+ if (throttle_io_will_be_throttled(-1, HFSTOVFS(hfsmp)))
+ throttle_lowpri_io(1);
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
+
+ /* lookup this cnid in the catalog */
+ error = cat_getkeyplusattr(hfsmp, cnid, keyp, cnattrp);
+
+ hfs_systemfile_unlock(hfsmp, lockflags);
+
+ cache->lookups++;
+ }
+ }
+
+ return (error);
+}
+
+
+/*
+ * Compute whether we have access to the given directory (nodeID) and all its parents. Cache
+ * up to CACHE_LEVELS as we progress towards the root.
+ */
+static int
+do_access_check(struct hfsmount *hfsmp, int *err, struct access_cache *cache, HFSCatalogNodeID nodeID,
+ struct cnode *skip_cp, struct proc *theProcPtr, kauth_cred_t myp_ucred,
+ struct vfs_context *my_context,
+ char *bitmap,
+ uint32_t map_size,
+ cnid_t* parents,
+ uint32_t num_parents)
+{
+ int myErr = 0;
+ int myResult;
+ HFSCatalogNodeID thisNodeID;
+ unsigned int myPerms;
+ struct cat_attr cnattr;
+ int cache_index = -1, scope_index = -1, scope_idx_start = -1;
+ CatalogKey catkey;
+
+ int i = 0, ids_to_cache = 0;
+ int parent_ids[CACHE_LEVELS];
+
+ thisNodeID = nodeID;
+ while (thisNodeID >= kRootDirID) {
+ myResult = 0; /* default to "no access" */
+
+ /* check the cache before resorting to hitting the catalog */
+
+ /* ASSUMPTION: access info of cached entries is "final"... i.e. no need
+ * to look any further after hitting cached dir */
+
+ if (lookup_bucket(cache, &cache_index, thisNodeID)) {
+ cache->cachehits++;
+ myErr = cache->haveaccess[cache_index];
+ if (scope_index != -1) {
+ if (myErr == ESRCH) {
+ myErr = 0;
+ }
+ } else {
+ scope_index = 0; // so we'll just use the cache result
+ scope_idx_start = ids_to_cache;
+ }
+ myResult = (myErr == 0) ? 1 : 0;
+ goto ExitThisRoutine;
+ }
+
+
+ if (parents) {
+ int tmp;
+ tmp = cache_binSearch(parents, num_parents-1, thisNodeID, NULL);
+ if (scope_index == -1)
+ scope_index = tmp;
+ if (tmp != -1 && scope_idx_start == -1 && ids_to_cache < CACHE_LEVELS) {
+ scope_idx_start = ids_to_cache;
+ }
+ }
+
+ /* remember which parents we want to cache */
+ if (ids_to_cache < CACHE_LEVELS) {
+ parent_ids[ids_to_cache] = thisNodeID;
+ ids_to_cache++;
+ }
+ // Inefficient (using modulo) and we might want to use a hash function, not rely on the node id to be "nice"...
+ if (bitmap && map_size) {
+ bitmap[(thisNodeID/8)%(map_size)]|=(1<<(thisNodeID&7));
+ }
+
+
+ /* do the lookup (checks the cnode hash, then the catalog) */
+ myErr = do_attr_lookup(hfsmp, cache, thisNodeID, skip_cp, &catkey, &cnattr);
+ if (myErr) {
+ goto ExitThisRoutine; /* no access */
+ }
+
+ /* Root always gets access. */
+ if (suser(myp_ucred, NULL) == 0) {
+ thisNodeID = catkey.hfsPlus.parentID;
+ myResult = 1;
+ continue;
+ }
+
+ // if the thing has acl's, do the full permission check
+ if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) {
+ struct vnode *vp;
+
+ /* get the vnode for this cnid */
+ myErr = hfs_vget(hfsmp, thisNodeID, &vp, 0, 0);
+ if ( myErr ) {
+ myResult = 0;
+ goto ExitThisRoutine;
+ }
+
+ thisNodeID = VTOC(vp)->c_parentcnid;
+
+ hfs_unlock(VTOC(vp));
+
+ if (vnode_vtype(vp) == VDIR) {
+ myErr = vnode_authorize(vp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), my_context);
+ } else {
+ myErr = vnode_authorize(vp, NULL, KAUTH_VNODE_READ_DATA, my_context);
+ }
+
+ vnode_put(vp);
+ if (myErr) {
+ myResult = 0;
+ goto ExitThisRoutine;
+ }
+ } else {
+ unsigned int flags;
+ int mode = cnattr.ca_mode & S_IFMT;
+ myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid, cnattr.ca_mode, hfsmp->hfs_mp,myp_ucred, theProcPtr);
+
+ if (mode == S_IFDIR) {
+ flags = R_OK | X_OK;
+ } else {
+ flags = R_OK;
+ }
+ if ( (myPerms & flags) != flags) {
+ myResult = 0;
+ myErr = EACCES;
+ goto ExitThisRoutine; /* no access */
+ }
+
+ /* up the hierarchy we go */
+ thisNodeID = catkey.hfsPlus.parentID;
+ }
+ }
+
+ /* if here, we have access to this node */
+ myResult = 1;
+
+ ExitThisRoutine:
+ if (parents && myErr == 0 && scope_index == -1) {
+ myErr = ESRCH;
+ }
+
+ if (myErr) {
+ myResult = 0;
+ }
+ *err = myErr;
+
+ /* cache the parent directory(ies) */
+ for (i = 0; i < ids_to_cache; i++) {
+ if (myErr == 0 && parents && (scope_idx_start == -1 || i > scope_idx_start)) {
+ add_node(cache, -1, parent_ids[i], ESRCH);
+ } else {
+ add_node(cache, -1, parent_ids[i], myErr);
+ }
+ }
+
+ return (myResult);
+}
+
+static int
+do_bulk_access_check(struct hfsmount *hfsmp, struct vnode *vp,
+ struct vnop_ioctl_args *ap, int arg_size, vfs_context_t context)
+{
+ boolean_t is64bit;
+
+ /*
+ * NOTE: on entry, the vnode has an io_ref. In case this vnode
+ * happens to be in our list of file_ids, we'll note it
+ * avoid calling hfs_chashget_nowait() on that id as that
+ * will cause a "locking against myself" panic.
+ */
+ Boolean check_leaf = true;
+
+ struct user64_ext_access_t *user_access_structp;
+ struct user64_ext_access_t tmp_user_access;
+ struct access_cache cache;
+
+ int error = 0, prev_parent_check_ok=1;
+ unsigned int i;
+
+ short flags;
+ unsigned int num_files = 0;
+ int map_size = 0;
+ int num_parents = 0;
+ int *file_ids=NULL;
+ short *access=NULL;
+ char *bitmap=NULL;
+ cnid_t *parents=NULL;
+ int leaf_index;
+
+ cnid_t cnid;
+ cnid_t prevParent_cnid = 0;
+ unsigned int myPerms;
+ short myaccess = 0;
+ struct cat_attr cnattr;
+ CatalogKey catkey;
+ struct cnode *skip_cp = VTOC(vp);
+ kauth_cred_t cred = vfs_context_ucred(context);
+ proc_t p = vfs_context_proc(context);
+
+ is64bit = proc_is64bit(p);
+
+ /* initialize the local cache and buffers */
+ cache.numcached = 0;
+ cache.cachehits = 0;
+ cache.lookups = 0;
+ cache.acache = NULL;
+ cache.haveaccess = NULL;
+
+ /* struct copyin done during dispatch... need to copy file_id array separately */
+ if (ap->a_data == NULL) {
+ error = EINVAL;
+ goto err_exit_bulk_access;
+ }
+
+ if (is64bit) {
+ if (arg_size != sizeof(struct user64_ext_access_t)) {
+ error = EINVAL;
+ goto err_exit_bulk_access;
+ }
+
+ user_access_structp = (struct user64_ext_access_t *)ap->a_data;
+
+ } else if (arg_size == sizeof(struct user32_access_t)) {
+ struct user32_access_t *accessp = (struct user32_access_t *)ap->a_data;
+
+ // convert an old style bulk-access struct to the new style
+ tmp_user_access.flags = accessp->flags;
+ tmp_user_access.num_files = accessp->num_files;
+ tmp_user_access.map_size = 0;
+ tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids);
+ tmp_user_access.bitmap = USER_ADDR_NULL;
+ tmp_user_access.access = CAST_USER_ADDR_T(accessp->access);
+ tmp_user_access.num_parents = 0;
+ user_access_structp = &tmp_user_access;
+
+ } else if (arg_size == sizeof(struct user32_ext_access_t)) {
+ struct user32_ext_access_t *accessp = (struct user32_ext_access_t *)ap->a_data;
+
+ // up-cast from a 32-bit version of the struct
+ tmp_user_access.flags = accessp->flags;
+ tmp_user_access.num_files = accessp->num_files;
+ tmp_user_access.map_size = accessp->map_size;
+ tmp_user_access.num_parents = accessp->num_parents;
+
+ tmp_user_access.file_ids = CAST_USER_ADDR_T(accessp->file_ids);
+ tmp_user_access.bitmap = CAST_USER_ADDR_T(accessp->bitmap);
+ tmp_user_access.access = CAST_USER_ADDR_T(accessp->access);
+ tmp_user_access.parents = CAST_USER_ADDR_T(accessp->parents);
+
+ user_access_structp = &tmp_user_access;
+ } else {
+ error = EINVAL;
+ goto err_exit_bulk_access;
+ }
+
+ map_size = user_access_structp->map_size;
+
+ num_files = user_access_structp->num_files;
+
+ num_parents= user_access_structp->num_parents;
+
+ if (num_files < 1) {
+ goto err_exit_bulk_access;
+ }
+ if (num_files > 1024) {
+ error = EINVAL;
+ goto err_exit_bulk_access;
+ }
+
+ if (num_parents > 1024) {
+ error = EINVAL;
+ goto err_exit_bulk_access;
+ }
+
+ file_ids = (int *) kalloc(sizeof(int) * num_files);
+ access = (short *) kalloc(sizeof(short) * num_files);
+ if (map_size) {
+ bitmap = (char *) kalloc(sizeof(char) * map_size);
+ }
+
+ if (num_parents) {
+ parents = (cnid_t *) kalloc(sizeof(cnid_t) * num_parents);
+ }
+
+ cache.acache = (unsigned int *) kalloc(sizeof(int) * NUM_CACHE_ENTRIES);
+ cache.haveaccess = (unsigned char *) kalloc(sizeof(unsigned char) * NUM_CACHE_ENTRIES);
+
+ if (file_ids == NULL || access == NULL || (map_size != 0 && bitmap == NULL) || cache.acache == NULL || cache.haveaccess == NULL) {
+ if (file_ids) {
+ kfree(file_ids, sizeof(int) * num_files);
+ }
+ if (bitmap) {
+ kfree(bitmap, sizeof(char) * map_size);
+ }
+ if (access) {
+ kfree(access, sizeof(short) * num_files);
+ }
+ if (cache.acache) {
+ kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES);
+ }
+ if (cache.haveaccess) {
+ kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES);
+ }
+ if (parents) {
+ kfree(parents, sizeof(cnid_t) * num_parents);
+ }
+ return ENOMEM;
+ }
+
+ // make sure the bitmap is zero'ed out...
+ if (bitmap) {
+ bzero(bitmap, (sizeof(char) * map_size));
+ }
+
+ if ((error = copyin(user_access_structp->file_ids, (caddr_t)file_ids,
+ num_files * sizeof(int)))) {
+ goto err_exit_bulk_access;
+ }
+
+ if (num_parents) {
+ if ((error = copyin(user_access_structp->parents, (caddr_t)parents,
+ num_parents * sizeof(cnid_t)))) {
+ goto err_exit_bulk_access;
+ }
+ }
+
+ flags = user_access_structp->flags;
+ if ((flags & (F_OK | R_OK | W_OK | X_OK)) == 0) {
+ flags = R_OK;
+ }
+
+ /* check if we've been passed leaf node ids or parent ids */
+ if (flags & PARENT_IDS_FLAG) {
+ check_leaf = false;
+ }
+
+ /* Check access to each file_id passed in */
+ for (i = 0; i < num_files; i++) {
+ leaf_index=-1;
+ cnid = (cnid_t) file_ids[i];
+
+ /* root always has access */
+ if ((!parents) && (!suser(cred, NULL))) {
+ access[i] = 0;
+ continue;
+ }
+
+ if (check_leaf) {
+ /* do the lookup (checks the cnode hash, then the catalog) */
+ error = do_attr_lookup(hfsmp, &cache, cnid, skip_cp, &catkey, &cnattr);
+ if (error) {
+ access[i] = (short) error;
+ continue;
+ }
+
+ if (parents) {
+ // Check if the leaf matches one of the parent scopes
+ leaf_index = cache_binSearch(parents, num_parents-1, cnid, NULL);
+ if (leaf_index >= 0 && parents[leaf_index] == cnid)
+ prev_parent_check_ok = 0;
+ else if (leaf_index >= 0)
+ prev_parent_check_ok = 1;
+ }
+
+ // if the thing has acl's, do the full permission check
+ if ((cnattr.ca_recflags & kHFSHasSecurityMask) != 0) {
+ struct vnode *cvp;
+ int myErr = 0;
+ /* get the vnode for this cnid */
+ myErr = hfs_vget(hfsmp, cnid, &cvp, 0, 0);
+ if ( myErr ) {
+ access[i] = myErr;
+ continue;
+ }
+
+ hfs_unlock(VTOC(cvp));
+
+ if (vnode_vtype(cvp) == VDIR) {
+ myErr = vnode_authorize(cvp, NULL, (KAUTH_VNODE_SEARCH | KAUTH_VNODE_LIST_DIRECTORY), context);
+ } else {
+ myErr = vnode_authorize(cvp, NULL, KAUTH_VNODE_READ_DATA, context);
+ }
+
+ vnode_put(cvp);
+ if (myErr) {
+ access[i] = myErr;
+ continue;
+ }
+ } else {
+ /* before calling CheckAccess(), check the target file for read access */
+ myPerms = DerivePermissionSummary(cnattr.ca_uid, cnattr.ca_gid,
+ cnattr.ca_mode, hfsmp->hfs_mp, cred, p);
+
+ /* fail fast if no access */
+ if ((myPerms & flags) == 0) {
+ access[i] = EACCES;
+ continue;
+ }
+ }
+ } else {
+ /* we were passed an array of parent ids */
+ catkey.hfsPlus.parentID = cnid;
+ }
+
+ /* if the last guy had the same parent and had access, we're done */
+ if (i > 0 && catkey.hfsPlus.parentID == prevParent_cnid && access[i-1] == 0 && prev_parent_check_ok) {
+ cache.cachehits++;
+ access[i] = 0;
+ continue;
+ }
+
+ myaccess = do_access_check(hfsmp, &error, &cache, catkey.hfsPlus.parentID,
+ skip_cp, p, cred, context,bitmap, map_size, parents, num_parents);
+
+ if (myaccess || (error == ESRCH && leaf_index != -1)) {
+ access[i] = 0; // have access.. no errors to report
+ } else {
+ access[i] = (error != 0 ? (short) error : EACCES);
+ }
+
+ prevParent_cnid = catkey.hfsPlus.parentID;
+ }
+
+ /* copyout the access array */
+ if ((error = copyout((caddr_t)access, user_access_structp->access,
+ num_files * sizeof (short)))) {
+ goto err_exit_bulk_access;
+ }
+ if (map_size && bitmap) {
+ if ((error = copyout((caddr_t)bitmap, user_access_structp->bitmap,
+ map_size * sizeof (char)))) {
+ goto err_exit_bulk_access;
+ }
+ }
+
+
+ err_exit_bulk_access:
+
+ if (file_ids)
+ kfree(file_ids, sizeof(int) * num_files);
+ if (parents)
+ kfree(parents, sizeof(cnid_t) * num_parents);
+ if (bitmap)
+ kfree(bitmap, sizeof(char) * map_size);
+ if (access)
+ kfree(access, sizeof(short) * num_files);
+ if (cache.acache)
+ kfree(cache.acache, sizeof(int) * NUM_CACHE_ENTRIES);
+ if (cache.haveaccess)
+ kfree(cache.haveaccess, sizeof(unsigned char) * NUM_CACHE_ENTRIES);
+
+ return (error);
+}
+
+
+/* end "bulk-access" support */
+
+
+/*
+ * Control filesystem operating characteristics.
+ */
+int
+hfs_vnop_ioctl( struct vnop_ioctl_args /* {
+ vnode_t a_vp;
+ long a_command;
+ caddr_t a_data;
+ int a_fflag;
+ vfs_context_t a_context;
+ } */ *ap)
+{
+ struct vnode * vp = ap->a_vp;
+ struct hfsmount *hfsmp = VTOHFS(vp);
+ vfs_context_t context = ap->a_context;
+ kauth_cred_t cred = vfs_context_ucred(context);
+ proc_t p = vfs_context_proc(context);
+ struct vfsstatfs *vfsp;
+ boolean_t is64bit;
+ off_t jnl_start, jnl_size;
+ struct hfs_journal_info *jip;
+#if HFS_COMPRESSION
+ int compressed = 0;
+ off_t uncompressed_size = -1;
+ int decmpfs_error = 0;
+
+ if (ap->a_command == F_RDADVISE) {
+ /* we need to inspect the decmpfs state of the file as early as possible */
+ compressed = hfs_file_is_compressed(VTOC(vp), 0);
+ if (compressed) {
+ if (VNODE_IS_RSRC(vp)) {
+ /* if this is the resource fork, treat it as if it were empty */
+ uncompressed_size = 0;
+ } else {
+ decmpfs_error = hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0);
+ if (decmpfs_error != 0) {
+ /* failed to get the uncompressed size, we'll check for this later */
+ uncompressed_size = -1;
+ }
+ }
+ }
+ }
+#endif /* HFS_COMPRESSION */
+
+ is64bit = proc_is64bit(p);
+
+#if CONFIG_PROTECT
+ {
+ int error = 0;
+ if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) {
+ return error;
+ }
+ }
+#endif /* CONFIG_PROTECT */
+
+ switch (ap->a_command) {
+
+ case HFS_GETPATH:
+ {
+ struct vnode *file_vp;
+ cnid_t cnid;
+ int outlen;
+ char *bufptr;
+ int error;
+ int flags = 0;
+
+ /* Caller must be owner of file system. */
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES);
+ }
+ /* Target vnode must be file system's root. */
+ if (!vnode_isvroot(vp)) {
+ return (EINVAL);
+ }
+ bufptr = (char *)ap->a_data;
+ cnid = strtoul(bufptr, NULL, 10);
+ if (ap->a_fflag & HFS_GETPATH_VOLUME_RELATIVE) {
+ flags |= BUILDPATH_VOLUME_RELATIVE;
+ }
+
+ /* We need to call hfs_vfs_vget to leverage the code that will
+ * fix the origin list for us if needed, as opposed to calling
+ * hfs_vget, since we will need the parent for build_path call.
+ */
+
+ if ((error = hfs_vfs_vget(HFSTOVFS(hfsmp), cnid, &file_vp, context))) {
+ return (error);
+ }
+ error = build_path(file_vp, bufptr, sizeof(pathname_t), &outlen, flags, context);
+ vnode_put(file_vp);
+
+ return (error);
+ }
+
+ case HFS_TRANSFER_DOCUMENT_ID:
+ {
+ struct cnode *cp = NULL;
+ int error;
+ u_int32_t to_fd = *(u_int32_t *)ap->a_data;
+ struct fileproc *to_fp;
+ struct vnode *to_vp;
+ struct cnode *to_cp;
+
+ cp = VTOC(vp);
+
+ if ((error = fp_getfvp(p, to_fd, &to_fp, &to_vp)) != 0) {
+ //printf("could not get the vnode for fd %d (err %d)\n", to_fd, error);
+ return error;
+ }
+ if ( (error = vnode_getwithref(to_vp)) ) {
+ file_drop(to_fd);
+ return error;
+ }
+
+ if (VTOHFS(to_vp) != hfsmp) {
+ error = EXDEV;
+ goto transfer_cleanup;
+ }
+
+ int need_unlock = 1;
+ to_cp = VTOC(to_vp);
+ error = hfs_lockpair(cp, to_cp, HFS_EXCLUSIVE_LOCK);
+ if (error != 0) {
+ //printf("could not lock the pair of cnodes (error %d)\n", error);
+ goto transfer_cleanup;
+ }
+
+ if (!(cp->c_bsdflags & UF_TRACKED)) {
+ error = EINVAL;
+ } else if (to_cp->c_bsdflags & UF_TRACKED) {
+ //
+ // if the destination is already tracked, return an error
+ // as otherwise it's a silent deletion of the target's
+ // document-id
+ //
+ error = EEXIST;
+ } else if (S_ISDIR(cp->c_attr.ca_mode) || S_ISREG(cp->c_attr.ca_mode) || S_ISLNK(cp->c_attr.ca_mode)) {
+ //
+ // we can use the FndrExtendedFileInfo because the doc-id is the first
+ // thing in both it and the ExtendedDirInfo struct which is fixed in
+ // format and can not change layout
+ //
+ struct FndrExtendedFileInfo *f_extinfo = (struct FndrExtendedFileInfo *)((u_int8_t*)cp->c_finderinfo + 16);
+ struct FndrExtendedFileInfo *to_extinfo = (struct FndrExtendedFileInfo *)((u_int8_t*)to_cp->c_finderinfo + 16);
+
+ if (f_extinfo->document_id == 0) {
+ uint32_t new_id;
+
+ hfs_unlockpair(cp, to_cp); // have to unlock to be able to get a new-id
+
+ if ((error = hfs_generate_document_id(hfsmp, &new_id)) == 0) {
+ //
+ // re-lock the pair now that we have the document-id
+ //
+ hfs_lockpair(cp, to_cp, HFS_EXCLUSIVE_LOCK);
+ f_extinfo->document_id = new_id;
+ } else {
+ goto transfer_cleanup;
+ }
+ }
+
+ to_extinfo->document_id = f_extinfo->document_id;
+ f_extinfo->document_id = 0;
+ //printf("TRANSFERRING: doc-id %d from ino %d to ino %d\n", to_extinfo->document_id, cp->c_fileid, to_cp->c_fileid);
+
+ // make sure the destination is also UF_TRACKED
+ to_cp->c_bsdflags |= UF_TRACKED;
+ cp->c_bsdflags &= ~UF_TRACKED;
+
+ // mark the cnodes dirty
+ cp->c_flag |= C_MODIFIED;
+ to_cp->c_flag |= C_MODIFIED;
+
+ int lockflags;
+ if ((error = hfs_start_transaction(hfsmp)) == 0) {
+
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
+
+ (void) cat_update(hfsmp, &cp->c_desc, &cp->c_attr, NULL, NULL);
+ (void) cat_update(hfsmp, &to_cp->c_desc, &to_cp->c_attr, NULL, NULL);
+
+ hfs_systemfile_unlock (hfsmp, lockflags);
+ (void) hfs_end_transaction(hfsmp);
+ }
+
+#if CONFIG_FSE
+ add_fsevent(FSE_DOCID_CHANGED, context,
+ FSE_ARG_DEV, hfsmp->hfs_raw_dev,
+ FSE_ARG_INO, (ino64_t)cp->c_fileid, // src inode #
+ FSE_ARG_INO, (ino64_t)to_cp->c_fileid, // dst inode #
+ FSE_ARG_INT32, to_extinfo->document_id,
+ FSE_ARG_DONE);
+
+ hfs_unlockpair(cp, to_cp); // unlock this so we can send the fsevents
+ need_unlock = 0;
+
+ if (need_fsevent(FSE_STAT_CHANGED, vp)) {
+ add_fsevent(FSE_STAT_CHANGED, context, FSE_ARG_VNODE, vp, FSE_ARG_DONE);
+ }
+ if (need_fsevent(FSE_STAT_CHANGED, to_vp)) {
+ add_fsevent(FSE_STAT_CHANGED, context, FSE_ARG_VNODE, to_vp, FSE_ARG_DONE);
+ }
+#else
+ hfs_unlockpair(cp, to_cp); // unlock this so we can send the fsevents
+ need_unlock = 0;
+#endif
+ }
+
+ if (need_unlock) {
+ hfs_unlockpair(cp, to_cp);
+ }
+
+ transfer_cleanup:
+ vnode_put(to_vp);
+ file_drop(to_fd);
+
+ return error;
+ }
+
+
+
+ case HFS_PREV_LINK:
+ case HFS_NEXT_LINK:
+ {
+ cnid_t linkfileid;
+ cnid_t nextlinkid;
+ cnid_t prevlinkid;
+ int error;
+
+ /* Caller must be owner of file system. */
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES);
+ }
+ /* Target vnode must be file system's root. */
+ if (!vnode_isvroot(vp)) {
+ return (EINVAL);
+ }
+ linkfileid = *(cnid_t *)ap->a_data;
+ if (linkfileid < kHFSFirstUserCatalogNodeID) {
+ return (EINVAL);
+ }
+ if ((error = hfs_lookup_siblinglinks(hfsmp, linkfileid, &prevlinkid, &nextlinkid))) {
+ return (error);
+ }
+ if (ap->a_command == HFS_NEXT_LINK) {
+ *(cnid_t *)ap->a_data = nextlinkid;
+ } else {
+ *(cnid_t *)ap->a_data = prevlinkid;
+ }
+ return (0);
+ }
+
+ case HFS_RESIZE_PROGRESS: {
+
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+ if (!vnode_isvroot(vp)) {
+ return (EINVAL);
+ }
+ /* file system must not be mounted read-only */
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+
+ return hfs_resize_progress(hfsmp, (u_int32_t *)ap->a_data);
+ }
+
+ case HFS_RESIZE_VOLUME: {
+ u_int64_t newsize;
+ u_int64_t cursize;
+ int ret;
+
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+ if (!vnode_isvroot(vp)) {
+ return (EINVAL);
+ }
+
+ /* filesystem must not be mounted read only */
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ newsize = *(u_int64_t *)ap->a_data;
+ cursize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize;
+
+ if (newsize == cursize) {
+ return (0);
+ }
+ IOBSDMountChange(hfsmp->hfs_mp, kIOMountChangeWillResize);
+ if (newsize > cursize) {
+ ret = hfs_extendfs(hfsmp, *(u_int64_t *)ap->a_data, context);
+ } else {
+ ret = hfs_truncatefs(hfsmp, *(u_int64_t *)ap->a_data, context);
+ }
+ IOBSDMountChange(hfsmp->hfs_mp, kIOMountChangeDidResize);
+ return (ret);
+ }
+ case HFS_CHANGE_NEXT_ALLOCATION: {
+ int error = 0; /* Assume success */
+ u_int32_t location;
+
+ if (vnode_vfsisrdonly(vp)) {
+ return (EROFS);
+ }
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+ if (!vnode_isvroot(vp)) {
+ return (EINVAL);
+ }
+ hfs_lock_mount(hfsmp);
+ location = *(u_int32_t *)ap->a_data;
+ if ((location >= hfsmp->allocLimit) &&
+ (location != HFS_NO_UPDATE_NEXT_ALLOCATION)) {
+ error = EINVAL;
+ goto fail_change_next_allocation;
+ }
+ /* Return previous value. */
+ *(u_int32_t *)ap->a_data = hfsmp->nextAllocation;
+ if (location == HFS_NO_UPDATE_NEXT_ALLOCATION) {
+ /* On magic value for location, set nextAllocation to next block
+ * after metadata zone and set flag in mount structure to indicate
+ * that nextAllocation should not be updated again.
+ */
+ if (hfsmp->hfs_metazone_end != 0) {
+ HFS_UPDATE_NEXT_ALLOCATION(hfsmp, hfsmp->hfs_metazone_end + 1);
+ }
+ hfsmp->hfs_flags |= HFS_SKIP_UPDATE_NEXT_ALLOCATION;
+ } else {
+ hfsmp->hfs_flags &= ~HFS_SKIP_UPDATE_NEXT_ALLOCATION;
+ HFS_UPDATE_NEXT_ALLOCATION(hfsmp, location);
+ }
+ MarkVCBDirty(hfsmp);
+fail_change_next_allocation:
+ hfs_unlock_mount(hfsmp);
+ return (error);
+ }
+
+#if HFS_SPARSE_DEV
+ case HFS_SETBACKINGSTOREINFO: {
+ struct vnode * bsfs_rootvp;
+ struct vnode * di_vp;
+ struct hfs_backingstoreinfo *bsdata;
+ int error = 0;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
+ return (EALREADY);
+ }
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+ bsdata = (struct hfs_backingstoreinfo *)ap->a_data;
+ if (bsdata == NULL) {
+ return (EINVAL);
+ }
+ if ((error = file_vnode(bsdata->backingfd, &di_vp))) {
+ return (error);
+ }
+ if ((error = vnode_getwithref(di_vp))) {
+ file_drop(bsdata->backingfd);
+ return(error);
+ }
+
+ if (vnode_mount(vp) == vnode_mount(di_vp)) {
+ (void)vnode_put(di_vp);
+ file_drop(bsdata->backingfd);
+ return (EINVAL);
+ }
+
+ /*
+ * Obtain the backing fs root vnode and keep a reference
+ * on it. This reference will be dropped in hfs_unmount.
+ */
+ error = VFS_ROOT(vnode_mount(di_vp), &bsfs_rootvp, NULL); /* XXX use context! */
+ if (error) {
+ (void)vnode_put(di_vp);
+ file_drop(bsdata->backingfd);
+ return (error);
+ }
+ vnode_ref(bsfs_rootvp);
+ vnode_put(bsfs_rootvp);
+
+ hfs_lock_mount(hfsmp);
+ hfsmp->hfs_backingfs_rootvp = bsfs_rootvp;
+ hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE;
+ hfsmp->hfs_sparsebandblks = bsdata->bandsize / hfsmp->blockSize * 4;
+ hfs_unlock_mount(hfsmp);
+
+ /* We check the MNTK_VIRTUALDEV bit instead of marking the dependent process */
+
+ /*
+ * If the sparse image is on a sparse image file (as opposed to a sparse
+ * bundle), then we may need to limit the free space to the maximum size
+ * of a file on that volume. So we query (using pathconf), and if we get
+ * a meaningful result, we cache the number of blocks for later use in
+ * hfs_freeblks().
+ */
+ hfsmp->hfs_backingfs_maxblocks = 0;
+ if (vnode_vtype(di_vp) == VREG) {
+ int terr;
+ int hostbits;
+ terr = vn_pathconf(di_vp, _PC_FILESIZEBITS, &hostbits, context);
+ if (terr == 0 && hostbits != 0 && hostbits < 64) {
+ u_int64_t hostfilesizemax = ((u_int64_t)1) << hostbits;
+
+ hfsmp->hfs_backingfs_maxblocks = hostfilesizemax / hfsmp->blockSize;
+ }
+ }
+
+ /* The free extent cache is managed differently for sparse devices.
+ * There is a window between which the volume is mounted and the
+ * device is marked as sparse, so the free extent cache for this
+ * volume is currently initialized as normal volume (sorted by block
+ * count). Reset the cache so that it will be rebuilt again
+ * for sparse device (sorted by start block).
+ */
+ ResetVCBFreeExtCache(hfsmp);
+
+ (void)vnode_put(di_vp);
+ file_drop(bsdata->backingfd);
+ return (0);
+ }
+ case HFS_CLRBACKINGSTOREINFO: {
+ struct vnode * tmpvp;
+
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+
+ if ((hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) &&
+ hfsmp->hfs_backingfs_rootvp) {
+
+ hfs_lock_mount(hfsmp);
+ hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE;
+ tmpvp = hfsmp->hfs_backingfs_rootvp;
+ hfsmp->hfs_backingfs_rootvp = NULLVP;
+ hfsmp->hfs_sparsebandblks = 0;
+ hfs_unlock_mount(hfsmp);
+
+ vnode_rele(tmpvp);
+ }
+ return (0);
+ }
+#endif /* HFS_SPARSE_DEV */
+
+ /* Change the next CNID stored in the VH */
+ case HFS_CHANGE_NEXTCNID: {
+ int error = 0; /* Assume success */
+ u_int32_t fileid;
+ int wraparound = 0;
+ int lockflags = 0;
+
+ if (vnode_vfsisrdonly(vp)) {
+ return (EROFS);
+ }
+ vfsp = vfs_statfs(HFSTOVFS(hfsmp));
+ if (suser(cred, NULL) &&
+ kauth_cred_getuid(cred) != vfsp->f_owner) {
+ return (EACCES); /* must be owner of file system */
+ }
+
+ fileid = *(u_int32_t *)ap->a_data;
+
+ /* Must have catalog lock excl. to advance the CNID pointer */
+ lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG , HFS_EXCLUSIVE_LOCK);
+
+ hfs_lock_mount(hfsmp);
+
+ /* If it is less than the current next CNID, force the wraparound bit to be set */
+ if (fileid < hfsmp->vcbNxtCNID) {
+ wraparound=1;
+ }
+
+ /* Return previous value. */
+ *(u_int32_t *)ap->a_data = hfsmp->vcbNxtCNID;
+
+ hfsmp->vcbNxtCNID = fileid;
+
+ if (wraparound) {
+ hfsmp->vcbAtrb |= kHFSCatalogNodeIDsReusedMask;
+ }
+
+ MarkVCBDirty(hfsmp);
+ hfs_unlock_mount(hfsmp);
+ hfs_systemfile_unlock (hfsmp, lockflags);
+
+ return (error);
+ }
+
+ case F_FREEZE_FS: {
+ struct mount *mp;
+
+ mp = vnode_mount(vp);
+ hfsmp = VFSTOHFS(mp);
+
+ if (!(hfsmp->jnl))
+ return (ENOTSUP);
+
+ vfsp = vfs_statfs(mp);
+
+ if (kauth_cred_getuid(cred) != vfsp->f_owner &&
+ !kauth_cred_issuser(cred))
+ return (EACCES);
+
+ return hfs_freeze(hfsmp);
+ }
+
+ case F_THAW_FS: {
+ vfsp = vfs_statfs(vnode_mount(vp));
+ if (kauth_cred_getuid(cred) != vfsp->f_owner &&
+ !kauth_cred_issuser(cred))
+ return (EACCES);
+
+ return hfs_thaw(hfsmp, current_proc());
+ }
+
+ case HFS_EXT_BULKACCESS_FSCTL: {
+ int size;
+
+ if (hfsmp->hfs_flags & HFS_STANDARD) {
+ return EINVAL;
+ }
+
+ if (is64bit) {
+ size = sizeof(struct user64_ext_access_t);
+ } else {
+ size = sizeof(struct user32_ext_access_t);
+ }
+
+ return do_bulk_access_check(hfsmp, vp, ap, size, context);
+ }
+
+ case HFS_SET_XATTREXTENTS_STATE: {
+ int state;
+
+ if (ap->a_data == NULL) {
+ return (EINVAL);
+ }
+
+ state = *(int *)ap->a_data;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+
+ /* Super-user can enable or disable extent-based extended
+ * attribute support on a volume
+ * Note: Starting Mac OS X 10.7, extent-based extended attributes
+ * are enabled by default, so any change will be transient only
+ * till the volume is remounted.
+ */
+ if (!kauth_cred_issuser(kauth_cred_get())) {
+ return (EPERM);
+ }
+ if (state == 0 || state == 1)
+ return hfs_set_volxattr(hfsmp, HFS_SET_XATTREXTENTS_STATE, state);
+ else
+ return (EINVAL);
+ }
+
+ case F_SETSTATICCONTENT: {
+ int error;
+ int enable_static = 0;
+ struct cnode *cp = NULL;
+ /*
+ * lock the cnode, decorate the cnode flag, and bail out.
+ * VFS should have already authenticated the caller for us.
+ */
+
+ if (ap->a_data) {
+ /*
+ * Note that even though ap->a_data is of type caddr_t,
+ * the fcntl layer at the syscall handler will pass in NULL
+ * or 1 depending on what the argument supplied to the fcntl
+ * was. So it is in fact correct to check the ap->a_data
+ * argument for zero or non-zero value when deciding whether or not
+ * to enable the static bit in the cnode.
+ */
+ enable_static = 1;
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return EROFS;
+ }
+ cp = VTOC(vp);
+
+ error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error == 0) {
+ if (enable_static) {
+ cp->c_flag |= C_SSD_STATIC;
+ }
+ else {
+ cp->c_flag &= ~C_SSD_STATIC;
+ }
+ hfs_unlock (cp);
+ }
+ return error;
+ }
+
+ case F_SET_GREEDY_MODE: {
+ int error;
+ int enable_greedy_mode = 0;
+ struct cnode *cp = NULL;
+ /*
+ * lock the cnode, decorate the cnode flag, and bail out.
+ * VFS should have already authenticated the caller for us.
+ */
+
+ if (ap->a_data) {
+ /*
+ * Note that even though ap->a_data is of type caddr_t,
+ * the fcntl layer at the syscall handler will pass in NULL
+ * or 1 depending on what the argument supplied to the fcntl
+ * was. So it is in fact correct to check the ap->a_data
+ * argument for zero or non-zero value when deciding whether or not
+ * to enable the greedy mode bit in the cnode.
+ */
+ enable_greedy_mode = 1;
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return EROFS;
+ }
+ cp = VTOC(vp);
+
+ error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error == 0) {
+ if (enable_greedy_mode) {
+ cp->c_flag |= C_SSD_GREEDY_MODE;
+ }
+ else {
+ cp->c_flag &= ~C_SSD_GREEDY_MODE;
+ }
+ hfs_unlock (cp);
+ }
+ return error;
+ }
+
+ case F_SETIOTYPE: {
+ int error;
+ uint32_t iotypeflag = 0;
+
+ struct cnode *cp = NULL;
+ /*
+ * lock the cnode, decorate the cnode flag, and bail out.
+ * VFS should have already authenticated the caller for us.
+ */
+
+ if (ap->a_data == NULL) {
+ return EINVAL;
+ }
+
+ /*
+ * Note that even though ap->a_data is of type caddr_t, we
+ * can only use 32 bits of flag values.
+ */
+ iotypeflag = (uint32_t) ap->a_data;
+ switch (iotypeflag) {
+ case F_IOTYPE_ISOCHRONOUS:
+ break;
+ default:
+ return EINVAL;
+ }
+
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return EROFS;
+ }
+ cp = VTOC(vp);
+
+ error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error == 0) {
+ switch (iotypeflag) {
+ case F_IOTYPE_ISOCHRONOUS:
+ cp->c_flag |= C_IO_ISOCHRONOUS;
+ break;
+ default:
+ break;
+ }
+ hfs_unlock (cp);
+ }
+ return error;
+ }
+
+ case F_MAKECOMPRESSED: {
+ int error = 0;
+ uint32_t gen_counter;
+ struct cnode *cp = NULL;
+ int reset_decmp = 0;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return EROFS;
+ }
+
+ /*
+ * acquire & lock the cnode.
+ * VFS should have already authenticated the caller for us.
+ */
+
+ if (ap->a_data) {
+ /*
+ * Cast the pointer into a uint32_t so we can extract the
+ * supplied generation counter.
+ */
+ gen_counter = *((uint32_t*)ap->a_data);
+ }
+ else {
+ return EINVAL;
+ }
+
+#if HFS_COMPRESSION
+ cp = VTOC(vp);
+ /* Grab truncate lock first; we may truncate the file */
+ hfs_lock_truncate (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+
+ error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error) {
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
+ return error;
+ }
+
+ /* Are there any other usecounts/FDs? */
+ if (vnode_isinuse(vp, 1)) {
+ hfs_unlock(cp);
+ hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
+ return EBUSY;
+ }
+
+ /* now we have the cnode locked down; Validate arguments */
+ if (cp->c_attr.ca_flags & (UF_IMMUTABLE | UF_COMPRESSED)) {
+ /* EINVAL if you are trying to manipulate an IMMUTABLE file */
+ hfs_unlock(cp);
+ hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT);
+ return EINVAL;
+ }
+
+ if ((hfs_get_gencount (cp)) == gen_counter) {
+ /*
+ * OK, the gen_counter matched. Go for it:
+ * Toggle state bits, truncate file, and suppress mtime update
+ */
+ reset_decmp = 1;
+ cp->c_bsdflags |= UF_COMPRESSED;
+
+ error = hfs_truncate(vp, 0, IO_NDELAY, HFS_TRUNCATE_SKIPTIMES,
+ ap->a_context);
+ }
+ else {
+ error = ESTALE;
+ }
+
+ /* Unlock cnode before executing decmpfs ; they may need to get an EA */
+ hfs_unlock(cp);
+
+ /*
+ * Reset the decmp state while still holding the truncate lock. We need to
+ * serialize here against a listxattr on this node which may occur at any
+ * time.
+ *
+ * Even if '0/skiplock' is passed in 2nd argument to hfs_file_is_compressed,
+ * that will still potentially require getting the com.apple.decmpfs EA. If the
+ * EA is required, then we can't hold the cnode lock, because the getxattr call is
+ * generic(through VFS), and can't pass along any info telling it that we're already
+ * holding it (the lock). If we don't serialize, then we risk listxattr stopping
+ * and trying to fill in the hfs_file_is_compressed info during the callback
+ * operation, which will result in deadlock against the b-tree node.
+ *
+ * So, to serialize against listxattr (which will grab buf_t meta references on
+ * the b-tree blocks), we hold the truncate lock as we're manipulating the
+ * decmpfs payload.
+ */
+ if ((reset_decmp) && (error == 0)) {
+ decmpfs_cnode *dp = VTOCMP (vp);
+ if (dp != NULL) {
+ decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0);
+ }
+
+ /* Initialize the decmpfs node as needed */
+ (void) hfs_file_is_compressed (cp, 0); /* ok to take lock */
+ }
+
+ hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT);
+
+#endif
+ return error;
+ }
+
+ case F_SETBACKINGSTORE: {
+
+ int error = 0;
+
+ /*
+ * See comment in F_SETSTATICCONTENT re: using
+ * a null check for a_data
+ */
+ if (ap->a_data) {
+ error = hfs_set_backingstore (vp, 1);
+ }
+ else {
+ error = hfs_set_backingstore (vp, 0);
+ }
+
+ return error;
+ }
+
+ case F_GETPATH_MTMINFO: {
+ int error = 0;
+
+ int *data = (int*) ap->a_data;
+
+ /* Ask if this is a backingstore vnode */
+ error = hfs_is_backingstore (vp, data);
+
+ return error;
+ }
+
+ case F_FULLFSYNC: {
+ int error;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error == 0) {
+ error = hfs_fsync(vp, MNT_WAIT, HFS_FSYNC_FULL, p);
+ hfs_unlock(VTOC(vp));
+ }
+
+ return error;
+ }
+
+ case F_BARRIERFSYNC: {
+ int error;
+
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error == 0) {
+ error = hfs_fsync(vp, MNT_WAIT, HFS_FSYNC_BARRIER, p);
+ hfs_unlock(VTOC(vp));
+ }
+
+ return error;
+ }
+
+ case F_CHKCLEAN: {
+ register struct cnode *cp;
+ int error;
+
+ if (!vnode_isreg(vp))
+ return EINVAL;
+
+ error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error == 0) {
+ cp = VTOC(vp);
+ /*
+ * used by regression test to determine if
+ * all the dirty pages (via write) have been cleaned
+ * after a call to 'fsysnc'.
+ */
+ error = is_file_clean(vp, VTOF(vp)->ff_size);
+ hfs_unlock(cp);
+ }
+ return (error);
+ }
+
+ case F_RDADVISE: {
+ register struct radvisory *ra;
+ struct filefork *fp;
+ int error;
+
+ if (!vnode_isreg(vp))
+ return EINVAL;
+
+ ra = (struct radvisory *)(ap->a_data);
+ fp = VTOF(vp);
+
+ /* Protect against a size change. */
+ hfs_lock_truncate(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+
+#if HFS_COMPRESSION
+ if (compressed && (uncompressed_size == -1)) {
+ /* fetching the uncompressed size failed above, so return the error */
+ error = decmpfs_error;
+ } else if ((compressed && (ra->ra_offset >= uncompressed_size)) ||
+ (!compressed && (ra->ra_offset >= fp->ff_size))) {
+ error = EFBIG;
+ }
+#else /* HFS_COMPRESSION */
+ if (ra->ra_offset >= fp->ff_size) {
+ error = EFBIG;
+ }
+#endif /* HFS_COMPRESSION */
+ else {
+ error = advisory_read(vp, fp->ff_size, ra->ra_offset, ra->ra_count);
+ }
+
+ hfs_unlock_truncate(VTOC(vp), HFS_LOCK_DEFAULT);
+ return (error);
+ }
+
+ case _IOC(IOC_OUT,'h', 4, 0): /* Create date in local time */
+ {
+ if (is64bit) {
+ *(user_time_t *)(ap->a_data) = (user_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate));
+ }
+ else {
+ *(user32_time_t *)(ap->a_data) = (user32_time_t) (to_bsd_time(VTOVCB(vp)->localCreateDate));
+ }
+ return 0;
+ }
+
+ case SPOTLIGHT_FSCTL_GET_MOUNT_TIME:
+ *(uint32_t *)ap->a_data = hfsmp->hfs_mount_time;
+ break;
+
+ case SPOTLIGHT_FSCTL_GET_LAST_MTIME:
+ *(uint32_t *)ap->a_data = hfsmp->hfs_last_mounted_mtime;
+ break;
+
+ case HFS_FSCTL_GET_VERY_LOW_DISK:
+ *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_dangerlimit;
+ break;
+
+ case HFS_FSCTL_SET_VERY_LOW_DISK:
+ if (*(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_warninglimit) {
+ return EINVAL;
+ }
+
+ hfsmp->hfs_freespace_notify_dangerlimit = *(uint32_t *)ap->a_data;
+ break;
+
+ case HFS_FSCTL_GET_LOW_DISK:
+ *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_warninglimit;
+ break;
+
+ case HFS_FSCTL_SET_LOW_DISK:
+ if ( *(uint32_t *)ap->a_data >= hfsmp->hfs_freespace_notify_desiredlevel
+ || *(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_dangerlimit) {
+
+ return EINVAL;
+ }
+
+ hfsmp->hfs_freespace_notify_warninglimit = *(uint32_t *)ap->a_data;
+ break;
+
+ case HFS_FSCTL_GET_DESIRED_DISK:
+ *(uint32_t*)ap->a_data = hfsmp->hfs_freespace_notify_desiredlevel;
+ break;
+
+ case HFS_FSCTL_SET_DESIRED_DISK:
+ if (*(uint32_t *)ap->a_data <= hfsmp->hfs_freespace_notify_warninglimit) {
+ return EINVAL;
+ }
+
+ hfsmp->hfs_freespace_notify_desiredlevel = *(uint32_t *)ap->a_data;
+ break;
+
+ case HFS_VOLUME_STATUS:
+ *(uint32_t *)ap->a_data = hfsmp->hfs_notification_conditions;
+ break;
+
+ case HFS_SET_BOOT_INFO:
+ if (!vnode_isvroot(vp))
+ return(EINVAL);
+ if (!kauth_cred_issuser(cred) && (kauth_cred_getuid(cred) != vfs_statfs(HFSTOVFS(hfsmp))->f_owner))
+ return(EACCES); /* must be superuser or owner of filesystem */
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ hfs_lock_mount (hfsmp);
+ bcopy(ap->a_data, &hfsmp->vcbFndrInfo, sizeof(hfsmp->vcbFndrInfo));
+ hfs_unlock_mount (hfsmp);
+ (void) hfs_flushvolumeheader(hfsmp, HFS_FVH_WAIT);
+ break;
+
+ case HFS_GET_BOOT_INFO:
+ if (!vnode_isvroot(vp))
+ return(EINVAL);
+ hfs_lock_mount (hfsmp);
+ bcopy(&hfsmp->vcbFndrInfo, ap->a_data, sizeof(hfsmp->vcbFndrInfo));
+ hfs_unlock_mount(hfsmp);
+ break;
+
+ case HFS_MARK_BOOT_CORRUPT:
+ /* Mark the boot volume corrupt by setting
+ * kHFSVolumeInconsistentBit in the volume header. This will
+ * force fsck_hfs on next mount.
+ */
+ if (!kauth_cred_issuser(kauth_cred_get())) {
+ return EACCES;
+ }
+
+ /* Allowed only on the root vnode of the boot volume */
+ if (!(vfs_flags(HFSTOVFS(hfsmp)) & MNT_ROOTFS) ||
+ !vnode_isvroot(vp)) {
+ return EINVAL;
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+ printf ("hfs_vnop_ioctl: Marking the boot volume corrupt.\n");
+ hfs_mark_inconsistent(hfsmp, HFS_FSCK_FORCED);
+ break;
+
+ case HFS_FSCTL_GET_JOURNAL_INFO:
+ jip = (struct hfs_journal_info*)ap->a_data;
+
+ if (vp == NULLVP)
+ return EINVAL;
+
+ if (hfsmp->jnl == NULL) {
+ jnl_start = 0;
+ jnl_size = 0;
+ } else {
+ jnl_start = hfs_blk_to_bytes(hfsmp->jnl_start, hfsmp->blockSize) + hfsmp->hfsPlusIOPosOffset;
+ jnl_size = hfsmp->jnl_size;
+ }
+
+ jip->jstart = jnl_start;
+ jip->jsize = jnl_size;
+ break;
+
+ case HFS_SET_ALWAYS_ZEROFILL: {
+ struct cnode *cp = VTOC(vp);
+
+ if (*(int *)ap->a_data) {
+ cp->c_flag |= C_ALWAYS_ZEROFILL;
+ } else {
+ cp->c_flag &= ~C_ALWAYS_ZEROFILL;
+ }
+ break;
+ }
+
+ case HFS_DISABLE_METAZONE: {
+ /* Only root can disable metadata zone */
+ if (!kauth_cred_issuser(kauth_cred_get())) {
+ return EACCES;
+ }
+ if (hfsmp->hfs_flags & HFS_READ_ONLY) {
+ return (EROFS);
+ }
+
+ /* Disable metadata zone now */
+ (void) hfs_metadatazone_init(hfsmp, true);
+ printf ("hfs: Disabling metadata zone on %s\n", hfsmp->vcbVN);
+ break;
+ }
+
+
+ case HFS_FSINFO_METADATA_BLOCKS: {
+ int error;
+ struct hfsinfo_metadata *hinfo;
+
+ hinfo = (struct hfsinfo_metadata *)ap->a_data;
+
+ /* Get information about number of metadata blocks */
+ error = hfs_getinfo_metadata_blocks(hfsmp, hinfo);
+ if (error) {
+ return error;
+ }
+
+ break;
+ }
+
+ case HFS_GET_FSINFO: {
+ hfs_fsinfo *fsinfo = (hfs_fsinfo *)ap->a_data;
+
+ /* Only root is allowed to get fsinfo */
+ if (!kauth_cred_issuser(kauth_cred_get())) {
+ return EACCES;
+ }
+
+ /*
+ * Make sure that the caller's version number matches with
+ * the kernel's version number. This will make sure that
+ * if the structures being read/written into are changed
+ * by the kernel, the caller will not read incorrect data.
+ *
+ * The first three fields --- request_type, version and
+ * flags are same for all the hfs_fsinfo structures, so
+ * we can access the version number by assuming any
+ * structure for now.
+ */
+ if (fsinfo->header.version != HFS_FSINFO_VERSION) {
+ return ENOTSUP;
+ }
+
+ /* Make sure that the current file system is not marked inconsistent */
+ if (hfsmp->vcbAtrb & kHFSVolumeInconsistentMask) {
+ return EIO;
+ }
+
+ return hfs_get_fsinfo(hfsmp, ap->a_data);
+ }
+
+ case HFS_CS_FREESPACE_TRIM: {
+ int error = 0;
+ int lockflags = 0;
+
+ /* Only root allowed */
+ if (!kauth_cred_issuser(kauth_cred_get())) {
+ return EACCES;
+ }
+
+ /*
+ * This core functionality is similar to hfs_scan_blocks().
+ * The main difference is that hfs_scan_blocks() is called
+ * as part of mount where we are assured that the journal is
+ * empty to start with. This fcntl() can be called on a
+ * mounted volume, therefore it has to flush the content of
+ * the journal as well as ensure the state of summary table.
+ *
+ * This fcntl scans over the entire allocation bitmap,
+ * creates list of all the free blocks, and issues TRIM
+ * down to the underlying device. This can take long time
+ * as it can generate up to 512MB of read I/O.
+ */
+
+ if ((hfsmp->hfs_flags & HFS_SUMMARY_TABLE) == 0) {
+ error = hfs_init_summary(hfsmp);
+ if (error) {
+ printf("hfs: fsctl() could not initialize summary table for %s\n", hfsmp->vcbVN);
+ return error;
+ }
+ }
+
+ /*
+ * The journal maintains list of recently deallocated blocks to
+ * issue DKIOCUNMAPs when the corresponding journal transaction is
+ * flushed to the disk. To avoid any race conditions, we only
+ * want one active trim list and only one thread issuing DKIOCUNMAPs.
+ * Therefore we make sure that the journal trim list is sync'ed,
+ * empty, and not modifiable for the duration of our scan.
+ *
+ * Take the journal lock before flushing the journal to the disk.
+ * We will keep on holding the journal lock till we don't get the
+ * bitmap lock to make sure that no new journal transactions can
+ * start. This will make sure that the journal trim list is not
+ * modified after the journal flush and before getting bitmap lock.
+ * We can release the journal lock after we acquire the bitmap
+ * lock as it will prevent any further block deallocations.
+ */
+ hfs_journal_lock(hfsmp);
+
+ /* Flush the journal and wait for all I/Os to finish up */
+ error = hfs_flush(hfsmp, HFS_FLUSH_JOURNAL_META);
+ if (error) {
+ hfs_journal_unlock(hfsmp);
+ return error;
+ }
+
+ /* Take bitmap lock to ensure it is not being modified */
+ lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
+
+ /* Release the journal lock */
+ hfs_journal_unlock(hfsmp);
+
+ /*
+ * ScanUnmapBlocks reads the bitmap in large block size
+ * (up to 1MB) unlike the runtime which reads the bitmap
+ * in the 4K block size. This can cause buf_t collisions
+ * and potential data corruption. To avoid this, we
+ * invalidate all the existing buffers associated with
+ * the bitmap vnode before scanning it.
+ *
+ * Note: ScanUnmapBlock() cleans up all the buffers
+ * after itself, so there won't be any large buffers left
+ * for us to clean up after it returns.
+ */
+ error = buf_invalidateblks(hfsmp->hfs_allocation_vp, 0, 0, 0);
+ if (error) {
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ return error;
+ }
+
+ /* Traverse bitmap and issue DKIOCUNMAPs */
+ error = ScanUnmapBlocks(hfsmp);
+ hfs_systemfile_unlock(hfsmp, lockflags);
+ if (error) {
+ return error;
+ }
+
+ break;
+ }
+
+ case HFS_SET_HOTFILE_STATE: {
+ int error;
+ struct cnode *cp = VTOC(vp);
+ uint32_t hf_state = *((uint32_t*)ap->a_data);
+ uint32_t num_unpinned = 0;
+
+ error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
+ if (error) {
+ return error;
+ }
+
+ // printf("hfs: setting hotfile state %d on %s\n", hf_state, vp->v_name);
+ if (hf_state == HFS_MARK_FASTDEVCANDIDATE) {
+ vnode_setfastdevicecandidate(vp);
+
+ cp->c_attr.ca_recflags |= kHFSFastDevCandidateMask;
+ cp->c_attr.ca_recflags &= ~kHFSDoNotFastDevPinMask;
+ cp->c_flag |= C_MODIFIED;
+ } else if (hf_state == HFS_UNMARK_FASTDEVCANDIDATE || hf_state == HFS_NEVER_FASTDEVCANDIDATE) {
+ vnode_clearfastdevicecandidate(vp);
+ hfs_removehotfile(vp);
+
+ if (cp->c_attr.ca_recflags & kHFSFastDevPinnedMask) {
+ hfs_pin_vnode(hfsmp, vp, HFS_UNPIN_IT, &num_unpinned, ap->a_context);
+ }
+
+ if (hf_state == HFS_NEVER_FASTDEVCANDIDATE) {
+ cp->c_attr.ca_recflags |= kHFSDoNotFastDevPinMask;
+ }
+ cp->c_attr.ca_recflags &= ~(kHFSFastDevCandidateMask|kHFSFastDevPinnedMask);
+ cp->c_flag |= C_MODIFIED;
+
+ } else {
+ error = EINVAL;
+ }
+
+ if (num_unpinned != 0) {
+ lck_mtx_lock(&hfsmp->hfc_mutex);
+ hfsmp->hfs_hotfile_freeblks += num_unpinned;
+ lck_mtx_unlock(&hfsmp->hfc_mutex);
+ }
+
+ hfs_unlock(cp);
+ return error;
+ break;
+ }
+
+ case HFS_REPIN_HOTFILE_STATE: {
+ int error=0;
+ uint32_t repin_what = *((uint32_t*)ap->a_data);
+
+ /* Only root allowed */
+ if (!kauth_cred_issuser(kauth_cred_get())) {
+ return EACCES;
+ }
+
+ if (!(hfsmp->hfs_flags & (HFS_CS_METADATA_PIN | HFS_CS_HOTFILE_PIN))) {
+ // this system is neither regular Fusion or Cooperative Fusion
+ // so this fsctl makes no sense.
+ return EINVAL;
+ }
+
+ //
+ // After a converting a CoreStorage volume to be encrypted, the
+ // extents could have moved around underneath us. This call
+ // allows corestoraged to re-pin everything that should be
+ // pinned (it would happen on the next reboot too but that could
+ // be a long time away).
+ //
+ if ((repin_what & HFS_REPIN_METADATA) && (hfsmp->hfs_flags & HFS_CS_METADATA_PIN)) {
+ hfs_pin_fs_metadata(hfsmp);
+ }
+ if ((repin_what & HFS_REPIN_USERDATA) && (hfsmp->hfs_flags & HFS_CS_HOTFILE_PIN)) {
+ hfs_repin_hotfiles(hfsmp);
+ }
+ if ((repin_what & HFS_REPIN_USERDATA) && (hfsmp->hfs_flags & HFS_CS_SWAPFILE_PIN)) {
+ //XXX Swapfiles (marked SWAP_PINNED) may have moved too.
+ //XXX Do we care? They have a more transient/dynamic nature/lifetime.
+ }
+
+ return error;
+ break;
+ }
+
+
+ default:
+ return (ENOTTY);
+ }
+
+ return 0;
+}
+
+/*
+ * select
+ */
+int
+hfs_vnop_select(__unused struct vnop_select_args *ap)
+/*
+ struct vnop_select_args {
+ vnode_t a_vp;
+ int a_which;
+ int a_fflags;
+ void *a_wql;
+ vfs_context_t a_context;
+ };
+*/
+{
+ /*
+ * We should really check to see if I/O is possible.
+ */
+ return (1);
+}
+
+/*