/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
* Kernel memory management.
*/
-#include <cpus.h>
#include <mach/kern_return.h>
#include <mach/vm_param.h>
#include <kern/assert.h>
-#include <kern/lock.h>
#include <kern/thread.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
+#include <vm/vm_compressor.h>
#include <vm/vm_pageout.h>
#include <kern/misc_protos.h>
#include <vm/cpm.h>
#include <string.h>
+
+#include <libkern/OSDebug.h>
+#include <libkern/crypto/sha2.h>
+#include <sys/kdebug.h>
+
+#include <san/kasan.h>
+
/*
* Variables exported by this module.
*/
vm_map_t kernel_map;
vm_map_t kernel_pageable_map;
+extern boolean_t vm_kernel_ready;
+
/*
* Forward declarations for internal functions.
*/
extern kern_return_t kmem_alloc_pages(
- register vm_object_t object,
- register vm_object_offset_t offset,
- register vm_offset_t start,
- register vm_offset_t end,
- vm_prot_t protection);
-
-extern void kmem_remap_pages(
- register vm_object_t object,
- register vm_object_offset_t offset,
- register vm_offset_t start,
- register vm_offset_t end,
- vm_prot_t protection);
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_object_size_t size);
kern_return_t
kmem_alloc_contig(
- vm_map_t map,
- vm_offset_t *addrp,
- vm_size_t size,
- vm_offset_t mask,
- int flags)
+ vm_map_t map,
+ vm_offset_t *addrp,
+ vm_size_t size,
+ vm_offset_t mask,
+ ppnum_t max_pnum,
+ ppnum_t pnum_mask,
+ int flags,
+ vm_tag_t tag)
{
vm_object_t object;
- vm_page_t m, pages;
- kern_return_t kr;
- vm_offset_t addr, i;
vm_object_offset_t offset;
+ vm_map_offset_t map_addr;
+ vm_map_offset_t map_mask;
+ vm_map_size_t map_size, i;
vm_map_entry_t entry;
+ vm_page_t m, pages;
+ kern_return_t kr;
+
+ assert(VM_KERN_MEMORY_NONE != tag);
- if (map == VM_MAP_NULL || (flags && (flags ^ KMA_KOBJECT)))
+ if (map == VM_MAP_NULL || (flags & ~(KMA_KOBJECT | KMA_LOMEM | KMA_NOPAGEWAIT)))
return KERN_INVALID_ARGUMENT;
+
+ map_size = vm_map_round_page(size,
+ VM_MAP_PAGE_MASK(map));
+ map_mask = (vm_map_offset_t)mask;
- if (size == 0) {
+ /* Check for zero allocation size (either directly or via overflow) */
+ if (map_size == 0) {
*addrp = 0;
return KERN_INVALID_ARGUMENT;
}
- size = round_page(size);
- if ((flags & KMA_KOBJECT) == 0) {
- object = vm_object_allocate(size);
- kr = vm_map_find_space(map, &addr, size, mask, &entry);
- }
- else {
+ /*
+ * Allocate a new object (if necessary) and the reference we
+ * will be donating to the map entry. We must do this before
+ * locking the map, or risk deadlock with the default pager.
+ */
+ if ((flags & KMA_KOBJECT) != 0) {
object = kernel_object;
- kr = vm_map_find_space(map, &addr, size, mask, &entry);
- }
-
- if ((flags & KMA_KOBJECT) == 0) {
- entry->object.vm_object = object;
- entry->offset = offset = 0;
+ vm_object_reference(object);
} else {
- offset = addr - VM_MIN_KERNEL_ADDRESS;
-
- if (entry->object.vm_object == VM_OBJECT_NULL) {
- vm_object_reference(object);
- entry->object.vm_object = object;
- entry->offset = offset;
- }
+ object = vm_object_allocate(map_size);
}
- if (kr != KERN_SUCCESS) {
- if ((flags & KMA_KOBJECT) == 0)
- vm_object_deallocate(object);
+ kr = vm_map_find_space(map, &map_addr, map_size, map_mask, 0,
+ VM_MAP_KERNEL_FLAGS_NONE, tag, &entry);
+ if (KERN_SUCCESS != kr) {
+ vm_object_deallocate(object);
return kr;
}
+ if (object == kernel_object) {
+ offset = map_addr;
+ } else {
+ offset = 0;
+ }
+ VME_OBJECT_SET(entry, object);
+ VME_OFFSET_SET(entry, offset);
+
+ /* Take an extra object ref in case the map entry gets deleted */
+ vm_object_reference(object);
vm_map_unlock(map);
- kr = cpm_allocate(size, &pages, FALSE);
+ kr = cpm_allocate(CAST_DOWN(vm_size_t, map_size), &pages, max_pnum, pnum_mask, FALSE, flags);
if (kr != KERN_SUCCESS) {
- vm_map_remove(map, addr, addr + size, 0);
+ vm_map_remove(map,
+ vm_map_trunc_page(map_addr,
+ VM_MAP_PAGE_MASK(map)),
+ vm_map_round_page(map_addr + map_size,
+ VM_MAP_PAGE_MASK(map)),
+ VM_MAP_REMOVE_NO_FLAGS);
+ vm_object_deallocate(object);
*addrp = 0;
return kr;
}
vm_object_lock(object);
- for (i = 0; i < size; i += PAGE_SIZE) {
+ for (i = 0; i < map_size; i += PAGE_SIZE) {
m = pages;
pages = NEXT_PAGE(m);
- m->busy = FALSE;
+ *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL;
+ m->vmp_busy = FALSE;
vm_page_insert(m, object, offset + i);
}
vm_object_unlock(object);
- if ((kr = vm_map_wire(map, addr, addr + size, VM_PROT_DEFAULT, FALSE))
- != KERN_SUCCESS) {
+ kr = vm_map_wire_kernel(map,
+ vm_map_trunc_page(map_addr,
+ VM_MAP_PAGE_MASK(map)),
+ vm_map_round_page(map_addr + map_size,
+ VM_MAP_PAGE_MASK(map)),
+ VM_PROT_DEFAULT, tag,
+ FALSE);
+
+ if (kr != KERN_SUCCESS) {
if (object == kernel_object) {
vm_object_lock(object);
- vm_object_page_remove(object, offset, offset + size);
+ vm_object_page_remove(object, offset, offset + map_size);
vm_object_unlock(object);
}
- vm_map_remove(map, addr, addr + size, 0);
+ vm_map_remove(map,
+ vm_map_trunc_page(map_addr,
+ VM_MAP_PAGE_MASK(map)),
+ vm_map_round_page(map_addr + map_size,
+ VM_MAP_PAGE_MASK(map)),
+ VM_MAP_REMOVE_NO_FLAGS);
+ vm_object_deallocate(object);
return kr;
}
- if (object == kernel_object)
- vm_map_simplify(map, addr);
+ vm_object_deallocate(object);
+
+ if (object == kernel_object) {
+ vm_map_simplify(map, map_addr);
+ vm_tag_update_size(tag, map_size);
+ }
+ *addrp = (vm_offset_t) map_addr;
+ assert((vm_map_offset_t) *addrp == map_addr);
- *addrp = addr;
return KERN_SUCCESS;
}
* KMA_HERE *addrp is base address, else "anywhere"
* KMA_NOPAGEWAIT don't wait for pages if unavailable
* KMA_KOBJECT use kernel_object
+ * KMA_LOMEM support for 32 bit devices in a 64 bit world
+ * if set and a lomemory pool is available
+ * grab pages from it... this also implies
+ * KMA_NOPAGEWAIT
*/
kern_return_t
kernel_memory_allocate(
- register vm_map_t map,
- register vm_offset_t *addrp,
- register vm_size_t size,
- register vm_offset_t mask,
- int flags)
+ vm_map_t map,
+ vm_offset_t *addrp,
+ vm_size_t size,
+ vm_offset_t mask,
+ int flags,
+ vm_tag_t tag)
{
- vm_object_t object = VM_OBJECT_NULL;
- vm_map_entry_t entry;
- vm_object_offset_t offset;
- vm_offset_t addr;
- vm_offset_t i;
- kern_return_t kr;
-
- size = round_page(size);
- if ((flags & KMA_KOBJECT) == 0) {
- /*
- * Allocate a new object. We must do this before locking
- * the map, or risk deadlock with the default pager:
- * device_read_alloc uses kmem_alloc,
- * which tries to allocate an object,
- * which uses kmem_alloc_wired to get memory,
- * which blocks for pages.
- * then the default pager needs to read a block
- * to process a memory_object_data_write,
- * and device_read_alloc calls kmem_alloc
- * and deadlocks on the map lock.
- */
- object = vm_object_allocate(size);
- kr = vm_map_find_space(map, &addr, size, mask, &entry);
+ vm_object_t object;
+ vm_object_offset_t offset;
+ vm_object_offset_t pg_offset;
+ vm_map_entry_t entry = NULL;
+ vm_map_offset_t map_addr, fill_start;
+ vm_map_offset_t map_mask;
+ vm_map_size_t map_size, fill_size;
+ kern_return_t kr, pe_result;
+ vm_page_t mem;
+ vm_page_t guard_page_list = NULL;
+ vm_page_t wired_page_list = NULL;
+ int guard_page_count = 0;
+ int wired_page_count = 0;
+ int page_grab_count = 0;
+ int i;
+ int vm_alloc_flags;
+ vm_map_kernel_flags_t vmk_flags;
+ vm_prot_t kma_prot;
+
+ if (! vm_kernel_ready) {
+ panic("kernel_memory_allocate: VM is not ready");
+ }
+
+ map_size = vm_map_round_page(size,
+ VM_MAP_PAGE_MASK(map));
+ map_mask = (vm_map_offset_t) mask;
+
+ vm_alloc_flags = 0; //VM_MAKE_TAG(tag);
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+
+ /* Check for zero allocation size (either directly or via overflow) */
+ if (map_size == 0) {
+ *addrp = 0;
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ /*
+ * limit the size of a single extent of wired memory
+ * to try and limit the damage to the system if
+ * too many pages get wired down
+ * limit raised to 2GB with 128GB max physical limit,
+ * but scaled by installed memory above this
+ */
+ if (!(flags & (KMA_VAONLY | KMA_PAGEABLE)) &&
+ map_size > MAX(1ULL<<31, sane_size/64)) {
+ return KERN_RESOURCE_SHORTAGE;
+ }
+
+ /*
+ * Guard pages:
+ *
+ * Guard pages are implemented as ficticious pages. By placing guard pages
+ * on either end of a stack, they can help detect cases where a thread walks
+ * off either end of its stack. They are allocated and set up here and attempts
+ * to access those pages are trapped in vm_fault_page().
+ *
+ * The map_size we were passed may include extra space for
+ * guard pages. If those were requested, then back it out of fill_size
+ * since vm_map_find_space() takes just the actual size not including
+ * guard pages. Similarly, fill_start indicates where the actual pages
+ * will begin in the range.
+ */
+
+ fill_start = 0;
+ fill_size = map_size;
+
+ if (flags & KMA_GUARD_FIRST) {
+ vmk_flags.vmkf_guard_before = TRUE;
+ fill_start += PAGE_SIZE_64;
+ fill_size -= PAGE_SIZE_64;
+ if (map_size < fill_start + fill_size) {
+ /* no space for a guard page */
+ *addrp = 0;
+ return KERN_INVALID_ARGUMENT;
+ }
+ guard_page_count++;
+ }
+ if (flags & KMA_GUARD_LAST) {
+ vmk_flags.vmkf_guard_after = TRUE;
+ fill_size -= PAGE_SIZE_64;
+ if (map_size <= fill_start + fill_size) {
+ /* no space for a guard page */
+ *addrp = 0;
+ return KERN_INVALID_ARGUMENT;
+ }
+ guard_page_count++;
+ }
+ wired_page_count = (int) (fill_size / PAGE_SIZE_64);
+ assert(wired_page_count * PAGE_SIZE_64 == fill_size);
+
+#if DEBUG || DEVELOPMENT
+ VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_START, size, 0, 0, 0);
+#endif
+
+ for (i = 0; i < guard_page_count; i++) {
+ for (;;) {
+ mem = vm_page_grab_guard();
+
+ if (mem != VM_PAGE_NULL)
+ break;
+ if (flags & KMA_NOPAGEWAIT) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto out;
+ }
+ vm_page_more_fictitious();
+ }
+ mem->vmp_snext = guard_page_list;
+ guard_page_list = mem;
+ }
+
+ if (!(flags & (KMA_VAONLY | KMA_PAGEABLE))) {
+ for (i = 0; i < wired_page_count; i++) {
+ uint64_t unavailable;
+
+ for (;;) {
+ if (flags & KMA_LOMEM)
+ mem = vm_page_grablo();
+ else
+ mem = vm_page_grab();
+
+ if (mem != VM_PAGE_NULL)
+ break;
+
+ if (flags & KMA_NOPAGEWAIT) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto out;
+ }
+ if ((flags & KMA_LOMEM) && (vm_lopage_needed == TRUE)) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto out;
+ }
+ unavailable = (vm_page_wire_count + vm_page_free_target) * PAGE_SIZE;
+
+ if (unavailable > max_mem || map_size > (max_mem - unavailable)) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto out;
+ }
+ VM_PAGE_WAIT();
+ }
+ page_grab_count++;
+ if (KMA_ZERO & flags) vm_page_zero_fill(mem);
+ mem->vmp_snext = wired_page_list;
+ wired_page_list = mem;
+ }
}
- else {
+
+ /*
+ * Allocate a new object (if necessary). We must do this before
+ * locking the map, or risk deadlock with the default pager.
+ */
+ if ((flags & KMA_KOBJECT) != 0) {
object = kernel_object;
- kr = vm_map_find_space(map, &addr, size, mask, &entry);
+ vm_object_reference(object);
+ } else if ((flags & KMA_COMPRESSOR) != 0) {
+ object = compressor_object;
+ vm_object_reference(object);
+ } else {
+ object = vm_object_allocate(map_size);
}
- if (kr != KERN_SUCCESS) {
- if ((flags & KMA_KOBJECT) == 0)
- vm_object_deallocate(object);
- return kr;
+
+ if (flags & KMA_ATOMIC)
+ vmk_flags.vmkf_atomic_entry = TRUE;
+
+ kr = vm_map_find_space(map, &map_addr,
+ fill_size, map_mask,
+ vm_alloc_flags, vmk_flags, tag, &entry);
+ if (KERN_SUCCESS != kr) {
+ vm_object_deallocate(object);
+ goto out;
+ }
+
+ if (object == kernel_object || object == compressor_object) {
+ offset = map_addr;
+ } else {
+ offset = 0;
+ }
+ VME_OBJECT_SET(entry, object);
+ VME_OFFSET_SET(entry, offset);
+
+ if (!(flags & (KMA_COMPRESSOR | KMA_PAGEABLE)))
+ entry->wired_count++;
+
+ if (flags & KMA_PERMANENT)
+ entry->permanent = TRUE;
+
+ if (object != kernel_object && object != compressor_object)
+ vm_object_reference(object);
+
+ vm_object_lock(object);
+ vm_map_unlock(map);
+
+ pg_offset = 0;
+
+ if (fill_start) {
+ if (guard_page_list == NULL)
+ panic("kernel_memory_allocate: guard_page_list == NULL");
+
+ mem = guard_page_list;
+ guard_page_list = mem->vmp_snext;
+ mem->vmp_snext = NULL;
+
+ vm_page_insert(mem, object, offset + pg_offset);
+
+ mem->vmp_busy = FALSE;
+ pg_offset += PAGE_SIZE_64;
+ }
+
+ kma_prot = VM_PROT_READ | VM_PROT_WRITE;
+
+#if KASAN
+ if (!(flags & KMA_VAONLY)) {
+ /* for VAONLY mappings we notify in populate only */
+ kasan_notify_address(map_addr, size);
}
+#endif
- if ((flags & KMA_KOBJECT) == 0) {
- entry->object.vm_object = object;
- entry->offset = offset = 0;
+ if (flags & (KMA_VAONLY | KMA_PAGEABLE)) {
+ pg_offset = fill_start + fill_size;
} else {
- offset = addr - VM_MIN_KERNEL_ADDRESS;
+ for (pg_offset = fill_start; pg_offset < fill_start + fill_size; pg_offset += PAGE_SIZE_64) {
+ if (wired_page_list == NULL)
+ panic("kernel_memory_allocate: wired_page_list == NULL");
+
+ mem = wired_page_list;
+ wired_page_list = mem->vmp_snext;
+ mem->vmp_snext = NULL;
+
+ assert(mem->vmp_wire_count == 0);
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+
+ mem->vmp_q_state = VM_PAGE_IS_WIRED;
+ mem->vmp_wire_count++;
+ if (__improbable(mem->vmp_wire_count == 0)) {
+ panic("kernel_memory_allocate(%p): wire_count overflow",
+ mem);
+ }
+
+ vm_page_insert_wired(mem, object, offset + pg_offset, tag);
+
+ mem->vmp_busy = FALSE;
+ mem->vmp_pmapped = TRUE;
+ mem->vmp_wpmapped = TRUE;
+
+ PMAP_ENTER_OPTIONS(kernel_pmap, map_addr + pg_offset, mem,
+ kma_prot, VM_PROT_NONE, ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE,
+ PMAP_OPTIONS_NOWAIT, pe_result);
+
+ if (pe_result == KERN_RESOURCE_SHORTAGE) {
+ vm_object_unlock(object);
- if (entry->object.vm_object == VM_OBJECT_NULL) {
- vm_object_reference(object);
- entry->object.vm_object = object;
- entry->offset = offset;
+ PMAP_ENTER(kernel_pmap, map_addr + pg_offset, mem,
+ kma_prot, VM_PROT_NONE, ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE,
+ pe_result);
+
+ vm_object_lock(object);
}
+
+ assert(pe_result == KERN_SUCCESS);
+
+ if (flags & KMA_NOENCRYPT) {
+ bzero(CAST_DOWN(void *, (map_addr + pg_offset)), PAGE_SIZE);
+
+ pmap_set_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem));
+ }
+ }
+ if (kernel_object == object) vm_tag_update_size(tag, fill_size);
}
+ if ((fill_start + fill_size) < map_size) {
+ if (guard_page_list == NULL)
+ panic("kernel_memory_allocate: guard_page_list == NULL");
+
+ mem = guard_page_list;
+ guard_page_list = mem->vmp_snext;
+ mem->vmp_snext = NULL;
+
+ vm_page_insert(mem, object, offset + pg_offset);
+
+ mem->vmp_busy = FALSE;
+ }
+ if (guard_page_list || wired_page_list)
+ panic("kernel_memory_allocate: non empty list\n");
+
+ if (!(flags & (KMA_VAONLY | KMA_PAGEABLE))) {
+ vm_page_lockspin_queues();
+ vm_page_wire_count += wired_page_count;
+ vm_page_unlock_queues();
+ }
+
+ vm_object_unlock(object);
/*
- * Since we have not given out this address yet,
- * it is safe to unlock the map.
+ * now that the pages are wired, we no longer have to fear coalesce
*/
- vm_map_unlock(map);
+ if (object == kernel_object || object == compressor_object)
+ vm_map_simplify(map, map_addr);
+ else
+ vm_object_deallocate(object);
- vm_object_lock(object);
- for (i = 0; i < size; i += PAGE_SIZE) {
- vm_page_t mem;
+#if DEBUG || DEVELOPMENT
+ VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0);
+#endif
+
+ /*
+ * Return the memory, not zeroed.
+ */
+ *addrp = CAST_DOWN(vm_offset_t, map_addr);
+ return KERN_SUCCESS;
+
+out:
+ if (guard_page_list)
+ vm_page_free_list(guard_page_list, FALSE);
+
+ if (wired_page_list)
+ vm_page_free_list(wired_page_list, FALSE);
+
+#if DEBUG || DEVELOPMENT
+ VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0);
+#endif
+
+ return kr;
+}
+
+kern_return_t
+kernel_memory_populate(
+ vm_map_t map,
+ vm_offset_t addr,
+ vm_size_t size,
+ int flags,
+ vm_tag_t tag)
+{
+ vm_object_t object;
+ vm_object_offset_t offset, pg_offset;
+ kern_return_t kr, pe_result;
+ vm_page_t mem;
+ vm_page_t page_list = NULL;
+ int page_count = 0;
+ int page_grab_count = 0;
+ int i;
+
+#if DEBUG || DEVELOPMENT
+ VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_START, size, 0, 0, 0);
+#endif
+
+ page_count = (int) (size / PAGE_SIZE_64);
+
+ assert((flags & (KMA_COMPRESSOR|KMA_KOBJECT)) != (KMA_COMPRESSOR|KMA_KOBJECT));
+
+ if (flags & KMA_COMPRESSOR) {
+
+ pg_offset = page_count * PAGE_SIZE_64;
+
+ do {
+ for (;;) {
+ mem = vm_page_grab();
+
+ if (mem != VM_PAGE_NULL)
+ break;
+
+ VM_PAGE_WAIT();
+ }
+ page_grab_count++;
+ if (KMA_ZERO & flags) vm_page_zero_fill(mem);
+ mem->vmp_snext = page_list;
+ page_list = mem;
+
+ pg_offset -= PAGE_SIZE_64;
+
+ kr = pmap_enter_options(kernel_pmap,
+ addr + pg_offset, VM_PAGE_GET_PHYS_PAGE(mem),
+ VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, 0, TRUE,
+ PMAP_OPTIONS_INTERNAL, NULL);
+ assert(kr == KERN_SUCCESS);
+
+ } while (pg_offset);
+
+ offset = addr;
+ object = compressor_object;
+
+ vm_object_lock(object);
+
+ for (pg_offset = 0;
+ pg_offset < size;
+ pg_offset += PAGE_SIZE_64) {
+
+ mem = page_list;
+ page_list = mem->vmp_snext;
+ mem->vmp_snext = NULL;
+
+ vm_page_insert(mem, object, offset + pg_offset);
+ assert(mem->vmp_busy);
+
+ mem->vmp_busy = FALSE;
+ mem->vmp_pmapped = TRUE;
+ mem->vmp_wpmapped = TRUE;
+ mem->vmp_q_state = VM_PAGE_USED_BY_COMPRESSOR;
+ }
+ vm_object_unlock(object);
+
+#if KASAN
+ if (map == compressor_map) {
+ kasan_notify_address_nopoison(addr, size);
+ } else {
+ kasan_notify_address(addr, size);
+ }
+#endif
+
+#if DEBUG || DEVELOPMENT
+ VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0);
+#endif
+ return KERN_SUCCESS;
+ }
+
+ for (i = 0; i < page_count; i++) {
+ for (;;) {
+ if (flags & KMA_LOMEM)
+ mem = vm_page_grablo();
+ else
+ mem = vm_page_grab();
+
+ if (mem != VM_PAGE_NULL)
+ break;
- while ((mem = vm_page_alloc(object,
- offset + (vm_object_offset_t)i))
- == VM_PAGE_NULL) {
if (flags & KMA_NOPAGEWAIT) {
- if (object == kernel_object)
- vm_object_page_remove(object, offset,
- offset + (vm_object_offset_t)i);
- vm_object_unlock(object);
- vm_map_remove(map, addr, addr + size, 0);
- return KERN_RESOURCE_SHORTAGE;
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto out;
+ }
+ if ((flags & KMA_LOMEM) &&
+ (vm_lopage_needed == TRUE)) {
+ kr = KERN_RESOURCE_SHORTAGE;
+ goto out;
}
- vm_object_unlock(object);
VM_PAGE_WAIT();
- vm_object_lock(object);
}
- mem->busy = FALSE;
+ page_grab_count++;
+ if (KMA_ZERO & flags) vm_page_zero_fill(mem);
+ mem->vmp_snext = page_list;
+ page_list = mem;
}
- vm_object_unlock(object);
+ if (flags & KMA_KOBJECT) {
+ offset = addr;
+ object = kernel_object;
+
+ vm_object_lock(object);
+ } else {
+ /*
+ * If it's not the kernel object, we need to:
+ * lock map;
+ * lookup entry;
+ * lock object;
+ * take reference on object;
+ * unlock map;
+ */
+ panic("kernel_memory_populate(%p,0x%llx,0x%llx,0x%x): "
+ "!KMA_KOBJECT",
+ map, (uint64_t) addr, (uint64_t) size, flags);
+ }
+
+ for (pg_offset = 0;
+ pg_offset < size;
+ pg_offset += PAGE_SIZE_64) {
+
+ if (page_list == NULL)
+ panic("kernel_memory_populate: page_list == NULL");
+
+ mem = page_list;
+ page_list = mem->vmp_snext;
+ mem->vmp_snext = NULL;
+
+ assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q);
+ mem->vmp_q_state = VM_PAGE_IS_WIRED;
+ mem->vmp_wire_count++;
+ if (__improbable(mem->vmp_wire_count == 0)) {
+ panic("kernel_memory_populate(%p): wire_count overflow", mem);
+ }
+
+ vm_page_insert_wired(mem, object, offset + pg_offset, tag);
+
+ mem->vmp_busy = FALSE;
+ mem->vmp_pmapped = TRUE;
+ mem->vmp_wpmapped = TRUE;
+
+ PMAP_ENTER_OPTIONS(kernel_pmap, addr + pg_offset, mem,
+ VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE,
+ ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE,
+ PMAP_OPTIONS_NOWAIT, pe_result);
+
+ if (pe_result == KERN_RESOURCE_SHORTAGE) {
- if ((kr = vm_map_wire(map, addr, addr + size, VM_PROT_DEFAULT, FALSE))
- != KERN_SUCCESS) {
- if (object == kernel_object) {
- vm_object_lock(object);
- vm_object_page_remove(object, offset, offset + size);
vm_object_unlock(object);
+
+ PMAP_ENTER(kernel_pmap, addr + pg_offset, mem,
+ VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE,
+ ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE,
+ pe_result);
+
+ vm_object_lock(object);
+ }
+
+ assert(pe_result == KERN_SUCCESS);
+
+ if (flags & KMA_NOENCRYPT) {
+ bzero(CAST_DOWN(void *, (addr + pg_offset)), PAGE_SIZE);
+ pmap_set_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem));
}
- vm_map_remove(map, addr, addr + size, 0);
- return (kr);
}
- if (object == kernel_object)
- vm_map_simplify(map, addr);
+ vm_page_lockspin_queues();
+ vm_page_wire_count += page_count;
+ vm_page_unlock_queues();
- /*
- * Return the memory, not zeroed.
- */
-#if (NCPUS > 1) && i860
- bzero( addr, size );
-#endif /* #if (NCPUS > 1) && i860 */
- *addrp = addr;
+#if DEBUG || DEVELOPMENT
+ VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0);
+#endif
+
+ if (kernel_object == object) vm_tag_update_size(tag, size);
+
+ vm_object_unlock(object);
+
+#if KASAN
+ if (map == compressor_map) {
+ kasan_notify_address_nopoison(addr, size);
+ } else {
+ kasan_notify_address(addr, size);
+ }
+#endif
return KERN_SUCCESS;
+
+out:
+ if (page_list)
+ vm_page_free_list(page_list, FALSE);
+
+#if DEBUG || DEVELOPMENT
+ VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0);
+#endif
+
+ return kr;
+}
+
+
+void
+kernel_memory_depopulate(
+ vm_map_t map,
+ vm_offset_t addr,
+ vm_size_t size,
+ int flags)
+{
+ vm_object_t object;
+ vm_object_offset_t offset, pg_offset;
+ vm_page_t mem;
+ vm_page_t local_freeq = NULL;
+
+ assert((flags & (KMA_COMPRESSOR|KMA_KOBJECT)) != (KMA_COMPRESSOR|KMA_KOBJECT));
+
+ if (flags & KMA_COMPRESSOR) {
+ offset = addr;
+ object = compressor_object;
+
+ vm_object_lock(object);
+ } else if (flags & KMA_KOBJECT) {
+ offset = addr;
+ object = kernel_object;
+ vm_object_lock(object);
+ } else {
+ offset = 0;
+ object = NULL;
+ /*
+ * If it's not the kernel object, we need to:
+ * lock map;
+ * lookup entry;
+ * lock object;
+ * unlock map;
+ */
+ panic("kernel_memory_depopulate(%p,0x%llx,0x%llx,0x%x): "
+ "!KMA_KOBJECT",
+ map, (uint64_t) addr, (uint64_t) size, flags);
+ }
+ pmap_protect(kernel_map->pmap, offset, offset + size, VM_PROT_NONE);
+
+ for (pg_offset = 0;
+ pg_offset < size;
+ pg_offset += PAGE_SIZE_64) {
+
+ mem = vm_page_lookup(object, offset + pg_offset);
+
+ assert(mem);
+
+ if (mem->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR)
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(mem));
+
+ mem->vmp_busy = TRUE;
+
+ assert(mem->vmp_tabled);
+ vm_page_remove(mem, TRUE);
+ assert(mem->vmp_busy);
+
+ assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0);
+ assert((mem->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) ||
+ (mem->vmp_q_state == VM_PAGE_NOT_ON_Q));
+
+ mem->vmp_q_state = VM_PAGE_NOT_ON_Q;
+ mem->vmp_snext = local_freeq;
+ local_freeq = mem;
+ }
+ vm_object_unlock(object);
+
+ if (local_freeq)
+ vm_page_free_list(local_freeq, TRUE);
}
/*
*/
kern_return_t
-kmem_alloc(
+kmem_alloc_external(
vm_map_t map,
vm_offset_t *addrp,
vm_size_t size)
{
- return kernel_memory_allocate(map, addrp, size, 0, 0);
+ return (kmem_alloc(map, addrp, size, vm_tag_bt()));
+}
+
+
+kern_return_t
+kmem_alloc(
+ vm_map_t map,
+ vm_offset_t *addrp,
+ vm_size_t size,
+ vm_tag_t tag)
+{
+ return kmem_alloc_flags(map, addrp, size, tag, 0);
+}
+
+kern_return_t
+kmem_alloc_flags(
+ vm_map_t map,
+ vm_offset_t *addrp,
+ vm_size_t size,
+ vm_tag_t tag,
+ int flags)
+{
+ kern_return_t kr = kernel_memory_allocate(map, addrp, size, 0, flags, tag);
+ TRACE_MACHLEAKS(KMEM_ALLOC_CODE, KMEM_ALLOC_CODE_2, size, *addrp);
+ return kr;
}
/*
*/
kern_return_t
kmem_realloc(
- vm_map_t map,
- vm_offset_t oldaddr,
- vm_size_t oldsize,
- vm_offset_t *newaddrp,
- vm_size_t newsize)
+ vm_map_t map,
+ vm_offset_t oldaddr,
+ vm_size_t oldsize,
+ vm_offset_t *newaddrp,
+ vm_size_t newsize,
+ vm_tag_t tag)
{
- vm_offset_t oldmin, oldmax;
- vm_offset_t newaddr;
- vm_object_t object;
- vm_map_entry_t oldentry, newentry;
- kern_return_t kr;
-
- oldmin = trunc_page(oldaddr);
- oldmax = round_page(oldaddr + oldsize);
- oldsize = oldmax - oldmin;
- newsize = round_page(newsize);
-
- /*
- * Find space for the new region.
- */
+ vm_object_t object;
+ vm_object_offset_t offset;
+ vm_map_offset_t oldmapmin;
+ vm_map_offset_t oldmapmax;
+ vm_map_offset_t newmapaddr;
+ vm_map_size_t oldmapsize;
+ vm_map_size_t newmapsize;
+ vm_map_entry_t oldentry;
+ vm_map_entry_t newentry;
+ vm_page_t mem;
+ kern_return_t kr;
- kr = vm_map_find_space(map, &newaddr, newsize, (vm_offset_t) 0,
- &newentry);
- if (kr != KERN_SUCCESS) {
- return kr;
+ oldmapmin = vm_map_trunc_page(oldaddr,
+ VM_MAP_PAGE_MASK(map));
+ oldmapmax = vm_map_round_page(oldaddr + oldsize,
+ VM_MAP_PAGE_MASK(map));
+ oldmapsize = oldmapmax - oldmapmin;
+ newmapsize = vm_map_round_page(newsize,
+ VM_MAP_PAGE_MASK(map));
+ if (newmapsize < newsize) {
+ /* overflow */
+ *newaddrp = 0;
+ return KERN_INVALID_ARGUMENT;
}
/*
* Find the VM object backing the old region.
*/
- if (!vm_map_lookup_entry(map, oldmin, &oldentry))
+ vm_map_lock(map);
+
+ if (!vm_map_lookup_entry(map, oldmapmin, &oldentry))
panic("kmem_realloc");
- object = oldentry->object.vm_object;
+ object = VME_OBJECT(oldentry);
/*
* Increase the size of the object and
*/
vm_object_reference(object);
+ /* by grabbing the object lock before unlocking the map */
+ /* we guarantee that we will panic if more than one */
+ /* attempt is made to realloc a kmem_alloc'd area */
vm_object_lock(object);
- if (object->size != oldsize)
+ vm_map_unlock(map);
+ if (object->vo_size != oldmapsize)
panic("kmem_realloc");
- object->size = newsize;
+ object->vo_size = newmapsize;
vm_object_unlock(object);
- newentry->object.vm_object = object;
- newentry->offset = 0;
- assert (newentry->wired_count == 0);
- newentry->wired_count = 1;
+ /* allocate the new pages while expanded portion of the */
+ /* object is still not mapped */
+ kmem_alloc_pages(object, vm_object_round_page(oldmapsize),
+ vm_object_round_page(newmapsize-oldmapsize));
/*
- * Since we have not given out this address yet,
- * it is safe to unlock the map. We are trusting
- * that nobody will play with either region.
+ * Find space for the new region.
*/
+ kr = vm_map_find_space(map, &newmapaddr, newmapsize,
+ (vm_map_offset_t) 0, 0,
+ VM_MAP_KERNEL_FLAGS_NONE,
+ tag,
+ &newentry);
+ if (kr != KERN_SUCCESS) {
+ vm_object_lock(object);
+ for(offset = oldmapsize;
+ offset < newmapsize; offset += PAGE_SIZE) {
+ if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
+ VM_PAGE_FREE(mem);
+ }
+ }
+ object->vo_size = oldmapsize;
+ vm_object_unlock(object);
+ vm_object_deallocate(object);
+ return kr;
+ }
+ VME_OBJECT_SET(newentry, object);
+ VME_OFFSET_SET(newentry, 0);
+ assert(newentry->wired_count == 0);
+
+
+ /* add an extra reference in case we have someone doing an */
+ /* unexpected deallocate */
+ vm_object_reference(object);
vm_map_unlock(map);
- /*
- * Remap the pages in the old region and
- * allocate more pages for the new region.
- */
+ kr = vm_map_wire_kernel(map, newmapaddr, newmapaddr + newmapsize,
+ VM_PROT_DEFAULT, tag, FALSE);
+ if (KERN_SUCCESS != kr) {
+ vm_map_remove(map, newmapaddr, newmapaddr + newmapsize, VM_MAP_REMOVE_NO_FLAGS);
+ vm_object_lock(object);
+ for(offset = oldsize; offset < newmapsize; offset += PAGE_SIZE) {
+ if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
+ VM_PAGE_FREE(mem);
+ }
+ }
+ object->vo_size = oldmapsize;
+ vm_object_unlock(object);
+ vm_object_deallocate(object);
+ return (kr);
+ }
+ vm_object_deallocate(object);
- kmem_remap_pages(object, 0,
- newaddr, newaddr + oldsize,
- VM_PROT_DEFAULT);
- kmem_alloc_pages(object, oldsize,
- newaddr + oldsize, newaddr + newsize,
- VM_PROT_DEFAULT);
+ if (kernel_object == object) vm_tag_update_size(tag, newmapsize);
- *newaddrp = newaddr;
+ *newaddrp = CAST_DOWN(vm_offset_t, newmapaddr);
return KERN_SUCCESS;
}
/*
- * kmem_alloc_wired:
+ * kmem_alloc_kobject:
*
* Allocate wired-down memory in the kernel's address map
* or a submap. The memory is not zero-filled.
*/
kern_return_t
-kmem_alloc_wired(
+kmem_alloc_kobject_external(
vm_map_t map,
vm_offset_t *addrp,
vm_size_t size)
{
- return kernel_memory_allocate(map, addrp, size, 0, KMA_KOBJECT);
+ return (kmem_alloc_kobject(map, addrp, size, vm_tag_bt()));
+}
+
+kern_return_t
+kmem_alloc_kobject(
+ vm_map_t map,
+ vm_offset_t *addrp,
+ vm_size_t size,
+ vm_tag_t tag)
+{
+ return kernel_memory_allocate(map, addrp, size, 0, KMA_KOBJECT, tag);
}
/*
* kmem_alloc_aligned:
*
- * Like kmem_alloc_wired, except that the memory is aligned.
+ * Like kmem_alloc_kobject, except that the memory is aligned.
* The size should be a power-of-2.
*/
kmem_alloc_aligned(
vm_map_t map,
vm_offset_t *addrp,
- vm_size_t size)
+ vm_size_t size,
+ vm_tag_t tag)
{
if ((size & (size - 1)) != 0)
panic("kmem_alloc_aligned: size not aligned");
- return kernel_memory_allocate(map, addrp, size, size - 1, KMA_KOBJECT);
+ return kernel_memory_allocate(map, addrp, size, size - 1, KMA_KOBJECT, tag);
}
/*
*/
kern_return_t
-kmem_alloc_pageable(
+kmem_alloc_pageable_external(
vm_map_t map,
vm_offset_t *addrp,
vm_size_t size)
{
- vm_offset_t addr;
+ return (kmem_alloc_pageable(map, addrp, size, vm_tag_bt()));
+}
+
+kern_return_t
+kmem_alloc_pageable(
+ vm_map_t map,
+ vm_offset_t *addrp,
+ vm_size_t size,
+ vm_tag_t tag)
+{
+ vm_map_offset_t map_addr;
+ vm_map_size_t map_size;
kern_return_t kr;
#ifndef normal
- addr = (vm_map_min(map)) + 0x1000;
+ map_addr = (vm_map_min(map)) + PAGE_SIZE;
#else
- addr = vm_map_min(map);
+ map_addr = vm_map_min(map);
#endif
- kr = vm_map_enter(map, &addr, round_page(size),
- (vm_offset_t) 0, TRUE,
+ map_size = vm_map_round_page(size,
+ VM_MAP_PAGE_MASK(map));
+ if (map_size < size) {
+ /* overflow */
+ *addrp = 0;
+ return KERN_INVALID_ARGUMENT;
+ }
+
+ kr = vm_map_enter(map, &map_addr, map_size,
+ (vm_map_offset_t) 0,
+ VM_FLAGS_ANYWHERE,
+ VM_MAP_KERNEL_FLAGS_NONE,
+ tag,
VM_OBJECT_NULL, (vm_object_offset_t) 0, FALSE,
VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
+
if (kr != KERN_SUCCESS)
return kr;
- *addrp = addr;
+#if KASAN
+ kasan_notify_address(map_addr, map_size);
+#endif
+ *addrp = CAST_DOWN(vm_offset_t, map_addr);
return KERN_SUCCESS;
}
* kmem_free:
*
* Release a region of kernel virtual memory allocated
- * with kmem_alloc, kmem_alloc_wired, or kmem_alloc_pageable,
+ * with kmem_alloc, kmem_alloc_kobject, or kmem_alloc_pageable,
* and return the physical pages associated with that region.
*/
{
kern_return_t kr;
- kr = vm_map_remove(map, trunc_page(addr),
- round_page(addr + size), VM_MAP_REMOVE_KUNWIRE);
+ assert(addr >= VM_MIN_KERNEL_AND_KEXT_ADDRESS);
+
+ TRACE_MACHLEAKS(KMEM_FREE_CODE, KMEM_FREE_CODE_2, size, addr);
+
+ if(size == 0) {
+#if MACH_ASSERT
+ printf("kmem_free called with size==0 for map: %p with addr: 0x%llx\n",map,(uint64_t)addr);
+#endif
+ return;
+ }
+
+ kr = vm_map_remove(map,
+ vm_map_trunc_page(addr,
+ VM_MAP_PAGE_MASK(map)),
+ vm_map_round_page(addr + size,
+ VM_MAP_PAGE_MASK(map)),
+ VM_MAP_REMOVE_KUNWIRE);
if (kr != KERN_SUCCESS)
panic("kmem_free");
}
/*
- * Allocate new wired pages in an object.
- * The object is assumed to be mapped into the kernel map or
- * a submap.
+ * Allocate new pages in an object.
*/
kern_return_t
kmem_alloc_pages(
- register vm_object_t object,
- register vm_object_offset_t offset,
- register vm_offset_t start,
- register vm_offset_t end,
- vm_prot_t protection)
+ vm_object_t object,
+ vm_object_offset_t offset,
+ vm_object_size_t size)
{
- /*
- * Mark the pmap region as not pageable.
- */
- pmap_pageable(kernel_pmap, start, end, FALSE);
+ vm_object_size_t alloc_size;
- while (start < end) {
- register vm_page_t mem;
+ alloc_size = vm_object_round_page(size);
+ vm_object_lock(object);
+ while (alloc_size) {
+ vm_page_t mem;
- vm_object_lock(object);
/*
* Allocate a page
*/
- while ((mem = vm_page_alloc(object, offset))
- == VM_PAGE_NULL) {
+ while (VM_PAGE_NULL ==
+ (mem = vm_page_alloc(object, offset))) {
vm_object_unlock(object);
VM_PAGE_WAIT();
vm_object_lock(object);
}
+ mem->vmp_busy = FALSE;
- /*
- * Wire it down
- */
- vm_page_lock_queues();
- vm_page_wire(mem);
- vm_page_unlock_queues();
- vm_object_unlock(object);
-
- /*
- * Enter it in the kernel pmap
- */
- PMAP_ENTER(kernel_pmap, start, mem,
- protection, TRUE);
-
- vm_object_lock(object);
- PAGE_WAKEUP_DONE(mem);
- vm_object_unlock(object);
-
- start += PAGE_SIZE;
- offset += PAGE_SIZE_64;
- }
- return KERN_SUCCESS;
-}
-
-/*
- * Remap wired pages in an object into a new region.
- * The object is assumed to be mapped into the kernel map or
- * a submap.
- */
-void
-kmem_remap_pages(
- register vm_object_t object,
- register vm_object_offset_t offset,
- register vm_offset_t start,
- register vm_offset_t end,
- vm_prot_t protection)
-{
- /*
- * Mark the pmap region as not pageable.
- */
- pmap_pageable(kernel_pmap, start, end, FALSE);
-
- while (start < end) {
- register vm_page_t mem;
-
- vm_object_lock(object);
-
- /*
- * Find a page
- */
- if ((mem = vm_page_lookup(object, offset)) == VM_PAGE_NULL)
- panic("kmem_remap_pages");
-
- /*
- * Wire it down (again)
- */
- vm_page_lock_queues();
- vm_page_wire(mem);
- vm_page_unlock_queues();
- vm_object_unlock(object);
-
- /*
- * Enter it in the kernel pmap. The page isn't busy,
- * but this shouldn't be a problem because it is wired.
- */
- PMAP_ENTER(kernel_pmap, start, mem,
- protection, TRUE);
-
- start += PAGE_SIZE;
+ alloc_size -= PAGE_SIZE;
offset += PAGE_SIZE;
}
+ vm_object_unlock(object);
+ return KERN_SUCCESS;
}
/*
vm_offset_t *addr,
vm_size_t size,
boolean_t pageable,
- boolean_t anywhere,
+ int flags,
+ vm_map_kernel_flags_t vmk_flags,
+ vm_tag_t tag,
vm_map_t *new_map)
{
- vm_map_t map;
- kern_return_t kr;
-
- size = round_page(size);
+ vm_map_t map;
+ vm_map_offset_t map_addr;
+ vm_map_size_t map_size;
+ kern_return_t kr;
+
+ map_size = vm_map_round_page(size,
+ VM_MAP_PAGE_MASK(parent));
+ if (map_size < size) {
+ /* overflow */
+ *addr = 0;
+ return KERN_INVALID_ARGUMENT;
+ }
/*
* Need reference on submap object because it is internal
*/
vm_object_reference(vm_submap_object);
- if (anywhere == TRUE)
- *addr = (vm_offset_t)vm_map_min(parent);
- kr = vm_map_enter(parent, addr, size,
- (vm_offset_t) 0, anywhere,
+ map_addr = ((flags & VM_FLAGS_ANYWHERE)
+ ? vm_map_min(parent)
+ : vm_map_trunc_page(*addr,
+ VM_MAP_PAGE_MASK(parent)));
+
+ kr = vm_map_enter(parent, &map_addr, map_size,
+ (vm_map_offset_t) 0, flags, vmk_flags, tag,
vm_submap_object, (vm_object_offset_t) 0, FALSE,
VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
if (kr != KERN_SUCCESS) {
}
pmap_reference(vm_map_pmap(parent));
- map = vm_map_create(vm_map_pmap(parent), *addr, *addr + size, pageable);
+ map = vm_map_create(vm_map_pmap(parent), map_addr, map_addr + map_size, pageable);
if (map == VM_MAP_NULL)
panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */
+ /* inherit the parent map's page size */
+ vm_map_set_page_shift(map, VM_MAP_PAGE_SHIFT(parent));
- kr = vm_map_submap(parent, *addr, *addr + size, map, *addr, FALSE);
+ kr = vm_map_submap(parent, map_addr, map_addr + map_size, map, map_addr, FALSE);
if (kr != KERN_SUCCESS) {
/*
* See comment preceding vm_map_submap().
*/
- vm_map_remove(parent, *addr, *addr + size, VM_MAP_NO_FLAGS);
+ vm_map_remove(parent, map_addr, map_addr + map_size,
+ VM_MAP_REMOVE_NO_FLAGS);
vm_map_deallocate(map); /* also removes ref to pmap */
vm_object_deallocate(vm_submap_object);
return (kr);
}
+ *addr = CAST_DOWN(vm_offset_t, map_addr);
*new_map = map;
return (KERN_SUCCESS);
}
vm_offset_t start,
vm_offset_t end)
{
- kernel_map = vm_map_create(pmap_kernel(),
- VM_MIN_KERNEL_ADDRESS, end,
- FALSE);
-
+ vm_map_offset_t map_start;
+ vm_map_offset_t map_end;
+ vm_map_kernel_flags_t vmk_flags;
+
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
+ vmk_flags.vmkf_no_pmap_check = TRUE;
+
+ map_start = vm_map_trunc_page(start,
+ VM_MAP_PAGE_MASK(kernel_map));
+ map_end = vm_map_round_page(end,
+ VM_MAP_PAGE_MASK(kernel_map));
+
+#if defined(__arm__) || defined(__arm64__)
+ kernel_map = vm_map_create(pmap_kernel(),VM_MIN_KERNEL_AND_KEXT_ADDRESS,
+ VM_MAX_KERNEL_ADDRESS, FALSE);
/*
* Reserve virtual memory allocated up to this time.
*/
-
- if (start != VM_MIN_KERNEL_ADDRESS) {
- vm_offset_t addr = VM_MIN_KERNEL_ADDRESS;
- (void) vm_map_enter(kernel_map,
- &addr, start - VM_MIN_KERNEL_ADDRESS,
- (vm_offset_t) 0, TRUE,
- VM_OBJECT_NULL,
- (vm_object_offset_t) 0, FALSE,
- VM_PROT_DEFAULT, VM_PROT_ALL,
- VM_INHERIT_DEFAULT);
- }
-
- /*
- * Account for kernel memory (text, data, bss, vm shenanigans).
- * This may include inaccessible "holes" as determined by what
- * the machine-dependent init code includes in mem_size.
- */
- vm_page_wire_count = (atop(mem_size) - (vm_page_free_count
- + vm_page_active_count
- + vm_page_inactive_count));
-}
-
-
-/*
- * kmem_io_object_trunc:
- *
- * Truncate an object vm_map_copy_t.
- * Called by the scatter/gather list network code to remove pages from
- * the tail end of a packet. Also unwires the objects pages.
- */
-
-kern_return_t
-kmem_io_object_trunc(copy, new_size)
- vm_map_copy_t copy; /* IN/OUT copy object */
- register vm_size_t new_size; /* IN new object size */
-{
- register vm_size_t offset, old_size;
-
- assert(copy->type == VM_MAP_COPY_OBJECT);
-
- old_size = (vm_size_t)round_page_64(copy->size);
- copy->size = new_size;
- new_size = round_page(new_size);
-
- vm_object_lock(copy->cpy_object);
- vm_object_page_remove(copy->cpy_object,
- (vm_object_offset_t)new_size, (vm_object_offset_t)old_size);
- for (offset = 0; offset < new_size; offset += PAGE_SIZE) {
- register vm_page_t mem;
-
- if ((mem = vm_page_lookup(copy->cpy_object,
- (vm_object_offset_t)offset)) == VM_PAGE_NULL)
- panic("kmem_io_object_trunc: unable to find object page");
-
- /*
- * Make sure these pages are marked dirty
- */
- mem->dirty = TRUE;
- vm_page_lock_queues();
- vm_page_unwire(mem);
- vm_page_unlock_queues();
- }
- copy->cpy_object->size = new_size; /* adjust size of object */
- vm_object_unlock(copy->cpy_object);
- return(KERN_SUCCESS);
-}
-
-/*
- * kmem_io_object_deallocate:
- *
- * Free an vm_map_copy_t.
- * Called by the scatter/gather list network code to free a packet.
- */
-
-void
-kmem_io_object_deallocate(
- vm_map_copy_t copy) /* IN/OUT copy object */
-{
- kern_return_t ret;
-
+ {
+ unsigned int region_select = 0;
+ vm_map_offset_t region_start;
+ vm_map_size_t region_size;
+ vm_map_offset_t map_addr;
+ kern_return_t kr;
+
+ while (pmap_virtual_region(region_select, ®ion_start, ®ion_size)) {
+
+ map_addr = region_start;
+ kr = vm_map_enter(kernel_map, &map_addr,
+ vm_map_round_page(region_size,
+ VM_MAP_PAGE_MASK(kernel_map)),
+ (vm_map_offset_t) 0,
+ VM_FLAGS_FIXED,
+ vmk_flags,
+ VM_KERN_MEMORY_NONE,
+ VM_OBJECT_NULL,
+ (vm_object_offset_t) 0, FALSE, VM_PROT_NONE, VM_PROT_NONE,
+ VM_INHERIT_DEFAULT);
+
+ if (kr != KERN_SUCCESS) {
+ panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n",
+ (uint64_t) start, (uint64_t) end, (uint64_t) region_start,
+ (uint64_t) region_size, kr);
+ }
+
+ region_select++;
+ }
+ }
+#else
+ kernel_map = vm_map_create(pmap_kernel(),VM_MIN_KERNEL_AND_KEXT_ADDRESS,
+ map_end, FALSE);
/*
- * Clear out all the object pages (this will leave an empty object).
+ * Reserve virtual memory allocated up to this time.
*/
- ret = kmem_io_object_trunc(copy, 0);
- if (ret != KERN_SUCCESS)
- panic("kmem_io_object_deallocate: unable to truncate object");
+ if (start != VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
+ vm_map_offset_t map_addr;
+ kern_return_t kr;
+
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_no_pmap_check = TRUE;
+
+ map_addr = VM_MIN_KERNEL_AND_KEXT_ADDRESS;
+ kr = vm_map_enter(kernel_map,
+ &map_addr,
+ (vm_map_size_t)(map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS),
+ (vm_map_offset_t) 0,
+ VM_FLAGS_FIXED,
+ vmk_flags,
+ VM_KERN_MEMORY_NONE,
+ VM_OBJECT_NULL,
+ (vm_object_offset_t) 0, FALSE,
+ VM_PROT_NONE, VM_PROT_NONE,
+ VM_INHERIT_DEFAULT);
+
+ if (kr != KERN_SUCCESS) {
+ panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n",
+ (uint64_t) start, (uint64_t) end,
+ (uint64_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS,
+ (uint64_t) (map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS),
+ kr);
+ }
+ }
+#endif
+
/*
- * ...and discard the copy object.
+ * Set the default global user wire limit which limits the amount of
+ * memory that can be locked via mlock(). We set this to the total
+ * amount of memory that are potentially usable by a user app (max_mem)
+ * minus a certain amount. This can be overridden via a sysctl.
*/
- vm_map_copy_discard(copy);
+ vm_global_no_user_wire_amount = MIN(max_mem*20/100,
+ VM_NOT_USER_WIREABLE);
+ vm_global_user_wire_limit = max_mem - vm_global_no_user_wire_amount;
+
+ /* the default per user limit is the same as the global limit */
+ vm_user_wire_limit = vm_global_user_wire_limit;
}
+
/*
* Routine: copyinmap
* Purpose:
* is incomplete; it handles the current user map
* and the kernel map/submaps.
*/
-boolean_t
+kern_return_t
copyinmap(
- vm_map_t map,
- vm_offset_t fromaddr,
- vm_offset_t toaddr,
- vm_size_t length)
+ vm_map_t map,
+ vm_map_offset_t fromaddr,
+ void *todata,
+ vm_size_t length)
{
- if (vm_map_pmap(map) == pmap_kernel()) {
+ kern_return_t kr = KERN_SUCCESS;
+ vm_map_t oldmap;
+
+ if (vm_map_pmap(map) == pmap_kernel())
+ {
/* assume a correct copy */
- memcpy((void *)toaddr, (void *)fromaddr, length);
- return FALSE;
+ memcpy(todata, CAST_DOWN(void *, fromaddr), length);
+ }
+ else if (current_map() == map)
+ {
+ if (copyin(fromaddr, todata, length) != 0)
+ kr = KERN_INVALID_ADDRESS;
}
-
- if (current_map() == map)
- return copyin((char *)fromaddr, (char *)toaddr, length);
-
- return TRUE;
+ else
+ {
+ vm_map_reference(map);
+ oldmap = vm_map_switch(map);
+ if (copyin(fromaddr, todata, length) != 0)
+ kr = KERN_INVALID_ADDRESS;
+ vm_map_switch(oldmap);
+ vm_map_deallocate(map);
+ }
+ return kr;
}
/*
* is incomplete; it handles the current user map
* and the kernel map/submaps.
*/
-boolean_t
+kern_return_t
copyoutmap(
- vm_map_t map,
- vm_offset_t fromaddr,
- vm_offset_t toaddr,
- vm_size_t length)
+ vm_map_t map,
+ void *fromdata,
+ vm_map_address_t toaddr,
+ vm_size_t length)
{
if (vm_map_pmap(map) == pmap_kernel()) {
/* assume a correct copy */
- memcpy((void *)toaddr, (void *)fromaddr, length);
- return FALSE;
+ memcpy(CAST_DOWN(void *, toaddr), fromdata, length);
+ return KERN_SUCCESS;
}
- if (current_map() == map)
- return copyout((char *)fromaddr, (char *)toaddr, length);
+ if (current_map() != map)
+ return KERN_NOT_SUPPORTED;
- return TRUE;
+ if (copyout(fromdata, toaddr, length) != 0)
+ return KERN_INVALID_ADDRESS;
+
+ return KERN_SUCCESS;
+}
+
+/*
+ *
+ * The following two functions are to be used when exposing kernel
+ * addresses to userspace via any of the various debug or info
+ * facilities that exist. These are basically the same as VM_KERNEL_ADDRPERM()
+ * and VM_KERNEL_UNSLIDE_OR_PERM() except they use a different random seed and
+ * are exported to KEXTs.
+ *
+ * NOTE: USE THE MACRO VERSIONS OF THESE FUNCTIONS (in vm_param.h) FROM WITHIN THE KERNEL
+ */
+
+static void
+vm_kernel_addrhash_internal(
+ vm_offset_t addr,
+ vm_offset_t *hash_addr,
+ uint64_t salt)
+{
+ assert(salt != 0);
+
+ if (addr == 0) {
+ *hash_addr = 0;
+ return;
+ }
+
+ if (VM_KERNEL_IS_SLID(addr)) {
+ *hash_addr = VM_KERNEL_UNSLIDE(addr);
+ return;
+ }
+
+ vm_offset_t sha_digest[SHA256_DIGEST_LENGTH/sizeof(vm_offset_t)];
+ SHA256_CTX sha_ctx;
+
+ SHA256_Init(&sha_ctx);
+ SHA256_Update(&sha_ctx, &salt, sizeof(salt));
+ SHA256_Update(&sha_ctx, &addr, sizeof(addr));
+ SHA256_Final(sha_digest, &sha_ctx);
+
+ *hash_addr = sha_digest[0];
+}
+
+void
+vm_kernel_addrhash_external(
+ vm_offset_t addr,
+ vm_offset_t *hash_addr)
+{
+ return vm_kernel_addrhash_internal(addr, hash_addr, vm_kernel_addrhash_salt_ext);
+}
+
+vm_offset_t
+vm_kernel_addrhash(vm_offset_t addr)
+{
+ vm_offset_t hash_addr;
+ vm_kernel_addrhash_internal(addr, &hash_addr, vm_kernel_addrhash_salt);
+ return hash_addr;
+}
+
+void
+vm_kernel_addrhide(
+ vm_offset_t addr,
+ vm_offset_t *hide_addr)
+{
+ *hide_addr = VM_KERNEL_ADDRHIDE(addr);
+}
+
+/*
+ * vm_kernel_addrperm_external:
+ * vm_kernel_unslide_or_perm_external:
+ *
+ * Use these macros when exposing an address to userspace that could come from
+ * either kernel text/data *or* the heap.
+ */
+void
+vm_kernel_addrperm_external(
+ vm_offset_t addr,
+ vm_offset_t *perm_addr)
+{
+ if (VM_KERNEL_IS_SLID(addr)) {
+ *perm_addr = VM_KERNEL_UNSLIDE(addr);
+ } else if (VM_KERNEL_ADDRESS(addr)) {
+ *perm_addr = addr + vm_kernel_addrperm_ext;
+ } else {
+ *perm_addr = addr;
+ }
+}
+
+void
+vm_kernel_unslide_or_perm_external(
+ vm_offset_t addr,
+ vm_offset_t *up_addr)
+{
+ vm_kernel_addrperm_external(addr, up_addr);
}