
-       /* drop the signal lock on the child */
-       signal_unlock(p2);
 
-       (void) thread_resume(newth);
+/*
+ * fork
+ *
+ * Description:        fork system call.
+ *
+ * Parameters: parent                  Parent process to fork
+ *             uap (void)              [unused]
+ *             retval                  Return value
+ *
+ * Returns:    0                       Success
+ *             EAGAIN                  Resource unavailable, try again
+ *
+ * Notes:      Attempts to create a new child process which inherits state
+ *             from the parent process.  If successful, the call returns
+ *             having created an initially suspended child process with an
+ *             extra Mach task and thread reference, for which the thread
+ *             is initially suspended.  Until we resume the child process,
+ *             it is not yet running.
+ *
+ *             The return information to the child is contained in the
+ *             thread state structure of the new child, and does not
+ *             become visible to the child through a normal return process,
+ *             since it never made the call into the kernel itself in the
+ *             first place.
+ *
+ *             After resuming the thread, this function returns directly to
+ *             the parent process which invoked the fork() system call.
+ *
+ * Important:  The child thread_resume occurs before the parent returns;
+ *             depending on scheduling latency, this means that it is not
+ *             deterministic as to whether the parent or child is scheduled
+ *             to run first.  It is entirely possible that the child could
+ *             run to completion prior to the parent running.
+ */
+int
+fork(proc_t parent_proc, __unused struct fork_args *uap, int32_t *retval)
+{
+       thread_t child_thread;
+       int err;
+
+       retval[1] = 0;          /* flag parent return for user space */
+
+       if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_FORK, NULL)) == 0) {
+               task_t child_task;
+               proc_t child_proc;
 
-        /* drop the extra references we got during the creation */
-        if (t = (task_t)get_threadtask(newth)) {
-                task_deallocate(t);
-        }
-        act_deallocate(newth);
+               /* Return to the parent */
+               child_proc = (proc_t)get_bsdthreadtask_info(child_thread);
+               retval[0] = child_proc->p_pid;
 
-       while (p2->p_flag & P_PPWAIT)
-               tsleep(p1, PWAIT, "ppwait", 0);
+               /*
+                * Drop the signal lock on the child which was taken on our
+                * behalf by forkproc()/cloneproc() to prevent signals being
+                * received by the child in a partially constructed state.
+                */
+               proc_signalend(child_proc, 0);
+               proc_transend(child_proc, 0);
 
-       retval[0] = p2->p_pid;
-       retval[1] = 0;                  /* mark parent */
+               /* flag the fork has occurred */
+               proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid);
+               DTRACE_PROC1(create, proc_t, child_proc);
+
+#if CONFIG_DTRACE
+               if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL) {
+                       (*dtrace_proc_waitfor_hook)(child_proc);
+               }
+#endif
 
-       return (0);
+               /* "Return" to the child */
+               task_clear_return_wait(get_threadtask(child_thread), TCRW_CLEAR_ALL_WAIT);
+
+               /* drop the extra references we got during the creation */
+               if ((child_task = (task_t)get_threadtask(child_thread)) != NULL) {
+                       task_deallocate(child_task);
+               }
+               thread_deallocate(child_thread);
+       }
+
+       return err;
 }
 
+
 /*
- * cloneproc()
+ * cloneproc
+ *
+ * Description: Create a new process from a specified process.
+ *
+ * Parameters: parent_task             The parent task to be cloned, or
+ *                                     TASK_NULL is task characteristics
+ *                                     are not to be inherited
+ *                                     be cloned, or TASK_NULL if the new
+ *                                     task is not to inherit the VM
+ *                                     characteristics of the parent
+ *             parent_proc             The parent process to be cloned
+ *             inherit_memory          True if the child is to inherit
+ *                                     memory from the parent; if this is
+ *                                     non-NULL, then the parent_task must
+ *                                     also be non-NULL
+ *             memstat_internal        Whether to track the process in the
+ *                                     jetsam priority list (if configured)
  *
- * Create a new process from a specified process.
- * On return newly created child process has signal
- * lock held to block delivery of signal to it if called with
- * lock set. fork() code needs to explicity remove this lock 
- * before signals can be delivered
+ * Returns:    !NULL                   pointer to new child thread
+ *             NULL                    Failure (unspecified)
+ *
+ * Note:       On return newly created child process has signal lock held
+ *             to block delivery of signal to it if called with lock set.
+ *             fork() code needs to explicity remove this lock before
+ *             signals can be delivered
+ *
+ *             In the case of bootstrap, this function can be called from
+ *             bsd_utaskbootstrap() in order to bootstrap the first process;
+ *             the net effect is to provide a uthread structure for the
+ *             kernel process associated with the kernel task.
+ *
+ * XXX:                Tristating using the value parent_task as the major key
+ *             and inherit_memory as the minor key is something we should
+ *             refactor later; we owe the current semantics, ultimately,
+ *             to the semantics of task_create_internal.  For now, we will
+ *             live with this being somewhat awkward.
  */
 thread_t
-cloneproc(p1, lock)
-       register struct proc *p1;
-       register int lock;
+cloneproc(task_t parent_task, coalition_t *parent_coalitions, proc_t parent_proc, int inherit_memory, int memstat_internal)
 {
-       register struct proc *p2;
-       thread_t th;
-
-       p2 = (struct proc *)forkproc(p1,lock);
-       th = procdup(p2, p1);   /* child, parent */
-
-       LIST_INSERT_AFTER(p1, p2, p_pglist);
-       p2->p_pptr = p1;
-       LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
-       LIST_INIT(&p2->p_children);
-       LIST_INSERT_HEAD(&allproc, p2, p_list);
-       LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
-       TAILQ_INIT(&p2->p_evlist);
+#if !CONFIG_MEMORYSTATUS
+#pragma unused(memstat_internal)
+#endif
+       task_t child_task;
+       proc_t child_proc;
+       thread_t child_thread = NULL;
+
+       if ((child_proc = forkproc(parent_proc)) == NULL) {
+               /* Failed to allocate new process */
+               goto bad;
+       }
+
+       /*
+        * In the case where the parent_task is TASK_NULL (during the init path)
+        * we make the assumption that the register size will be the same as the
+        * address space size since there's no way to determine the possible
+        * register size until an image is exec'd.
+        *
+        * The only architecture that has different address space and register sizes
+        * (arm64_32) isn't being used within kernel-space, so the above assumption
+        * always holds true for the init path.
+        */
+       const int parent_64bit_addr = parent_proc->p_flag & P_LP64;
+       const int parent_64bit_data = (parent_task == TASK_NULL) ? parent_64bit_addr : task_get_64bit_data(parent_task);
+
+       child_thread = fork_create_child(parent_task,
+           parent_coalitions,
+           child_proc,
+           inherit_memory,
+           parent_64bit_addr,
+           parent_64bit_data,
+           FALSE);
+
+       if (child_thread == NULL) {
+               /*
+                * Failed to create thread; now we must deconstruct the new
+                * process previously obtained from forkproc().
+                */
+               forkproc_free(child_proc);
+               goto bad;
+       }
+
+       child_task = get_threadtask(child_thread);
+       if (parent_64bit_addr) {
+               OSBitOrAtomic(P_LP64, (UInt32 *)&child_proc->p_flag);
+       } else {
+               OSBitAndAtomic(~((uint32_t)P_LP64), (UInt32 *)&child_proc->p_flag);
+       }
+
+#if CONFIG_MEMORYSTATUS
+       if (memstat_internal) {
+               proc_list_lock();
+               child_proc->p_memstat_state |= P_MEMSTAT_INTERNAL;
+               proc_list_unlock();
+       }
+#endif
+
+       /* make child visible */
+       pinsertchild(parent_proc, child_proc);
+
        /*
         * Make child runnable, set start time.
         */
-       p2->p_stat = SRUN;
+       child_proc->p_stat = SRUN;
+bad:
+       return child_thread;
+}
 
-       return(th);
+
+/*
+ * Destroy a process structure that resulted from a call to forkproc(), but
+ * which must be returned to the system because of a subsequent failure
+ * preventing it from becoming active.
+ *
+ * Parameters: p                       The incomplete process from forkproc()
+ *
+ * Returns:    (void)
+ *
+ * Note:       This function should only be used in an error handler following
+ *             a call to forkproc().
+ *
+ *             Operations occur in reverse order of those in forkproc().
+ */
+void
+forkproc_free(proc_t p)
+{
+#if CONFIG_PERSONAS
+       persona_proc_drop(p);
+#endif /* CONFIG_PERSONAS */
+
+#if PSYNCH
+       pth_proc_hashdelete(p);
+#endif /* PSYNCH */
+
+       /* We held signal and a transition locks; drop them */
+       proc_signalend(p, 0);
+       proc_transend(p, 0);
+
+       /*
+        * If we have our own copy of the resource limits structure, we
+        * need to free it.  If it's a shared copy, we need to drop our
+        * reference on it.
+        */
+       proc_limitdrop(p);
+
+#if SYSV_SHM
+       /* Need to drop references to the shared memory segment(s), if any */
+       if (p->vm_shm) {
+               /*
+                * Use shmexec(): we have no address space, so no mappings
+                *
+                * XXX Yes, the routine is badly named.
+                */
+               shmexec(p);
+       }
+#endif
+
+       /* Need to undo the effects of the fdcopy(), if any */
+       fdfree(p);
+
+       /*
+        * Drop the reference on a text vnode pointer, if any
+        * XXX This code is broken in forkproc(); see <rdar://4256419>;
+        * XXX if anyone ever uses this field, we will be extremely unhappy.
+        */
+       if (p->p_textvp) {
+               vnode_rele(p->p_textvp);
+               p->p_textvp = NULL;
+       }
+
+       /* Update the audit session proc count */
+       AUDIT_SESSION_PROCEXIT(p);
+
+       lck_mtx_destroy(&p->p_mlock, &proc_mlock_grp);
+       lck_mtx_destroy(&p->p_fdmlock, &proc_fdmlock_grp);
+       lck_mtx_destroy(&p->p_ucred_mlock, &proc_ucred_mlock_grp);
+#if CONFIG_DTRACE
+       lck_mtx_destroy(&p->p_dtrace_sprlock, &proc_lck_grp);
+#endif
+       lck_spin_destroy(&p->p_slock, &proc_slock_grp);
+       lck_rw_destroy(&p->p_dirs_lock, &proc_dirslock_grp);
+
+       /* Release the credential reference */
+       kauth_cred_t tmp_ucred = p->p_ucred;
+       kauth_cred_unref(&tmp_ucred);
+       p->p_ucred = tmp_ucred;
+
+       proc_list_lock();
+       /* Decrement the count of processes in the system */
+       nprocs--;
+
+       /* Take it out of process hash */
+       LIST_REMOVE(p, p_hash);
+
+       proc_list_unlock();
+
+       thread_call_free(p->p_rcall);
+
+       /* Free allocated memory */
+       zfree(proc_sigacts_zone, p->p_sigacts);
+       p->p_sigacts = NULL;
+       zfree(proc_stats_zone, p->p_stats);
+       p->p_stats = NULL;
+       if (p->p_subsystem_root_path) {
+               zfree(ZV_NAMEI, p->p_subsystem_root_path);
+       }
+
+       proc_checkdeadrefs(p);
+       zfree(proc_zone, p);
 }
 
-struct proc *
-forkproc(p1, lock)
-       register struct proc *p1;
-       register int lock;
+
+/*
+ * forkproc
+ *
+ * Description:        Create a new process structure, given a parent process
+ *             structure.
+ *
+ * Parameters: parent_proc             The parent process
+ *
+ * Returns:    !NULL                   The new process structure
+ *             NULL                    Error (insufficient free memory)
+ *
+ * Note:       When successful, the newly created process structure is
+ *             partially initialized; if a caller needs to deconstruct the
+ *             returned structure, they must call forkproc_free() to do so.
+ */
+proc_t
+forkproc(proc_t parent_proc)
 {
-       register struct proc *p2, *newproc;
-       static int nextpid = 0, pidchecked = 0;
-       thread_t th;
-
-       /* Allocate new proc. */
-       MALLOC_ZONE(newproc, struct proc *,
-                       sizeof *newproc, M_PROC, M_WAITOK);
-       MALLOC_ZONE(newproc->p_cred, struct pcred *,
-                       sizeof *newproc->p_cred, M_SUBPROC, M_WAITOK);
-       MALLOC_ZONE(newproc->p_stats, struct pstats *,
-                       sizeof *newproc->p_stats, M_SUBPROC, M_WAITOK);
-       MALLOC_ZONE(newproc->p_sigacts, struct sigacts *,
-                       sizeof *newproc->p_sigacts, M_SUBPROC, M_WAITOK);
+       proc_t child_proc;      /* Our new process */
+       static int nextpid = 0, pidwrap = 0;
+       static uint64_t nextuniqueid = 0;
+       int error = 0;
+       struct session *sessp;
+       uthread_t parent_uthread = (uthread_t)get_bsdthread_info(current_thread());
+       rlim_t rlimit_cpu_cur;
+
+       child_proc = zalloc_flags(proc_zone, Z_WAITOK | Z_ZERO);
+       child_proc->p_stats = zalloc_flags(proc_stats_zone, Z_WAITOK | Z_ZERO);
+       child_proc->p_sigacts = zalloc_flags(proc_sigacts_zone, Z_WAITOK);
+
+       /* allocate a callout for use by interval timers */
+       child_proc->p_rcall = thread_call_allocate((thread_call_func_t)realitexpire, child_proc);
+       if (child_proc->p_rcall == NULL) {
+               zfree(proc_sigacts_zone, child_proc->p_sigacts);
+               zfree(proc_stats_zone, child_proc->p_stats);
+               zfree(proc_zone, child_proc);
+               child_proc = NULL;
+               goto bad;
+       }
+
 
        /*
-        * Find an unused process ID.  We remember a range of unused IDs
-        * ready to use (from nextpid+1 through pidchecked-1).
+        * Find an unused PID.
         */
+
+       proc_list_lock();
+
        nextpid++;
 retry:
        /*
@@ -402,190 +1220,535 @@ retry:
         */
        if (nextpid >= PID_MAX) {
                nextpid = 100;
-               pidchecked = 0;
+               pidwrap = 1;
        }
-       if (nextpid >= pidchecked) {
-               int doingzomb = 0;
+       if (pidwrap != 0) {
+               /* if the pid stays in hash both for zombie and runniing state */
+               if (pfind_locked(nextpid) != PROC_NULL) {
+                       nextpid++;
+                       goto retry;
+               }
 
-               pidchecked = PID_MAX;
-               /*
-                * Scan the active and zombie procs to check whether this pid
-                * is in use.  Remember the lowest pid that's greater
-                * than nextpid, so we can avoid checking for a while.
-                */
-               p2 = allproc.lh_first;
-again:
-               for (; p2 != 0; p2 = p2->p_list.le_next) {
-                       while (p2->p_pid == nextpid ||
-                           p2->p_pgrp->pg_id == nextpid) {
-                               nextpid++;
-                               if (nextpid >= pidchecked)
-                                       goto retry;
-                       }
-                       if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
-                               pidchecked = p2->p_pid;
-                       if (p2->p_pgrp && p2->p_pgrp->pg_id > nextpid && 
-                           pidchecked > p2->p_pgrp->pg_id)
-                               pidchecked = p2->p_pgrp->pg_id;
+               if (pgfind_internal(nextpid) != PGRP_NULL) {
+                       nextpid++;
+                       goto retry;
                }
-               if (!doingzomb) {
-                       doingzomb = 1;
-                       p2 = zombproc.lh_first;
-                       goto again;
+               if (session_find_internal(nextpid) != SESSION_NULL) {
+                       nextpid++;
+                       goto retry;
                }
        }
-
        nprocs++;
-       p2 = newproc;
-       p2->p_stat = SIDL;
-       p2->p_pid = nextpid;
+       child_proc->p_pid = nextpid;
+       child_proc->p_idversion = OSIncrementAtomic(&nextpidversion);
+       /* kernel process is handcrafted and not from fork, so start from 1 */
+       child_proc->p_uniqueid = ++nextuniqueid;
+#if 1
+       if (child_proc->p_pid != 0) {
+               if (pfind_locked(child_proc->p_pid) != PROC_NULL) {
+                       panic("proc in the list already\n");
+               }
+       }
+#endif
+       /* Insert in the hash */
+       child_proc->p_listflag |= (P_LIST_INHASH | P_LIST_INCREATE);
+       LIST_INSERT_HEAD(PIDHASH(child_proc->p_pid), child_proc, p_hash);
+       proc_list_unlock();
+
+       if (child_proc->p_uniqueid == startup_serial_num_procs) {
+               /*
+                * Turn off startup serial logging now that we have reached
+                * the defined number of startup processes.
+                */
+               startup_serial_logging_active = false;
+       }
 
        /*
-        * Make a proc table entry for the new process.
-        * Start by zeroing the section of proc that is zero-initialized,
-        * then copy the section that is copied directly from the parent.
+        * We've identified the PID we are going to use; initialize the new
+        * process structure.
         */
-       bzero(&p2->p_startzero,
-           (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
-       bcopy(&p1->p_startcopy, &p2->p_startcopy,
-           (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
-       p2->vm_shm = (void *)NULL; /* Make sure it is zero */
+       child_proc->p_stat = SIDL;
+       child_proc->p_pgrpid = PGRPID_DEAD;
+
+       /*
+        * The zero'ing of the proc was at the allocation time due to need
+        * for insertion to hash.  Copy the section that is to be copied
+        * directly from the parent.
+        */
+       __nochk_bcopy(&parent_proc->p_startcopy, &child_proc->p_startcopy,
+           (unsigned) ((caddr_t)&child_proc->p_endcopy - (caddr_t)&child_proc->p_startcopy));
+
+#if defined(HAS_APPLE_PAC)
+       /*
+        * The p_textvp and p_pgrp pointers are address-diversified by PAC, so we must
+        * resign them here for the new proc
+        */
+       if (parent_proc->p_textvp) {
+               child_proc->p_textvp = parent_proc->p_textvp;
+       }
+
+       if (parent_proc->p_pgrp) {
+               child_proc->p_pgrp = parent_proc->p_pgrp;
+       }
+#endif /* defined(HAS_APPLE_PAC) */
+
+       child_proc->p_sessionid = parent_proc->p_sessionid;
 
        /*
+        * Some flags are inherited from the parent.
         * Duplicate sub-structures as needed.
         * Increase reference counts on shared objects.
         * The p_stats and p_sigacts substructs are set in vm_fork.
         */
-       p2->p_flag = P_INMEM;
-       if (p1->p_flag & P_PROFIL)
-               startprofclock(p2);
-       bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
-       p2->p_cred->p_refcnt = 1;
-       crhold(p1->p_ucred);
-       lockinit(&p2->p_cred->pc_lock, PLOCK, "proc cred", 0, 0);
-
-       /* bump references to the text vnode (for procfs) */
-       p2->p_textvp = p1->p_textvp;
-       if (p2->p_textvp)
-               VREF(p2->p_textvp);
-
-       p2->p_fd = fdcopy(p1);
-       if (p1->vm_shm) {
-               shmfork(p1,p2);
+#if CONFIG_DELAY_IDLE_SLEEP
+       child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_TRANSLATED | P_DISABLE_ASLR | P_DELAYIDLESLEEP | P_SUGID | P_AFFINITY));
+#else /* CONFIG_DELAY_IDLE_SLEEP */
+       child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_TRANSLATED | P_DISABLE_ASLR | P_SUGID));
+#endif /* CONFIG_DELAY_IDLE_SLEEP */
+
+       child_proc->p_vfs_iopolicy = (parent_proc->p_vfs_iopolicy & (P_VFS_IOPOLICY_VALID_MASK));
+
+       child_proc->p_responsible_pid = parent_proc->p_responsible_pid;
+
+       /*
+        * Note that if the current thread has an assumed identity, this
+        * credential will be granted to the new process.
+        */
+       child_proc->p_ucred = kauth_cred_get_with_ref();
+       /* update cred on proc */
+       PROC_UPDATE_CREDS_ONPROC(child_proc);
+       /* update audit session proc count */
+       AUDIT_SESSION_PROCNEW(child_proc);
+
+       lck_mtx_init(&child_proc->p_mlock, &proc_mlock_grp, &proc_lck_attr);
+       lck_mtx_init(&child_proc->p_fdmlock, &proc_fdmlock_grp, &proc_lck_attr);
+       lck_mtx_init(&child_proc->p_ucred_mlock, &proc_ucred_mlock_grp, &proc_lck_attr);
+#if CONFIG_DTRACE
+       lck_mtx_init(&child_proc->p_dtrace_sprlock, &proc_lck_grp, &proc_lck_attr);
+#endif
+       lck_spin_init(&child_proc->p_slock, &proc_slock_grp, &proc_lck_attr);
+       lck_rw_init(&child_proc->p_dirs_lock, &proc_dirslock_grp, &proc_lck_attr);
+
+       klist_init(&child_proc->p_klist);
+
+       if (child_proc->p_textvp != NULLVP) {
+               /* bump references to the text vnode */
+               /* Need to hold iocount across the ref call */
+               if ((error = vnode_getwithref(child_proc->p_textvp)) == 0) {
+                       error = vnode_ref(child_proc->p_textvp);
+                       vnode_put(child_proc->p_textvp);
+               }
+
+               if (error != 0) {
+                       child_proc->p_textvp = NULLVP;
+               }
        }
+
        /*
-        * If p_limit is still copy-on-write, bump refcnt,
-        * otherwise get a copy that won't be modified.
-        * (If PL_SHAREMOD is clear, the structure is shared
-        * copy-on-write.)
+        * Copy the parents per process open file table to the child; if
+        * there is a per-thread current working directory, set the childs
+        * per-process current working directory to that instead of the
+        * parents.
+        *
+        * XXX may fail to copy descriptors to child
         */
-       if (p1->p_limit->p_lflags & PL_SHAREMOD)
-               p2->p_limit = limcopy(p1->p_limit);
-       else {
-               p2->p_limit = p1->p_limit;
-               p2->p_limit->p_refcnt++;
-       }
-
-       bzero(&p2->p_stats->pstat_startzero,
-           (unsigned) ((caddr_t)&p2->p_stats->pstat_endzero -
-           (caddr_t)&p2->p_stats->pstat_startzero));
-       bcopy(&p1->p_stats->pstat_startcopy, &p2->p_stats->pstat_startcopy,
-           ((caddr_t)&p2->p_stats->pstat_endcopy -
-            (caddr_t)&p2->p_stats->pstat_startcopy));
-
-       if (p1->p_sigacts != NULL)
-               (void)memcpy(p2->p_sigacts,
-                               p1->p_sigacts, sizeof *p2->p_sigacts);
-       else
-               (void)memset(p2->p_sigacts, 0, sizeof *p2->p_sigacts);
-
-       if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
-               p2->p_flag |= P_CONTROLT;
-
-       p2->p_xstat = 0;
-       p2->p_ru = NULL;
-
-       p2->p_debugger = 0;     /* don't inherit */
-       lockinit(&p2->signal_lock, PVM, "signal", 0, 0);
-       /* block all signals to reach the process */
-       if (lock)
-               signal_lock(p2);
-       p2->sigwait = FALSE;
-       p2->sigwait_thread = NULL;
-       p2->exit_thread = NULL;
-       p2->user_stack = p1->user_stack;
-       p2->p_sigpending = 0;
-       p2->p_vforkcnt = 0;
-       p2->p_vforkact = 0;
-
-#if KTRACE
+       child_proc->p_fd = fdcopy(parent_proc, parent_uthread->uu_cdir);
+
+#if SYSV_SHM
+       if (parent_proc->vm_shm) {
+               /* XXX may fail to attach shm to child */
+               (void)shmfork(parent_proc, child_proc);
+       }
+#endif
+
        /*
-        * Copy traceflag and tracefile if enabled.
-        * If not inherited, these were zeroed above.
+        * Child inherits the parent's plimit
         */
-       if (p1->p_traceflag&KTRFAC_INHERIT) {
-               p2->p_traceflag = p1->p_traceflag;
-               if ((p2->p_tracep = p1->p_tracep) != NULL)
-                       VREF(p2->p_tracep);
+       proc_limitfork(parent_proc, child_proc);
+
+       rlimit_cpu_cur = proc_limitgetcur(child_proc, RLIMIT_CPU, TRUE);
+       if (rlimit_cpu_cur != RLIM_INFINITY) {
+               child_proc->p_rlim_cpu.tv_sec = (rlimit_cpu_cur > __INT_MAX__) ? __INT_MAX__ : rlimit_cpu_cur;
        }
+
+       /* Intialize new process stats, including start time */
+       /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
+       microtime_with_abstime(&child_proc->p_start, &child_proc->p_stats->ps_start);
+
+       if (parent_proc->p_sigacts != NULL) {
+               (void)memcpy(child_proc->p_sigacts,
+                   parent_proc->p_sigacts, sizeof *child_proc->p_sigacts);
+       } else {
+               (void)memset(child_proc->p_sigacts, 0, sizeof *child_proc->p_sigacts);
+       }
+
+       sessp = proc_session(parent_proc);
+       if (sessp->s_ttyvp != NULL && parent_proc->p_flag & P_CONTROLT) {
+               OSBitOrAtomic(P_CONTROLT, &child_proc->p_flag);
+       }
+       session_rele(sessp);
+
+       /*
+        * block all signals to reach the process.
+        * no transition race should be occuring with the child yet,
+        * but indicate that the process is in (the creation) transition.
+        */
+       proc_signalstart(child_proc, 0);
+       proc_transstart(child_proc, 0, 0);
+
+       child_proc->p_pcaction = 0;
+
+       TAILQ_INIT(&child_proc->p_uthlist);
+       TAILQ_INIT(&child_proc->p_aio_activeq);
+       TAILQ_INIT(&child_proc->p_aio_doneq);
+
+       /* Inherit the parent flags for code sign */
+       child_proc->p_csflags = (parent_proc->p_csflags & ~CS_KILLED);
+
+       /*
+        * Copy work queue information
+        *
+        * Note: This should probably only happen in the case where we are
+        *      creating a child that is a copy of the parent; since this
+        *      routine is called in the non-duplication case of vfork()
+        *      or posix_spawn(), then this information should likely not
+        *      be duplicated.
+        *
+        * <rdar://6640553> Work queue pointers that no longer point to code
+        */
+       child_proc->p_wqthread = parent_proc->p_wqthread;
+       child_proc->p_threadstart = parent_proc->p_threadstart;
+       child_proc->p_pthsize = parent_proc->p_pthsize;
+       if ((parent_proc->p_lflag & P_LREGISTER) != 0) {
+               child_proc->p_lflag |= P_LREGISTER;
+       }
+       child_proc->p_dispatchqueue_offset = parent_proc->p_dispatchqueue_offset;
+       child_proc->p_dispatchqueue_serialno_offset = parent_proc->p_dispatchqueue_serialno_offset;
+       child_proc->p_dispatchqueue_label_offset = parent_proc->p_dispatchqueue_label_offset;
+       child_proc->p_return_to_kernel_offset = parent_proc->p_return_to_kernel_offset;
+       child_proc->p_mach_thread_self_offset = parent_proc->p_mach_thread_self_offset;
+       child_proc->p_pth_tsd_offset = parent_proc->p_pth_tsd_offset;
+#if PSYNCH
+       pth_proc_hashinit(child_proc);
+#endif /* PSYNCH */
+
+#if CONFIG_PERSONAS
+       child_proc->p_persona = NULL;
+       error = persona_proc_inherit(child_proc, parent_proc);
+       if (error != 0) {
+               printf("forkproc: persona_proc_inherit failed (persona %d being destroyed?)\n", persona_get_uid(parent_proc->p_persona));
+               forkproc_free(child_proc);
+               child_proc = NULL;
+               goto bad;
+       }
+#endif
+
+#if CONFIG_MEMORYSTATUS
+       /* Memorystatus init */
+       child_proc->p_memstat_state = 0;
+       child_proc->p_memstat_effectivepriority = JETSAM_PRIORITY_DEFAULT;
+       child_proc->p_memstat_requestedpriority = JETSAM_PRIORITY_DEFAULT;
+       child_proc->p_memstat_assertionpriority = 0;
+       child_proc->p_memstat_userdata          = 0;
+       child_proc->p_memstat_idle_start        = 0;
+       child_proc->p_memstat_idle_delta        = 0;
+       child_proc->p_memstat_memlimit          = 0;
+       child_proc->p_memstat_memlimit_active   = 0;
+       child_proc->p_memstat_memlimit_inactive = 0;
+       child_proc->p_memstat_relaunch_flags    = P_MEMSTAT_RELAUNCH_UNKNOWN;
+#if CONFIG_FREEZE
+       child_proc->p_memstat_freeze_sharedanon_pages = 0;
 #endif
-       return(p2);
+       child_proc->p_memstat_dirty = 0;
+       child_proc->p_memstat_idledeadline = 0;
+#endif /* CONFIG_MEMORYSTATUS */
+
+       if (parent_proc->p_subsystem_root_path) {
+               size_t parent_length = strlen(parent_proc->p_subsystem_root_path) + 1;
+               assert(parent_length <= MAXPATHLEN);
+               child_proc->p_subsystem_root_path = zalloc_flags(ZV_NAMEI,
+                   Z_WAITOK | Z_ZERO);
+               memcpy(child_proc->p_subsystem_root_path, parent_proc->p_subsystem_root_path, parent_length);
+       }
 
+bad:
+       return child_proc;
 }
 
-#include <kern/zalloc.h>
+void
+proc_lock(proc_t p)
+{
+       LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_NOTOWNED);
+       lck_mtx_lock(&p->p_mlock);
+}
 
-struct zone    *uthread_zone;
-int uthread_zone_inited = 0;
+void
+proc_unlock(proc_t p)
+{
+       lck_mtx_unlock(&p->p_mlock);
+}
 
 void
-uthread_zone_init()
+proc_spinlock(proc_t p)
 {
-       if (!uthread_zone_inited) {
-               uthread_zone = zinit(sizeof(struct uthread),
-                                                       THREAD_MAX * sizeof(struct uthread),
-                                                       THREAD_CHUNK * sizeof(struct uthread),
-                                                       "uthreads");
-               uthread_zone_inited = 1;
-       }
+       lck_spin_lock_grp(&p->p_slock, &proc_slock_grp);
+}
+
+void
+proc_spinunlock(proc_t p)
+{
+       lck_spin_unlock(&p->p_slock);
+}
+
+void
+proc_list_lock(void)
+{
+       lck_mtx_lock(&proc_list_mlock);
+}
+
+void
+proc_list_unlock(void)
+{
+       lck_mtx_unlock(&proc_list_mlock);
+}
+
+void
+proc_ucred_lock(proc_t p)
+{
+       lck_mtx_lock(&p->p_ucred_mlock);
+}
+
+void
+proc_ucred_unlock(proc_t p)
+{
+       lck_mtx_unlock(&p->p_ucred_mlock);
 }
 
 void *
-uthread_alloc(void)
+uthread_alloc(task_t task, thread_t thread, int noinherit)
 {
+       proc_t p;
+       uthread_t uth;
+       uthread_t uth_parent;
        void *ut;
 
-       if (!uthread_zone_inited)
-               uthread_zone_init();
+       ut = zalloc_flags(uthread_zone, Z_WAITOK | Z_ZERO);
+
+       p = (proc_t) get_bsdtask_info(task);
+       uth = (uthread_t)ut;
+       uth->uu_thread = thread;
+
+       lck_spin_init(&uth->uu_rethrottle_lock, &rethrottle_lock_grp,
+           LCK_ATTR_NULL);
+
+       /*
+        * Thread inherits credential from the creating thread, if both
+        * are in the same task.
+        *
+        * If the creating thread has no credential or is from another
+        * task we can leave the new thread credential NULL.  If it needs
+        * one later, it will be lazily assigned from the task's process.
+        */
+       uth_parent = (uthread_t)get_bsdthread_info(current_thread());
+       if ((noinherit == 0) && task == current_task() &&
+           uth_parent != NULL &&
+           IS_VALID_CRED(uth_parent->uu_ucred)) {
+               /*
+                * XXX The new thread is, in theory, being created in context
+                * XXX of parent thread, so a direct reference to the parent
+                * XXX is OK.
+                */
+               kauth_cred_ref(uth_parent->uu_ucred);
+               uth->uu_ucred = uth_parent->uu_ucred;
+               /* the credential we just inherited is an assumed credential */
+               if (uth_parent->uu_flag & UT_SETUID) {
+                       uth->uu_flag |= UT_SETUID;
+               }
+       } else {
+               /* sometimes workqueue threads are created out task context */
+               if ((task != kernel_task) && (p != PROC_NULL)) {
+                       uth->uu_ucred = kauth_cred_proc_ref(p);
+               } else {
+                       uth->uu_ucred = NOCRED;
+               }
+       }
+
+
+       if ((task != kernel_task) && p) {
+               proc_lock(p);
+               if (noinherit != 0) {
+                       /* workq threads will not inherit masks */
+                       uth->uu_sigmask = ~workq_threadmask;
+               } else if (uth_parent) {
+                       if (uth_parent->uu_flag & UT_SAS_OLDMASK) {
+                               uth->uu_sigmask = uth_parent->uu_oldmask;
+                       } else {
+                               uth->uu_sigmask = uth_parent->uu_sigmask;
+                       }
+               }
+               uth->uu_context.vc_thread = thread;
+               /*
+                * Do not add the uthread to proc uthlist for exec copy task,
+                * since they do not hold a ref on proc.
+                */
+               if (!task_is_exec_copy(task)) {
+                       TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list);
+               }
+               proc_unlock(p);
+
+#if CONFIG_DTRACE
+               if (p->p_dtrace_ptss_pages != NULL && !task_is_exec_copy(task)) {
+                       uth->t_dtrace_scratch = dtrace_ptss_claim_entry(p);
+               }
+#endif
+       }
 
-       ut = (void *)zalloc(uthread_zone);
-       bzero(ut, sizeof(struct uthread));
-       return (ut);
+       return ut;
 }
 
+/*
+ * This routine frees the thread name field of the uthread_t structure. Split out of
+ * uthread_cleanup() so thread name does not get deallocated while generating a corpse fork.
+ */
+void
+uthread_cleanup_name(void *uthread)
+{
+       uthread_t uth = (uthread_t)uthread;
+
+       /*
+        * <rdar://17834538>
+        * Set pth_name to NULL before calling free().
+        * Previously there was a race condition in the
+        * case this code was executing during a stackshot
+        * where the stackshot could try and copy pth_name
+        * after it had been freed and before if was marked
+        * as null.
+        */
+       if (uth->pth_name != NULL) {
+               void *pth_name = uth->pth_name;
+               uth->pth_name = NULL;
+               kfree(pth_name, MAXTHREADNAMESIZE);
+       }
+       return;
+}
+
+/*
+ * This routine frees all the BSD context in uthread except the credential.
+ * It does not free the uthread structure as well
+ */
+void
+uthread_cleanup(task_t task, void *uthread, void * bsd_info)
+{
+       uthread_t uth = (uthread_t)uthread;
+       proc_t p = (proc_t)bsd_info;
+
+#if PROC_REF_DEBUG
+       if (__improbable(uthread_get_proc_refcount(uthread) != 0)) {
+               panic("uthread_cleanup called for uthread %p with uu_proc_refcount != 0", uthread);
+       }
+#endif
+
+       if (uth->uu_lowpri_window || uth->uu_throttle_info) {
+               /*
+                * task is marked as a low priority I/O type
+                * and we've somehow managed to not dismiss the throttle
+                * through the normal exit paths back to user space...
+                * no need to throttle this thread since its going away
+                * but we do need to update our bookeeping w/r to throttled threads
+                *
+                * Calling this routine will clean up any throttle info reference
+                * still inuse by the thread.
+                */
+               throttle_lowpri_io(0);
+       }
+       /*
+        * Per-thread audit state should never last beyond system
+        * call return.  Since we don't audit the thread creation/
+        * removal, the thread state pointer should never be
+        * non-NULL when we get here.
+        */
+       assert(uth->uu_ar == NULL);
+
+       if (uth->uu_kqr_bound) {
+               kqueue_threadreq_unbind(p, uth->uu_kqr_bound);
+       }
+
+       if (uth->uu_select.nbytes) {
+               select_cleanup_uthread(&uth->uu_select);
+       }
+
+       if (uth->uu_cdir) {
+               vnode_rele(uth->uu_cdir);
+               uth->uu_cdir = NULLVP;
+       }
+
+       if (uth->uu_wqset) {
+               if (waitq_set_is_valid(uth->uu_wqset)) {
+                       waitq_set_deinit(uth->uu_wqset);
+               }
+               kheap_free(KHEAP_DEFAULT, uth->uu_wqset, uth->uu_wqstate_sz);
+               uth->uu_wqset = NULL;
+               uth->uu_wqstate_sz = 0;
+       }
+
+       os_reason_free(uth->uu_exit_reason);
 
+       if ((task != kernel_task) && p) {
+               if (((uth->uu_flag & UT_VFORK) == UT_VFORK) && (uth->uu_proc != PROC_NULL)) {
+                       vfork_exit_internal(uth->uu_proc, 0, 1);
+               }
+               /*
+                * Remove the thread from the process list and
+                * transfer [appropriate] pending signals to the process.
+                * Do not remove the uthread from proc uthlist for exec
+                * copy task, since they does not have a ref on proc and
+                * would not have been added to the list.
+                */
+               if (get_bsdtask_info(task) == p && !task_is_exec_copy(task)) {
+                       proc_lock(p);
+
+                       TAILQ_REMOVE(&p->p_uthlist, uth, uu_list);
+                       p->p_siglist |= (uth->uu_siglist & execmask & (~p->p_sigignore | sigcantmask));
+                       proc_unlock(p);
+               }
+#if CONFIG_DTRACE
+               struct dtrace_ptss_page_entry *tmpptr = uth->t_dtrace_scratch;
+               uth->t_dtrace_scratch = NULL;
+               if (tmpptr != NULL && !task_is_exec_copy(task)) {
+                       dtrace_ptss_release_entry(p, tmpptr);
+               }
+#endif
+       }
+}
+
+/* This routine releases the credential stored in uthread */
 void
-uthread_free(void *uthread)
+uthread_cred_free(void *uthread)
 {
-       struct _select *sel;
-       struct uthread *uth = (struct uthread *)uthread;
-       int size;
+       uthread_t uth = (uthread_t)uthread;
 
-       sel = &uth->uu_state.ss_select;
-       /* cleanup the select bit space */
-       if (sel->nbytes) {
-               FREE(sel->ibits, M_TEMP);
-               FREE(sel->obits, M_TEMP);
+       /* and free the uthread itself */
+       if (IS_VALID_CRED(uth->uu_ucred)) {
+               kauth_cred_t oldcred = uth->uu_ucred;
+               uth->uu_ucred = NOCRED;
+               kauth_cred_unref(&oldcred);
        }
+}
+
+/* This routine frees the uthread structure held in thread structure */
+void
+uthread_zone_free(void *uthread)
+{
+       uthread_t uth = (uthread_t)uthread;
 
-       if (sel->allocsize && uth->uu_wqsub){
-               kfree(uth->uu_wqsub, sel->allocsize);
-               sel->count = sel->nfcount = 0;
-               sel->allocsize = 0;
-               uth->uu_wqsub = 0;
-               sel->wql = 0;
+       if (uth->t_tombstone) {
+               kfree(uth->t_tombstone, sizeof(struct doc_tombstone));
+               uth->t_tombstone = NULL;
        }
 
+       lck_spin_destroy(&uth->uu_rethrottle_lock, &rethrottle_lock_grp);
+
+       uthread_cleanup_name(uthread);
        /* and free the uthread itself */
-       zfree(uthread_zone, (vm_offset_t)uthread);
+       zfree(uthread_zone, uthread);
 }