#include <sys/mount.h>
-#include <kern/cpu_number.h>
-
#include <kern/clock.h>
#define HZ 100 /* XXX */
-struct timeval time;
-
+volatile struct timeval time;
+/* simple lock used to access timezone, tz structure */
+decl_simple_lock_data(, tz_slock);
/*
* Time of day and interval timer support.
*
{
struct timeval atv;
int error = 0;
+ extern simple_lock_data_t tz_slock;
+ struct timezone ltz; /* local copy */
+
+/* NOTE THIS implementation is for non ppc architectures only */
if (uap->tp) {
- microtime(&atv);
+ clock_get_calendar_microtime(&atv.tv_sec, &atv.tv_usec);
if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
sizeof (atv)))
return(error);
}
- if (uap->tzp)
- error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
+ if (uap->tzp) {
+ usimple_lock(&tz_slock);
+ ltz = tz;
+ usimple_unlock(&tz_slock);
+ error = copyout((caddr_t)<z, (caddr_t)uap->tzp,
sizeof (tz));
+ }
return(error);
}
struct timeval atv;
struct timezone atz;
int error, s;
+ extern simple_lock_data_t tz_slock;
if (error = suser(p->p_ucred, &p->p_acflag))
return (error);
return (error);
if (uap->tv)
setthetime(&atv);
- if (uap->tzp)
+ if (uap->tzp) {
+ usimple_lock(&tz_slock);
tz = atz;
+ usimple_unlock(&tz_slock);
+ }
return (0);
}
setthetime(tv)
struct timeval *tv;
{
- mach_timespec_t now;
- long delta;
- int s;
+ long delta = tv->tv_sec - time.tv_sec;
- now.tv_sec = tv->tv_sec;
- now.tv_nsec = tv->tv_usec * NSEC_PER_USEC;
-
- clock_set_calendar_value(now);
- delta = tv->tv_sec - time.tv_sec;
+ clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec);
boottime.tv_sec += delta;
#if NFSCLIENT || NFSSERVER
lease_updatetime(delta);
#endif
- s = splhigh();
- microtime(&time);
- splx(s);
}
-int tickadj = 240000 / (60 * HZ); /* "standard" clock skew, us./tick */
-int tickdelta; /* current clock skew, us. per tick */
-long timedelta; /* unapplied time correction, us. */
-long bigadj = 1000000; /* use 10x skew above bigadj us. */
-
struct adjtime_args {
struct timeval *delta;
struct timeval *olddelta;
register struct adjtime_args *uap;
register_t *retval;
{
- struct timeval atv, oatv;
- register long ndelta;
- int s, error;
+ struct timeval atv;
+ int error;
if (error = suser(p->p_ucred, &p->p_acflag))
return (error);
- if(error = copyin((caddr_t)uap->delta, (caddr_t)&atv,
- sizeof (struct timeval)))
- return(error);
+ if (error = copyin((caddr_t)uap->delta,
+ (caddr_t)&atv, sizeof (struct timeval)))
+ return (error);
- ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
- if (timedelta == 0)
- if (ndelta > bigadj)
- tickdelta = 10 * tickadj;
- else
- tickdelta = tickadj;
- if (ndelta % tickdelta)
- ndelta = ndelta / tickdelta * tickdelta;
+ /*
+ * Compute the total correction and the rate at which to apply it.
+ */
+ clock_adjtime(&atv.tv_sec, &atv.tv_usec);
- s = splclock();
if (uap->olddelta) {
- oatv.tv_sec = timedelta / 1000000;
- oatv.tv_usec = timedelta % 1000000;
+ (void) copyout((caddr_t)&atv,
+ (caddr_t)uap->olddelta, sizeof (struct timeval));
}
- timedelta = ndelta;
- splx(s);
- if (uap->olddelta)
- (void) copyout((caddr_t)&oatv, (caddr_t)uap->olddelta,
- sizeof (struct timeval));
- return(0);
+ return (0);
}
-#define SECDAY ((unsigned)(24*60*60)) /* seconds per day */
-#define SECYR ((unsigned)(365*SECDAY)) /* per common year */
-#define YRREF 70 /* UNIX time referenced to 1970 */
-
/*
* Initialze the time of day register.
* Trust the RTC except for the case where it is set before
inittodr(base)
time_t base;
{
+ struct timeval tv;
+
/*
* Assertion:
* The calendar has already been
* The value returned by microtime()
* is gotten from the calendar.
*/
- microtime(&time);
+ microtime(&tv);
- /*
- * This variable still exists to keep
- * 'w' happy. It should only be considered
- * an approximation.
- */
- boottime.tv_sec = time.tv_sec;
+ time = tv;
+ boottime.tv_sec = tv.tv_sec;
boottime.tv_usec = 0;
/*
* If the RTC does not have acceptable value, i.e. time before
* the UNIX epoch, set it to the UNIX epoch
*/
- if (time.tv_sec < 0) {
+ if (tv.tv_sec < 0) {
printf ("WARNING: preposterous time in Real Time Clock");
time.tv_sec = 0; /* the UNIX epoch */
time.tv_usec = 0;
return;
}
+void timevaladd(
+ struct timeval *t1,
+ struct timeval *t2);
+void timevalsub(
+ struct timeval *t1,
+ struct timeval *t2);
+void timevalfix(
+ struct timeval *t1);
+
+uint64_t
+ tvtoabstime(
+ struct timeval *tvp);
+
/*
* Get value of an interval timer. The process virtual and
- * profiling virtual time timers are kept in the u. area, since
- * they can be swapped out. These are kept internally in the
+ * profiling virtual time timers are kept internally in the
* way they are specified externally: in time until they expire.
*
- * The real time interval timer is kept in the process table slot
- * for the process, and its value (it_value) is kept as an
- * absolute time rather than as a delta, so that it is easy to keep
- * periodic real-time signals from drifting.
+ * The real time interval timer expiration time (p_rtime)
+ * is kept as an absolute time rather than as a delta, so that
+ * it is easy to keep periodic real-time signals from drifting.
*
* Virtual time timers are processed in the hardclock() routine of
- * kern_clock.c. The real time timer is processed by a timeout
- * routine, called from the softclock() routine. Since a callout
- * may be delayed in real time due to interrupt processing in the system,
- * it is possible for the real time timeout routine (realitexpire, given below),
- * to be delayed in real time past when it is supposed to occur. It
- * does not suffice, therefore, to reload the real timer .it_value from the
- * real time timers .it_interval. Rather, we compute the next time in
- * absolute time the timer should go off.
+ * kern_clock.c. The real time timer is processed by a callout
+ * routine. Since a callout may be delayed in real time due to
+ * other processing in the system, it is possible for the real
+ * time callout routine (realitexpire, given below), to be delayed
+ * in real time past when it is supposed to occur. It does not
+ * suffice, therefore, to reload the real time .it_value from the
+ * real time .it_interval. Rather, we compute the next time in
+ * absolute time when the timer should go off.
*/
struct getitimer_args {
register_t *retval;
{
struct itimerval aitv;
- int s;
if (uap->which > ITIMER_PROF)
return(EINVAL);
-
- s = splclock();
if (uap->which == ITIMER_REAL) {
/*
- * Convert from absoulte to relative time in .it_value
- * part of real time timer. If time for real time timer
- * has passed return 0, else return difference between
- * current time and time for the timer to go off.
+ * If time for real time timer has passed return 0,
+ * else return difference between current time and
+ * time for the timer to go off.
*/
aitv = p->p_realtimer;
- if (timerisset(&aitv.it_value))
- if (timercmp(&aitv.it_value, &time, <))
+ if (timerisset(&p->p_rtime)) {
+ struct timeval now;
+
+ microuptime(&now);
+ if (timercmp(&p->p_rtime, &now, <))
timerclear(&aitv.it_value);
- else
- timevalsub(&aitv.it_value, &time);
- } else
- aitv =p->p_stats->p_timer[uap->which];
- splx(s);
- return(copyout((caddr_t)&aitv, (caddr_t)uap->itv,
- sizeof (struct itimerval)));
+ else {
+ aitv.it_value = p->p_rtime;
+ timevalsub(&aitv.it_value, &now);
+ }
+ }
+ else
+ timerclear(&aitv.it_value);
+ }
+ else
+ aitv = p->p_stats->p_timer[uap->which];
+
+ return (copyout((caddr_t)&aitv,
+ (caddr_t)uap->itv, sizeof (struct itimerval)));
}
struct setitimer_args {
{
struct itimerval aitv;
register struct itimerval *itvp;
- int s, error;
+ int error;
if (uap->which > ITIMER_PROF)
- return(EINVAL);
- itvp = uap->itv;
- if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
- sizeof(struct itimerval))))
+ return (EINVAL);
+ if ((itvp = uap->itv) &&
+ (error = copyin((caddr_t)itvp,
+ (caddr_t)&aitv, sizeof (struct itimerval))))
return (error);
- if ((uap->itv = uap->oitv) &&
- (error = getitimer(p, uap, retval)))
+ if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
return (error);
if (itvp == 0)
return (0);
if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
return (EINVAL);
- s = splclock();
if (uap->which == ITIMER_REAL) {
- untimeout(realitexpire, (caddr_t)p);
+ thread_call_func_cancel(realitexpire, (void *)p->p_pid, FALSE);
if (timerisset(&aitv.it_value)) {
- timevaladd(&aitv.it_value, &time);
- timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
+ microuptime(&p->p_rtime);
+ timevaladd(&p->p_rtime, &aitv.it_value);
+ thread_call_func_delayed(
+ realitexpire, (void *)p->p_pid,
+ tvtoabstime(&p->p_rtime));
}
+ else
+ timerclear(&p->p_rtime);
+
p->p_realtimer = aitv;
- } else
+ }
+ else
p->p_stats->p_timer[uap->which] = aitv;
- splx(s);
- return(0); /* To insure good return value on success */
+
+ return (0);
}
/*
* SIGALRM calls to be compressed into one.
*/
void
-realitexpire(arg)
- void *arg;
+realitexpire(
+ void *pid)
{
register struct proc *p;
- int s;
- boolean_t funnel_state;
+ struct timeval now;
+ boolean_t funnel_state = thread_funnel_set(kernel_flock, TRUE);
- funnel_state = thread_funnel_set(kernel_flock,TRUE);
-
- p = (struct proc *)arg;
- psignal(p, SIGALRM);
- if (!timerisset(&p->p_realtimer.it_interval)) {
- timerclear(&p->p_realtimer.it_value);
- (void) thread_funnel_set(kernel_flock, FALSE);
+ p = pfind((pid_t)pid);
+ if (p == NULL) {
+ (void) thread_funnel_set(kernel_flock, FALSE);
return;
}
-
- /*
- * If the time's way off, don't try to compensate by getting
- * there incrementally.
- */
- s = splclock();
- if (p->p_realtimer.it_value.tv_sec < time.tv_sec - 10) {
- p->p_realtimer.it_value = time;
- timeout(realitexpire, (caddr_t)p,
- hzto(&p->p_realtimer.it_value));
- splx(s);
- (void) thread_funnel_set(kernel_flock, FALSE);
+
+ if (!timerisset(&p->p_realtimer.it_interval)) {
+ timerclear(&p->p_rtime);
+ psignal(p, SIGALRM);
+
+ (void) thread_funnel_set(kernel_flock, FALSE);
return;
-
}
- splx(s);
-
- for (;;) {
- s = splclock();
- timevaladd(&p->p_realtimer.it_value,
- &p->p_realtimer.it_interval);
- if (timercmp(&p->p_realtimer.it_value, &time, >)) {
- timeout(realitexpire, (caddr_t)p,
- hzto(&p->p_realtimer.it_value));
- splx(s);
- (void) thread_funnel_set(kernel_flock, FALSE);
- return;
+
+ microuptime(&now);
+ timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
+ if (timercmp(&p->p_rtime, &now, <=)) {
+ if ((p->p_rtime.tv_sec + 2) >= now.tv_sec) {
+ for (;;) {
+ timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
+ if (timercmp(&p->p_rtime, &now, >))
+ break;
+ }
+ }
+ else {
+ p->p_rtime = p->p_realtimer.it_interval;
+ timevaladd(&p->p_rtime, &now);
}
- splx(s);
}
-
+
+ psignal(p, SIGALRM);
+
+ thread_call_func_delayed(realitexpire, pid, tvtoabstime(&p->p_rtime));
+
(void) thread_funnel_set(kernel_flock, FALSE);
}
* Caveat emptor.
*/
void
-timevaladd(t1, t2)
- struct timeval *t1, *t2;
+timevaladd(
+ struct timeval *t1,
+ struct timeval *t2)
{
t1->tv_sec += t2->tv_sec;
timevalfix(t1);
}
void
-timevalsub(t1, t2)
- struct timeval *t1, *t2;
+timevalsub(
+ struct timeval *t1,
+ struct timeval *t2)
{
t1->tv_sec -= t2->tv_sec;
timevalfix(t1);
}
void
-timevalfix(t1)
- struct timeval *t1;
+timevalfix(
+ struct timeval *t1)
{
if (t1->tv_usec < 0) {
* to which tvp points.
*/
void
-microtime(struct timeval * tvp)
+microtime(
+ struct timeval *tvp)
+{
+ clock_get_calendar_microtime(&tvp->tv_sec, &tvp->tv_usec);
+}
+
+void
+microuptime(
+ struct timeval *tvp)
+{
+ clock_get_system_microtime(&tvp->tv_sec, &tvp->tv_usec);
+}
+
+/*
+ * Ditto for timespec.
+ */
+void
+nanotime(
+ struct timespec *tsp)
+{
+ clock_get_calendar_nanotime((uint32_t *)&tsp->tv_sec, &tsp->tv_nsec);
+}
+
+void
+nanouptime(
+ struct timespec *tsp)
+{
+ clock_get_system_nanotime((uint32_t *)&tsp->tv_sec, &tsp->tv_nsec);
+}
+
+uint64_t
+tvtoabstime(
+ struct timeval *tvp)
+{
+ uint64_t result, usresult;
+
+ clock_interval_to_absolutetime_interval(
+ tvp->tv_sec, NSEC_PER_SEC, &result);
+ clock_interval_to_absolutetime_interval(
+ tvp->tv_usec, NSEC_PER_USEC, &usresult);
+
+ return (result + usresult);
+}
+void
+time_zone_slock_init(void)
{
- mach_timespec_t now = clock_get_calendar_value();
+ extern simple_lock_data_t tz_slock;
+
+ simple_lock_init(&tz_slock);
+
- tvp->tv_sec = now.tv_sec;
- tvp->tv_usec = now.tv_nsec / NSEC_PER_USEC;
}