+++ /dev/null
-/*
- * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
- *
- * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
- * This file contains Original Code and/or Modifications of Original Code
- * as defined in and that are subject to the Apple Public Source License
- * Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. The rights granted to you under the License
- * may not be used to create, or enable the creation or redistribution of,
- * unlawful or unlicensed copies of an Apple operating system, or to
- * circumvent, violate, or enable the circumvention or violation of, any
- * terms of an Apple operating system software license agreement.
- *
- * Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
- * The Original Code and all software distributed under the License are
- * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
- * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
- * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
- * Please see the License for the specific language governing rights and
- * limitations under the License.
- *
- * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
- */
-
-#include <mach/mach_types.h>
-#include <mach/machine.h>
-#include <mach/processor_info.h>
-
-#include <kern/kalloc.h>
-#include <kern/kern_types.h>
-#include <kern/machine.h>
-#include <kern/misc_protos.h>
-#include <kern/thread.h>
-#include <kern/sched_prim.h>
-#include <kern/timer_queue.h>
-#include <kern/processor.h>
-#include <kern/pms.h>
-
-#include <vm/pmap.h>
-#include <IOKit/IOHibernatePrivate.h>
-
-#include <ppc/proc_reg.h>
-#include <ppc/misc_protos.h>
-#include <ppc/fpu_protos.h>
-#include <ppc/machine_routines.h>
-#include <ppc/cpu_internal.h>
-#include <ppc/exception.h>
-#include <ppc/asm.h>
-#include <ppc/hw_perfmon.h>
-#include <pexpert/pexpert.h>
-#include <kern/cpu_data.h>
-#include <ppc/mappings.h>
-#include <ppc/Diagnostics.h>
-#include <ppc/trap.h>
-#include <ppc/machine_cpu.h>
-#include <ppc/rtclock.h>
-
-#include <libkern/OSAtomic.h>
-
-unsigned int real_ncpus = 1;
-unsigned int max_ncpus = MAX_CPUS;
-
-decl_simple_lock_data(static,rht_lock);
-
-static unsigned int rht_state = 0;
-#define RHT_WAIT 0x01
-#define RHT_BUSY 0x02
-
-decl_simple_lock_data(static,SignalReadyLock);
-
-struct SIGtimebase {
- volatile boolean_t avail;
- volatile boolean_t ready;
- volatile boolean_t done;
- uint64_t abstime;
-};
-
-perfCallback perfCpuSigHook; /* Pointer to CHUD cpu signal hook routine */
-
-extern uint32_t debugger_sync;
-
-/*
- * Forward definitions
- */
-
-void cpu_sync_timebase(
- void);
-
-void cpu_timebase_signal_handler(
- struct per_proc_info *proc_info,
- struct SIGtimebase *timebaseAddr);
-
-/*
- * Routine: cpu_bootstrap
- * Function:
- */
-void
-cpu_bootstrap(
- void)
-{
- simple_lock_init(&rht_lock,0);
- simple_lock_init(&SignalReadyLock,0);
-}
-
-
-/*
- * Routine: cpu_init
- * Function:
- */
-void
-cpu_init(
- void)
-{
- struct per_proc_info *proc_info;
-
- proc_info = getPerProc();
-
- /*
- * Restore the TBR.
- */
- if (proc_info->save_tbu != 0 || proc_info->save_tbl != 0) {
- mttb(0);
- mttbu(proc_info->save_tbu);
- mttb(proc_info->save_tbl);
- }
-
- proc_info->rtcPop = EndOfAllTime; /* forget any existing decrementer setting */
- etimer_resync_deadlines(); /* Now that the time base is sort of correct, request the next timer pop */
-
- proc_info->cpu_type = CPU_TYPE_POWERPC;
- proc_info->cpu_subtype = (cpu_subtype_t)proc_info->pf.rptdProc;
- proc_info->cpu_threadtype = CPU_THREADTYPE_NONE;
- proc_info->running = TRUE;
-
-}
-
-/*
- * Routine: cpu_machine_init
- * Function:
- */
-void
-cpu_machine_init(
- void)
-{
- struct per_proc_info *proc_info;
- volatile struct per_proc_info *mproc_info;
-
-
- proc_info = getPerProc();
- mproc_info = PerProcTable[master_cpu].ppe_vaddr;
-
- if (proc_info != mproc_info) {
- simple_lock(&rht_lock);
- if (rht_state & RHT_WAIT)
- thread_wakeup(&rht_state);
- rht_state &= ~(RHT_BUSY|RHT_WAIT);
- simple_unlock(&rht_lock);
- }
-
- PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone));
-
- if (proc_info->hibernate) {
- uint32_t tbu, tbl;
-
- do {
- tbu = mftbu();
- tbl = mftb();
- } while (mftbu() != tbu);
-
- proc_info->hibernate = 0;
- hibernate_machine_init();
-
- // hibernate_machine_init() could take minutes and we don't want timeouts
- // to fire as soon as scheduling starts. Reset timebase so it appears
- // no time has elapsed, as it would for regular sleep.
- mttb(0);
- mttbu(tbu);
- mttb(tbl);
- }
-
- if (proc_info != mproc_info) {
- while (!((mproc_info->cpu_flags) & SignalReady))
- continue;
- cpu_sync_timebase();
- }
-
- ml_init_interrupt();
- if (proc_info != mproc_info)
- simple_lock(&SignalReadyLock);
- proc_info->cpu_flags |= BootDone|SignalReady;
- if (proc_info != mproc_info) {
- if (proc_info->ppXFlags & SignalReadyWait) {
- hw_atomic_and_noret(&proc_info->ppXFlags, ~SignalReadyWait);
- thread_wakeup(&proc_info->cpu_flags);
- }
- simple_unlock(&SignalReadyLock);
- pmsPark(); /* Timers should be cool now, park the power management stepper */
- }
-}
-
-
-/*
- * Routine: cpu_per_proc_alloc
- * Function:
- */
-struct per_proc_info *
-cpu_per_proc_alloc(
- void)
-{
- struct per_proc_info *proc_info = NULL;
- void *interrupt_stack = NULL;
- void *debugger_stack = NULL;
-
- if ((proc_info = (struct per_proc_info*)kalloc(sizeof(struct per_proc_info))) == (struct per_proc_info*)0)
- return (struct per_proc_info *)NULL;
- if ((interrupt_stack = kalloc(INTSTACK_SIZE)) == 0) {
- kfree(proc_info, sizeof(struct per_proc_info));
- return (struct per_proc_info *)NULL;
- }
-
- if ((debugger_stack = kalloc(kernel_stack_size)) == 0) {
- kfree(proc_info, sizeof(struct per_proc_info));
- kfree(interrupt_stack, INTSTACK_SIZE);
- return (struct per_proc_info *)NULL;
- }
-
- bzero((void *)proc_info, sizeof(struct per_proc_info));
-
- /* Set physical address of the second page */
- proc_info->pp2ndPage = (addr64_t)pmap_find_phys(kernel_pmap,
- ((addr64_t)(unsigned int)proc_info) + 0x1000)
- << PAGE_SHIFT;
- proc_info->next_savearea = (uint64_t)save_get_init();
- proc_info->pf = BootProcInfo.pf;
- proc_info->istackptr = (vm_offset_t)interrupt_stack + INTSTACK_SIZE - FM_SIZE;
- proc_info->intstack_top_ss = proc_info->istackptr;
- proc_info->debstackptr = (vm_offset_t)debugger_stack + kernel_stack_size - FM_SIZE;
- proc_info->debstack_top_ss = proc_info->debstackptr;
-
- queue_init(&proc_info->rtclock_timer.queue);
- proc_info->rtclock_timer.deadline = EndOfAllTime;
-
- return proc_info;
-
-}
-
-
-/*
- * Routine: cpu_per_proc_free
- * Function:
- */
-void
-cpu_per_proc_free(
- struct per_proc_info *proc_info
-)
-{
- if (proc_info->cpu_number == master_cpu)
- return;
- kfree((void *)(proc_info->intstack_top_ss - INTSTACK_SIZE + FM_SIZE), INTSTACK_SIZE);
- kfree((void *)(proc_info->debstack_top_ss - kernel_stack_size + FM_SIZE), kernel_stack_size);
- kfree((void *)proc_info, sizeof(struct per_proc_info)); /* Release the per_proc */
-}
-
-
-/*
- * Routine: cpu_per_proc_register
- * Function:
- */
-kern_return_t
-cpu_per_proc_register(
- struct per_proc_info *proc_info
-)
-{
- int cpu;
-
- cpu = OSIncrementAtomic(&real_ncpus);
-
- if (real_ncpus > max_ncpus) {
- return KERN_FAILURE;
- }
-
- proc_info->cpu_number = cpu;
- PerProcTable[cpu].ppe_vaddr = proc_info;
- PerProcTable[cpu].ppe_paddr = (addr64_t)pmap_find_phys(kernel_pmap, (addr64_t)(unsigned int)proc_info) << PAGE_SHIFT;
- eieio();
- return KERN_SUCCESS;
-}
-
-
-/*
- * Routine: cpu_start
- * Function:
- */
-kern_return_t
-cpu_start(
- int cpu)
-{
- struct per_proc_info *proc_info;
- kern_return_t ret;
- mapping_t *mp;
-
- proc_info = PerProcTable[cpu].ppe_vaddr;
-
- if (cpu == cpu_number()) {
- PE_cpu_machine_init(proc_info->cpu_id, !(proc_info->cpu_flags & BootDone));
- ml_init_interrupt();
- proc_info->cpu_flags |= BootDone|SignalReady;
-
- return KERN_SUCCESS;
- } else {
- proc_info->cpu_flags &= BootDone;
- proc_info->interrupts_enabled = 0;
- proc_info->pending_ast = AST_NONE;
- proc_info->istackptr = proc_info->intstack_top_ss;
- proc_info->rtcPop = EndOfAllTime;
- proc_info->FPU_owner = NULL;
- proc_info->VMX_owner = NULL;
- proc_info->pms.pmsStamp = 0; /* Dummy transition time */
- proc_info->pms.pmsPop = EndOfAllTime; /* Set the pop way into the future */
- proc_info->pms.pmsState = pmsParked; /* Park the stepper */
- proc_info->pms.pmsCSetCmd = pmsCInit; /* Set dummy initial hardware state */
- mp = (mapping_t *)(&proc_info->ppUMWmp);
- mp->mpFlags = 0x01000000 | mpLinkage | mpPerm | 1;
- mp->mpSpace = invalSpace;
-
- if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
-
- simple_lock(&rht_lock);
- while (rht_state & RHT_BUSY) {
- rht_state |= RHT_WAIT;
- thread_sleep_usimple_lock((event_t)&rht_state,
- &rht_lock, THREAD_UNINT);
- }
- rht_state |= RHT_BUSY;
- simple_unlock(&rht_lock);
-
- ml_phys_write((vm_offset_t)&ResetHandler + 0,
- RESET_HANDLER_START);
- ml_phys_write((vm_offset_t)&ResetHandler + 4,
- (vm_offset_t)_start_cpu);
- ml_phys_write((vm_offset_t)&ResetHandler + 8,
- (vm_offset_t)&PerProcTable[cpu]);
- }
-/*
- * Note: we pass the current time to the other processor here. He will load it
- * as early as possible so that there is a chance that it is close to accurate.
- * After the machine is up a while, we will officially resync the clocks so
- * that all processors are the same. This is just to get close.
- */
-
- ml_get_timebase((unsigned long long *)&proc_info->ruptStamp);
-
- __asm__ volatile("sync"); /* Commit to storage */
- __asm__ volatile("isync"); /* Wait a second */
- ret = PE_cpu_start(proc_info->cpu_id,
- proc_info->start_paddr, (vm_offset_t)proc_info);
-
- if (ret != KERN_SUCCESS) {
- if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
- simple_lock(&rht_lock);
- if (rht_state & RHT_WAIT)
- thread_wakeup(&rht_state);
- rht_state &= ~(RHT_BUSY|RHT_WAIT);
- simple_unlock(&rht_lock);
- };
- } else {
- simple_lock(&SignalReadyLock);
- if (!((*(volatile short *)&proc_info->cpu_flags) & SignalReady)) {
- hw_atomic_or_noret(&proc_info->ppXFlags, SignalReadyWait);
- thread_sleep_simple_lock((event_t)&proc_info->cpu_flags,
- &SignalReadyLock, THREAD_UNINT);
- }
- simple_unlock(&SignalReadyLock);
-
- }
- return(ret);
- }
-}
-
-/*
- * Routine: cpu_exit_wait
- * Function:
- */
-void
-cpu_exit_wait(
- int cpu)
-{
- struct per_proc_info *tpproc;
-
- if ( cpu != master_cpu) {
- tpproc = PerProcTable[cpu].ppe_vaddr;
- while (!((*(volatile short *)&tpproc->cpu_flags) & SleepState)) {};
- }
-}
-
-
-/*
- * Routine: cpu_doshutdown
- * Function:
- */
-void
-cpu_doshutdown(
- void)
-{
- enable_preemption();
- processor_offline(current_processor());
-}
-
-
-/*
- * Routine: cpu_sleep
- * Function:
- */
-void
-cpu_sleep(
- void)
-{
- struct per_proc_info *proc_info;
- unsigned int i;
- unsigned int wait_ncpus_sleep, ncpus_sleep;
- facility_context *fowner;
-
- proc_info = getPerProc();
-
- proc_info->running = FALSE;
-
- timer_queue_shutdown(&proc_info->rtclock_timer.queue);
- proc_info->rtclock_timer.deadline = EndOfAllTime;
-
- fowner = proc_info->FPU_owner; /* Cache this */
- if(fowner) /* If anyone owns FPU, save it */
- fpu_save(fowner);
- proc_info->FPU_owner = NULL; /* Set no fpu owner now */
-
- fowner = proc_info->VMX_owner; /* Cache this */
- if(fowner) vec_save(fowner); /* If anyone owns vectors, save it */
- proc_info->VMX_owner = NULL; /* Set no vector owner now */
-
- if (proc_info->cpu_number == master_cpu) {
- proc_info->cpu_flags &= BootDone;
- proc_info->interrupts_enabled = 0;
- proc_info->pending_ast = AST_NONE;
-
- if (proc_info->start_paddr == EXCEPTION_VECTOR(T_RESET)) {
- ml_phys_write((vm_offset_t)&ResetHandler + 0,
- RESET_HANDLER_START);
- ml_phys_write((vm_offset_t)&ResetHandler + 4,
- (vm_offset_t)_start_cpu);
- ml_phys_write((vm_offset_t)&ResetHandler + 8,
- (vm_offset_t)&PerProcTable[master_cpu]);
-
- __asm__ volatile("sync");
- __asm__ volatile("isync");
- }
-
- wait_ncpus_sleep = real_ncpus-1;
- ncpus_sleep = 0;
- while (wait_ncpus_sleep != ncpus_sleep) {
- ncpus_sleep = 0;
- for(i=1; i < real_ncpus ; i++) {
- if ((*(volatile short *)&(PerProcTable[i].ppe_vaddr->cpu_flags)) & SleepState)
- ncpus_sleep++;
- }
- }
-
- }
-
- /*
- * Save the TBR before stopping.
- */
- do {
- proc_info->save_tbu = mftbu();
- proc_info->save_tbl = mftb();
- } while (mftbu() != proc_info->save_tbu);
-
- PE_cpu_machine_quiesce(proc_info->cpu_id);
-}
-
-
-/*
- * Routine: cpu_signal
- * Function:
- * Here is where we send a message to another processor. So far we only have two:
- * SIGPast and SIGPdebug. SIGPast is used to preempt and kick off threads (this is
- * currently disabled). SIGPdebug is used to enter the debugger.
- *
- * We set up the SIGP function to indicate that this is a simple message and set the
- * order code (MPsigpParm0) to SIGPast or SIGPdebug). After finding the per_processor
- * block for the target, we lock the message block. Then we set the parameter(s).
- * Next we change the lock (also called "busy") to "passing" and finally signal
- * the other processor. Note that we only wait about 1ms to get the message lock.
- * If we time out, we return failure to our caller. It is their responsibility to
- * recover.
- */
-kern_return_t
-cpu_signal(
- int target,
- int signal,
- unsigned int p1,
- unsigned int p2)
-{
-
- unsigned int holdStat;
- struct per_proc_info *tpproc, *mpproc;
- int busybitset=0;
-
-#if DEBUG
- if(((unsigned int)target) >= MAX_CPUS) panic("cpu_signal: invalid target CPU - %08X\n", target);
-#endif
-
- mpproc = getPerProc(); /* Point to our block */
- tpproc = PerProcTable[target].ppe_vaddr; /* Point to the target's block */
- if(mpproc == tpproc) return KERN_FAILURE; /* Cannot signal ourselves */
-
- if(!tpproc->running) return KERN_FAILURE;
-
- if (!(tpproc->cpu_flags & SignalReady)) return KERN_FAILURE;
-
- if((tpproc->MPsigpStat & MPsigpMsgp) == MPsigpMsgp) { /* Is there an unreceived message already pending? */
-
- if(signal == SIGPwake) { /* SIGPwake can merge into all others... */
- mpproc->hwCtr.numSIGPmwake++; /* Account for merged wakes */
- return KERN_SUCCESS;
- }
-
- if((signal == SIGPast) && (tpproc->MPsigpParm0 == SIGPast)) { /* We can merge ASTs */
- mpproc->hwCtr.numSIGPmast++; /* Account for merged ASTs */
- return KERN_SUCCESS; /* Don't bother to send this one... */
- }
-
- if (tpproc->MPsigpParm0 == SIGPwake) {
- if (hw_lock_mbits(&tpproc->MPsigpStat, (MPsigpMsgp | MPsigpAck),
- (MPsigpBusy | MPsigpPass ), MPsigpBusy, 0)) {
- busybitset = 1;
- mpproc->hwCtr.numSIGPmwake++;
- }
- }
- }
-
- if((busybitset == 0) &&
- (!hw_lock_mbits(&tpproc->MPsigpStat, MPsigpMsgp, 0, MPsigpBusy,
- (gPEClockFrequencyInfo.timebase_frequency_hz >> 11)))) { /* Try to lock the message block with a .5ms timeout */
- mpproc->hwCtr.numSIGPtimo++; /* Account for timeouts */
- return KERN_FAILURE; /* Timed out, take your ball and go home... */
- }
-
- holdStat = MPsigpBusy | MPsigpPass | (MPsigpSigp << 8) | mpproc->cpu_number; /* Set up the signal status word */
- tpproc->MPsigpParm0 = signal; /* Set message order */
- tpproc->MPsigpParm1 = p1; /* Set additional parm */
- tpproc->MPsigpParm2 = p2; /* Set additional parm */
-
- __asm__ volatile("sync"); /* Make sure it's all there */
-
- tpproc->MPsigpStat = holdStat; /* Set status and pass the lock */
- __asm__ volatile("eieio"); /* I'm a paraniod freak */
-
- if (busybitset == 0)
- PE_cpu_signal(mpproc->cpu_id, tpproc->cpu_id); /* Kick the other processor */
-
- return KERN_SUCCESS; /* All is goodness and rainbows... */
-}
-
-
-/*
- * Routine: cpu_signal_handler
- * Function:
- * Here is where we implement the receiver of the signaling protocol.
- * We wait for the signal status area to be passed to us. Then we snarf
- * up the status, the sender, and the 3 potential parms. Next we release
- * the lock and signal the other guy.
- */
-void
-cpu_signal_handler(void)
-{
- unsigned int holdStat, holdParm0, holdParm1, holdParm2;
- unsigned int *parmAddr;
- struct per_proc_info *proc_info;
- int cpu;
- broadcastFunc xfunc;
- cpu = cpu_number(); /* Get the CPU number */
-
- proc_info = getPerProc();
-
-/*
- * Since we've been signaled, wait about 31 ms for the signal lock to pass
- */
- if(!hw_lock_mbits(&proc_info->MPsigpStat, (MPsigpMsgp | MPsigpAck), (MPsigpBusy | MPsigpPass),
- (MPsigpBusy | MPsigpPass | MPsigpAck), (gPEClockFrequencyInfo.timebase_frequency_hz >> 5))) {
- panic("cpu_signal_handler: Lock pass timed out\n");
- }
-
- holdStat = proc_info->MPsigpStat; /* Snarf stat word */
- holdParm0 = proc_info->MPsigpParm0; /* Snarf parameter */
- holdParm1 = proc_info->MPsigpParm1; /* Snarf parameter */
- holdParm2 = proc_info->MPsigpParm2; /* Snarf parameter */
-
- __asm__ volatile("isync"); /* Make sure we don't unlock until memory is in */
-
- proc_info->MPsigpStat = holdStat & ~(MPsigpMsgp | MPsigpAck | MPsigpFunc); /* Release lock */
-
- switch ((holdStat & MPsigpFunc) >> 8) { /* Decode function code */
-
- case MPsigpIdle: /* Was function cancelled? */
- return; /* Yup... */
-
- case MPsigpSigp: /* Signal Processor message? */
-
- switch (holdParm0) { /* Decode SIGP message order */
-
- case SIGPast: /* Should we do an AST? */
- proc_info->hwCtr.numSIGPast++; /* Count this one */
-#if 0
- kprintf("cpu_signal_handler: AST check on cpu %x\n", cpu_number());
-#endif
- ast_check((processor_t)proc_info->processor);
- return; /* All done... */
-
- case SIGPcpureq: /* CPU specific function? */
-
- proc_info->hwCtr.numSIGPcpureq++; /* Count this one */
- switch (holdParm1) { /* Select specific function */
-
- case CPRQtimebase:
-
- cpu_timebase_signal_handler(proc_info, (struct SIGtimebase *)holdParm2);
- return;
-
- case CPRQsegload:
- return;
-
- case CPRQchud:
- parmAddr = (unsigned int *)holdParm2; /* Get the destination address */
- if(perfCpuSigHook) {
- struct savearea *ssp = current_thread()->machine.pcb;
- if(ssp) {
- (perfCpuSigHook)(parmAddr[1] /* request */, ssp, 0, 0);
- }
- }
- parmAddr[1] = 0;
- parmAddr[0] = 0; /* Show we're done */
- return;
-
- case CPRQscom:
- if(((scomcomm *)holdParm2)->scomfunc) { /* Are we writing */
- ((scomcomm *)holdParm2)->scomstat = ml_scom_write(((scomcomm *)holdParm2)->scomreg, ((scomcomm *)holdParm2)->scomdata); /* Write scom */
- }
- else { /* No, reading... */
- ((scomcomm *)holdParm2)->scomstat = ml_scom_read(((scomcomm *)holdParm2)->scomreg, &((scomcomm *)holdParm2)->scomdata); /* Read scom */
- }
- return;
-
- case CPRQsps:
- {
- ml_set_processor_speed_slave(holdParm2);
- return;
- }
- default:
- panic("cpu_signal_handler: unknown CPU request - %08X\n", holdParm1);
- return;
- }
-
-
- case SIGPdebug: /* Enter the debugger? */
-
- proc_info->hwCtr.numSIGPdebug++; /* Count this one */
- proc_info->debugger_is_slave++; /* Bump up the count to show we're here */
- (void)hw_atomic_sub(&debugger_sync, 1); /* Show we've received the 'rupt */
- __asm__ volatile("tw 4,r3,r3"); /* Enter the debugger */
- return; /* All done now... */
-
- case SIGPwake: /* Wake up CPU */
- proc_info->hwCtr.numSIGPwake++; /* Count this one */
- return; /* No need to do anything, the interrupt does it all... */
-
- case SIGPcall: /* Call function on CPU */
- proc_info->hwCtr.numSIGPcall++; /* Count this one */
- xfunc = (broadcastFunc)holdParm1; /* Do this since I can't seem to figure C out */
- xfunc(holdParm2); /* Call the passed function */
- return; /* Done... */
-
- default:
- panic("cpu_signal_handler: unknown SIGP message order - %08X\n", holdParm0);
- return;
-
- }
-
- default:
- panic("cpu_signal_handler: unknown SIGP function - %08X\n", (holdStat & MPsigpFunc) >> 8);
- return;
-
- }
- panic("cpu_signal_handler: we should never get here\n");
-}
-
-
-/*
- * Routine: cpu_sync_timebase
- * Function:
- */
-void
-cpu_sync_timebase(
- void)
-{
- natural_t tbu, tbl;
- boolean_t intr;
- struct SIGtimebase syncClkSpot;
-
- intr = ml_set_interrupts_enabled(FALSE); /* No interruptions in here */
-
- syncClkSpot.avail = FALSE;
- syncClkSpot.ready = FALSE;
- syncClkSpot.done = FALSE;
-
- while (cpu_signal(master_cpu, SIGPcpureq, CPRQtimebase,
- (unsigned int)&syncClkSpot) != KERN_SUCCESS)
- continue;
-
- while (syncClkSpot.avail == FALSE)
- continue;
-
- isync();
-
- /*
- * We do the following to keep the compiler from generating extra stuff
- * in tb set part
- */
- tbu = syncClkSpot.abstime >> 32;
- tbl = (uint32_t)syncClkSpot.abstime;
-
- mttb(0);
- mttbu(tbu);
- mttb(tbl);
-
- syncClkSpot.ready = TRUE;
-
- while (syncClkSpot.done == FALSE)
- continue;
-
- etimer_resync_deadlines(); /* Start the timer */
- (void)ml_set_interrupts_enabled(intr);
-}
-
-
-/*
- * Routine: cpu_timebase_signal_handler
- * Function:
- */
-void
-cpu_timebase_signal_handler(
- struct per_proc_info *proc_info,
- struct SIGtimebase *timebaseAddr)
-{
- unsigned int tbu, tbu2, tbl;
-
- if(proc_info->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL)
- proc_info->time_base_enable(proc_info->cpu_id, FALSE);
-
- timebaseAddr->abstime = 0; /* Touch to force into cache */
- sync();
-
- do {
- asm volatile(" mftbu %0" : "=r" (tbu));
- asm volatile(" mftb %0" : "=r" (tbl));
- asm volatile(" mftbu %0" : "=r" (tbu2));
- } while (tbu != tbu2);
-
- timebaseAddr->abstime = ((uint64_t)tbu << 32) | tbl;
- sync(); /* Force order */
-
- timebaseAddr->avail = TRUE;
-
- while (timebaseAddr->ready == FALSE)
- continue;
-
- if(proc_info->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL)
- proc_info->time_base_enable(proc_info->cpu_id, TRUE);
-
- timebaseAddr->done = TRUE;
-}
-
-
-/*
- * Routine: cpu_control
- * Function:
- */
-kern_return_t
-cpu_control(
- int slot_num,
- processor_info_t info,
- unsigned int count)
-{
- struct per_proc_info *proc_info;
- cpu_type_t tcpu_type;
- cpu_subtype_t tcpu_subtype;
- processor_pm_regs_t perf_regs;
- processor_control_cmd_t cmd;
- boolean_t oldlevel;
-#define MMCR0_SUPPORT_MASK 0xf83f1fff
-#define MMCR1_SUPPORT_MASK 0xffc00000
-#define MMCR2_SUPPORT_MASK 0x80000000
-
- proc_info = PerProcTable[slot_num].ppe_vaddr;
- tcpu_type = proc_info->cpu_type;
- tcpu_subtype = proc_info->cpu_subtype;
- cmd = (processor_control_cmd_t) info;
-
- if (count < PROCESSOR_CONTROL_CMD_COUNT)
- return(KERN_FAILURE);
-
- if ( tcpu_type != cmd->cmd_cpu_type ||
- tcpu_subtype != cmd->cmd_cpu_subtype)
- return(KERN_FAILURE);
-
- if (perfmon_acquire_facility(current_task()) != KERN_SUCCESS) {
- return(KERN_RESOURCE_SHORTAGE); /* cpu performance facility in use by another task */
- }
-
- switch (cmd->cmd_op)
- {
- case PROCESSOR_PM_CLR_PMC: /* Clear Performance Monitor Counters */
- switch (tcpu_subtype)
- {
- case CPU_SUBTYPE_POWERPC_750:
- case CPU_SUBTYPE_POWERPC_7400:
- case CPU_SUBTYPE_POWERPC_7450:
- {
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- mtpmc1(0x0);
- mtpmc2(0x0);
- mtpmc3(0x0);
- mtpmc4(0x0);
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
- return(KERN_SUCCESS);
- }
- default:
- return(KERN_FAILURE);
- } /* tcpu_subtype */
- case PROCESSOR_PM_SET_REGS: /* Set Performance Monitor Registors */
- switch (tcpu_subtype)
- {
- case CPU_SUBTYPE_POWERPC_750:
- if (count < (PROCESSOR_CONTROL_CMD_COUNT +
- PROCESSOR_PM_REGS_COUNT_POWERPC_750))
- return(KERN_FAILURE);
- else
- {
- perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
- mtpmc1(PERFMON_PMC1(perf_regs));
- mtpmc2(PERFMON_PMC2(perf_regs));
- mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
- mtpmc3(PERFMON_PMC3(perf_regs));
- mtpmc4(PERFMON_PMC4(perf_regs));
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
- return(KERN_SUCCESS);
- }
- case CPU_SUBTYPE_POWERPC_7400:
- case CPU_SUBTYPE_POWERPC_7450:
- if (count < (PROCESSOR_CONTROL_CMD_COUNT +
- PROCESSOR_PM_REGS_COUNT_POWERPC_7400))
- return(KERN_FAILURE);
- else
- {
- perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
- mtpmc1(PERFMON_PMC1(perf_regs));
- mtpmc2(PERFMON_PMC2(perf_regs));
- mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
- mtpmc3(PERFMON_PMC3(perf_regs));
- mtpmc4(PERFMON_PMC4(perf_regs));
- mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK);
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
- return(KERN_SUCCESS);
- }
- default:
- return(KERN_FAILURE);
- } /* switch tcpu_subtype */
- case PROCESSOR_PM_SET_MMCR:
- switch (tcpu_subtype)
- {
- case CPU_SUBTYPE_POWERPC_750:
- if (count < (PROCESSOR_CONTROL_CMD_COUNT +
- PROCESSOR_PM_REGS_COUNT_POWERPC_750))
- return(KERN_FAILURE);
- else
- {
- perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
- mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
- return(KERN_SUCCESS);
- }
- case CPU_SUBTYPE_POWERPC_7400:
- case CPU_SUBTYPE_POWERPC_7450:
- if (count < (PROCESSOR_CONTROL_CMD_COUNT +
- PROCESSOR_PM_REGS_COUNT_POWERPC_7400))
- return(KERN_FAILURE);
- else
- {
- perf_regs = (processor_pm_regs_t)cmd->cmd_pm_regs;
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- mtmmcr0(PERFMON_MMCR0(perf_regs) & MMCR0_SUPPORT_MASK);
- mtmmcr1(PERFMON_MMCR1(perf_regs) & MMCR1_SUPPORT_MASK);
- mtmmcr2(PERFMON_MMCR2(perf_regs) & MMCR2_SUPPORT_MASK);
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
- return(KERN_SUCCESS);
- }
- default:
- return(KERN_FAILURE);
- } /* tcpu_subtype */
- default:
- return(KERN_FAILURE);
- } /* switch cmd_op */
-}
-
-
-/*
- * Routine: cpu_info_count
- * Function:
- */
-kern_return_t
-cpu_info_count(
- processor_flavor_t flavor,
- unsigned int *count)
-{
- cpu_subtype_t tcpu_subtype;
-
- /*
- * For now, we just assume that all CPUs are of the same type
- */
- tcpu_subtype = PerProcTable[master_cpu].ppe_vaddr->cpu_subtype;
- switch (flavor) {
- case PROCESSOR_PM_REGS_INFO:
- switch (tcpu_subtype) {
- case CPU_SUBTYPE_POWERPC_750:
-
- *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750;
- return(KERN_SUCCESS);
-
- case CPU_SUBTYPE_POWERPC_7400:
- case CPU_SUBTYPE_POWERPC_7450:
-
- *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400;
- return(KERN_SUCCESS);
-
- default:
- *count = 0;
- return(KERN_INVALID_ARGUMENT);
- } /* switch tcpu_subtype */
-
- case PROCESSOR_TEMPERATURE:
- *count = PROCESSOR_TEMPERATURE_COUNT;
- return (KERN_SUCCESS);
-
- default:
- *count = 0;
- return(KERN_INVALID_ARGUMENT);
-
- }
-}
-
-
-/*
- * Routine: cpu_info
- * Function:
- */
-kern_return_t
-cpu_info(
- processor_flavor_t flavor,
- int slot_num,
- processor_info_t info,
- unsigned int *count)
-{
- cpu_subtype_t tcpu_subtype;
- processor_pm_regs_t perf_regs;
- boolean_t oldlevel;
-
- tcpu_subtype = PerProcTable[slot_num].ppe_vaddr->cpu_subtype;
-
- switch (flavor) {
- case PROCESSOR_PM_REGS_INFO:
-
- perf_regs = (processor_pm_regs_t) info;
-
- switch (tcpu_subtype) {
- case CPU_SUBTYPE_POWERPC_750:
-
- if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_750)
- return(KERN_FAILURE);
-
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- PERFMON_MMCR0(perf_regs) = mfmmcr0();
- PERFMON_PMC1(perf_regs) = mfpmc1();
- PERFMON_PMC2(perf_regs) = mfpmc2();
- PERFMON_MMCR1(perf_regs) = mfmmcr1();
- PERFMON_PMC3(perf_regs) = mfpmc3();
- PERFMON_PMC4(perf_regs) = mfpmc4();
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
-
- *count = PROCESSOR_PM_REGS_COUNT_POWERPC_750;
- return(KERN_SUCCESS);
-
- case CPU_SUBTYPE_POWERPC_7400:
- case CPU_SUBTYPE_POWERPC_7450:
-
- if (*count < PROCESSOR_PM_REGS_COUNT_POWERPC_7400)
- return(KERN_FAILURE);
-
- oldlevel = ml_set_interrupts_enabled(FALSE); /* disable interrupts */
- PERFMON_MMCR0(perf_regs) = mfmmcr0();
- PERFMON_PMC1(perf_regs) = mfpmc1();
- PERFMON_PMC2(perf_regs) = mfpmc2();
- PERFMON_MMCR1(perf_regs) = mfmmcr1();
- PERFMON_PMC3(perf_regs) = mfpmc3();
- PERFMON_PMC4(perf_regs) = mfpmc4();
- PERFMON_MMCR2(perf_regs) = mfmmcr2();
- ml_set_interrupts_enabled(oldlevel); /* enable interrupts */
-
- *count = PROCESSOR_PM_REGS_COUNT_POWERPC_7400;
- return(KERN_SUCCESS);
-
- default:
- return(KERN_FAILURE);
- } /* switch tcpu_subtype */
-
- case PROCESSOR_TEMPERATURE: /* Get the temperature of a processor */
-
- *info = -1; /* Get the temperature */
- return(KERN_FAILURE);
-
- default:
- return(KERN_INVALID_ARGUMENT);
-
- } /* flavor */
-}
-
-
-/*
- * Routine: cpu_to_processor
- * Function:
- */
-processor_t
-cpu_to_processor(
- int cpu)
-{
- return ((processor_t)PerProcTable[cpu].ppe_vaddr->processor);
-}
-
-
-/*
- * Routine: slot_type
- * Function:
- */
-cpu_type_t
-slot_type(
- int slot_num)
-{
- return (PerProcTable[slot_num].ppe_vaddr->cpu_type);
-}
-
-
-/*
- * Routine: slot_subtype
- * Function:
- */
-cpu_subtype_t
-slot_subtype(
- int slot_num)
-{
- return (PerProcTable[slot_num].ppe_vaddr->cpu_subtype);
-}
-
-
-/*
- * Routine: slot_threadtype
- * Function:
- */
-cpu_threadtype_t
-slot_threadtype(
- int slot_num)
-{
- return (PerProcTable[slot_num].ppe_vaddr->cpu_threadtype);
-}
-
-
-/*
- * Routine: cpu_type
- * Function:
- */
-cpu_type_t
-cpu_type(void)
-{
- return (getPerProc()->cpu_type);
-}
-
-
-/*
- * Routine: cpu_subtype
- * Function:
- */
-cpu_subtype_t
-cpu_subtype(void)
-{
- return (getPerProc()->cpu_subtype);
-}
-
-
-/*
- * Routine: cpu_threadtype
- * Function:
- */
-cpu_threadtype_t
-cpu_threadtype(void)
-{
- return (getPerProc()->cpu_threadtype);
-}
-
-/*
- * Call a function on all running processors
- *
- * Note that the synch paramter is used to wait until all functions are complete.
- * It is not passed to the other processor and must be known by the called function.
- * The called function must do a thread_wakeup on the synch if it decrements the
- * synch count to 0.
- *
- * We start by initializing the synchronizer to the number of possible cpus.
- * The we signal each popssible processor.
- * If the signal fails, we count it. We also skip our own.
- * When we are finished signaling, we adjust the syncronizer count down buy the number of failed signals.
- * Because the signaled processors are also decrementing the synchronizer count, the adjustment may result in a 0
- * If this happens, all other processors are finished with the function.
- * If so, we clear the wait and continue
- * Otherwise, we block waiting for the other processor(s) to finish.
- *
- * Meanwhile, the other processors are decrementing the synchronizer when they are done
- * If it goes to zero, thread_wakeup is called to run the broadcaster
- *
- * Note that because we account for the broadcaster in the synchronization count, we will not get any
- * premature wakeup calls.
- *
- * Also note that when we do the adjustment of the synchronization count, it the result is 0, it means that
- * all of the other processors are finished. Otherwise, we know that there is at least one more.
- * When that thread decrements the synchronizer to zero, it will do a thread_wake.
- *
- */
-
-int32_t
-cpu_broadcast(uint32_t *synch, broadcastFunc func, uint32_t parm)
-{
- int failsig;
- unsigned int cpu, ocpu;
-
- cpu = cpu_number(); /* Who are we? */
- failsig = 0; /* Clear called processor count */
-
- if(real_ncpus > 1) { /* Are we just a uni? */
-
- *synch = real_ncpus; /* Set how many we are going to try */
- assert_wait((event_t)synch, THREAD_UNINT); /* If more than one processor, we may have to wait */
-
- for(ocpu = 0; ocpu < real_ncpus; ocpu++) { /* Tell everyone to call */
-
- if(ocpu == cpu) continue; /* If we talk to ourselves, people will wonder... */
-
- if(KERN_SUCCESS != cpu_signal(ocpu, SIGPcall, (uint32_t)func, parm)) { /* Call the function on the other processor */
- failsig++; /* Count failed signals */
- }
- }
-
- if (hw_atomic_sub(synch, failsig + 1) == 0)
- clear_wait(current_thread(), THREAD_AWAKENED); /* Clear wait if we never signalled or all of the others finished */
- else
- thread_block(THREAD_CONTINUE_NULL); /* Wait for everyone to get into step... */
- }
-
- return (real_ncpus - failsig - 1); /* Return the number of guys actually signalled... */
-}