/*
- * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
-* @OSF_COPYRIGHT@
-*/
-/*
-* Mach Operating System
-* Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
-* All Rights Reserved.
-*
-* Permission to use, copy, modify and distribute this software and its
-* documentation is hereby granted, provided that both the copyright
-* notice and this permission notice appear in all copies of the
-* software, derivative works or modified versions, and any portions
-* thereof, and that both notices appear in supporting documentation.
-*
-* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
-* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
-* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
-*
-* Carnegie Mellon requests users of this software to return to
-*
-* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
-* School of Computer Science
-* Carnegie Mellon University
-* Pittsburgh PA 15213-3890
-*
-* any improvements or extensions that they make and grant Carnegie Mellon
-* the rights to redistribute these changes.
-*/
+ * @OSF_COPYRIGHT@
+ */
+/*
+ * Mach Operating System
+ * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
+ * All Rights Reserved.
+ *
+ * Permission to use, copy, modify and distribute this software and its
+ * documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
+ * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie Mellon
+ * the rights to redistribute these changes.
+ */
/*
-*/
+ */
/*
-* Hardware trap/fault handler.
+ * Hardware trap/fault handler.
*/
#include <mach_kdp.h>
#include <kern/telemetry.h>
#endif
#include <sys/kdebug.h>
+#include <kperf/kperf.h>
#include <prng/random.h>
#include <string.h>
* Forward declarations
*/
static void user_page_fault_continue(kern_return_t kret);
-static void panic_trap(x86_saved_state64_t *saved_state, uint32_t pl, kern_return_t fault_result);
+static void panic_trap(x86_saved_state64_t *saved_state, uint32_t pl, kern_return_t fault_result) __dead2;
static void set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip);
-volatile perfCallback perfTrapHook = NULL; /* Pointer to CHUD trap hook routine */
-
#if CONFIG_DTRACE
/* See <rdar://problem/4613924> */
perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */
__attribute__((noreturn))
void
thread_syscall_return(
- kern_return_t ret)
+ kern_return_t ret)
{
- thread_t thr_act = current_thread();
- boolean_t is_mach;
- int code;
+ thread_t thr_act = current_thread();
+ boolean_t is_mach;
+ int code;
pal_register_cache_state(thr_act, DIRTY);
- if (thread_is_64bit(thr_act)) {
- x86_saved_state64_t *regs;
-
+ if (thread_is_64bit_addr(thr_act)) {
+ x86_saved_state64_t *regs;
+
regs = USER_REGS64(thr_act);
code = (int) (regs->rax & SYSCALL_NUMBER_MASK);
is_mach = (regs->rax & SYSCALL_CLASS_MASK)
- == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT);
+ == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT);
if (kdebug_enable && is_mach) {
- /* Mach trap */
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- MACHDBG_CODE(DBG_MACH_EXCP_SC,code)|DBG_FUNC_END,
- ret, 0, 0, 0, 0);
+ /* Mach trap */
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_SC, code) | DBG_FUNC_END,
+ ret, 0, 0, 0, 0);
}
regs->rax = ret;
#if DEBUG
- if (is_mach)
+ if (is_mach) {
DEBUG_KPRINT_SYSCALL_MACH(
"thread_syscall_return: 64-bit mach ret=%u\n",
ret);
- else
+ } else {
DEBUG_KPRINT_SYSCALL_UNIX(
"thread_syscall_return: 64-bit unix ret=%u\n",
ret);
+ }
#endif
} else {
- x86_saved_state32_t *regs;
-
+ x86_saved_state32_t *regs;
+
regs = USER_REGS32(thr_act);
code = ((int) regs->eax);
is_mach = (code < 0);
if (kdebug_enable && is_mach) {
- /* Mach trap */
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- MACHDBG_CODE(DBG_MACH_EXCP_SC,-code)|DBG_FUNC_END,
- ret, 0, 0, 0, 0);
+ /* Mach trap */
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_SC, -code) | DBG_FUNC_END,
+ ret, 0, 0, 0, 0);
}
regs->eax = ret;
#if DEBUG
- if (is_mach)
+ if (is_mach) {
DEBUG_KPRINT_SYSCALL_MACH(
"thread_syscall_return: 32-bit mach ret=%u\n",
ret);
- else
+ } else {
DEBUG_KPRINT_SYSCALL_UNIX(
"thread_syscall_return: 32-bit unix ret=%u\n",
ret);
+ }
#endif
}
+
+#if DEBUG || DEVELOPMENT
+ kern_allocation_name_t
+ prior __assert_only = thread_get_kernel_state(thr_act)->allocation_name;
+ assertf(prior == NULL, "thread_set_allocation_name(\"%s\") not cleared", kern_allocation_get_name(prior));
+#endif /* DEBUG || DEVELOPMENT */
+
throttle_lowpri_io(1);
thread_exception_return();
- /*NOTREACHED*/
+ /*NOTREACHED*/
}
static inline void
user_page_fault_continue(
- kern_return_t kr)
+ kern_return_t kr)
{
- thread_t thread = current_thread();
- user_addr_t vaddr;
+ thread_t thread = current_thread();
+ user_addr_t vaddr;
- if (thread_is_64bit(thread)) {
- x86_saved_state64_t *uregs;
+ if (thread_is_64bit_addr(thread)) {
+ x86_saved_state64_t *uregs;
uregs = USER_REGS64(thread);
vaddr = (user_addr_t)uregs->cr2;
} else {
- x86_saved_state32_t *uregs;
+ x86_saved_state32_t *uregs;
uregs = USER_REGS32(thread);
* Fault recovery in copyin/copyout routines.
*/
struct recovery {
- uintptr_t fault_addr;
- uintptr_t recover_addr;
+ uintptr_t fault_addr;
+ uintptr_t recover_addr;
};
-extern struct recovery recover_table[];
-extern struct recovery recover_table_end[];
+extern struct recovery recover_table[];
+extern struct recovery recover_table_end[];
-const char * trap_type[] = {TRAP_NAMES};
-unsigned TRAP_TYPES = sizeof(trap_type)/sizeof(trap_type[0]);
+const char * trap_type[] = {TRAP_NAMES};
+unsigned TRAP_TYPES = sizeof(trap_type) / sizeof(trap_type[0]);
-extern void PE_incoming_interrupt(int interrupt);
+extern void PE_incoming_interrupt(int interrupt);
#if defined(__x86_64__) && DEBUG
void
-kprint_state(x86_saved_state64_t *saved_state)
+kprint_state(x86_saved_state64_t *saved_state)
{
kprintf("current_cpu_datap() 0x%lx\n", (uintptr_t)current_cpu_datap());
kprintf("Current GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_GS_BASE));
kprintf("Kernel GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_KERNEL_GS_BASE));
kprintf("state at 0x%lx:\n", (uintptr_t) saved_state);
- kprintf(" rdi 0x%llx\n", saved_state->rdi);
- kprintf(" rsi 0x%llx\n", saved_state->rsi);
+ kprintf(" rdi 0x%llx\n", saved_state->rdi);
+ kprintf(" rsi 0x%llx\n", saved_state->rsi);
kprintf(" rdx 0x%llx\n", saved_state->rdx);
kprintf(" r10 0x%llx\n", saved_state->r10);
kprintf(" r8 0x%llx\n", saved_state->r8);
- kprintf(" r9 0x%llx\n", saved_state->r9);
+ kprintf(" r9 0x%llx\n", saved_state->r9);
kprintf(" cr2 0x%llx\n", saved_state->cr2);
kprintf("real cr2 0x%lx\n", get_cr2());
* Non-zero indicates latency assert is enabled and capped at valued
* absolute time units.
*/
-
+
uint64_t interrupt_latency_cap = 0;
boolean_t ilat_assert = FALSE;
void
-interrupt_latency_tracker_setup(void) {
+interrupt_latency_tracker_setup(void)
+{
uint32_t ilat_cap_us;
if (PE_parse_boot_argn("interrupt_latency_cap_us", &ilat_cap_us, sizeof(ilat_cap_us))) {
interrupt_latency_cap = ilat_cap_us * NSEC_PER_USEC;
PE_parse_boot_argn("-interrupt_latency_assert_enable", &ilat_assert, sizeof(ilat_assert));
}
-void interrupt_reset_latency_stats(void) {
+void
+interrupt_reset_latency_stats(void)
+{
uint32_t i;
for (i = 0; i < real_ncpus; i++) {
cpu_data_ptr[i]->cpu_max_observed_int_latency =
}
}
-void interrupt_populate_latency_stats(char *buf, unsigned bufsize) {
+void
+interrupt_populate_latency_stats(char *buf, unsigned bufsize)
+{
uint32_t i, tcpu = ~0;
uint64_t cur_max = 0;
}
}
- if (tcpu < real_ncpus)
+ if (tcpu < real_ncpus) {
snprintf(buf, bufsize, "0x%x 0x%x 0x%llx", tcpu, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency_vector, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency);
+ }
}
uint32_t interrupt_timer_coalescing_enabled = 1;
void
interrupt(x86_saved_state_t *state)
{
- uint64_t rip;
- uint64_t rsp;
- int interrupt_num;
- boolean_t user_mode = FALSE;
- int ipl;
- int cnum = cpu_number();
- cpu_data_t *cdp = cpu_data_ptr[cnum];
- int itype = 0;
-
- if (is_saved_state64(state) == TRUE) {
- x86_saved_state64_t *state64;
-
- state64 = saved_state64(state);
- rip = state64->isf.rip;
- rsp = state64->isf.rsp;
- interrupt_num = state64->isf.trapno;
-#ifdef __x86_64__
- if(state64->isf.cs & 0x03)
-#endif
- user_mode = TRUE;
- } else {
- x86_saved_state32_t *state32;
-
- state32 = saved_state32(state);
- if (state32->cs & 0x03)
- user_mode = TRUE;
- rip = state32->eip;
- rsp = state32->uesp;
- interrupt_num = state32->trapno;
+ uint64_t rip;
+ uint64_t rsp;
+ int interrupt_num;
+ boolean_t user_mode = FALSE;
+ int ipl;
+ int cnum = cpu_number();
+ cpu_data_t *cdp = cpu_data_ptr[cnum];
+ int itype = DBG_INTR_TYPE_UNKNOWN;
+ int handled;
+
+ x86_saved_state64_t *state64 = saved_state64(state);
+ rip = state64->isf.rip;
+ rsp = state64->isf.rsp;
+ interrupt_num = state64->isf.trapno;
+ if (state64->isf.cs & 0x03) {
+ user_mode = TRUE;
}
- if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage)
+ if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage) {
cpu_data_ptr[cnum]->cpu_hwIntpexits[interrupt_num]++;
+ }
- if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT))
- itype = 1;
- else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT))
- itype = 2;
- else
- itype = 3;
+ if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT)) {
+ itype = DBG_INTR_TYPE_IPI;
+ } else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT)) {
+ itype = DBG_INTR_TYPE_TIMER;
+ } else {
+ itype = DBG_INTR_TYPE_OTHER;
+ }
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
- interrupt_num,
- (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)),
- user_mode, itype, 0);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
+ interrupt_num,
+ (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)),
+ user_mode, itype, 0);
SCHED_STATS_INTERRUPT(current_processor());
#if CONFIG_TELEMETRY
if (telemetry_needs_record) {
- telemetry_mark_curthread(user_mode);
+ telemetry_mark_curthread(user_mode, FALSE);
}
#endif
ipl = get_preemption_level();
-
+
/*
* Handle local APIC interrupts
* else call platform expert for devices.
*/
- if (!lapic_interrupt(interrupt_num, state)) {
- PE_incoming_interrupt(interrupt_num);
+ handled = lapic_interrupt(interrupt_num, state);
+
+ if (!handled) {
+ if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_CMCI_INTERRUPT)) {
+ /*
+ * CMCI can be signalled on any logical processor, and the kexts
+ * that implement handling CMCI use IOKit to register handlers for
+ * the CMCI vector, so if we see a CMCI, do not encode a CPU
+ * number in bits 8:31 (since the vector is the same regardless of
+ * the handling CPU).
+ */
+ PE_incoming_interrupt(interrupt_num);
+ } else if (cnum <= lapic_max_interrupt_cpunum) {
+ PE_incoming_interrupt((cnum << 8) | interrupt_num);
+ }
}
if (__improbable(get_preemption_level() != ipl)) {
}
- if (__improbable(cdp->cpu_nested_istack)) {
- cdp->cpu_nested_istack_events++;
- }
- else {
+ if (__improbable(cdp->cpu_nested_istack)) {
+ cdp->cpu_nested_istack_events++;
+ } else {
uint64_t ctime = mach_absolute_time();
uint64_t int_latency = ctime - cdp->cpu_int_event_time;
uint64_t esdeadline, ehdeadline;
*/
if (!user_mode) {
uint64_t depth = cdp->cpu_kernel_stack
- + sizeof(struct x86_kernel_state)
- + sizeof(struct i386_exception_link *)
- - rsp;
+ + sizeof(struct thread_kernel_state)
+ + sizeof(struct i386_exception_link *)
+ - rsp;
if (__improbable(depth > kernel_stack_depth_max)) {
kernel_stack_depth_max = (vm_offset_t)depth;
KERNEL_DEBUG_CONSTANT(
(long) depth, (long) VM_KERNEL_UNSLIDE(rip), 0, 0, 0);
}
}
-
- if (cnum == master_cpu)
+
+ if (cnum == master_cpu) {
ml_entropy_collect();
+ }
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END,
- interrupt_num, 0, 0, 0, 0);
+#if KPERF
+ kperf_interrupt();
+#endif /* KPERF */
+
+ KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END,
+ interrupt_num);
assert(ml_get_interrupts_enabled() == FALSE);
}
reset_dr7(void)
{
long dr7 = 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */
- __asm__ volatile("mov %0,%%dr7" : : "r" (dr7));
+ __asm__ volatile ("mov %0,%%dr7" : : "r" (dr7));
}
#if MACH_KDP
unsigned kdp_has_active_watchpoints = 0;
void
kernel_trap(
- x86_saved_state_t *state,
+ x86_saved_state_t *state,
uintptr_t *lo_spp)
{
- x86_saved_state64_t *saved_state;
- int code;
- user_addr_t vaddr;
- int type;
- vm_map_t map = 0; /* protected by T_PAGE_FAULT */
- kern_return_t result = KERN_FAILURE;
- kern_return_t fault_result = KERN_SUCCESS;
- thread_t thread;
- ast_t *myast;
+ x86_saved_state64_t *saved_state;
+ int code;
+ user_addr_t vaddr;
+ int type;
+ vm_map_t map = 0; /* protected by T_PAGE_FAULT */
+ kern_return_t result = KERN_FAILURE;
+ kern_return_t fault_result = KERN_SUCCESS;
+ thread_t thread;
boolean_t intr;
- vm_prot_t prot;
- struct recovery *rp;
- vm_offset_t kern_ip;
+ vm_prot_t prot;
+ struct recovery *rp;
+ vm_offset_t kern_ip;
#if NCOPY_WINDOWS > 0
- int fault_in_copy_window = -1;
+ int fault_in_copy_window = -1;
#endif
- int is_user;
- int trap_pl = get_preemption_level();
+ int is_user;
+ int trap_pl = get_preemption_level();
thread = current_thread();
- if (__improbable(is_saved_state32(state)))
+ if (__improbable(is_saved_state32(state))) {
panic("kernel_trap(%p) with 32-bit state", state);
+ }
saved_state = saved_state64(state);
/* Record cpu where state was captured */
vaddr = (user_addr_t)saved_state->cr2;
type = saved_state->isf.trapno;
code = (int)(saved_state->isf.err & 0xffff);
- intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */
+ intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */
kern_ip = (vm_offset_t)saved_state->isf.rip;
- myast = ast_pending();
-
is_user = (vaddr < VM_MAX_USER_PAGE_ADDRESS);
- perfASTCallback astfn = perfASTHook;
- if (__improbable(astfn != NULL)) {
- if (*myast & AST_CHUD_ALL)
- astfn(AST_CHUD_ALL, myast);
- } else
- *myast &= ~AST_CHUD_ALL;
-
-
#if CONFIG_DTRACE
/*
* Is there a DTrace hook?
- */
+ */
if (__improbable(tempDTraceTrapHook != NULL)) {
if (tempDTraceTrapHook(type, state, lo_spp, 0) == KERN_SUCCESS) {
/*
* as soon we possibly can to hold latency down
*/
if (__improbable(T_PREEMPT == type)) {
- ast_taken(AST_PREEMPTION, FALSE);
+ ast_taken_kernel();
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
- 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
+ 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0);
return;
}
- user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr);
+ user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
- (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user,
- VM_KERNEL_UNSLIDE(kern_ip), 0);
+ (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
+ (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user,
+ VM_KERNEL_UNSLIDE(kern_ip), 0);
if (T_PAGE_FAULT == type) {
if (__probable(thread != THREAD_NULL && thread->map != kernel_map)) {
#if NCOPY_WINDOWS > 0
- vm_offset_t copy_window_base;
- vm_offset_t kvaddr;
- int window_index;
+ vm_offset_t copy_window_base;
+ vm_offset_t kvaddr;
+ int window_index;
kvaddr = (vm_offset_t)vaddr;
/*
*/
copy_window_base = current_cpu_datap()->cpu_copywindow_base;
- if (kvaddr >= copy_window_base && kvaddr < (copy_window_base + (NBPDE * NCOPY_WINDOWS)) ) {
-
+ if (kvaddr >= copy_window_base && kvaddr < (copy_window_base + (NBPDE * NCOPY_WINDOWS))) {
window_index = (int)((kvaddr - copy_window_base) / NBPDE);
if (thread->machine.copy_window[window_index].user_base != (user_addr_t)-1) {
-
- kvaddr -= (copy_window_base + (NBPDE * window_index));
- vaddr = thread->machine.copy_window[window_index].user_base + kvaddr;
+ kvaddr -= (copy_window_base + (NBPDE * window_index));
+ vaddr = thread->machine.copy_window[window_index].user_base + kvaddr;
map = thread->map;
fault_in_copy_window = window_index;
* the intercept).
*/
if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) &&
- (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) {
+ (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) {
goto debugger_entry;
}
* the AC bit unset (i.e. not from copyin/out path).
*/
if (__improbable(code & T_PF_PROT &&
- pmap_smap_enabled &&
- (saved_state->isf.rflags & EFL_AC) == 0)) {
+ pmap_smap_enabled &&
+ (saved_state->isf.rflags & EFL_AC) == 0)) {
goto debugger_entry;
}
* then switch cr3 here and dismiss the fault.
*/
if (no_shared_cr3 &&
- (thread->machine.specFlags&CopyIOActive) &&
+ (thread->machine.specFlags & CopyIOActive) &&
map->pmap->pm_cr3 != get_cr3_base()) {
pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE);
set_cr3_raw(map->pmap->pm_cr3);
(void) ml_set_interrupts_enabled(intr);
switch (type) {
-
- case T_NO_FPU:
+ case T_NO_FPU:
fpnoextflt();
return;
- case T_FPU_FAULT:
+ case T_FPU_FAULT:
fpextovrflt();
return;
- case T_FLOATING_POINT_ERROR:
+ case T_FLOATING_POINT_ERROR:
fpexterrflt();
return;
- case T_SSE_FLOAT_ERROR:
- fpSSEexterrflt();
+ case T_SSE_FLOAT_ERROR:
+ fpSSEexterrflt();
return;
- case T_DEBUG:
- if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS)
- {
- /* We've somehow encountered a debug
- * register match that does not belong
- * to the kernel debugger.
- * This isn't supposed to happen.
- */
- reset_dr7();
- return;
- }
- goto debugger_entry;
-#ifdef __x86_64__
- case T_INT3:
- goto debugger_entry;
-#endif
- case T_PAGE_FAULT:
+
+ case T_INVALID_OPCODE:
+ fpUDflt(kern_ip);
+ goto debugger_entry;
+
+ case T_DEBUG:
+ if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS) {
+ /* We've somehow encountered a debug
+ * register match that does not belong
+ * to the kernel debugger.
+ * This isn't supposed to happen.
+ */
+ reset_dr7();
+ return;
+ }
+ goto debugger_entry;
+ case T_INT3:
+ goto debugger_entry;
+ case T_PAGE_FAULT:
#if CONFIG_DTRACE
- if (thread != THREAD_NULL && thread->options & TH_OPT_DTRACE) { /* Executing under dtrace_probe? */
+ if (thread != THREAD_NULL && thread->t_dtrace_inprobe) { /* Executing under dtrace_probe? */
if (dtrace_tally_fault(vaddr)) { /* Should a fault under dtrace be ignored? */
/*
* DTrace has "anticipated" the possibility of this fault, and has
* established the suitable recovery state. Drop down now into the
- * recovery handling code in "case T_GENERAL_PROTECTION:".
+ * recovery handling code in "case T_GENERAL_PROTECTION:".
*/
goto FALL_THROUGH;
}
}
#endif /* CONFIG_DTRACE */
-
+
prot = VM_PROT_READ;
- if (code & T_PF_WRITE)
- prot |= VM_PROT_WRITE;
- if (code & T_PF_EXECUTE)
- prot |= VM_PROT_EXECUTE;
+ if (code & T_PF_WRITE) {
+ prot |= VM_PROT_WRITE;
+ }
+ if (code & T_PF_EXECUTE) {
+ prot |= VM_PROT_EXECUTE;
+ }
fault_result = result = vm_fault(map,
- vaddr,
- prot,
- FALSE,
- THREAD_UNINT, NULL, 0);
+ vaddr,
+ prot,
+ FALSE, VM_KERN_MEMORY_NONE,
+ THREAD_UNINT, NULL, 0);
if (result == KERN_SUCCESS) {
#if NCOPY_WINDOWS > 0
if (fault_in_copy_window != -1) {
ml_set_interrupts_enabled(FALSE);
copy_window_fault(thread, map,
- fault_in_copy_window);
+ fault_in_copy_window);
(void) ml_set_interrupts_enabled(intr);
}
#endif /* NCOPY_WINDOWS > 0 */
FALL_THROUGH:
#endif /* CONFIG_DTRACE */
- case T_GENERAL_PROTECTION:
+ case T_GENERAL_PROTECTION:
/*
* If there is a failure recovery address
* for this fault, go there.
*/
- for (rp = recover_table; rp < recover_table_end; rp++) {
- if (kern_ip == rp->fault_addr) {
- set_recovery_ip(saved_state, rp->recover_addr);
+ for (rp = recover_table; rp < recover_table_end; rp++) {
+ if (kern_ip == rp->fault_addr) {
+ set_recovery_ip(saved_state, rp->recover_addr);
return;
}
}
thread->recover = 0;
return;
}
- /*
- * Unanticipated page-fault errors in kernel
- * should not happen.
- *
- * fall through...
- */
- default:
+ /*
+ * Unanticipated page-fault errors in kernel
+ * should not happen.
+ *
+ * fall through...
+ */
+ default:
/*
* Exception 15 is reserved but some chips may generate it
* spuriously. Seen at startup on AMD Athlon-64.
*/
- if (type == 15) {
- kprintf("kernel_trap() ignoring spurious trap 15\n");
+ if (type == 15) {
+ kprintf("kernel_trap() ignoring spurious trap 15\n");
return;
}
debugger_entry:
*/
sync_iss_to_iks(state);
#if MACH_KDP
- if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr))
+ if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr)) {
return;
+ }
#endif
}
pal_cli();
*/
}
-
static void
set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip)
{
- saved_state->isf.rip = ip;
+ saved_state->isf.rip = ip;
}
static void
panic_trap(x86_saved_state64_t *regs, uint32_t pl, kern_return_t fault_result)
{
- const char *trapname = "Unknown";
- pal_cr_t cr0, cr2, cr3, cr4;
- boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE;
- boolean_t potential_smap_fault = FALSE;
+ const char *trapname = "Unknown";
+ pal_cr_t cr0, cr2, cr3, cr4;
+ boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE;
+ boolean_t potential_smap_fault = FALSE;
pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 );
assert(ml_get_interrupts_enabled() == FALSE);
*/
panic_io_port_read();
- kprintf("panic trap number 0x%x, rip 0x%016llx\n",
- regs->isf.trapno, regs->isf.rip);
+ kprintf("CPU %d panic trap number 0x%x, rip 0x%016llx\n",
+ cpu_number(), regs->isf.trapno, regs->isf.rip);
kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n",
- cr0, cr2, cr3, cr4);
+ cr0, cr2, cr3, cr4);
- if (regs->isf.trapno < TRAP_TYPES)
- trapname = trap_type[regs->isf.trapno];
+ if (regs->isf.trapno < TRAP_TYPES) {
+ trapname = trap_type[regs->isf.trapno];
+ }
if ((regs->isf.trapno == T_PAGE_FAULT) && (regs->isf.err == (T_PF_PROT | T_PF_EXECUTE)) && (regs->isf.rip == regs->cr2)) {
if (pmap_smep_enabled && (regs->isf.rip < VM_MAX_USER_PAGE_ADDRESS)) {
potential_kernel_NX_fault = TRUE;
}
} else if (pmap_smap_enabled &&
- regs->isf.trapno == T_PAGE_FAULT &&
- regs->isf.err & T_PF_PROT &&
- regs->cr2 < VM_MAX_USER_PAGE_ADDRESS &&
- regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
+ regs->isf.trapno == T_PAGE_FAULT &&
+ regs->isf.err & T_PF_PROT &&
+ regs->cr2 < VM_MAX_USER_PAGE_ADDRESS &&
+ regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
potential_smap_fault = TRUE;
}
#undef panic
panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n"
- "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
- "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
- "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
- "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
- "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
- "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n"
- "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s, PL: %d, VF: %d\n",
- regs->isf.rip, regs->isf.trapno, trapname,
- cr0, cr2, cr3, cr4,
- regs->rax, regs->rbx, regs->rcx, regs->rdx,
- regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi,
- regs->r8, regs->r9, regs->r10, regs->r11,
- regs->r12, regs->r13, regs->r14, regs->r15,
- regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF,
- regs->isf.ss & 0xFFFF,regs->cr2, regs->isf.err, regs->isf.cpu,
- virtualized ? " VMM" : "",
- potential_kernel_NX_fault ? " Kernel NX fault" : "",
- potential_smep_fault ? " SMEP/User NX fault" : "",
- potential_smap_fault ? " SMAP fault" : "",
- pl,
- fault_result);
- /*
- * This next statement is not executed,
- * but it's needed to stop the compiler using tail call optimization
- * for the panic call - which confuses the subsequent backtrace.
- */
- cr0 = 0;
+ "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
+ "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
+ "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
+ "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
+ "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
+ "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n"
+ "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s, PL: %d, VF: %d\n",
+ regs->isf.rip, regs->isf.trapno, trapname,
+ cr0, cr2, cr3, cr4,
+ regs->rax, regs->rbx, regs->rcx, regs->rdx,
+ regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi,
+ regs->r8, regs->r9, regs->r10, regs->r11,
+ regs->r12, regs->r13, regs->r14, regs->r15,
+ regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF,
+ regs->isf.ss & 0xFFFF, regs->cr2, regs->isf.err, regs->isf.cpu,
+ virtualized ? " VMM" : "",
+ potential_kernel_NX_fault ? " Kernel NX fault" : "",
+ potential_smep_fault ? " SMEP/User NX fault" : "",
+ potential_smap_fault ? " SMAP fault" : "",
+ pl,
+ fault_result);
}
#if CONFIG_DTRACE
extern kern_return_t dtrace_user_probe(x86_saved_state_t *);
#endif
+#if DEBUG
+uint32_t fsigs[2];
+uint32_t fsigns, fsigcs;
+#endif
+
/*
* Trap from user mode.
*/
user_trap(
x86_saved_state_t *saved_state)
{
- int exc;
- int err;
- mach_exception_code_t code;
+ int exc;
+ int err;
+ mach_exception_code_t code;
mach_exception_subcode_t subcode;
- int type;
- user_addr_t vaddr;
- vm_prot_t prot;
- thread_t thread = current_thread();
- ast_t *myast;
- kern_return_t kret;
- user_addr_t rip;
- unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */
-
- assert((is_saved_state32(saved_state) && !thread_is_64bit(thread)) ||
- (is_saved_state64(saved_state) && thread_is_64bit(thread)));
+ int type;
+ user_addr_t vaddr;
+ vm_prot_t prot;
+ thread_t thread = current_thread();
+ kern_return_t kret;
+ user_addr_t rip;
+ unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */
+
+ assert((is_saved_state32(saved_state) && !thread_is_64bit_addr(thread)) ||
+ (is_saved_state64(saved_state) && thread_is_64bit_addr(thread)));
if (is_saved_state64(saved_state)) {
- x86_saved_state64_t *regs;
+ x86_saved_state64_t *regs;
regs = saved_state64(saved_state);
vaddr = (user_addr_t)regs->cr2;
rip = (user_addr_t)regs->isf.rip;
} else {
- x86_saved_state32_t *regs;
+ x86_saved_state32_t *regs;
regs = saved_state32(saved_state);
/* Stash and clear this processor's DR6 value, in the event
* this was a debug register match
*/
- __asm__ volatile ("mov %%db6, %0" : "=r" (dr6));
+ __asm__ volatile ("mov %%db6, %0" : "=r" (dr6));
__asm__ volatile ("mov %0, %%db6" : : "r" (clear));
}
pal_sti();
- KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
- (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE,
- (unsigned)(vaddr>>32), (unsigned)vaddr,
- (unsigned)(rip>>32), (unsigned)rip, 0);
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE,
+ (unsigned)(vaddr >> 32), (unsigned)vaddr,
+ (unsigned)(rip >> 32), (unsigned)rip, 0);
code = 0;
subcode = 0;
exc = 0;
-#if DEBUG_TRACE
- kprintf("user_trap(0x%08x) type=%d vaddr=0x%016llx\n",
- saved_state, type, vaddr);
-#endif
-
- perfASTCallback astfn = perfASTHook;
- if (__improbable(astfn != NULL)) {
- myast = ast_pending();
- if (*myast & AST_CHUD_ALL) {
- astfn(AST_CHUD_ALL, myast);
- }
- }
-
- /* Is there a hook? */
- perfCallback fn = perfTrapHook;
- if (__improbable(fn != NULL)) {
- if (fn(type, saved_state, 0, 0) == KERN_SUCCESS)
- return; /* If it succeeds, we are done... */
- }
-
#if CONFIG_DTRACE
/*
* DTrace does not consume all user traps, only INT_3's for now.
* INT_3 case handle them.
*/
#endif
-
+
DEBUG_KPRINT_SYSCALL_MASK(1,
- "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
- type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip);
-
- switch (type) {
+ "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
+ type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip);
- case T_DIVIDE_ERROR:
+ switch (type) {
+ case T_DIVIDE_ERROR:
exc = EXC_ARITHMETIC;
code = EXC_I386_DIV;
break;
- case T_DEBUG:
- {
- pcb_t pcb;
+ case T_DEBUG:
+ {
+ pcb_t pcb;
+ /*
+ * Update the PCB with this processor's DR6 value
+ * in the event this was a debug register match.
+ */
+ pcb = THREAD_TO_PCB(thread);
+ if (pcb->ids) {
/*
- * Update the PCB with this processor's DR6 value
- * in the event this was a debug register match.
+ * We can get and set the status register
+ * in 32-bit mode even on a 64-bit thread
+ * because the high order bits are not
+ * used on x86_64
*/
- pcb = THREAD_TO_PCB(thread);
- if (pcb->ids) {
- /*
- * We can get and set the status register
- * in 32-bit mode even on a 64-bit thread
- * because the high order bits are not
- * used on x86_64
- */
- if (thread_is_64bit(thread)) {
- x86_debug_state64_t *ids = pcb->ids;
- ids->dr6 = dr6;
- } else { /* 32 bit thread */
- x86_debug_state32_t *ids = pcb->ids;
- ids->dr6 = (uint32_t) dr6;
- }
+ if (thread_is_64bit_addr(thread)) {
+ x86_debug_state64_t *ids = pcb->ids;
+ ids->dr6 = dr6;
+ } else { /* 32 bit thread */
+ x86_debug_state32_t *ids = pcb->ids;
+ ids->dr6 = (uint32_t) dr6;
}
- exc = EXC_BREAKPOINT;
- code = EXC_I386_SGL;
- break;
}
- case T_INT3:
+ exc = EXC_BREAKPOINT;
+ code = EXC_I386_SGL;
+ break;
+ }
+ case T_INT3:
#if CONFIG_DTRACE
- if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
+ if (dtrace_user_probe(saved_state) == KERN_SUCCESS) {
return; /* If it succeeds, we are done... */
+ }
#endif
exc = EXC_BREAKPOINT;
code = EXC_I386_BPT;
break;
- case T_OVERFLOW:
+ case T_OVERFLOW:
exc = EXC_ARITHMETIC;
code = EXC_I386_INTO;
break;
- case T_OUT_OF_BOUNDS:
+ case T_OUT_OF_BOUNDS:
exc = EXC_SOFTWARE;
code = EXC_I386_BOUND;
break;
- case T_INVALID_OPCODE:
+ case T_INVALID_OPCODE:
+#if !defined(RC_HIDE_XNU_J137)
+ fpUDflt(rip); /* May return from exception directly */
+#endif
exc = EXC_BAD_INSTRUCTION;
code = EXC_I386_INVOP;
break;
- case T_NO_FPU:
+ case T_NO_FPU:
fpnoextflt();
return;
- case T_FPU_FAULT:
+ case T_FPU_FAULT:
fpextovrflt(); /* Propagates exception directly, doesn't return */
return;
- case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */
+ case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */
exc = EXC_BAD_INSTRUCTION;
code = EXC_I386_INVTSSFLT;
subcode = err;
break;
- case T_SEGMENT_NOT_PRESENT:
+ case T_SEGMENT_NOT_PRESENT:
exc = EXC_BAD_INSTRUCTION;
code = EXC_I386_SEGNPFLT;
subcode = err;
break;
- case T_STACK_FAULT:
+ case T_STACK_FAULT:
exc = EXC_BAD_INSTRUCTION;
code = EXC_I386_STKFLT;
subcode = err;
break;
- case T_GENERAL_PROTECTION:
+ case T_GENERAL_PROTECTION:
/*
* There's a wide range of circumstances which generate this
* class of exception. From user-space, many involve bad
* to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than
* EXC_BAD_INSTRUCTION which is more accurate. We just can't
* win!
- */
+ */
exc = EXC_BAD_ACCESS;
code = EXC_I386_GPFLT;
subcode = err;
break;
- case T_PAGE_FAULT:
- {
- prot = VM_PROT_READ;
+ case T_PAGE_FAULT:
+ {
+ prot = VM_PROT_READ;
- if (err & T_PF_WRITE)
- prot |= VM_PROT_WRITE;
- if (__improbable(err & T_PF_EXECUTE))
- prot |= VM_PROT_EXECUTE;
+ if (err & T_PF_WRITE) {
+ prot |= VM_PROT_WRITE;
+ }
+ if (__improbable(err & T_PF_EXECUTE)) {
+ prot |= VM_PROT_EXECUTE;
+ }
+#if DEVELOPMENT || DEBUG
+ uint32_t fsig = 0;
+ fsig = thread_fpsimd_hash(thread);
+#if DEBUG
+ fsigs[0] = fsig;
+#endif
+#endif
kret = vm_fault(thread->map,
- vaddr,
- prot, FALSE,
- THREAD_ABORTSAFE, NULL, 0);
-
+ vaddr,
+ prot, FALSE, VM_KERN_MEMORY_NONE,
+ THREAD_ABORTSAFE, NULL, 0);
+#if DEVELOPMENT || DEBUG
+ if (fsig) {
+ uint32_t fsig2 = thread_fpsimd_hash(thread);
+#if DEBUG
+ fsigcs++;
+ fsigs[1] = fsig2;
+#endif
+ if (fsig != fsig2) {
+ panic("FP/SIMD state hash mismatch across fault thread: %p 0x%x->0x%x", thread, fsig, fsig2);
+ }
+ } else {
+#if DEBUG
+ fsigns++;
+#endif
+ }
+#endif
if (__probable((kret == KERN_SUCCESS) || (kret == KERN_ABORTED))) {
thread_exception_return();
/*NOTREACHED*/
}
- user_page_fault_continue(kret);
- } /* NOTREACHED */
- break;
+ /*
+ * For a user trap, vm_fault() should never return KERN_FAILURE.
+ * If it does, we're leaking preemption disables somewhere in the kernel.
+ */
+ if (__improbable(kret == KERN_FAILURE)) {
+ panic("vm_fault() KERN_FAILURE from user fault on thread %p", thread);
+ }
+
+ user_page_fault_continue(kret);
+ } /* NOTREACHED */
+ break;
- case T_SSE_FLOAT_ERROR:
+ case T_SSE_FLOAT_ERROR:
fpSSEexterrflt(); /* Propagates exception directly, doesn't return */
return;
- case T_FLOATING_POINT_ERROR:
+ case T_FLOATING_POINT_ERROR:
fpexterrflt(); /* Propagates exception directly, doesn't return */
return;
- case T_DTRACE_RET:
+ case T_DTRACE_RET:
#if CONFIG_DTRACE
- if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
+ if (dtrace_user_probe(saved_state) == KERN_SUCCESS) {
return; /* If it succeeds, we are done... */
+ }
#endif
/*
* If we get an INT 0x7f when we do not expect to,
code = EXC_I386_INVOP;
break;
- default:
+ default:
panic("Unexpected user trap, type %d", type);
- return;
}
/* Note: Codepaths that directly return from user_trap() have pending
* ASTs processed in locore
/* NOTREACHED */
}
-
-/*
- * Handle AST traps for i386.
- */
-
-extern void log_thread_action (thread_t, char *);
-
-void
-i386_astintr(int preemption)
-{
- ast_t mask = AST_ALL;
- spl_t s;
-
- if (preemption)
- mask = AST_PREEMPTION;
-
- s = splsched();
-
- ast_taken(mask, s);
-
- splx(s);
-}
-
/*
* Handle exceptions for i386.
*
*/
void
i386_exception(
- int exc,
+ int exc,
mach_exception_code_t code,
mach_exception_subcode_t subcode)
{
mach_exception_data_type_t codes[EXCEPTION_CODE_MAX];
DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n",
- exc, code, subcode);
- codes[0] = code; /* new exception interface */
+ exc, code, subcode);
+ codes[0] = code; /* new exception interface */
codes[1] = subcode;
exception_triage(exc, codes, 2);
/*NOTREACHED*/
* an "MP_KDP" IPI. Called with null saved_state if an incoming IPI
* was detected from the kernel while spinning with interrupts masked.
*/
-
+
void
sync_iss_to_iks(x86_saved_state_t *saved_state)
{
- struct x86_kernel_state *iks;
+ struct x86_kernel_state *iks = NULL;
vm_offset_t kstack;
boolean_t record_active_regs = FALSE;
/* The PAL may have a special way to sync registers */
- if (saved_state && saved_state->flavor == THREAD_STATE_NONE)
+ if (saved_state && saved_state->flavor == THREAD_STATE_NONE) {
pal_get_kern_regs( saved_state );
+ }
- if ((kstack = current_thread()->kernel_stack) != 0) {
- x86_saved_state64_t *regs = saved_state64(saved_state);
+ if (current_thread() != NULL &&
+ (kstack = current_thread()->kernel_stack) != 0) {
+ x86_saved_state64_t *regs = saved_state64(saved_state);
iks = STACK_IKS(kstack);
/* Did we take the trap/interrupt in kernel mode? */
if (saved_state == NULL || /* NULL => polling in kernel */
- regs == USER_REGS64(current_thread()))
- record_active_regs = TRUE;
- else {
+ regs == USER_REGS64(current_thread())) {
+ record_active_regs = TRUE;
+ } else {
iks->k_rbx = regs->rbx;
iks->k_rsp = regs->isf.rsp;
iks->k_rbp = regs->rbp;
if (record_active_regs == TRUE) {
/* Show the trap handler path */
- __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
- __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
- __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
- __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
- __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
- __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
- __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
+ __asm__ volatile ("movq %%rbx, %0" : "=m" (iks->k_rbx));
+ __asm__ volatile ("movq %%rsp, %0" : "=m" (iks->k_rsp));
+ __asm__ volatile ("movq %%rbp, %0" : "=m" (iks->k_rbp));
+ __asm__ volatile ("movq %%r12, %0" : "=m" (iks->k_r12));
+ __asm__ volatile ("movq %%r13, %0" : "=m" (iks->k_r13));
+ __asm__ volatile ("movq %%r14, %0" : "=m" (iks->k_r14));
+ __asm__ volatile ("movq %%r15, %0" : "=m" (iks->k_r15));
/* "Current" instruction pointer */
- __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
- : "=m" (iks->k_rip)
- :
- : "rax");
+ __asm__ volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
+ : "=m" (iks->k_rip)
+ :
+ : "rax");
}
}
* or user space.
*/
void
-sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state) {
+sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state)
+{
struct x86_kernel_state *iks;
vm_offset_t kstack;
if ((kstack = current_thread()->kernel_stack) != 0) {
iks = STACK_IKS(kstack);
/* Display the trap handler path */
- __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
- __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
- __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
- __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
- __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
- __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
- __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
+ __asm__ volatile ("movq %%rbx, %0" : "=m" (iks->k_rbx));
+ __asm__ volatile ("movq %%rsp, %0" : "=m" (iks->k_rsp));
+ __asm__ volatile ("movq %%rbp, %0" : "=m" (iks->k_rbp));
+ __asm__ volatile ("movq %%r12, %0" : "=m" (iks->k_r12));
+ __asm__ volatile ("movq %%r13, %0" : "=m" (iks->k_r13));
+ __asm__ volatile ("movq %%r14, %0" : "=m" (iks->k_r14));
+ __asm__ volatile ("movq %%r15, %0" : "=m" (iks->k_r15));
/* "Current" instruction pointer */
- __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax");
+ __asm__ volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax");
}
}
#if DEBUG
-extern void thread_exception_return_internal(void) __dead2;
+#define TERI 1
+#endif
-void thread_exception_return(void) {
+#if TERI
+extern void thread_exception_return_internal(void) __dead2;
+
+void
+thread_exception_return(void)
+{
thread_t thread = current_thread();
ml_set_interrupts_enabled(FALSE);
- if (thread_is_64bit(thread) != task_has_64BitAddr(thread->task)) {
- panic("Task/thread bitness mismatch %p %p, task: %d, thread: %d", thread, thread->task, thread_is_64bit(thread), task_has_64BitAddr(thread->task));
+ if (thread_is_64bit_addr(thread) != task_has_64Bit_addr(thread->task)) {
+ panic("Task/thread bitness mismatch %p %p, task: %d, thread: %d", thread, thread->task, thread_is_64bit_addr(thread), task_has_64Bit_addr(thread->task));
}
- if (thread_is_64bit(thread)) {
+ if (thread_is_64bit_addr(thread)) {
if ((gdt_desc_p(USER64_CS)->access & ACC_PL_U) == 0) {
panic("64-GDT mismatch %p, descriptor: %p", thread, gdt_desc_p(USER64_CS));
}
} else {
- if ((gdt_desc_p(USER_CS)->access & ACC_PL_U) == 0) {
- panic("32-GDT mismatch %p, descriptor: %p", thread, gdt_desc_p(USER_CS));
-
+ if ((gdt_desc_p(USER_CS)->access & ACC_PL_U) == 0) {
+ panic("32-GDT mismatch %p, descriptor: %p", thread, gdt_desc_p(USER_CS));
}
}
+ assert(get_preemption_level() == 0);
thread_exception_return_internal();
}
#endif