]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/i386/rtclock.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / i386 / rtclock.c
index 72b1f556f70a4d3d2a2440f2001e3241436eca0b..08aed1af14e670bf365c2af867196da1dc15c2ff 100644 (file)
@@ -1,8 +1,8 @@
 /*
- * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
  *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- * 
+ *
  * This file contains Original Code and/or Modifications of Original Code
  * as defined in and that are subject to the Apple Public Source License
  * Version 2.0 (the 'License'). You may not use this file except in
  * unlawful or unlicensed copies of an Apple operating system, or to
  * circumvent, violate, or enable the circumvention or violation of, any
  * terms of an Apple operating system software license agreement.
- * 
+ *
  * Please obtain a copy of the License at
  * http://www.opensource.apple.com/apsl/ and read it before using this file.
- * 
+ *
  * The Original Code and all software distributed under the License are
  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
@@ -22,7 +22,7 @@
  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
  * Please see the License for the specific language governing rights and
  * limitations under the License.
- * 
+ *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
  */
 /*
@@ -39,8 +39,6 @@
  *                     the cpu clock counted by the timestamp MSR.
  */
 
-#include <platforms.h>
-#include <mach_kdb.h>
 
 #include <mach/mach_types.h>
 
 #include <kern/misc_protos.h>
 #include <kern/spl.h>
 #include <kern/assert.h>
-#include <kern/etimer.h>
+#include <kern/timer_queue.h>
 #include <mach/vm_prot.h>
 #include <vm/pmap.h>
-#include <vm/vm_kern.h>                /* for kernel_map */
-#include <i386/ipl.h>
+#include <vm/vm_kern.h>         /* for kernel_map */
 #include <architecture/i386/pio.h>
 #include <i386/machine_cpu.h>
 #include <i386/cpuid.h>
 #include <i386/cpu_threads.h>
 #include <i386/mp.h>
 #include <i386/machine_routines.h>
+#include <i386/pal_routines.h>
 #include <i386/proc_reg.h>
 #include <i386/misc_protos.h>
-#include <i386/lapic.h>
 #include <pexpert/pexpert.h>
 #include <machine/limits.h>
 #include <machine/commpage.h>
 #include <sys/kdebug.h>
 #include <i386/tsc.h>
-#include <i386/rtclock.h>
-
-#define UI_CPUFREQ_ROUNDING_FACTOR     10000000
+#include <i386/rtclock_protos.h>
+#define UI_CPUFREQ_ROUNDING_FACTOR      10000000
 
-int            rtclock_config(void);
+int             rtclock_init(void);
 
-int            rtclock_init(void);
+uint64_t        tsc_rebase_abs_time = 0;
 
-uint64_t       tsc_rebase_abs_time = 0;
+volatile uint64_t gAcpiLastSleepTscBase = 0;
+volatile uint64_t gAcpiLastSleepNanoBase = 0;
+volatile uint64_t gAcpiLastWakeTscBase = 0;
+volatile uint64_t gAcpiLastWakeNanoBase = 0;
 
-void           rtclock_intr(x86_saved_state_t *regs);
-
-static void    rtc_set_timescale(uint64_t cycles);
-static uint64_t        rtc_export_speed(uint64_t cycles);
-
-rtc_nanotime_t rtc_nanotime_info = {0,0,0,0,1,0};
-
-static uint64_t        rtc_decrementer_min;
-static uint64_t        rtc_decrementer_max;
-
-static uint64_t
-deadline_to_decrementer(
-       uint64_t        deadline,
-       uint64_t        now)
-{
-       uint64_t        delta;
-
-       if (deadline <= now)
-               return rtc_decrementer_min;
-       else {
-               delta = deadline - now;
-               return MIN(MAX(rtc_decrementer_min,delta),rtc_decrementer_max); 
-       }
-}
-
-static inline uint64_t
-_absolutetime_to_tsc(uint64_t ns)
-{
-       uint32_t        generation;
-       uint64_t        tsc;
-
-       do {
-               generation =  rtc_nanotime_info.generation;
-               tsc = tmrCvt(ns - rtc_nanotime_info.ns_base, tscFCvtn2t)
-                       + rtc_nanotime_info.tsc_base;
-       } while (generation == 0 ||
-                generation != rtc_nanotime_info.generation);
-
-       return tsc;
-}
-
-/*
- * Regular local APIC timer case:
- */
-static void
-rtc_lapic_config_timer(void)
-{
-       lapic_config_timer(TRUE, one_shot, divide_by_1);
-}
-static uint64_t
-rtc_lapic_set_timer(uint64_t deadline, uint64_t now)
-{
-       uint64_t count;
-       uint64_t set = 0;
-
-       if (deadline > 0) {
-               /*
-                * Convert delta to bus ticks
-                * - time now is not relevant
-                */
-               count = deadline_to_decrementer(deadline, now);
-               set = now + count;
-               lapic_set_timer_fast((uint32_t) tmrCvt(count, busFCvtn2t));
-       } else {
-               lapic_set_timer(FALSE, one_shot, divide_by_1, 0);
-       }
-       return set;
-}
-
-/*
- * TSC-deadline timer case:
- */
-static void
-rtc_lapic_config_tsc_deadline_timer(void)
-{
-       lapic_config_tsc_deadline_timer();
-}
-static uint64_t
-rtc_lapic_set_tsc_deadline_timer(uint64_t deadline, uint64_t now)
-{
-       uint64_t        set = 0;
-
-       if (deadline > 0) {
-               /*
-                * Convert to TSC
-                */
-               set = now + deadline_to_decrementer(deadline, now);
-               lapic_set_tsc_deadline_timer(_absolutetime_to_tsc(set));
-       } else {
-               lapic_set_tsc_deadline_timer(0);
-       }
-       return set;
-} 
-
-/*
- * Definitions for timer operations table
- */
-typedef struct {
-       void     (*config)(void);
-       uint64_t (*set)   (uint64_t, uint64_t);
-} rtc_timer_t;
-
-rtc_timer_t    rtc_timer_lapic  = {
-       rtc_lapic_config_timer,
-       rtc_lapic_set_timer
-};
-
-rtc_timer_t    rtc_timer_tsc_deadline  = {
-       rtc_lapic_config_tsc_deadline_timer,
-       rtc_lapic_set_tsc_deadline_timer
-};
-
-rtc_timer_t    *rtc_timer = &rtc_timer_lapic;  /* defaults to LAPIC timer */
-
-/*
- * rtc_timer_init() is called at startup on the boot processor only.
- */
-static void
-rtc_timer_init(void)
-{
-       int     TSC_deadline_timer = 0;
-       
-       /* See whether we can use the local apic in TSC-deadline mode */
-       if ((cpuid_features() & CPUID_FEATURE_TSCTMR)) {
-               TSC_deadline_timer = 1;
-               PE_parse_boot_argn("TSC_deadline_timer", &TSC_deadline_timer,
-                                  sizeof(TSC_deadline_timer));
-               printf("TSC Deadline Timer supported %s enabled\n",
-                       TSC_deadline_timer ? "and" : "but not");
-       }
-
-       if (TSC_deadline_timer) {
-               rtc_timer = &rtc_timer_tsc_deadline;
-               rtc_decrementer_max = UINT64_MAX;       /* effectively none */
-               /*
-                * The min could be as low as 1nsec,
-                * but we're being conservative for now and making it the same
-                * as for the local apic timer.
-                */
-               rtc_decrementer_min = 1*NSEC_PER_USEC;  /* 1 usec */
-       } else {
-               /*
-                * Compute the longest interval using LAPIC timer.
-                */
-               rtc_decrementer_max = tmrCvt(0x7fffffffULL, busFCvtt2n);
-               kprintf("maxDec: %lld\n", rtc_decrementer_max);
-               rtc_decrementer_min = 1*NSEC_PER_USEC;  /* 1 usec */
-       }
-
-       /* Point LAPIC interrupts to hardclock() */
-       lapic_set_timer_func((i386_intr_func_t) rtclock_intr);
-}
-
-static inline uint64_t
-rtc_timer_set(uint64_t deadline, uint64_t now)
-{
-       return rtc_timer->set(deadline, now);
-}
+static void     rtc_set_timescale(uint64_t cycles);
+static uint64_t rtc_export_speed(uint64_t cycles);
 
 void
 rtc_timer_start(void)
@@ -246,97 +89,27 @@ rtc_timer_start(void)
        /*
         * Force a complete re-evaluation of timer deadlines.
         */
-       etimer_resync_deadlines();
-}
-
-/*
- * tsc_to_nanoseconds:
- *
- * Basic routine to convert a raw 64 bit TSC value to a
- * 64 bit nanosecond value.  The conversion is implemented
- * based on the scale factor and an implicit 32 bit shift.
- */
-static inline uint64_t
-_tsc_to_nanoseconds(uint64_t value)
-{
-#if defined(__i386__)
-    asm volatile("movl %%edx,%%esi     ;"
-                "mull  %%ecx           ;"
-                "movl  %%edx,%%edi     ;"
-                "movl  %%esi,%%eax     ;"
-                "mull  %%ecx           ;"
-                "addl  %%edi,%%eax     ;"      
-                "adcl  $0,%%edx         "
-                : "+A" (value)
-                : "c" (rtc_nanotime_info.scale)
-                : "esi", "edi");
-#elif defined(__x86_64__)
-    asm volatile("mul %%rcx;"
-                "shrq $32, %%rax;"
-                "shlq $32, %%rdx;"
-                "orq %%rdx, %%rax;"
-                : "=a"(value)
-                : "a"(value), "c"(rtc_nanotime_info.scale)
-                : "rdx", "cc" );
-#else
-#error Unsupported architecture
-#endif
-
-    return (value);
+       x86_lcpu()->rtcDeadline = EndOfAllTime;
+       timer_resync_deadlines();
 }
 
 static inline uint32_t
 _absolutetime_to_microtime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *microsecs)
 {
        uint32_t remain;
-#if defined(__i386__)
-       asm volatile(
-                       "divl %3"
-                               : "=a" (*secs), "=d" (remain)
-                               : "A" (abstime), "r" (NSEC_PER_SEC));
-       asm volatile(
-                       "divl %3"
-                               : "=a" (*microsecs)
-                               : "0" (remain), "d" (0), "r" (NSEC_PER_USEC));
-#elif defined(__x86_64__)
        *secs = abstime / (uint64_t)NSEC_PER_SEC;
        remain = (uint32_t)(abstime % (uint64_t)NSEC_PER_SEC);
        *microsecs = remain / NSEC_PER_USEC;
-#else
-#error Unsupported architecture
-#endif
        return remain;
 }
 
 static inline void
 _absolutetime_to_nanotime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *nanosecs)
 {
-#if defined(__i386__)
-       asm volatile(
-                       "divl %3"
-                       : "=a" (*secs), "=d" (*nanosecs)
-                       : "A" (abstime), "r" (NSEC_PER_SEC));
-#elif defined(__x86_64__)
        *secs = abstime / (uint64_t)NSEC_PER_SEC;
        *nanosecs = (clock_usec_t)(abstime % (uint64_t)NSEC_PER_SEC);
-#else
-#error Unsupported architecture
-#endif
 }
 
-/*
- * Configure the real-time clock device. Return success (1)
- * or failure (0).
- */
-
-int
-rtclock_config(void)
-{
-       /* nothing to do */
-       return (1);
-}
-
-
 /*
  * Nanotime/mach_absolutime_time
  * -----------------------------
@@ -347,19 +120,19 @@ rtclock_config(void)
  * used to maintain a monotonic clock, adjusted from an outside reference as needed.
  *
  * The kernel maintains nanotime information recording:
- *     - the ratio of tsc to nanoseconds
+ *      - the ratio of tsc to nanoseconds
  *       with this ratio expressed as a 32-bit scale and shift
  *       (power of 2 divider);
  *     - { tsc_base, ns_base } pair of corresponding timestamps.
  *
- * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage 
+ * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage
  * for the userspace nanotime routine to read.
  *
  * All of the routines which update the nanotime data are non-reentrant.  This must
  * be guaranteed by the caller.
  */
 static inline void
-rtc_nanotime_set_commpage(rtc_nanotime_t *rntp)
+rtc_nanotime_set_commpage(pal_rtc_nanotime_t *rntp)
 {
        commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift);
 }
@@ -370,18 +143,25 @@ rtc_nanotime_set_commpage(rtc_nanotime_t *rntp)
  * Intialize the nanotime info from the base time.
  */
 static inline void
-_rtc_nanotime_init(rtc_nanotime_t *rntp, uint64_t base)
+_rtc_nanotime_init(pal_rtc_nanotime_t *rntp, uint64_t base)
 {
-       uint64_t        tsc = rdtsc64();
+       uint64_t        tsc = rdtsc64();
 
-       _rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp);
+       _pal_rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp);
 }
 
-static void
+void
 rtc_nanotime_init(uint64_t base)
 {
-       _rtc_nanotime_init(&rtc_nanotime_info, base);
-       rtc_nanotime_set_commpage(&rtc_nanotime_info);
+       gAcpiLastSleepTscBase = pal_rtc_nanotime_info.tsc_base;
+       gAcpiLastSleepNanoBase = pal_rtc_nanotime_info.ns_base;
+
+       _rtc_nanotime_init(&pal_rtc_nanotime_info, base);
+
+       gAcpiLastWakeTscBase = pal_rtc_nanotime_info.tsc_base;
+       gAcpiLastWakeNanoBase = pal_rtc_nanotime_info.ns_base;
+
+       rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
 }
 
 /*
@@ -394,10 +174,9 @@ rtc_nanotime_init(uint64_t base)
 void
 rtc_nanotime_init_commpage(void)
 {
-       spl_t                   s = splclock();
-
-       rtc_nanotime_set_commpage(&rtc_nanotime_info);
+       spl_t                   s = splclock();
 
+       rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
        splx(s);
 }
 
@@ -410,13 +189,7 @@ rtc_nanotime_init_commpage(void)
 static inline uint64_t
 rtc_nanotime_read(void)
 {
-       
-#if CONFIG_EMBEDDED
-       if (gPEClockFrequencyInfo.timebase_frequency_hz > SLOW_TSC_THRESHOLD)
-               return  _rtc_nanotime_read(&rtc_nanotime_info, 1);      /* slow processor */
-       else
-#endif
-       return  _rtc_nanotime_read(&rtc_nanotime_info, 0);      /* assume fast processor */
+       return _rtc_nanotime_read(&pal_rtc_nanotime_info);
 }
 
 /*
@@ -429,74 +202,58 @@ rtc_nanotime_read(void)
 void
 rtc_clock_napped(uint64_t base, uint64_t tsc_base)
 {
-       rtc_nanotime_t  *rntp = &rtc_nanotime_info;
-       uint64_t        oldnsecs;
-       uint64_t        newnsecs;
-       uint64_t        tsc;
+       pal_rtc_nanotime_t      *rntp = &pal_rtc_nanotime_info;
+       uint64_t        oldnsecs;
+       uint64_t        newnsecs;
+       uint64_t        tsc;
 
        assert(!ml_get_interrupts_enabled());
        tsc = rdtsc64();
-       oldnsecs = rntp->ns_base + _tsc_to_nanoseconds(tsc - rntp->tsc_base);
-       newnsecs = base + _tsc_to_nanoseconds(tsc - tsc_base);
-       
+       oldnsecs = rntp->ns_base + _rtc_tsc_to_nanoseconds(tsc - rntp->tsc_base, rntp);
+       newnsecs = base + _rtc_tsc_to_nanoseconds(tsc - tsc_base, rntp);
+
        /*
         * Only update the base values if time using the new base values
         * is later than the time using the old base values.
         */
        if (oldnsecs < newnsecs) {
-           _rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
-           rtc_nanotime_set_commpage(rntp);
+               _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
+               rtc_nanotime_set_commpage(rntp);
        }
 }
 
-
 /*
  * Invoked from power management to correct the SFLM TSC entry drift problem:
- * a small delta is added to the tsc_base. This is equivalent to nudging time
- * backwards. We require this of the order of a TSC quantum which won't cause
- * callers of mach_absolute_time() to see time going backwards!
+ * a small delta is added to the tsc_base.  This is equivalent to nudgin time
+ * backwards.  We require this to be on the order of a TSC quantum which won't
+ * cause callers of mach_absolute_time() to see time going backwards!
  */
 void
 rtc_clock_adjust(uint64_t tsc_base_delta)
 {
-       rtc_nanotime_t  *rntp = &rtc_nanotime_info;
+       pal_rtc_nanotime_t  *rntp = &pal_rtc_nanotime_info;
 
        assert(!ml_get_interrupts_enabled());
-       assert(tsc_base_delta < 100ULL);        /* i.e. it's small */
+       assert(tsc_base_delta < 100ULL); /* i.e. it's small */
        _rtc_nanotime_adjust(tsc_base_delta, rntp);
        rtc_nanotime_set_commpage(rntp);
 }
 
-
-void
-rtc_clock_stepping(__unused uint32_t new_frequency,
-                  __unused uint32_t old_frequency)
-{
-       panic("rtc_clock_stepping unsupported");
-}
-
-void
-rtc_clock_stepped(__unused uint32_t new_frequency,
-                 __unused uint32_t old_frequency)
-{
-       panic("rtc_clock_stepped unsupported");
-}
-
 /*
  * rtc_sleep_wakeup:
  *
- * Invoked from power manageent when we have awoken from a sleep (S3)
- * and the TSC has been reset.  The nanotime data is updated based on
- * the passed in value.
+ * Invoked from power management when we have awoken from a sleep (S3)
+ * and the TSC has been reset, or from Deep Idle (S0) sleep when the TSC
+ * has progressed.  The nanotime data is updated based on the passed-in value.
  *
  * The caller must guarantee non-reentrancy.
  */
 void
 rtc_sleep_wakeup(
-       uint64_t                base)
+       uint64_t                base)
 {
-       /* Set fixed configuration for lapic timers */
-       rtc_timer->config();
+       /* Set fixed configuration for lapic timers */
+       rtc_timer->rtc_config();
 
        /*
         * Reset nanotime.
@@ -506,6 +263,22 @@ rtc_sleep_wakeup(
        rtc_nanotime_init(base);
 }
 
+void
+rtc_decrementer_configure(void)
+{
+       rtc_timer->rtc_config();
+}
+/*
+ * rtclock_early_init() is called very early at boot to
+ * establish mach_absolute_time() and set it to zero.
+ */
+void
+rtclock_early_init(void)
+{
+       assert(tscFreq);
+       rtc_set_timescale(tscFreq);
+}
+
 /*
  * Initialize the real-time clock device.
  * In addition, various variables used to support the clock are initialized.
@@ -513,14 +286,12 @@ rtc_sleep_wakeup(
 int
 rtclock_init(void)
 {
-       uint64_t        cycles;
+       uint64_t        cycles;
 
        assert(!ml_get_interrupts_enabled());
 
        if (cpu_number() == master_cpu) {
-
                assert(tscFreq);
-               rtc_set_timescale(tscFreq);
 
                /*
                 * Adjust and set the exported cpu speed.
@@ -537,32 +308,46 @@ rtclock_init(void)
                rtc_timer_init();
                clock_timebase_init();
                ml_init_lock_timeout();
+               ml_init_delay_spin_threshold(10);
        }
 
        /* Set fixed configuration for lapic timers */
-       rtc_timer->config();
-
+       rtc_timer->rtc_config();
        rtc_timer_start();
 
-       return (1);
+       return 1;
 }
 
-// utility routine 
+// utility routine
 // Code to calculate how many processor cycles are in a second...
 
 static void
 rtc_set_timescale(uint64_t cycles)
 {
-       rtc_nanotime_t  *rntp = &rtc_nanotime_info;
+       pal_rtc_nanotime_t      *rntp = &pal_rtc_nanotime_info;
+       uint32_t    shift = 0;
+
+       /* the "scale" factor will overflow unless cycles>SLOW_TSC_THRESHOLD */
+
+       while (cycles <= SLOW_TSC_THRESHOLD) {
+               shift++;
+               cycles <<= 1;
+       }
+
        rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles);
 
-       if (cycles <= SLOW_TSC_THRESHOLD)
-               rntp->shift = (uint32_t)cycles;
-       else
-               rntp->shift = 32;
+       rntp->shift = shift;
 
-       if (tsc_rebase_abs_time == 0)
-               tsc_rebase_abs_time = mach_absolute_time();
+       /*
+        * On some platforms, the TSC is not reset at warm boot. But the
+        * rebase time must be relative to the current boot so we can't use
+        * mach_absolute_time(). Instead, we convert the TSC delta since boot
+        * to nanoseconds.
+        */
+       if (tsc_rebase_abs_time == 0) {
+               tsc_rebase_abs_time = _rtc_tsc_to_nanoseconds(
+                       rdtsc64() - tsc_at_boot, rntp);
+       }
 
        rtc_nanotime_init(0);
 }
@@ -570,136 +355,127 @@ rtc_set_timescale(uint64_t cycles)
 static uint64_t
 rtc_export_speed(uint64_t cyc_per_sec)
 {
-       uint64_t        cycles;
+       pal_rtc_nanotime_t      *rntp = &pal_rtc_nanotime_info;
+       uint64_t        cycles;
+
+       if (rntp->shift != 0) {
+               printf("Slow TSC, rtc_nanotime.shift == %d\n", rntp->shift);
+       }
 
        /* Round: */
-        cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR/2))
-                       / UI_CPUFREQ_ROUNDING_FACTOR)
-                               * UI_CPUFREQ_ROUNDING_FACTOR;
+       cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR / 2))
+           / UI_CPUFREQ_ROUNDING_FACTOR)
+           * UI_CPUFREQ_ROUNDING_FACTOR;
 
        /*
         * Set current measured speed.
         */
-        if (cycles >= 0x100000000ULL) {
-            gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL;
-        } else {
-            gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles;
-        }
-        gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
+       if (cycles >= 0x100000000ULL) {
+               gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL;
+       } else {
+               gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles;
+       }
+       gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
 
        kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec);
-       return(cycles);
+       return cycles;
 }
 
 void
 clock_get_system_microtime(
-       clock_sec_t                     *secs,
-       clock_usec_t            *microsecs)
+       clock_sec_t                     *secs,
+       clock_usec_t            *microsecs)
 {
-       uint64_t        now = rtc_nanotime_read();
+       uint64_t        now = rtc_nanotime_read();
 
        _absolutetime_to_microtime(now, secs, microsecs);
 }
 
 void
 clock_get_system_nanotime(
-       clock_sec_t                     *secs,
-       clock_nsec_t            *nanosecs)
+       clock_sec_t                     *secs,
+       clock_nsec_t            *nanosecs)
 {
-       uint64_t        now = rtc_nanotime_read();
+       uint64_t        now = rtc_nanotime_read();
 
        _absolutetime_to_nanotime(now, secs, nanosecs);
 }
 
 void
-clock_gettimeofday_set_commpage(
-       uint64_t                                abstime,
-       uint64_t                                epoch,
-       uint64_t                                offset,
-       clock_sec_t                             *secs,
-       clock_usec_t                    *microsecs)
+clock_gettimeofday_set_commpage(uint64_t abstime, uint64_t sec, uint64_t frac, uint64_t scale, uint64_t tick_per_sec)
 {
-       uint64_t        now = abstime + offset;
-       uint32_t        remain;
-
-       remain = _absolutetime_to_microtime(now, secs, microsecs);
-
-       *secs += (clock_sec_t)epoch;
-
-       commpage_set_timestamp(abstime - remain, *secs);
+       commpage_set_timestamp(abstime, sec, frac, scale, tick_per_sec);
 }
 
 void
 clock_timebase_info(
-       mach_timebase_info_t    info)
+       mach_timebase_info_t    info)
 {
        info->numer = info->denom =  1;
-}      
+}
 
 /*
  * Real-time clock device interrupt.
  */
 void
 rtclock_intr(
-       x86_saved_state_t       *tregs)
+       x86_saved_state_t       *tregs)
 {
-        uint64_t       rip;
-       boolean_t       user_mode = FALSE;
+       uint64_t        rip;
+       boolean_t       user_mode = FALSE;
 
        assert(get_preemption_level() > 0);
        assert(!ml_get_interrupts_enabled());
 
        if (is_saved_state64(tregs) == TRUE) {
-               x86_saved_state64_t     *regs;
-                 
+               x86_saved_state64_t     *regs;
+
                regs = saved_state64(tregs);
 
-               if (regs->isf.cs & 0x03)
+               if (regs->isf.cs & 0x03) {
                        user_mode = TRUE;
+               }
                rip = regs->isf.rip;
        } else {
-               x86_saved_state32_t     *regs;
+               x86_saved_state32_t     *regs;
 
                regs = saved_state32(tregs);
 
-               if (regs->cs & 0x03)
-                       user_mode = TRUE;
+               if (regs->cs & 0x03) {
+                       user_mode = TRUE;
+               }
                rip = regs->eip;
        }
 
        /* call the generic etimer */
-       etimer_intr(user_mode, rip);
+       timer_intr(user_mode, rip);
 }
 
 
 /*
- *     Request timer pop from the hardware 
+ *     Request timer pop from the hardware
  */
 
 uint64_t
-setPop(
-       uint64_t time)
+setPop(uint64_t time)
 {
-       uint64_t now;
-       uint64_t pop;
+       uint64_t        now;
+       uint64_t        pop;
 
        /* 0 and EndOfAllTime are special-cases for "clear the timer" */
        if (time == 0 || time == EndOfAllTime) {
                time = EndOfAllTime;
                now = 0;
-               pop = rtc_timer_set(0, 0);
+               pop = rtc_timer->rtc_set(0, 0);
        } else {
-               now = rtc_nanotime_read();
-               pop = rtc_timer_set(time, now);
+               now = rtc_nanotime_read();      /* The time in nanoseconds */
+               pop = rtc_timer->rtc_set(time, now);
        }
 
-       /* Record actual deadline set */
+       /* Record requested and actual deadlines set */
        x86_lcpu()->rtcDeadline = time;
-       x86_lcpu()->rtcPop = pop;
+       x86_lcpu()->rtcPop      = pop;
 
-       /*
-        * Pass back the delta we set
-        */
        return pop - now;
 }
 
@@ -709,66 +485,62 @@ mach_absolute_time(void)
        return rtc_nanotime_read();
 }
 
+uint64_t
+mach_approximate_time(void)
+{
+       return rtc_nanotime_read();
+}
+
 void
 clock_interval_to_absolutetime_interval(
-       uint32_t                interval,
-       uint32_t                scale_factor,
-       uint64_t                *result)
+       uint32_t                interval,
+       uint32_t                scale_factor,
+       uint64_t                *result)
 {
        *result = (uint64_t)interval * scale_factor;
 }
 
 void
 absolutetime_to_microtime(
-       uint64_t                        abstime,
-       clock_sec_t                     *secs,
-       clock_usec_t            *microsecs)
+       uint64_t                        abstime,
+       clock_sec_t                     *secs,
+       clock_usec_t            *microsecs)
 {
        _absolutetime_to_microtime(abstime, secs, microsecs);
 }
 
-void
-absolutetime_to_nanotime(
-       uint64_t                        abstime,
-       clock_sec_t                     *secs,
-       clock_nsec_t            *nanosecs)
-{
-       _absolutetime_to_nanotime(abstime, secs, nanosecs);
-}
-
 void
 nanotime_to_absolutetime(
-       clock_sec_t                     secs,
-       clock_nsec_t            nanosecs,
-       uint64_t                        *result)
+       clock_sec_t                     secs,
+       clock_nsec_t            nanosecs,
+       uint64_t                        *result)
 {
        *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs;
 }
 
 void
 absolutetime_to_nanoseconds(
-       uint64_t                abstime,
-       uint64_t                *result)
+       uint64_t                abstime,
+       uint64_t                *result)
 {
        *result = abstime;
 }
 
 void
 nanoseconds_to_absolutetime(
-       uint64_t                nanoseconds,
-       uint64_t                *result)
+       uint64_t                nanoseconds,
+       uint64_t                *result)
 {
        *result = nanoseconds;
 }
 
 void
 machine_delay_until(
-       uint64_t                deadline)
+       uint64_t interval,
+       uint64_t                deadline)
 {
-       uint64_t                now;
-
-       do {
+       (void)interval;
+       while (mach_absolute_time() < deadline) {
                cpu_pause();
-               now = mach_absolute_time();
-       } while (now < deadline);
+       }
 }