#include <kern/lock.h>
#include <kern/queue.h>
#include <kern/xpr.h>
+#include <kern/kalloc.h>
#include <kern/zalloc.h>
#include <kern/host.h>
#include <kern/host_statistics.h>
static vm_object_t vm_object_cache_trim(
boolean_t called_from_vm_object_deallocate);
-static queue_head_t vm_object_cached_list;
-static int vm_object_cached_count=0;
+static void vm_object_deactivate_all_pages(
+ vm_object_t object);
+
static int vm_object_cached_high; /* highest # cached objects */
static int vm_object_cached_max = 512; /* may be patched*/
-static lck_mtx_t vm_object_cached_lock_data;
-static lck_mtx_ext_t vm_object_cached_lock_data_ext;
-
#define vm_object_cache_lock() \
lck_mtx_lock(&vm_object_cached_lock_data)
#define vm_object_cache_lock_try() \
lck_mtx_try_lock(&vm_object_cached_lock_data)
+
+#endif /* VM_OBJECT_CACHE */
+
+static queue_head_t vm_object_cached_list;
+static uint32_t vm_object_cache_pages_freed = 0;
+static uint32_t vm_object_cache_pages_moved = 0;
+static uint32_t vm_object_cache_pages_skipped = 0;
+static uint32_t vm_object_cache_adds = 0;
+static uint32_t vm_object_cached_count = 0;
+static lck_mtx_t vm_object_cached_lock_data;
+static lck_mtx_ext_t vm_object_cached_lock_data_ext;
+
+static uint32_t vm_object_page_grab_failed = 0;
+static uint32_t vm_object_page_grab_skipped = 0;
+static uint32_t vm_object_page_grab_returned = 0;
+static uint32_t vm_object_page_grab_pmapped = 0;
+static uint32_t vm_object_page_grab_reactivations = 0;
+
#define vm_object_cache_lock_spin() \
lck_mtx_lock_spin(&vm_object_cached_lock_data)
#define vm_object_cache_unlock() \
lck_mtx_unlock(&vm_object_cached_lock_data)
-#endif /* VM_OBJECT_CACHE */
-
-
-static void vm_object_deactivate_all_pages(
- vm_object_t object);
+static void vm_object_cache_remove_locked(vm_object_t);
#define VM_OBJECT_HASH_COUNT 1024
#define vm_object_reaper_unlock() \
lck_mtx_unlock(&vm_object_reaper_lock_data)
+#if 0
+#undef KERNEL_DEBUG
+#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
+#endif
static lck_mtx_t *
queue_init(&object->uplq);
#endif /* UPL_DEBUG */
vm_object_lock_init(object);
- object->size = size;
+ object->vo_size = size;
}
__private_extern__ vm_object_t
lck_grp_t vm_object_lck_grp;
-lck_grp_attr_t vm_object_lck_grp_attr;
+lck_grp_t vm_object_cache_lck_grp;
+lck_grp_attr_t vm_object_lck_grp_attr;
lck_attr_t vm_object_lck_attr;
lck_attr_t kernel_object_lck_attr;
round_page(512*1024),
round_page(12*1024),
"vm objects");
+ zone_change(vm_object_zone, Z_CALLERACCT, FALSE); /* don't charge caller */
zone_change(vm_object_zone, Z_NOENCRYPT, TRUE);
vm_object_init_lck_grp();
-#if VM_OBJECT_CACHE
queue_init(&vm_object_cached_list);
lck_mtx_init_ext(&vm_object_cached_lock_data,
&vm_object_cached_lock_data_ext,
- &vm_object_lck_grp,
+ &vm_object_cache_lck_grp,
&vm_object_lck_attr);
-#endif
+
queue_init(&vm_object_reaper_queue);
for (i = 0; i < VM_OBJECT_HASH_LOCK_COUNT; i++) {
round_page(512*1024),
round_page(12*1024),
"vm object hash entries");
+ zone_change(vm_object_hash_zone, Z_CALLERACCT, FALSE);
zone_change(vm_object_hash_zone, Z_NOENCRYPT, TRUE);
for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
*/
vm_object_lock_init(&vm_object_template);
#endif
- vm_object_template.size = 0;
+ vm_object_template.vo_size = 0;
vm_object_template.memq_hint = VM_PAGE_NULL;
vm_object_template.ref_count = 1;
#if TASK_SWAPPER
vm_object_template.reusable_page_count = 0;
vm_object_template.copy = VM_OBJECT_NULL;
vm_object_template.shadow = VM_OBJECT_NULL;
- vm_object_template.shadow_offset = (vm_object_offset_t) 0;
+ vm_object_template.vo_shadow_offset = (vm_object_offset_t) 0;
vm_object_template.pager = MEMORY_OBJECT_NULL;
vm_object_template.paging_offset = 0;
vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL;
vm_object_template.sequential = (vm_object_offset_t) 0;
vm_object_template.pages_created = 0;
vm_object_template.pages_used = 0;
+ vm_object_template.scan_collisions = 0;
#if MACH_PAGEMAP
vm_object_template.existence_map = VM_EXTERNAL_NULL;
#endif /* MACH_ASSERT */
/* cache bitfields */
- vm_object_template.wimg_bits = VM_WIMG_DEFAULT;
+ vm_object_template.wimg_bits = VM_WIMG_USE_DEFAULT;
+ vm_object_template.set_cache_attr = FALSE;
vm_object_template.code_signed = FALSE;
vm_object_template.hashed = FALSE;
vm_object_template.transposed = FALSE;
vm_object_template.objq.next=NULL;
vm_object_template.objq.prev=NULL;
+ vm_object_template.vo_cache_ts = 0;
/*
* Initialize the "kernel object"
*/
lck_grp_attr_setdefault(&vm_object_lck_grp_attr);
lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr);
+ lck_grp_init(&vm_object_cache_lck_grp, "vm_object_cache", &vm_object_lck_grp_attr);
lck_attr_setdefault(&vm_object_lck_attr);
lck_attr_setdefault(&kernel_object_lck_attr);
lck_attr_cleardebug(&kernel_object_lck_attr);
vm_object_lock(object);
vm_object_mapping_end(object);
}
- /*
- * recheck the ref_count since we dropped the object lock
- * to call 'memory_object_last_unmap'... it's possible
- * additional references got taken and we only want
- * to deactivate the pages if this 'named' object will only
- * referenced by the backing pager once we drop our reference
- * below
- */
- if (!object->terminating && object->ref_count == 2)
- vm_object_deactivate_all_pages(object);
-
assert(object->ref_count > 0);
}
}
+
+vm_page_t
+vm_object_page_grab(
+ vm_object_t object)
+{
+ vm_page_t p, next_p;
+ int p_limit = 0;
+ int p_skipped = 0;
+
+ vm_object_lock_assert_exclusive(object);
+
+ next_p = (vm_page_t)queue_first(&object->memq);
+ p_limit = MIN(50, object->resident_page_count);
+
+ while (!queue_end(&object->memq, (queue_entry_t)next_p) && --p_limit > 0) {
+
+ p = next_p;
+ next_p = (vm_page_t)queue_next(&next_p->listq);
+
+ if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->fictitious)
+ goto move_page_in_obj;
+
+ if (p->pmapped || p->dirty || p->precious) {
+ vm_page_lockspin_queues();
+
+ if (p->pmapped) {
+ int refmod_state;
+
+ vm_object_page_grab_pmapped++;
+
+ if (p->reference == FALSE || p->dirty == FALSE) {
+
+ refmod_state = pmap_get_refmod(p->phys_page);
+
+ if (refmod_state & VM_MEM_REFERENCED)
+ p->reference = TRUE;
+ if (refmod_state & VM_MEM_MODIFIED)
+ p->dirty = TRUE;
+ }
+ if (p->dirty == FALSE && p->precious == FALSE) {
+
+ refmod_state = pmap_disconnect(p->phys_page);
+
+ if (refmod_state & VM_MEM_REFERENCED)
+ p->reference = TRUE;
+ if (refmod_state & VM_MEM_MODIFIED)
+ p->dirty = TRUE;
+
+ if (p->dirty == FALSE)
+ goto take_page;
+ }
+ }
+ if (p->inactive && p->reference == TRUE) {
+ vm_page_activate(p);
+
+ VM_STAT_INCR(reactivations);
+ vm_object_page_grab_reactivations++;
+ }
+ vm_page_unlock_queues();
+move_page_in_obj:
+ queue_remove(&object->memq, p, vm_page_t, listq);
+ queue_enter(&object->memq, p, vm_page_t, listq);
+
+ p_skipped++;
+ continue;
+ }
+ vm_page_lockspin_queues();
+take_page:
+ vm_page_free_prepare_queues(p);
+ vm_object_page_grab_returned++;
+ vm_object_page_grab_skipped += p_skipped;
+
+ vm_page_unlock_queues();
+
+ vm_page_free_prepare_object(p, TRUE);
+
+ return (p);
+ }
+ vm_object_page_grab_skipped += p_skipped;
+ vm_object_page_grab_failed++;
+
+ return (NULL);
+}
+
+
+
+#define EVICT_PREPARE_LIMIT 64
+#define EVICT_AGE 10
+
+static clock_sec_t vm_object_cache_aging_ts = 0;
+
+static void
+vm_object_cache_remove_locked(
+ vm_object_t object)
+{
+ queue_remove(&vm_object_cached_list, object, vm_object_t, objq);
+ object->objq.next = NULL;
+ object->objq.prev = NULL;
+
+ vm_object_cached_count--;
+}
+
+void
+vm_object_cache_remove(
+ vm_object_t object)
+{
+ vm_object_cache_lock_spin();
+
+ if (object->objq.next || object->objq.prev)
+ vm_object_cache_remove_locked(object);
+
+ vm_object_cache_unlock();
+}
+
+void
+vm_object_cache_add(
+ vm_object_t object)
+{
+ clock_sec_t sec;
+ clock_nsec_t nsec;
+
+ if (object->resident_page_count == 0)
+ return;
+ clock_get_system_nanotime(&sec, &nsec);
+
+ vm_object_cache_lock_spin();
+
+ if (object->objq.next == NULL && object->objq.prev == NULL) {
+ queue_enter(&vm_object_cached_list, object, vm_object_t, objq);
+ object->vo_cache_ts = sec + EVICT_AGE;
+ object->vo_cache_pages_to_scan = object->resident_page_count;
+
+ vm_object_cached_count++;
+ vm_object_cache_adds++;
+ }
+ vm_object_cache_unlock();
+}
+
+int
+vm_object_cache_evict(
+ int num_to_evict,
+ int max_objects_to_examine)
+{
+ vm_object_t object = VM_OBJECT_NULL;
+ vm_object_t next_obj = VM_OBJECT_NULL;
+ vm_page_t local_free_q = VM_PAGE_NULL;
+ vm_page_t p;
+ vm_page_t next_p;
+ int object_cnt = 0;
+ vm_page_t ep_array[EVICT_PREPARE_LIMIT];
+ int ep_count;
+ int ep_limit;
+ int ep_index;
+ int ep_freed = 0;
+ int ep_moved = 0;
+ uint32_t ep_skipped = 0;
+ clock_sec_t sec;
+ clock_nsec_t nsec;
+
+ KERNEL_DEBUG(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0);
+ /*
+ * do a couple of quick checks to see if it's
+ * worthwhile grabbing the lock
+ */
+ if (queue_empty(&vm_object_cached_list)) {
+ KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0);
+ return (0);
+ }
+ clock_get_system_nanotime(&sec, &nsec);
+
+ /*
+ * the object on the head of the queue has not
+ * yet sufficiently aged
+ */
+ if (sec < vm_object_cache_aging_ts) {
+ KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0);
+ return (0);
+ }
+ /*
+ * don't need the queue lock to find
+ * and lock an object on the cached list
+ */
+ vm_page_unlock_queues();
+
+ vm_object_cache_lock_spin();
+
+ for (;;) {
+ next_obj = (vm_object_t)queue_first(&vm_object_cached_list);
+
+ while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) {
+
+ object = next_obj;
+ next_obj = (vm_object_t)queue_next(&next_obj->objq);
+
+ if (sec < object->vo_cache_ts) {
+ KERNEL_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec, 0);
+
+ vm_object_cache_aging_ts = object->vo_cache_ts;
+ object = VM_OBJECT_NULL;
+ break;
+ }
+ if (!vm_object_lock_try_scan(object)) {
+ /*
+ * just skip over this guy for now... if we find
+ * an object to steal pages from, we'll revist in a bit...
+ * hopefully, the lock will have cleared
+ */
+ KERNEL_DEBUG(0x13001f8, object, object->resident_page_count, 0, 0, 0);
+
+ object = VM_OBJECT_NULL;
+ continue;
+ }
+ if (queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) {
+ /*
+ * this case really shouldn't happen, but it's not fatal
+ * so deal with it... if we don't remove the object from
+ * the list, we'll never move past it.
+ */
+ KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0);
+
+ vm_object_cache_remove_locked(object);
+ vm_object_unlock(object);
+ object = VM_OBJECT_NULL;
+ continue;
+ }
+ /*
+ * we have a locked object with pages...
+ * time to start harvesting
+ */
+ break;
+ }
+ vm_object_cache_unlock();
+
+ if (object == VM_OBJECT_NULL)
+ break;
+
+ /*
+ * object is locked at this point and
+ * has resident pages
+ */
+ next_p = (vm_page_t)queue_first(&object->memq);
+
+ /*
+ * break the page scan into 2 pieces to minimize the time spent
+ * behind the page queue lock...
+ * the list of pages on these unused objects is likely to be cold
+ * w/r to the cpu cache which increases the time to scan the list
+ * tenfold... and we may have a 'run' of pages we can't utilize that
+ * needs to be skipped over...
+ */
+ if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT)
+ ep_limit = EVICT_PREPARE_LIMIT;
+ ep_count = 0;
+
+ while (!queue_end(&object->memq, (queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) {
+
+ p = next_p;
+ next_p = (vm_page_t)queue_next(&next_p->listq);
+
+ object->vo_cache_pages_to_scan--;
+
+ if (VM_PAGE_WIRED(p) || p->busy || p->cleaning) {
+ queue_remove(&object->memq, p, vm_page_t, listq);
+ queue_enter(&object->memq, p, vm_page_t, listq);
+
+ ep_skipped++;
+ continue;
+ }
+ if (p->wpmapped || p->dirty || p->precious) {
+ queue_remove(&object->memq, p, vm_page_t, listq);
+ queue_enter(&object->memq, p, vm_page_t, listq);
+
+ pmap_clear_reference(p->phys_page);
+ }
+ ep_array[ep_count++] = p;
+ }
+ KERNEL_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved, 0);
+
+ vm_page_lockspin_queues();
+
+ for (ep_index = 0; ep_index < ep_count; ep_index++) {
+
+ p = ep_array[ep_index];
+
+ if (p->wpmapped || p->dirty || p->precious) {
+ p->reference = FALSE;
+ p->no_cache = FALSE;
+
+ VM_PAGE_QUEUES_REMOVE(p);
+ VM_PAGE_ENQUEUE_INACTIVE(p, TRUE);
+
+ ep_moved++;
+ } else {
+ vm_page_free_prepare_queues(p);
+
+ assert(p->pageq.next == NULL && p->pageq.prev == NULL);
+ /*
+ * Add this page to our list of reclaimed pages,
+ * to be freed later.
+ */
+ p->pageq.next = (queue_entry_t) local_free_q;
+ local_free_q = p;
+
+ ep_freed++;
+ }
+ }
+ vm_page_unlock_queues();
+
+ KERNEL_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved, 0);
+
+ if (local_free_q) {
+ vm_page_free_list(local_free_q, TRUE);
+ local_free_q = VM_PAGE_NULL;
+ }
+ if (object->vo_cache_pages_to_scan == 0) {
+ KERNEL_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved, 0);
+
+ vm_object_cache_remove(object);
+
+ KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0);
+ }
+ /*
+ * done with this object
+ */
+ vm_object_unlock(object);
+ object = VM_OBJECT_NULL;
+
+ /*
+ * at this point, we are not holding any locks
+ */
+ if ((ep_freed + ep_moved) >= num_to_evict) {
+ /*
+ * we've reached our target for the
+ * number of pages to evict
+ */
+ break;
+ }
+ vm_object_cache_lock_spin();
+ }
+ /*
+ * put the page queues lock back to the caller's
+ * idea of it
+ */
+ vm_page_lock_queues();
+
+ vm_object_cache_pages_freed += ep_freed;
+ vm_object_cache_pages_moved += ep_moved;
+ vm_object_cache_pages_skipped += ep_skipped;
+
+ KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed, 0, 0, 0, 0);
+ return (ep_freed);
+}
+
+
#if VM_OBJECT_CACHE
/*
* Check to see whether we really need to trim
object->terminating = TRUE;
object->alive = FALSE;
+ if ( !object->internal && (object->objq.next || object->objq.prev))
+ vm_object_cache_remove(object);
+
if (object->hashed) {
lck_mtx_t *lck;
/*
* remove from purgeable queue if it's on
*/
- if (object->objq.next || object->objq.prev) {
+ if (object->internal && (object->objq.next || object->objq.prev)) {
purgeable_q_t queue = vm_purgeable_object_remove(object);
assert(queue);
vm_object_unlock(object);
#if MACH_PAGEMAP
- vm_external_destroy(object->existence_map, object->size);
+ vm_external_destroy(object->existence_map, object->vo_size);
#endif /* MACH_PAGEMAP */
object->shadow = VM_OBJECT_NULL;
}
+unsigned int vm_max_batch = 256;
#define V_O_R_MAX_BATCH 128
+#define BATCH_LIMIT(max) (vm_max_batch >= max ? max : vm_max_batch)
+
#define VM_OBJ_REAP_FREELIST(_local_free_q, do_disconnect) \
MACRO_BEGIN \
restart_after_sleep:
if (queue_empty(&object->memq))
return;
- loop_count = V_O_R_MAX_BATCH + 1;
+ loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH) + 1;
vm_page_lockspin_queues();
} else
mutex_pause(0);
- loop_count = V_O_R_MAX_BATCH + 1;
+ loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH) + 1;
vm_page_lockspin_queues();
}
*
* the laundry and pageout_queue flags are cleared...
*/
-#if CONFIG_EMBEDDED
- if (p->laundry)
- vm_pageout_throttle_up(p);
-#else
vm_pageout_throttle_up(p);
-#endif
+
if (p->pageout == TRUE) {
/*
* toss the wire count we picked up
p->busy = TRUE;
VM_PAGE_QUEUES_REMOVE(p);
+ /*
+ * flush page... page will be freed
+ * upon completion of I/O
+ */
+ vm_pageout_cluster(p);
vm_page_unlock_queues();
/*
VM_OBJ_REAP_FREELIST(local_free_q,
disconnect_on_release);
- /*
- * flush page... page will be freed
- * upon completion of I/O
- */
- vm_pageout_cluster(p);
vm_object_paging_wait(object, THREAD_UNINT);
goto restart_after_sleep;
}
+#if VM_OBJECT_CACHE
+
#define VM_OBJ_DEACT_ALL_STATS DEBUG
#if VM_OBJ_DEACT_ALL_STATS
uint32_t vm_object_deactivate_all_pages_batches = 0;
#endif /* VM_OBJ_DEACT_ALL_STATS */
#define V_O_D_A_P_MAX_BATCH 256
- loop_count = V_O_D_A_P_MAX_BATCH;
+ loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH);
#if VM_OBJ_DEACT_ALL_STATS
pages_count = 0;
#endif /* VM_OBJ_DEACT_ALL_STATS */
pages_count = 0;
#endif /* VM_OBJ_DEACT_ALL_STATS */
lck_mtx_yield(&vm_page_queue_lock);
- loop_count = V_O_D_A_P_MAX_BATCH;
+ loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH);
}
if (!p->busy && !p->throttled) {
#if VM_OBJ_DEACT_ALL_STATS
#endif /* VM_OBJ_DEACT_ALL_STATS */
vm_page_unlock_queues();
}
-
-
-
-/*
- * when deallocating pages it is necessary to hold
- * the vm_page_queue_lock (a hot global lock) for certain operations
- * on the page... however, the majority of the work can be done
- * while merely holding the object lock... to mitigate the time spent behind the
- * global lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT
- * while doing all of the work that doesn't require the vm_page_queue_lock...
- * them call dw_do_work to acquire the vm_page_queue_lock and do the
- * necessary work for each page... we will grab the busy bit on the page
- * so that dw_do_work can drop the object lock if it can't immediately take the
- * vm_page_queue_lock in order to compete for the locks in the same order that
- * vm_pageout_scan takes them.
- */
-
-#define DELAYED_WORK_LIMIT 32
-
-#define DW_clear_reference 0x01
-#define DW_move_page 0x02
-#define DW_clear_busy 0x04
-#define DW_PAGE_WAKEUP 0x08
-
-
-struct dw {
- vm_page_t dw_m;
- int dw_mask;
-};
-
-static void dw_do_work(vm_object_t object, struct dw *dwp, int dw_count);
-
-
-static void
-dw_do_work(
- vm_object_t object,
- struct dw *dwp,
- int dw_count)
-{
- vm_page_t m;
- int j;
-
- /*
- * pageout_scan takes the vm_page_lock_queues first
- * then tries for the object lock... to avoid what
- * is effectively a lock inversion, we'll go to the
- * trouble of taking them in that same order... otherwise
- * if this object contains the majority of the pages resident
- * in the UBC (or a small set of large objects actively being
- * worked on contain the majority of the pages), we could
- * cause the pageout_scan thread to 'starve' in its attempt
- * to find pages to move to the free queue, since it has to
- * successfully acquire the object lock of any candidate page
- * before it can steal/clean it.
- */
- if (!vm_page_trylockspin_queues()) {
- vm_object_unlock(object);
-
- vm_page_lockspin_queues();
-
- for (j = 0; ; j++) {
- if (!vm_object_lock_avoid(object) &&
- _vm_object_lock_try(object))
- break;
- vm_page_unlock_queues();
- mutex_pause(j);
- vm_page_lockspin_queues();
- }
- }
- for (j = 0; j < dw_count; j++, dwp++) {
-
- m = dwp->dw_m;
-
- if (dwp->dw_mask & DW_clear_reference)
- m->reference = FALSE;
-
- if (dwp->dw_mask & DW_move_page) {
- VM_PAGE_QUEUES_REMOVE(m);
-
- assert(!m->laundry);
- assert(m->object != kernel_object);
- assert(m->pageq.next == NULL &&
- m->pageq.prev == NULL);
-
- if (m->zero_fill) {
- queue_enter_first(&vm_page_queue_zf, m, vm_page_t, pageq);
- vm_zf_queue_count++;
- } else {
- queue_enter_first(&vm_page_queue_inactive, m, vm_page_t, pageq);
- }
- m->inactive = TRUE;
-
- if (!m->fictitious) {
- vm_page_inactive_count++;
- token_new_pagecount++;
- } else {
- assert(m->phys_page == vm_page_fictitious_addr);
- }
- }
- if (dwp->dw_mask & DW_clear_busy)
- dwp->dw_m->busy = FALSE;
-
- if (dwp->dw_mask & DW_PAGE_WAKEUP)
- PAGE_WAKEUP(dwp->dw_m);
- }
- vm_page_unlock_queues();
-
-#if CONFIG_EMBEDDED
- {
- int percent_avail;
-
- /*
- * Decide if we need to send a memory status notification.
- */
- percent_avail =
- (vm_page_active_count + vm_page_inactive_count +
- vm_page_speculative_count + vm_page_free_count +
- (IP_VALID(memory_manager_default)?0:vm_page_purgeable_count) ) * 100 /
- atop_64(max_mem);
- if (percent_avail >= (kern_memorystatus_level + 5) ||
- percent_avail <= (kern_memorystatus_level - 5)) {
- kern_memorystatus_level = percent_avail;
- thread_wakeup((event_t)&kern_memorystatus_wakeup);
- }
- }
-#endif
-}
+#endif /* VM_OBJECT_CACHE */
MARK_PAGE_HANDLED(c, p); \
MACRO_END
+
/*
* Return true if all pages in the chunk have not yet been processed.
*/
}
+
/*
* Deactivate the pages in the specified object and range. If kill_page is set, also discard any
* page modified state from the pmap. Update the chunk_state as we go along. The caller must specify
{
vm_page_t m;
int p;
- struct dw dw_array[DELAYED_WORK_LIMIT];
- struct dw *dwp;
+ struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
+ struct vm_page_delayed_work *dwp;
int dw_count;
+ int dw_limit;
unsigned int reusable = 0;
dwp = &dw_array[0];
dw_count = 0;
+ dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
for(p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64) {
object->reusable_page_count++;
assert(object->resident_page_count >= object->reusable_page_count);
reusable++;
-#if CONFIG_EMBEDDED
- } else {
- if (m->reusable) {
- m->reusable = FALSE;
- object->reusable_page_count--;
- }
-#endif
}
}
pmap_clear_refmod(m->phys_page, clear_refmod);
if (!m->throttled && !(reusable_page || all_reusable))
dwp->dw_mask |= DW_move_page;
- /*
- * dw_do_work may need to drop the object lock
- * if it does, we need the pages its looking at to
- * be held stable via the busy bit.
- */
- m->busy = TRUE;
- dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
-
- dwp->dw_m = m;
- dwp++;
- dw_count++;
+
+ VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
- if (dw_count >= DELAYED_WORK_LIMIT) {
+ if (dw_count >= dw_limit) {
if (reusable) {
OSAddAtomic(reusable,
&vm_page_stats_reusable.reusable_count);
vm_page_stats_reusable.reusable += reusable;
reusable = 0;
}
- dw_do_work(object, &dw_array[0], dw_count);
+ vm_page_do_delayed_work(object, &dw_array[0], dw_count);
dwp = &dw_array[0];
dw_count = 0;
}
if (dw_count)
- dw_do_work(object, &dw_array[0], dw_count);
+ vm_page_do_delayed_work(object, &dw_array[0], dw_count);
}
kill_page = FALSE;
reusable_page = FALSE;
all_reusable = FALSE;
- offset += object->shadow_offset;
+ offset += object->vo_shadow_offset;
vm_object_lock(tmp_object);
}
all_reusable = FALSE;
if (reusable_page &&
- object->size != 0 &&
- object->size == size &&
+ object->internal &&
+ object->vo_size != 0 &&
+ object->vo_size == size &&
object->reusable_page_count == 0) {
all_reusable = TRUE;
reusable_page = FALSE;
}
-#if CONFIG_EMBEDDED
if ((reusable_page || all_reusable) && object->all_reusable) {
/* This means MADV_FREE_REUSABLE has been called twice, which
* is probably illegal. */
return;
}
-#endif
while (size) {
length = deactivate_a_chunk(object, offset, size, kill_page, reusable_page, all_reusable);
if (object->all_reusable) {
assert(object->reusable_page_count == 0);
object->all_reusable = FALSE;
- if (end_offset - start_offset == object->size ||
+ if (end_offset - start_offset == object->vo_size ||
!allow_partial_reuse) {
vm_page_stats_reusable.all_reuse_calls++;
reused = object->resident_page_count;
} else {
vm_object_offset_t phys_start, phys_end, phys_addr;
- phys_start = object->shadow_offset + offset;
+ phys_start = object->vo_shadow_offset + offset;
phys_end = phys_start + size;
assert(phys_start <= phys_end);
- assert(phys_end <= object->shadow_offset + object->size);
+ assert(phys_end <= object->vo_shadow_offset + object->vo_size);
vm_object_unlock(object);
for (phys_addr = phys_start;
next_object = object->shadow;
if (next_object != VM_OBJECT_NULL) {
- offset += object->shadow_offset;
+ offset += object->vo_shadow_offset;
vm_object_lock(next_object);
vm_object_unlock(object);
object = next_object;
fault_info.hi_offset = src_offset + size;
fault_info.no_cache = FALSE;
fault_info.stealth = TRUE;
+ fault_info.io_sync = FALSE;
+ fault_info.cs_bypass = FALSE;
fault_info.mark_zf_absent = FALSE;
for ( ;
case VM_FAULT_RETRY:
break;
- case VM_FAULT_FICTITIOUS_SHORTAGE:
- vm_page_more_fictitious();
- break;
-
case VM_FAULT_MEMORY_SHORTAGE:
if (vm_page_wait(interruptible))
break;
vm_object_lock(src_object);
goto Retry;
}
- if (copy->size < src_offset+size)
- copy->size = src_offset+size;
+ if (copy->vo_size < src_offset+size)
+ copy->vo_size = src_offset+size;
if (!copy->pager_ready)
check_ready = TRUE;
* needed).
*/
- if (old_copy->size < copy_size) {
+ if (old_copy->vo_size < copy_size) {
if (src_object_shared == TRUE) {
vm_object_unlock(old_copy);
vm_object_unlock(src_object);
queue_iterate(&src_object->memq, p, vm_page_t, listq) {
if (!p->fictitious &&
- p->offset >= old_copy->size &&
+ p->offset >= old_copy->vo_size &&
p->offset < copy_size) {
if (VM_PAGE_WIRED(p)) {
vm_object_unlock(old_copy);
}
}
}
- old_copy->size = copy_size;
+ old_copy->vo_size = copy_size;
}
if (src_object_shared == TRUE)
vm_object_reference_shared(old_copy);
* copy object will be large enough to back either the
* old copy object or the new mapping.
*/
- if (old_copy->size > copy_size)
- copy_size = old_copy->size;
+ if (old_copy->vo_size > copy_size)
+ copy_size = old_copy->vo_size;
if (new_copy == VM_OBJECT_NULL) {
vm_object_unlock(old_copy);
src_object_shared = FALSE;
goto Retry;
}
- new_copy->size = copy_size;
+ new_copy->vo_size = copy_size;
/*
* The copy-object is always made large enough to
*/
assert((old_copy->shadow == src_object) &&
- (old_copy->shadow_offset == (vm_object_offset_t) 0));
+ (old_copy->vo_shadow_offset == (vm_object_offset_t) 0));
} else if (new_copy == VM_OBJECT_NULL) {
vm_object_unlock(src_object);
*/
vm_object_lock_assert_exclusive(new_copy);
new_copy->shadow = src_object;
- new_copy->shadow_offset = 0;
+ new_copy->vo_shadow_offset = 0;
new_copy->shadowed = TRUE; /* caller must set needs_copy */
vm_object_lock_assert_exclusive(src_object);
* The new object and offset into that object
* are returned in the source parameters.
*/
-boolean_t vm_object_shadow_check = FALSE;
+boolean_t vm_object_shadow_check = TRUE;
__private_extern__ boolean_t
vm_object_shadow(
register vm_object_t result;
source = *object;
+ assert(source != VM_OBJECT_NULL);
+ if (source == VM_OBJECT_NULL)
+ return FALSE;
+
#if 0
/*
* XXX FBDP
/*
* Determine if we really need a shadow.
+ *
+ * If the source object is larger than what we are trying
+ * to create, then force the shadow creation even if the
+ * ref count is 1. This will allow us to [potentially]
+ * collapse the underlying object away in the future
+ * (freeing up the extra data it might contain and that
+ * we don't need).
*/
-
- if (vm_object_shadow_check && source->ref_count == 1 &&
+ if (vm_object_shadow_check &&
+ source->vo_size == length &&
+ source->ref_count == 1 &&
(source->shadow == VM_OBJECT_NULL ||
- source->shadow->copy == VM_OBJECT_NULL))
+ source->shadow->copy == VM_OBJECT_NULL) )
{
source->shadowed = FALSE;
return FALSE;
* and fix up the offset into the new object.
*/
- result->shadow_offset = *offset;
+ result->vo_shadow_offset = *offset;
/*
* Return the new things
object->paging_offset = 0;
#if MACH_PAGEMAP
- size = object->size;
+ size = object->vo_size;
#endif /* MACH_PAGEMAP */
vm_object_unlock(object);
#if MACH_PAGEMAP
map = vm_external_create(size);
vm_object_lock(object);
- assert(object->size == size);
+ assert(object->vo_size == size);
object->existence_map = map;
vm_object_unlock(object);
#endif /* MACH_PAGEMAP */
- if ((uint32_t) object->size != object->size) {
+ if ((uint32_t) object->vo_size != object->vo_size) {
panic("vm_object_pager_create(): object size 0x%llx >= 4GB\n",
- (uint64_t) object->size);
+ (uint64_t) object->vo_size);
}
/*
assert(object->temporary);
/* create our new memory object */
- assert((vm_size_t) object->size == object->size);
- (void) memory_object_create(dmm, (vm_size_t) object->size,
+ assert((vm_size_t) object->vo_size == object->vo_size);
+ (void) memory_object_create(dmm, (vm_size_t) object->vo_size,
&pager);
memory_object_default_deallocate(dmm);
* copied by vm_object_enter().
*/
- if (vm_object_enter(pager, object->size, TRUE, TRUE, FALSE) != object)
+ if (vm_object_enter(pager, object->vo_size, TRUE, TRUE, FALSE) != object)
panic("vm_object_pager_create: mismatch");
/*
vm_object_lock_assert_exclusive(object);
vm_object_lock_assert_exclusive(backing_object);
- backing_offset = object->shadow_offset;
- size = object->size;
+ backing_offset = object->vo_shadow_offset;
+ size = object->vo_size;
/*
* Move all in-memory pages from backing_object
* this code should be fixed to salvage the map.
*/
assert(object->existence_map == VM_EXTERNAL_NULL);
- if (backing_offset || (size != backing_object->size)) {
+ if (backing_offset || (size != backing_object->vo_size)) {
vm_external_discarded++;
vm_external_destroy(backing_object->existence_map,
- backing_object->size);
+ backing_object->vo_size);
}
else {
vm_external_collapsed++;
assert(!backing_object->phys_contiguous);
object->shadow = backing_object->shadow;
if (object->shadow) {
- object->shadow_offset += backing_object->shadow_offset;
+ object->vo_shadow_offset += backing_object->vo_shadow_offset;
} else {
/* no shadow, therefore no shadow offset... */
- object->shadow_offset = 0;
+ object->vo_shadow_offset = 0;
}
assert((object->shadow == VM_OBJECT_NULL) ||
(object->shadow->copy != backing_object));
assert(!backing_object->phys_contiguous);
object->shadow = backing_object->shadow;
if (object->shadow) {
- object->shadow_offset += backing_object->shadow_offset;
+ object->vo_shadow_offset += backing_object->vo_shadow_offset;
} else {
/* no shadow, therefore no shadow offset... */
- object->shadow_offset = 0;
+ object->vo_shadow_offset = 0;
}
/*
* we have to make sure no pages in the backing object
* "show through" before bypassing it.
*/
- size = atop(object->size);
+ size = atop(object->vo_size);
rcount = object->resident_page_count;
if (rcount != size) {
vm_object_offset_t offset;
*
*/
- backing_offset = object->shadow_offset;
+ backing_offset = object->vo_shadow_offset;
backing_rcount = backing_object->resident_page_count;
#if MACH_PAGEMAP
}
offset = (p->offset - backing_offset);
- if (offset < object->size &&
+ if (offset < object->vo_size &&
offset != hint_offset &&
!EXISTS_IN_OBJECT(object, offset, rc)) {
/* found a dependency */
offset = hint_offset;
while((offset =
- (offset + PAGE_SIZE_64 < object->size) ?
+ (offset + PAGE_SIZE_64 < object->vo_size) ?
(offset + PAGE_SIZE_64) : 0) != hint_offset) {
/* Until we get more than one lookup lock */
* Extend the object if necessary.
*/
newsize = prev_offset + prev_size + next_size;
- if (newsize > prev_object->size) {
+ if (newsize > prev_object->vo_size) {
#if MACH_PAGEMAP
/*
* We cannot extend an object that has existence info,
*/
assert(prev_object->existence_map == VM_EXTERNAL_NULL);
#endif /* MACH_PAGEMAP */
- prev_object->size = newsize;
+ prev_object->vo_size = newsize;
}
vm_object_unlock(prev_object);
db_indent += 2;
- iprintf("size=0x%x", object->size);
+ iprintf("size=0x%x", object->vo_size);
printf(", memq_hint=%p", object->memq_hint);
printf(", ref_count=%d\n", object->ref_count);
iprintf("");
printf(" (depth %d)", i);
}
printf(", copy=0x%x", object->copy);
- printf(", shadow_offset=0x%x", object->shadow_offset);
+ printf(", shadow_offset=0x%x", object->vo_shadow_offset);
printf(", last_alloc=0x%x\n", object->last_alloc);
iprintf("pager=0x%x", object->pager);
#if MACH_PAGEMAP
iprintf("existence_map=");
- vm_external_print(object->existence_map, object->size);
+ vm_external_print(object->existence_map, object->vo_size);
#endif /* MACH_PAGEMAP */
#if MACH_ASSERT
iprintf("paging_object=0x%x\n", object->paging_object);
/* shadows on contiguous memory are not allowed */
/* we therefore can use the offset field */
- object->shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT;
- object->size = size;
+ object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT;
+ object->vo_size = size;
}
vm_object_unlock(object);
return KERN_SUCCESS;
vm_object_paging_only_wait(object2, THREAD_UNINT);
- if (object1->size != object2->size ||
- object1->size != transpose_size) {
+ if (object1->vo_size != object2->vo_size ||
+ object1->vo_size != transpose_size) {
/*
* If the 2 objects don't have the same size, we can't
* exchange their backing stores or one would overflow.
/* "Lock" refers to the object not its contents */
/* "size" should be identical */
- assert(object1->size == object2->size);
+ assert(object1->vo_size == object2->vo_size);
/* "memq_hint" was updated above when transposing pages */
/* "ref_count" refers to the object not its contents */
#if TASK_SWAPPER
/* there should be no "shadow" */
assert(!object1->shadow);
assert(!object2->shadow);
- __TRANSPOSE_FIELD(shadow_offset); /* used by phys_contiguous objects */
+ __TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */
__TRANSPOSE_FIELD(pager);
__TRANSPOSE_FIELD(paging_offset);
__TRANSPOSE_FIELD(pager_control);
__TRANSPOSE_FIELD(sequential);
__TRANSPOSE_FIELD(pages_created);
__TRANSPOSE_FIELD(pages_used);
+ __TRANSPOSE_FIELD(scan_collisions);
#if MACH_PAGEMAP
__TRANSPOSE_FIELD(existence_map);
#endif
__TRANSPOSE_FIELD(paging_object);
#endif
__TRANSPOSE_FIELD(wimg_bits);
+ __TRANSPOSE_FIELD(set_cache_attr);
__TRANSPOSE_FIELD(code_signed);
if (object1->hashed) {
hash_lck = vm_object_hash_lock_spin(object2->pager);
*
*/
extern int speculative_reads_disabled;
+extern int ignore_is_ssd;
+
#if CONFIG_EMBEDDED
unsigned int preheat_pages_max = MAX_UPL_TRANSFER;
unsigned int preheat_pages_min = 8;
-unsigned int preheat_pages_mult = 4;
#else
unsigned int preheat_pages_max = MAX_UPL_TRANSFER;
unsigned int preheat_pages_min = 8;
-unsigned int preheat_pages_mult = 4;
#endif
uint32_t pre_heat_scaling[MAX_UPL_TRANSFER + 1];
vm_behavior_t behavior;
boolean_t look_behind = TRUE;
boolean_t look_ahead = TRUE;
+ boolean_t isSSD = FALSE;
uint32_t throttle_limit;
int sequential_run;
int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
unsigned int max_ph_size;
unsigned int min_ph_size;
- unsigned int ph_mult;
+ unsigned int min_ph_size_in_bytes;
assert( !(*length & PAGE_MASK));
assert( !(*start & PAGE_MASK_64));
- if ( (ph_mult = preheat_pages_mult) < 1 )
- ph_mult = 1;
- if ( (min_ph_size = preheat_pages_min) < 1 )
- min_ph_size = 1;
- if ( (max_ph_size = preheat_pages_max) > MAX_UPL_TRANSFER )
- max_ph_size = MAX_UPL_TRANSFER;
-
- if ( (max_length = *length) > (max_ph_size * PAGE_SIZE) )
- max_length = (max_ph_size * PAGE_SIZE);
-
+ /*
+ * remember maxiumum length of run requested
+ */
+ max_length = *length;
/*
* we'll always return a cluster size of at least
* 1 page, since the original fault must always
*length = PAGE_SIZE;
*io_streaming = 0;
- if (speculative_reads_disabled || fault_info == NULL || max_length == 0) {
+ if (speculative_reads_disabled || fault_info == NULL) {
/*
* no cluster... just fault the page in
*/
vm_object_lock(object);
+ if (object->pager == MEMORY_OBJECT_NULL)
+ goto out; /* pager is gone for this object, nothing more to do */
+
+ if (!ignore_is_ssd)
+ vnode_pager_get_isSSD(object->pager, &isSSD);
+
+ min_ph_size = preheat_pages_min;
+ max_ph_size = preheat_pages_max;
+
+ if (isSSD) {
+ min_ph_size /= 2;
+ max_ph_size /= 8;
+ }
+ if (min_ph_size < 1)
+ min_ph_size = 1;
+
+ if (max_ph_size < 1)
+ max_ph_size = 1;
+ else if (max_ph_size > MAX_UPL_TRANSFER)
+ max_ph_size = MAX_UPL_TRANSFER;
+
+ if (max_length > (max_ph_size * PAGE_SIZE))
+ max_length = max_ph_size * PAGE_SIZE;
+
+ if (max_length <= PAGE_SIZE)
+ goto out;
+
+ min_ph_size_in_bytes = min_ph_size * PAGE_SIZE;
+
if (object->internal)
- object_size = object->size;
- else if (object->pager != MEMORY_OBJECT_NULL)
- vnode_pager_get_object_size(object->pager, &object_size);
+ object_size = object->vo_size;
else
- goto out; /* pager is gone for this object, nothing more to do */
+ vnode_pager_get_object_size(object->pager, &object_size);
object_size = round_page_64(object_size);
}
}
- switch(behavior) {
+ switch (behavior) {
default:
behavior = VM_BEHAVIOR_DEFAULT;
*io_streaming = 1;
} else {
- if (object->pages_created < 32 * ph_mult) {
+ if (object->pages_created < (20 * min_ph_size)) {
/*
* prime the pump
*/
- pre_heat_size = PAGE_SIZE * 8 * ph_mult;
- break;
+ pre_heat_size = min_ph_size_in_bytes;
+ } else {
+ /*
+ * Linear growth in PH size: The maximum size is max_length...
+ * this cacluation will result in a size that is neither a
+ * power of 2 nor a multiple of PAGE_SIZE... so round
+ * it up to the nearest PAGE_SIZE boundary
+ */
+ pre_heat_size = (max_length * object->pages_used) / object->pages_created;
+
+ if (pre_heat_size < min_ph_size_in_bytes)
+ pre_heat_size = min_ph_size_in_bytes;
+ else
+ pre_heat_size = round_page(pre_heat_size);
}
- /*
- * Linear growth in PH size: The maximum size is max_length...
- * this cacluation will result in a size that is neither a
- * power of 2 nor a multiple of PAGE_SIZE... so round
- * it up to the nearest PAGE_SIZE boundary
- */
- pre_heat_size = (ph_mult * (max_length * object->pages_used) / object->pages_created);
-
- if (pre_heat_size < PAGE_SIZE * min_ph_size)
- pre_heat_size = PAGE_SIZE * min_ph_size;
- else
- pre_heat_size = round_page(pre_heat_size);
}
break;
if (pre_heat_size > max_length)
pre_heat_size = max_length;
- if (behavior == VM_BEHAVIOR_DEFAULT) {
+ if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size_in_bytes)) {
if (vm_page_free_count < vm_page_throttle_limit)
- pre_heat_size = trunc_page(pre_heat_size / 8);
+ pre_heat_size = trunc_page(pre_heat_size / 16);
else if (vm_page_free_count < vm_page_free_target)
- pre_heat_size = trunc_page(pre_heat_size / 2);
+ pre_heat_size = trunc_page(pre_heat_size / 4);
- if (pre_heat_size <= PAGE_SIZE)
- goto out;
+ if (pre_heat_size < min_ph_size_in_bytes)
+ pre_heat_size = min_ph_size_in_bytes;
}
if (look_ahead == TRUE) {
if (look_behind == TRUE) {
assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start));
tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE;
} else {
- if (pre_heat_size > target_start)
- pre_heat_size = (vm_size_t) target_start; /* XXX: 32-bit vs 64-bit ? Joe ? */
+ if (pre_heat_size > target_start) {
+ /*
+ * since pre_heat_size is always smaller then 2^32,
+ * if it is larger then target_start (a 64 bit value)
+ * it is safe to clip target_start to 32 bits
+ */
+ pre_heat_size = (vm_size_t) target_start;
+ }
tail_size = 0;
}
assert( !(target_start & PAGE_MASK_64));
if(object->phys_contiguous) {
if (phys_entry) {
*phys_entry = (ppnum_t)
- (object->shadow_offset >> PAGE_SHIFT);
+ (object->vo_shadow_offset >> PAGE_SHIFT);
}
vm_object_unlock(object);
return KERN_SUCCESS;
dst_page = vm_page_lookup(object, offset);
if (dst_page != VM_PAGE_NULL) {
if (ops & UPL_ROP_DUMP) {
- if (dst_page->busy || dst_page->cleaning) {
- /*
+ if (dst_page->list_req_pending) {
+ /*
+ * This page isn't on a UPL yet.
+ * So it's safe to steal it here and dump it.
+ */
+ } else if (dst_page->busy || dst_page->cleaning) {
+ /*
* someone else is playing with the
* page, we will have to wait
*/
boolean_t
vm_object_lock_try(vm_object_t object)
{
- // called from hibernate path so check before blocking
- if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled()) {
+ /*
+ * Called from hibernate path so check before blocking.
+ */
+ if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level()==0) {
mutex_pause(2);
}
return _vm_object_lock_try(object);
}
+
void
vm_object_lock_shared(vm_object_t object)
{
}
return (lck_rw_try_lock_shared(&object->Lock));
}
+
+
+unsigned int vm_object_change_wimg_mode_count = 0;
+
+/*
+ * The object must be locked
+ */
+void
+vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode)
+{
+ vm_page_t p;
+
+ vm_object_lock_assert_exclusive(object);
+
+ vm_object_paging_wait(object, THREAD_UNINT);
+
+ queue_iterate(&object->memq, p, vm_page_t, listq) {
+
+ if (!p->fictitious)
+ pmap_set_cache_attributes(p->phys_page, wimg_mode);
+ }
+ if (wimg_mode == VM_WIMG_USE_DEFAULT)
+ object->set_cache_attr = FALSE;
+ else
+ object->set_cache_attr = TRUE;
+
+ object->wimg_bits = wimg_mode;
+
+ vm_object_change_wimg_mode_count++;
+}
+
+#if CONFIG_FREEZE
+
+__private_extern__ void default_freezer_pack_page(vm_page_t , vm_object_t , vm_object_offset_t, void**);
+__private_extern__ void default_freezer_unpack(vm_object_t , void**);
+
+kern_return_t vm_object_pack(
+ unsigned int *purgeable_count,
+ unsigned int *wired_count,
+ unsigned int *clean_count,
+ unsigned int *dirty_count,
+ boolean_t *shared,
+ vm_object_t src_object,
+ vm_object_t compact_object,
+ void **table,
+ vm_object_offset_t *offset)
+{
+ kern_return_t kr = KERN_SUCCESS;
+
+ vm_object_lock(src_object);
+
+ *purgeable_count = *wired_count = *clean_count = *dirty_count = 0;
+ *shared = FALSE;
+
+ if (!src_object->alive || src_object->terminating){
+ kr = KERN_FAILURE;
+ goto done;
+ }
+
+ if (src_object->purgable == VM_PURGABLE_VOLATILE) {
+ *purgeable_count = src_object->resident_page_count;
+
+ /* If the destination object is null, we're just walking the pages to discover how many can be hibernated */
+ if (VM_OBJECT_NULL != compact_object) {
+ purgeable_q_t queue;
+ /* object should be on a queue */
+ assert(src_object->objq.next != NULL &&
+ src_object->objq.prev != NULL);
+ queue = vm_purgeable_object_remove(src_object);
+ assert(queue);
+ vm_page_lock_queues();
+ vm_purgeable_token_delete_first(queue);
+ vm_page_unlock_queues();
+ vm_object_purge(src_object);
+ }
+ goto done;
+ }
+
+ if (src_object->ref_count == 1) {
+ vm_object_pack_pages(wired_count, clean_count, dirty_count, src_object, compact_object, table, offset);
+ } else {
+ if (src_object->internal) {
+ *shared = TRUE;
+ }
+ }
+done:
+ vm_object_unlock(src_object);
+
+ return kr;
+}
+
+
+void
+vm_object_pack_pages(
+ unsigned int *wired_count,
+ unsigned int *clean_count,
+ unsigned int *dirty_count,
+ vm_object_t src_object,
+ vm_object_t compact_object,
+ void **table,
+ vm_object_offset_t *offset)
+{
+ vm_page_t p, next;
+
+ next = (vm_page_t)queue_first(&src_object->memq);
+
+ /* Since this function is dual purpose in order that we can count
+ * the freezable pages as well as prepare them, assert that our
+ * arguments are sane. Gnarly, but avoids code duplication.
+ */
+ if (VM_OBJECT_NULL == compact_object){
+ assert(!table);
+ assert(!offset);
+ } else {
+ assert(table);
+ assert(offset);
+ }
+
+ while (!queue_end(&src_object->memq, (queue_entry_t)next)) {
+ p = next;
+ next = (vm_page_t)queue_next(&next->listq);
+
+ if (p->fictitious || p->busy )
+ continue;
+
+ if (p->absent || p->unusual || p->error)
+ continue;
+
+ if (VM_PAGE_WIRED(p)) {
+ (*wired_count)++;
+ continue;
+ }
+
+ if (VM_OBJECT_NULL == compact_object) {
+ if (p->dirty || pmap_is_modified(p->phys_page)) {
+ (*dirty_count)++;
+ } else {
+ (*clean_count)++;
+ }
+ continue;
+ }
+
+ if (p->cleaning) {
+ p->busy = TRUE;
+ p->pageout = TRUE;
+ p->dump_cleaning = TRUE;
+
+ vm_page_lockspin_queues();
+ vm_page_wire(p);
+ vm_page_unlock_queues();
+
+ continue;
+ }
+
+ if (p->pmapped == TRUE) {
+ int refmod_state;
+ refmod_state = pmap_disconnect(p->phys_page);
+ if (refmod_state & VM_MEM_MODIFIED) {
+ p->dirty = TRUE;
+ }
+ }
+
+ if (p->dirty) {
+ p->busy = TRUE;
+
+ default_freezer_pack_page(p, compact_object, *offset, table);
+ *offset += PAGE_SIZE;
+
+ (*dirty_count)++;
+ }
+ else {
+ VM_PAGE_FREE(p);
+ (*clean_count)++;
+ }
+ }
+}
+
+void
+vm_object_pageout(
+ vm_object_t object)
+{
+ vm_page_t p, next;
+
+ assert(object != VM_OBJECT_NULL );
+
+ vm_object_lock(object);
+
+ next = (vm_page_t)queue_first(&object->memq);
+
+ while (!queue_end(&object->memq, (queue_entry_t)next)) {
+ p = next;
+ next = (vm_page_t)queue_next(&next->listq);
+
+ /* Throw to the pageout queue */
+ vm_page_lockspin_queues();
+
+ VM_PAGE_QUEUES_REMOVE(p);
+ vm_pageout_cluster(p);
+
+ vm_page_unlock_queues();
+ }
+
+ vm_object_unlock(object);
+}
+
+kern_return_t
+vm_object_pagein(
+ vm_object_t object)
+{
+ memory_object_t pager;
+ kern_return_t kr;
+
+ vm_object_lock(object);
+
+ pager = object->pager;
+
+ if (!object->pager_ready || pager == MEMORY_OBJECT_NULL) {
+ vm_object_unlock(object);
+ return KERN_FAILURE;
+ }
+
+ vm_object_paging_wait(object, THREAD_UNINT);
+ vm_object_paging_begin(object);
+
+ object->blocked_access = TRUE;
+ vm_object_unlock(object);
+
+ kr = memory_object_data_reclaim(pager, TRUE);
+
+ vm_object_lock(object);
+
+ object->blocked_access = FALSE;
+ vm_object_paging_end(object);
+
+ vm_object_unlock(object);
+
+ return kr;
+}
+
+void
+vm_object_unpack(
+ vm_object_t compact_object,
+ void **table)
+{
+ /*
+ * Future Work:
+ * Right now we treat the default freezer much like
+ * the default pager with respect to when it is
+ * created and terminated.
+ * But, in the future, we may want to terminate the
+ * default freezer at the very instant that an object
+ * has been completely re-filled with all it's previously
+ * paged-out pages.
+ * At that time we'll need to reset the object fields like
+ * "pager" and the associated "pager_{created,initialized,trusted}"
+ * fields right here.
+ */
+ default_freezer_unpack(compact_object, table);
+}
+
+#endif /* CONFIG_FREEZE */