2 * Copyright (c) 2007-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <nfs/nfs_conf.h>
33 * These functions implement RPCSEC_GSS security for the NFS client and server.
34 * The code is specific to the use of Kerberos v5 and the use of DES MAC MD5
35 * protection as described in Internet RFC 2203 and 2623.
37 * In contrast to the original AUTH_SYS authentication, RPCSEC_GSS is stateful.
38 * It requires the client and server negotiate a secure connection as part of a
39 * security context. The context state is maintained in client and server structures.
40 * On the client side, each user of an NFS mount is assigned their own context,
41 * identified by UID, on their first use of the mount, and it persists until the
42 * unmount or until the context is renewed. Each user context has a corresponding
43 * server context which the server maintains until the client destroys it, or
44 * until the context expires.
46 * The client and server contexts are set up dynamically. When a user attempts
47 * to send an NFS request, if there is no context for the user, then one is
48 * set up via an exchange of NFS null procedure calls as described in RFC 2203.
49 * During this exchange, the client and server pass a security token that is
50 * forwarded via Mach upcall to the gssd, which invokes the GSS-API to authenticate
51 * the user to the server (and vice-versa). The client and server also receive
52 * a unique session key that can be used to digitally sign the credentials and
53 * verifier or optionally to provide data integrity and/or privacy.
55 * Once the context is complete, the client and server enter a normal data
56 * exchange phase - beginning with the NFS request that prompted the context
57 * creation. During this phase, the client's RPC header contains an RPCSEC_GSS
58 * credential and verifier, and the server returns a verifier as well.
59 * For simple authentication, the verifier contains a signed checksum of the
60 * RPC header, including the credential. The server's verifier has a signed
61 * checksum of the current sequence number.
63 * Each client call contains a sequence number that nominally increases by one
64 * on each request. The sequence number is intended to prevent replay attacks.
65 * Since the protocol can be used over UDP, there is some allowance for
66 * out-of-sequence requests, so the server checks whether the sequence numbers
67 * are within a sequence "window". If a sequence number is outside the lower
68 * bound of the window, the server silently drops the request. This has some
69 * implications for retransmission. If a request needs to be retransmitted, the
70 * client must bump the sequence number even if the request XID is unchanged.
72 * When the NFS mount is unmounted, the client sends a "destroy" credential
73 * to delete the server's context for each user of the mount. Since it's
74 * possible for the client to crash or disconnect without sending the destroy
75 * message, the server has a thread that reaps contexts that have been idle
80 #include <sys/param.h>
81 #include <sys/systm.h>
83 #include <sys/kauth.h>
84 #include <sys/kernel.h>
85 #include <sys/mount_internal.h>
86 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/kpi_mbuf.h>
90 #include <sys/ucred.h>
92 #include <kern/host.h>
93 #include <kern/task.h>
94 #include <libkern/libkern.h>
96 #include <mach/task.h>
97 #include <mach/host_special_ports.h>
98 #include <mach/host_priv.h>
99 #include <mach/thread_act.h>
100 #include <mach/mig_errors.h>
101 #include <mach/vm_map.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_kern.h>
104 #include <gssd/gssd_mach.h>
106 #include <nfs/rpcv2.h>
107 #include <nfs/nfsproto.h>
109 #include <nfs/nfsnode.h>
110 #include <nfs/nfs_gss.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/xdr_subs.h>
113 #include <nfs/nfsm_subs.h>
114 #include <nfs/nfs_gss.h>
115 #include <mach_assert.h>
116 #include <kern/assert.h>
118 #define ASSERT(EX) assert(EX)
120 #define NFS_GSS_MACH_MAX_RETRIES 3
122 #define NFS_GSS_DBG(...) NFS_DBG(NFS_FAC_GSS, 7, ## __VA_ARGS__)
123 #define NFS_GSS_ISDBG (NFS_DEBUG_FACILITY & NFS_FAC_GSS)
126 #if CONFIG_NFS_SERVER
127 u_long nfs_gss_svc_ctx_hash
;
128 struct nfs_gss_svc_ctx_hashhead
*nfs_gss_svc_ctx_hashtbl
;
129 static LCK_GRP_DECLARE(nfs_gss_svc_grp
, "rpcsec_gss_svc");
130 static LCK_MTX_DECLARE(nfs_gss_svc_ctx_mutex
, &nfs_gss_svc_grp
);
131 uint32_t nfsrv_gss_context_ttl
= GSS_CTX_EXPIRE
;
132 #define GSS_SVC_CTX_TTL ((uint64_t)max(2*GSS_CTX_PEND, nfsrv_gss_context_ttl) * NSEC_PER_SEC)
133 #endif /* CONFIG_NFS_SERVER */
135 #if CONFIG_NFS_CLIENT
136 LCK_GRP_DECLARE(nfs_gss_clnt_grp
, "rpcsec_gss_clnt");
137 #endif /* CONFIG_NFS_CLIENT */
139 #define KRB5_MAX_MIC_SIZE 128
140 uint8_t krb5_mech_oid
[11] = { 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x01, 0x02, 0x02 };
141 static uint8_t xdrpad
[] = { 0x00, 0x00, 0x00, 0x00};
143 #if CONFIG_NFS_CLIENT
144 static int nfs_gss_clnt_ctx_find(struct nfsreq
*);
145 static int nfs_gss_clnt_ctx_init(struct nfsreq
*, struct nfs_gss_clnt_ctx
*);
146 static int nfs_gss_clnt_ctx_init_retry(struct nfsreq
*, struct nfs_gss_clnt_ctx
*);
147 static int nfs_gss_clnt_ctx_callserver(struct nfsreq
*, struct nfs_gss_clnt_ctx
*);
148 static uint8_t *nfs_gss_clnt_svcname(struct nfsmount
*, gssd_nametype
*, size_t *);
149 static int nfs_gss_clnt_gssd_upcall(struct nfsreq
*, struct nfs_gss_clnt_ctx
*, uint32_t);
150 void nfs_gss_clnt_ctx_neg_cache_reap(struct nfsmount
*);
151 static void nfs_gss_clnt_ctx_clean(struct nfs_gss_clnt_ctx
*);
152 static int nfs_gss_clnt_ctx_copy(struct nfs_gss_clnt_ctx
*, struct nfs_gss_clnt_ctx
**);
153 static void nfs_gss_clnt_ctx_destroy(struct nfs_gss_clnt_ctx
*);
154 static void nfs_gss_clnt_log_error(struct nfsreq
*, struct nfs_gss_clnt_ctx
*, uint32_t, uint32_t);
155 #endif /* CONFIG_NFS_CLIENT */
157 #if CONFIG_NFS_SERVER
158 static struct nfs_gss_svc_ctx
*nfs_gss_svc_ctx_find(uint32_t);
159 static void nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx
*);
160 static void nfs_gss_svc_ctx_timer(void *, void *);
161 static int nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx
*);
162 static int nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx
*, uint32_t);
164 /* This is only used by server code */
165 static void nfs_gss_nfsm_chain(struct nfsm_chain
*, mbuf_t
);
166 #endif /* CONFIG_NFS_SERVER */
168 static void host_release_special_port(mach_port_t
);
169 static mach_port_t
host_copy_special_port(mach_port_t
);
170 static void nfs_gss_mach_alloc_buffer(u_char
*, size_t, vm_map_copy_t
*);
171 static int nfs_gss_mach_vmcopyout(vm_map_copy_t
, uint32_t, u_char
*);
173 static int nfs_gss_mchain_length(mbuf_t
);
174 static int nfs_gss_append_chain(struct nfsm_chain
*, mbuf_t
);
176 #if CONFIG_NFS_SERVER
177 thread_call_t nfs_gss_svc_ctx_timer_call
;
178 int nfs_gss_timer_on
= 0;
179 uint32_t nfs_gss_ctx_count
= 0;
180 const uint32_t nfs_gss_ctx_max
= GSS_SVC_MAXCONTEXTS
;
181 #endif /* CONFIG_NFS_SERVER */
184 * Initialization when NFS starts
189 #if CONFIG_NFS_SERVER
190 nfs_gss_svc_ctx_hashtbl
= hashinit(SVC_CTX_HASHSZ
, M_TEMP
, &nfs_gss_svc_ctx_hash
);
192 nfs_gss_svc_ctx_timer_call
= thread_call_allocate(nfs_gss_svc_ctx_timer
, NULL
);
193 #endif /* CONFIG_NFS_SERVER */
197 * Common RPCSEC_GSS support routines
201 rpc_gss_prepend_32(mbuf_t
*mb
, uint32_t value
)
207 data
= mbuf_data(*mb
);
209 * If a wap token comes back and is not aligned
210 * get a new buffer (which should be aligned) to put the
213 if ((uintptr_t)data
& 0x3) {
216 error
= mbuf_get(MBUF_WAITOK
, MBUF_TYPE_DATA
, &nmb
);
220 mbuf_setnext(nmb
, *mb
);
224 error
= mbuf_prepend(mb
, sizeof(uint32_t), MBUF_WAITOK
);
229 data
= mbuf_data(*mb
);
230 *data
= txdr_unsigned(value
);
236 * Prepend the sequence number to the xdr encode argumen or result
237 * Sequence number is prepended in its own mbuf.
239 * On successful return mbp_head will point to the old mbuf chain
240 * prepended with a new mbuf that has the sequence number.
244 rpc_gss_data_create(mbuf_t
*mbp_head
, uint32_t seqnum
)
248 struct nfsm_chain nmc
;
249 struct nfsm_chain
*nmcp
= &nmc
;
252 error
= mbuf_get(MBUF_WAITOK
, MBUF_TYPE_DATA
, &mb
);
256 data
= mbuf_data(mb
);
258 /* Reserve space for prepending */
259 len
= mbuf_maxlen(mb
);
260 len
= (len
& ~0x3) - NFSX_UNSIGNED
;
261 printf("%s: data = %p, len = %d\n", __func__
, data
, (int)len
);
262 error
= mbuf_setdata(mb
, data
+ len
, 0);
263 if (error
|| mbuf_trailingspace(mb
)) {
264 printf("%s: data = %p trailingspace = %d error = %d\n", __func__
, mbuf_data(mb
), (int)mbuf_trailingspace(mb
), error
);
267 /* Reserve 16 words for prepending */
268 error
= mbuf_setdata(mb
, data
+ 16 * sizeof(uint32_t), 0);
269 nfsm_chain_init(nmcp
, mb
);
270 nfsm_chain_add_32(error
, nmcp
, seqnum
);
271 nfsm_chain_build_done(error
, nmcp
);
275 mbuf_setnext(nmcp
->nmc_mcur
, *mbp_head
);
276 *mbp_head
= nmcp
->nmc_mhead
;
282 * Create an rpc_gss_integ_data_t given an argument or result in mb_head.
283 * On successful return mb_head will point to the rpc_gss_integ_data_t of length len.
284 * Note mb_head will now point to a 4 byte sequence number. len does not include
285 * any extra xdr padding.
286 * Returns 0 on success, else an errno_t
290 rpc_gss_integ_data_create(gss_ctx_id_t ctx
, mbuf_t
*mb_head
, uint32_t seqnum
, uint32_t *len
)
296 struct nfsm_chain nmc
;
298 /* Length of the argument or result */
299 length
= nfs_gss_mchain_length(*mb_head
);
303 error
= rpc_gss_data_create(mb_head
, seqnum
);
309 * length is the length of the rpc_gss_data
311 length
+= NFSX_UNSIGNED
; /* Add the sequence number to the length */
312 major
= gss_krb5_get_mic_mbuf(&error
, ctx
, 0, *mb_head
, 0, length
, &mic
);
313 if (major
!= GSS_S_COMPLETE
) {
314 printf("gss_krb5_get_mic_mbuf failed %d\n", error
);
318 error
= rpc_gss_prepend_32(mb_head
, length
);
323 nfsm_chain_dissect_init(error
, &nmc
, *mb_head
);
324 /* Append GSS mic token by advancing rpc_gss_data_t length + NFSX_UNSIGNED (size of the length field) */
325 nfsm_chain_adv(error
, &nmc
, length
+ NFSX_UNSIGNED
);
326 nfsm_chain_finish_mbuf(error
, &nmc
); // Force the mic into its own sub chain.
327 nfsm_chain_add_32(error
, &nmc
, mic
.length
);
328 nfsm_chain_add_opaque(error
, &nmc
, mic
.value
, mic
.length
);
329 nfsm_chain_build_done(error
, &nmc
);
330 gss_release_buffer(NULL
, &mic
);
332 // printmbuf("rpc_gss_integ_data_create done", *mb_head, 0, 0);
333 assert(nmc
.nmc_mhead
== *mb_head
);
339 * Create an rpc_gss_priv_data_t out of the supplied raw arguments or results in mb_head.
340 * On successful return mb_head will point to a wrap token of lenght len.
341 * Note len does not include any xdr padding
342 * Returns 0 on success, else an errno_t
345 rpc_gss_priv_data_create(gss_ctx_id_t ctx
, mbuf_t
*mb_head
, uint32_t seqnum
, uint32_t *len
)
349 struct nfsm_chain nmc
;
353 error
= rpc_gss_data_create(mb_head
, seqnum
);
358 length
= nfs_gss_mchain_length(*mb_head
);
359 major
= gss_krb5_wrap_mbuf(&error
, ctx
, 1, 0, mb_head
, 0, length
, NULL
);
360 if (major
!= GSS_S_COMPLETE
) {
364 length
= nfs_gss_mchain_length(*mb_head
);
368 pad
= nfsm_pad(length
);
370 /* Prepend the opaque length of rep rpc_gss_priv_data */
371 error
= rpc_gss_prepend_32(mb_head
, length
);
377 nfsm_chain_dissect_init(error
, &nmc
, *mb_head
);
378 /* Advance the opauque size of length and length data */
379 nfsm_chain_adv(error
, &nmc
, NFSX_UNSIGNED
+ length
);
380 nfsm_chain_finish_mbuf(error
, &nmc
);
381 nfsm_chain_add_opaque_nopad(error
, &nmc
, xdrpad
, pad
);
382 nfsm_chain_build_done(error
, &nmc
);
388 #if CONFIG_NFS_CLIENT
391 * Restore the argument or result from an rpc_gss_integ_data mbuf chain
392 * We have a four byte seqence number, len arguments, and an opaque
393 * encoded mic, possibly followed by some pad bytes. The mic and possible
394 * pad bytes are on their own sub mbuf chains.
396 * On successful return mb_head is the chain of the xdr args or results sans
397 * the sequence number and mic and return 0. Otherwise return an errno.
401 rpc_gss_integ_data_restore(gss_ctx_id_t ctx __unused
, mbuf_t
*mb_head
, size_t len
)
403 mbuf_t mb
= *mb_head
;
404 mbuf_t tail
= NULL
, next
;
406 /* Chop of the opaque length and seq number */
407 mbuf_adj(mb
, 2 * NFSX_UNSIGNED
);
409 /* should only be one, ... but */
410 for (; mb
; mb
= next
) {
411 next
= mbuf_next(mb
);
412 if (mbuf_len(mb
) == 0) {
420 for (; mb
&& len
; mb
= mbuf_next(mb
)) {
422 if (mbuf_len(mb
) <= len
) {
430 mbuf_setnext(tail
, NULL
);
438 * Restore the argument or result rfom an rpc_gss_priv_data mbuf chain
439 * mb_head points to the wrap token of length len.
441 * On successful return mb_head is our original xdr arg or result an
442 * the return value is 0. Otherise return an errno
445 rpc_gss_priv_data_restore(gss_ctx_id_t ctx
, mbuf_t
*mb_head
, size_t len
)
447 uint32_t major
, error
;
448 mbuf_t mb
= *mb_head
, next
;
450 gss_qop_t qop
= GSS_C_QOP_REVERSE
;
452 /* Chop of the opaque length */
453 mbuf_adj(mb
, NFSX_UNSIGNED
);
454 /* If we have padding, drop it */
455 plen
= nfsm_pad(len
);
459 for (length
= 0; length
< len
&& mb
; mb
= mbuf_next(mb
)) {
461 length
+= mbuf_len(mb
);
463 if ((length
!= len
) || (mb
== NULL
) || (tail
== NULL
)) {
468 mbuf_setnext(tail
, NULL
);
471 major
= gss_krb5_unwrap_mbuf(&error
, ctx
, mb_head
, 0, len
, NULL
, &qop
);
472 if (major
!= GSS_S_COMPLETE
) {
473 printf("gss_krb5_unwrap_mbuf failed. major = %d minor = %d\n", (int)major
, error
);
478 /* Drop the seqence number */
479 mbuf_adj(mb
, NFSX_UNSIGNED
);
480 assert(mbuf_len(mb
) == 0);
482 /* Chop of any empty mbufs */
483 for (mb
= *mb_head
; mb
; mb
= next
) {
484 next
= mbuf_next(mb
);
485 if (mbuf_len(mb
) == 0) {
497 * Find the context for a particular user.
499 * If the context doesn't already exist
500 * then create a new context for this user.
502 * Note that the code allows superuser (uid == 0)
503 * to adopt the context of another user.
505 * We'll match on the audit session ids, since those
506 * processes will have acccess to the same credential cache.
509 #define kauth_cred_getasid(cred) ((cred)->cr_audit.as_aia_p->ai_asid)
510 #define kauth_cred_getauid(cred) ((cred)->cr_audit.as_aia_p->ai_auid)
512 #define SAFE_CAST_INTTYPE( type, intval ) \
513 ( (type)(intval)/(sizeof(type) < sizeof(intval) ? 0 : 1) )
516 nfs_cred_getasid2uid(kauth_cred_t cred
)
518 uid_t result
= SAFE_CAST_INTTYPE(uid_t
, kauth_cred_getasid(cred
));
526 nfs_gss_clnt_ctx_dump(struct nfsmount
*nmp
)
528 struct nfs_gss_clnt_ctx
*cp
;
530 lck_mtx_lock(&nmp
->nm_lock
);
531 NFS_GSS_DBG("Enter\n");
532 TAILQ_FOREACH(cp
, &nmp
->nm_gsscl
, gss_clnt_entries
) {
533 lck_mtx_lock(&cp
->gss_clnt_mtx
);
534 printf("context %d/%d: refcnt = %d, flags = %x\n",
535 kauth_cred_getasid(cp
->gss_clnt_cred
),
536 kauth_cred_getauid(cp
->gss_clnt_cred
),
537 cp
->gss_clnt_refcnt
, cp
->gss_clnt_flags
);
538 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
540 NFS_GSS_DBG("Exit\n");
541 lck_mtx_unlock(&nmp
->nm_lock
);
545 nfs_gss_clnt_ctx_name(struct nfsmount
*nmp
, struct nfs_gss_clnt_ctx
*cp
, char *buf
, int len
)
549 const char *server
= "";
551 if (nmp
&& nmp
->nm_mountp
) {
552 server
= vfs_statfs(nmp
->nm_mountp
)->f_mntfromname
;
556 snprintf(buf
, len
, "[%s] NULL context", server
);
560 if (cp
->gss_clnt_principal
&& !cp
->gss_clnt_display
) {
561 np
= (char *)cp
->gss_clnt_principal
;
562 nlen
= cp
->gss_clnt_prinlen
;
564 np
= cp
->gss_clnt_display
;
565 nlen
= np
? strlen(cp
->gss_clnt_display
) : 0;
568 snprintf(buf
, len
, "[%s] %.*s %d/%d %s", server
, nlen
> INT_MAX
? INT_MAX
: (int)nlen
, np
,
569 kauth_cred_getasid(cp
->gss_clnt_cred
),
570 kauth_cred_getuid(cp
->gss_clnt_cred
),
571 cp
->gss_clnt_principal
? "" : "[from default cred] ");
573 snprintf(buf
, len
, "[%s] using default %d/%d ", server
,
574 kauth_cred_getasid(cp
->gss_clnt_cred
),
575 kauth_cred_getuid(cp
->gss_clnt_cred
));
580 #define NFS_CTXBUFSZ 80
581 #define NFS_GSS_CTX(req, cp) nfs_gss_clnt_ctx_name((req)->r_nmp, cp ? cp : (req)->r_gss_ctx, CTXBUF, sizeof(CTXBUF))
583 #define NFS_GSS_CLNT_CTX_DUMP(nmp) \
585 if (NFS_GSS_ISDBG && (NFS_DEBUG_FLAGS & 0x2)) \
586 nfs_gss_clnt_ctx_dump((nmp)); \
590 nfs_gss_clnt_ctx_cred_match(kauth_cred_t cred1
, kauth_cred_t cred2
)
592 if (kauth_cred_getasid(cred1
) == kauth_cred_getasid(cred2
)) {
599 * Busy the mount for each principal set on the mount
600 * so that the automounter will not unmount the file
601 * system underneath us. With out this, if an unmount
602 * occurs the principal that is set for an audit session
603 * will be lost and we may end up with a different identity.
605 * Note setting principals on the mount is a bad idea. This
606 * really should be handle by KIM (Kerberos Identity Management)
607 * so that defaults can be set by service identities.
611 nfs_gss_clnt_mnt_ref(struct nfsmount
*nmp
)
617 !(vfs_flags(nmp
->nm_mountp
) & MNT_AUTOMOUNTED
)) {
621 error
= VFS_ROOT(nmp
->nm_mountp
, &rvp
, NULL
);
623 error
= vnode_ref(rvp
);
631 * Unbusy the mount. See above comment,
635 nfs_gss_clnt_mnt_rele(struct nfsmount
*nmp
)
641 !(vfs_flags(nmp
->nm_mountp
) & MNT_AUTOMOUNTED
)) {
645 error
= VFS_ROOT(nmp
->nm_mountp
, &rvp
, NULL
);
654 int nfs_root_steals_ctx
= 0;
657 nfs_gss_clnt_ctx_find_principal(struct nfsreq
*req
, uint8_t *principal
, size_t plen
, uint32_t nt
)
659 struct nfsmount
*nmp
= req
->r_nmp
;
660 struct nfs_gss_clnt_ctx
*cp
, *tcp
;
664 char CTXBUF
[NFS_CTXBUFSZ
];
666 treq
= zalloc_flags(nfs_req_zone
, Z_WAITOK
| Z_ZERO
);
670 lck_mtx_lock(&nmp
->nm_lock
);
671 TAILQ_FOREACH_SAFE(cp
, &nmp
->nm_gsscl
, gss_clnt_entries
, tcp
) {
672 lck_mtx_lock(&cp
->gss_clnt_mtx
);
673 if (cp
->gss_clnt_flags
& GSS_CTX_DESTROY
) {
674 NFS_GSS_DBG("Found destroyed context %s refcnt = %d continuing\n",
675 NFS_GSS_CTX(req
, cp
),
676 cp
->gss_clnt_refcnt
);
677 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
680 if (nfs_gss_clnt_ctx_cred_match(cp
->gss_clnt_cred
, req
->r_cred
)) {
681 if (nmp
->nm_gsscl
.tqh_first
!= cp
) {
682 TAILQ_REMOVE(&nmp
->nm_gsscl
, cp
, gss_clnt_entries
);
683 TAILQ_INSERT_HEAD(&nmp
->nm_gsscl
, cp
, gss_clnt_entries
);
687 * If we have a principal, but it does not match the current cred
688 * mark it for removal
690 if (cp
->gss_clnt_prinlen
!= plen
|| cp
->gss_clnt_prinnt
!= nt
||
691 bcmp(cp
->gss_clnt_principal
, principal
, plen
) != 0) {
692 cp
->gss_clnt_flags
|= (GSS_CTX_INVAL
| GSS_CTX_DESTROY
);
693 cp
->gss_clnt_refcnt
++;
694 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
695 NFS_GSS_DBG("Marking %s for deletion because %s does not match\n",
696 NFS_GSS_CTX(req
, cp
), principal
);
697 NFS_GSS_DBG("len = (%zu,%zu), nt = (%d,%d)\n", cp
->gss_clnt_prinlen
, plen
,
698 cp
->gss_clnt_prinnt
, nt
);
699 treq
->r_gss_ctx
= cp
;
704 if (cp
->gss_clnt_flags
& GSS_CTX_INVAL
) {
706 * If we're still being used and we're not expired
707 * just return and don't bother gssd again. Note if
708 * gss_clnt_nctime is zero it is about to be set to now.
710 if (cp
->gss_clnt_nctime
+ GSS_NEG_CACHE_TO
>= now
.tv_sec
|| cp
->gss_clnt_nctime
== 0) {
711 NFS_GSS_DBG("Context %s (refcnt = %d) not expired returning EAUTH nctime = %ld now = %ld\n",
712 NFS_GSS_CTX(req
, cp
), cp
->gss_clnt_refcnt
, cp
->gss_clnt_nctime
, now
.tv_sec
);
713 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
714 lck_mtx_unlock(&nmp
->nm_lock
);
715 NFS_ZFREE(nfs_req_zone
, treq
);
718 if (cp
->gss_clnt_refcnt
) {
719 struct nfs_gss_clnt_ctx
*ncp
;
721 * If this context has references, we can't use it so we mark if for
722 * destruction and create a new context based on this one in the
723 * same manner as renewing one.
725 cp
->gss_clnt_flags
|= GSS_CTX_DESTROY
;
726 NFS_GSS_DBG("Context %s has expired but we still have %d references\n",
727 NFS_GSS_CTX(req
, cp
), cp
->gss_clnt_refcnt
);
728 error
= nfs_gss_clnt_ctx_copy(cp
, &ncp
);
729 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
731 lck_mtx_unlock(&nmp
->nm_lock
);
732 NFS_ZFREE(nfs_req_zone
, treq
);
738 if (cp
->gss_clnt_nctime
) {
741 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
742 TAILQ_REMOVE(&nmp
->nm_gsscl
, cp
, gss_clnt_entries
);
746 /* Found a valid context to return */
747 cp
->gss_clnt_refcnt
++;
749 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
750 lck_mtx_unlock(&nmp
->nm_lock
);
751 NFS_ZFREE(nfs_req_zone
, treq
);
754 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
757 if (!cp
&& nfs_root_steals_ctx
&& principal
== NULL
&& kauth_cred_getuid(req
->r_cred
) == 0) {
759 * If superuser is trying to get access, then co-opt
760 * the first valid context in the list.
761 * XXX Ultimately, we need to allow superuser to
762 * go ahead and attempt to set up its own context
763 * in case one is set up for it.
765 TAILQ_FOREACH(cp
, &nmp
->nm_gsscl
, gss_clnt_entries
) {
766 if (!(cp
->gss_clnt_flags
& (GSS_CTX_INVAL
| GSS_CTX_DESTROY
))) {
767 nfs_gss_clnt_ctx_ref(req
, cp
);
768 lck_mtx_unlock(&nmp
->nm_lock
);
769 NFS_GSS_DBG("Root stole context %s\n", NFS_GSS_CTX(req
, NULL
));
770 NFS_ZFREE(nfs_req_zone
, treq
);
776 NFS_GSS_DBG("Context %s%sfound in Neg Cache @ %ld\n",
777 NFS_GSS_CTX(req
, cp
),
778 cp
== NULL
? " not " : "",
779 cp
== NULL
? 0L : cp
->gss_clnt_nctime
);
782 * Not found - create a new context
786 MALLOC(cp
, struct nfs_gss_clnt_ctx
*, sizeof(*cp
), M_TEMP
, M_WAITOK
| M_ZERO
);
788 lck_mtx_unlock(&nmp
->nm_lock
);
789 NFS_ZFREE(nfs_req_zone
, treq
);
792 cp
->gss_clnt_cred
= req
->r_cred
;
793 kauth_cred_ref(cp
->gss_clnt_cred
);
794 lck_mtx_init(&cp
->gss_clnt_mtx
, &nfs_gss_clnt_grp
, LCK_ATTR_NULL
);
795 cp
->gss_clnt_ptime
= now
.tv_sec
- GSS_PRINT_DELAY
;
797 MALLOC(cp
->gss_clnt_principal
, uint8_t *, plen
+ 1, M_TEMP
, M_WAITOK
| M_ZERO
);
798 memcpy(cp
->gss_clnt_principal
, principal
, plen
);
799 cp
->gss_clnt_prinlen
= plen
;
800 cp
->gss_clnt_prinnt
= nt
;
801 cp
->gss_clnt_flags
|= GSS_CTX_STICKY
;
802 if (!nfs_gss_clnt_mnt_ref(nmp
)) {
803 cp
->gss_clnt_flags
|= GSS_CTX_USECOUNT
;
807 uint32_t oldflags
= cp
->gss_clnt_flags
;
808 nfs_gss_clnt_ctx_clean(cp
);
811 * If we have a principal and we found a matching audit
812 * session, then to get here, the principal had to match.
813 * In walking the context list if it has a principal
814 * or the principal is not set then we mark the context
815 * for destruction and set cp to NULL and we fall to the
816 * if clause above. If the context still has references
817 * again we copy the context which will preserve the principal
818 * and we end up here with the correct principal set.
819 * If we don't have references the the principal must have
820 * match and we will fall through here.
822 cp
->gss_clnt_flags
|= GSS_CTX_STICKY
;
825 * We are preserving old flags if it set, and we take a ref if not set.
826 * Also, because of the short circuit we will not take extra refs here.
828 if ((oldflags
& GSS_CTX_USECOUNT
) || !nfs_gss_clnt_mnt_ref(nmp
)) {
829 cp
->gss_clnt_flags
|= GSS_CTX_USECOUNT
;
834 cp
->gss_clnt_thread
= current_thread();
835 nfs_gss_clnt_ctx_ref(req
, cp
);
836 TAILQ_INSERT_HEAD(&nmp
->nm_gsscl
, cp
, gss_clnt_entries
);
837 lck_mtx_unlock(&nmp
->nm_lock
);
839 error
= nfs_gss_clnt_ctx_init_retry(req
, cp
); // Initialize new context
841 NFS_GSS_DBG("nfs_gss_clnt_ctx_init_retry returned %d for %s\n", error
, NFS_GSS_CTX(req
, cp
));
842 nfs_gss_clnt_ctx_unref(req
);
845 /* Remove any old matching contex that had a different principal */
846 nfs_gss_clnt_ctx_unref(treq
);
847 NFS_ZFREE(nfs_req_zone
, treq
);
852 nfs_gss_clnt_ctx_find(struct nfsreq
*req
)
854 return nfs_gss_clnt_ctx_find_principal(req
, NULL
, 0, 0);
858 * Inserts an RPCSEC_GSS credential into an RPC header.
859 * After the credential is inserted, the code continues
860 * to build the verifier which contains a signed checksum
865 nfs_gss_clnt_cred_put(struct nfsreq
*req
, struct nfsm_chain
*nmc
, mbuf_t args
)
867 struct nfs_gss_clnt_ctx
*cp
;
871 int slpflag
, recordmark
= 0, offset
;
875 slpflag
= (PZERO
- 1);
877 slpflag
|= (NMFLAG(req
->r_nmp
, INTR
) && req
->r_thread
&& !(req
->r_flags
& R_NOINTR
)) ? PCATCH
: 0;
878 recordmark
= (req
->r_nmp
->nm_sotype
== SOCK_STREAM
);
882 if (req
->r_gss_ctx
== NULL
) {
884 * Find the context for this user.
885 * If no context is found, one will
888 error
= nfs_gss_clnt_ctx_find(req
);
896 * If the context thread isn't null, then the context isn't
897 * yet complete and is for the exclusive use of the thread
898 * doing the context setup. Wait until the context thread
901 lck_mtx_lock(&cp
->gss_clnt_mtx
);
902 if (cp
->gss_clnt_thread
&& cp
->gss_clnt_thread
!= current_thread()) {
903 cp
->gss_clnt_flags
|= GSS_NEEDCTX
;
904 msleep(cp
, &cp
->gss_clnt_mtx
, slpflag
| PDROP
, "ctxwait", NULL
);
906 if ((error
= nfs_sigintr(req
->r_nmp
, req
, req
->r_thread
, 0))) {
909 nfs_gss_clnt_ctx_unref(req
);
912 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
914 if (cp
->gss_clnt_flags
& GSS_CTX_COMPLETE
) {
916 * Get a sequence number for this request.
917 * Check whether the oldest request in the window is complete.
918 * If it's still pending, then wait until it's done before
919 * we allocate a new sequence number and allow this request
922 lck_mtx_lock(&cp
->gss_clnt_mtx
);
923 while (win_getbit(cp
->gss_clnt_seqbits
,
924 ((cp
->gss_clnt_seqnum
- cp
->gss_clnt_seqwin
) + 1) % cp
->gss_clnt_seqwin
)) {
925 cp
->gss_clnt_flags
|= GSS_NEEDSEQ
;
926 msleep(cp
, &cp
->gss_clnt_mtx
, slpflag
| PDROP
, "seqwin", NULL
);
928 if ((error
= nfs_sigintr(req
->r_nmp
, req
, req
->r_thread
, 0))) {
931 lck_mtx_lock(&cp
->gss_clnt_mtx
);
932 if (cp
->gss_clnt_flags
& GSS_CTX_INVAL
) {
933 /* Renewed while while we were waiting */
934 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
935 nfs_gss_clnt_ctx_unref(req
);
939 seqnum
= ++cp
->gss_clnt_seqnum
;
940 win_setbit(cp
->gss_clnt_seqbits
, seqnum
% cp
->gss_clnt_seqwin
);
941 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
943 MALLOC(gsp
, struct gss_seq
*, sizeof(*gsp
), M_TEMP
, M_WAITOK
| M_ZERO
);
947 gsp
->gss_seqnum
= seqnum
;
948 SLIST_INSERT_HEAD(&req
->r_gss_seqlist
, gsp
, gss_seqnext
);
951 /* Insert the credential */
952 nfsm_chain_add_32(error
, nmc
, RPCSEC_GSS
);
953 nfsm_chain_add_32(error
, nmc
, 5 * NFSX_UNSIGNED
+ cp
->gss_clnt_handle_len
);
954 nfsm_chain_add_32(error
, nmc
, RPCSEC_GSS_VERS_1
);
955 nfsm_chain_add_32(error
, nmc
, cp
->gss_clnt_proc
);
956 nfsm_chain_add_32(error
, nmc
, seqnum
);
957 nfsm_chain_add_32(error
, nmc
, cp
->gss_clnt_service
);
958 nfsm_chain_add_32(error
, nmc
, cp
->gss_clnt_handle_len
);
959 if (cp
->gss_clnt_handle_len
> 0) {
960 if (cp
->gss_clnt_handle
== NULL
) {
963 nfsm_chain_add_opaque(error
, nmc
, cp
->gss_clnt_handle
, cp
->gss_clnt_handle_len
);
969 * Now add the verifier
971 if (cp
->gss_clnt_proc
== RPCSEC_GSS_INIT
||
972 cp
->gss_clnt_proc
== RPCSEC_GSS_CONTINUE_INIT
) {
974 * If the context is still being created
975 * then use a null verifier.
977 nfsm_chain_add_32(error
, nmc
, RPCAUTH_NULL
); // flavor
978 nfsm_chain_add_32(error
, nmc
, 0); // length
979 nfsm_chain_build_done(error
, nmc
);
981 nfs_gss_append_chain(nmc
, args
);
986 offset
= recordmark
? NFSX_UNSIGNED
: 0; // record mark
987 nfsm_chain_build_done(error
, nmc
);
989 major
= gss_krb5_get_mic_mbuf((uint32_t *)&error
, cp
->gss_clnt_ctx_id
, 0, nmc
->nmc_mhead
, offset
, 0, &mic
);
990 if (major
!= GSS_S_COMPLETE
) {
991 printf("gss_krb5_get_mic_buf failed %d\n", error
);
995 nfsm_chain_add_32(error
, nmc
, RPCSEC_GSS
); // flavor
996 nfsm_chain_add_32(error
, nmc
, mic
.length
); // length
997 nfsm_chain_add_opaque(error
, nmc
, mic
.value
, mic
.length
);
998 (void)gss_release_buffer(NULL
, &mic
);
999 nfsm_chain_build_done(error
, nmc
);
1005 * Now we may have to compute integrity or encrypt the call args
1006 * per RFC 2203 Section 5.3.2
1008 switch (cp
->gss_clnt_service
) {
1009 case RPCSEC_GSS_SVC_NONE
:
1011 nfs_gss_append_chain(nmc
, args
);
1014 case RPCSEC_GSS_SVC_INTEGRITY
:
1016 * r_gss_arglen is the length of args mbuf going into the routine.
1017 * Its used to find the mic if we need to restore the args.
1019 /* Note the mbufs that were used in r_mrest are being encapsulated in the rpc_gss_integ_data_t */
1020 assert(req
->r_mrest
== args
);
1021 nfsm_chain_finish_mbuf(error
, nmc
);
1025 error
= rpc_gss_integ_data_create(cp
->gss_clnt_ctx_id
, &args
, seqnum
, &req
->r_gss_arglen
);
1029 req
->r_mrest
= args
;
1030 req
->r_gss_argoff
= nfsm_chain_offset(nmc
);
1031 nfs_gss_append_chain(nmc
, args
);
1033 case RPCSEC_GSS_SVC_PRIVACY
:
1035 * r_gss_arglen is the length of the wrap token sans any padding length.
1036 * Its used to find any XDR padding of the wrap token.
1038 /* Note the mbufs that were used in r_mrest are being encapsulated in the rpc_gss_priv_data_t */
1039 assert(req
->r_mrest
== args
);
1040 nfsm_chain_finish_mbuf(error
, nmc
);
1044 error
= rpc_gss_priv_data_create(cp
->gss_clnt_ctx_id
, &args
, seqnum
, &req
->r_gss_arglen
);
1048 req
->r_mrest
= args
;
1049 req
->r_gss_argoff
= nfsm_chain_offset(nmc
);
1050 nfs_gss_append_chain(nmc
, args
);
1060 * When receiving a reply, the client checks the verifier
1061 * returned by the server. Check that the verifier is the
1062 * correct type, then extract the sequence number checksum
1063 * from the token in the credential and compare it with a
1064 * computed checksum of the sequence number in the request
1068 nfs_gss_clnt_verf_get(
1070 struct nfsm_chain
*nmc
,
1073 uint32_t *accepted_statusp
)
1075 gss_buffer_desc cksum
;
1076 uint32_t seqnum
= 0;
1078 struct nfs_gss_clnt_ctx
*cp
= req
->r_gss_ctx
;
1079 struct nfsm_chain nmc_tmp
;
1080 struct gss_seq
*gsp
;
1083 mbuf_t results_mbuf
, prev_mbuf
, pad_mbuf
;
1084 size_t ressize
, offset
;
1087 *accepted_statusp
= 0;
1090 return NFSERR_EAUTH
;
1093 * If it's not an RPCSEC_GSS verifier, then it has to
1094 * be a null verifier that resulted from either
1095 * a CONTINUE_NEEDED reply during context setup or
1096 * from the reply to an AUTH_UNIX call from a dummy
1097 * context that resulted from a fallback to sec=sys.
1099 if (verftype
!= RPCSEC_GSS
) {
1100 if (verftype
!= RPCAUTH_NULL
) {
1101 return NFSERR_EAUTH
;
1103 if (cp
->gss_clnt_flags
& GSS_CTX_COMPLETE
) {
1104 return NFSERR_EAUTH
;
1107 nfsm_chain_adv(error
, nmc
, nfsm_rndup(verflen
));
1109 nfsm_chain_get_32(error
, nmc
, *accepted_statusp
);
1114 * If we received an RPCSEC_GSS verifier but the
1115 * context isn't yet complete, then it must be
1116 * the context complete message from the server.
1117 * The verifier will contain an encrypted checksum
1118 * of the window but we don't have the session key
1119 * yet so we can't decrypt it. Stash the verifier
1120 * and check it later in nfs_gss_clnt_ctx_init() when
1121 * the context is complete.
1123 if (!(cp
->gss_clnt_flags
& GSS_CTX_COMPLETE
)) {
1124 if (verflen
> KRB5_MAX_MIC_SIZE
) {
1127 MALLOC(cp
->gss_clnt_verf
, u_char
*, verflen
, M_TEMP
, M_WAITOK
| M_ZERO
);
1128 if (cp
->gss_clnt_verf
== NULL
) {
1131 cp
->gss_clnt_verflen
= verflen
;
1132 nfsm_chain_get_opaque(error
, nmc
, verflen
, cp
->gss_clnt_verf
);
1133 nfsm_chain_get_32(error
, nmc
, *accepted_statusp
);
1137 if (verflen
> KRB5_MAX_MIC_SIZE
) {
1140 cksum
.length
= verflen
;
1141 MALLOC(cksum
.value
, void *, verflen
, M_TEMP
, M_WAITOK
);
1146 nfsm_chain_get_opaque(error
, nmc
, verflen
, cksum
.value
);
1148 FREE(cksum
.value
, M_TEMP
);
1153 * Search the request sequence numbers for this reply, starting
1154 * with the most recent, looking for a checksum that matches
1155 * the one in the verifier returned by the server.
1157 SLIST_FOREACH(gsp
, &req
->r_gss_seqlist
, gss_seqnext
) {
1158 gss_buffer_desc seqnum_buf
;
1159 uint32_t network_seqnum
= htonl(gsp
->gss_seqnum
);
1161 seqnum_buf
.length
= sizeof(network_seqnum
);
1162 seqnum_buf
.value
= &network_seqnum
;
1163 major
= gss_krb5_verify_mic(NULL
, cp
->gss_clnt_ctx_id
, &seqnum_buf
, &cksum
, NULL
);
1164 if (major
== GSS_S_COMPLETE
) {
1168 FREE(cksum
.value
, M_TEMP
);
1170 return NFSERR_EAUTH
;
1174 * Get the RPC accepted status
1176 nfsm_chain_get_32(error
, nmc
, *accepted_statusp
);
1177 if (*accepted_statusp
!= RPC_SUCCESS
) {
1182 * Now we may have to check integrity or decrypt the results
1183 * per RFC 2203 Section 5.3.2
1185 switch (cp
->gss_clnt_service
) {
1186 case RPCSEC_GSS_SVC_NONE
:
1189 case RPCSEC_GSS_SVC_INTEGRITY
:
1191 * Here's what we expect in the integrity results from RFC 2203:
1193 * - length of seq num + results (4 bytes)
1194 * - sequence number (4 bytes)
1195 * - results (variable bytes)
1196 * - length of checksum token
1197 * - checksum of seqnum + results
1200 nfsm_chain_get_32(error
, nmc
, reslen
); // length of results
1201 if (reslen
> NFS_MAXPACKET
) {
1206 /* Advance and fetch the mic */
1208 nfsm_chain_adv(error
, &nmc_tmp
, reslen
); // skip over the results
1209 nfsm_chain_get_32(error
, &nmc_tmp
, cksum
.length
);
1210 if (cksum
.length
> KRB5_MAX_MIC_SIZE
) {
1214 MALLOC(cksum
.value
, void *, cksum
.length
, M_TEMP
, M_WAITOK
);
1215 nfsm_chain_get_opaque(error
, &nmc_tmp
, cksum
.length
, cksum
.value
);
1216 //XXX chop offf the cksum?
1218 /* Call verify mic */
1219 offset
= nfsm_chain_offset(nmc
);
1220 major
= gss_krb5_verify_mic_mbuf((uint32_t *)&error
, cp
->gss_clnt_ctx_id
, nmc
->nmc_mhead
, offset
, reslen
, &cksum
, NULL
);
1221 FREE(cksum
.value
, M_TEMP
);
1222 if (major
!= GSS_S_COMPLETE
) {
1223 printf("client results: gss_krb5_verify_mic_mbuf failed %d\n", error
);
1229 * Get the sequence number prepended to the results
1230 * and compare it against the header.
1232 nfsm_chain_get_32(error
, nmc
, seqnum
);
1233 if (gsp
->gss_seqnum
!= seqnum
) {
1238 SLIST_FOREACH(gsp
, &req
->r_gss_seqlist
, gss_seqnext
) {
1239 if (seqnum
== gsp
->gss_seqnum
) {
1249 case RPCSEC_GSS_SVC_PRIVACY
:
1251 * Here's what we expect in the privacy results:
1253 * opaque encodeing of the wrap token
1254 * - length of wrap token
1257 prev_mbuf
= nmc
->nmc_mcur
;
1258 nfsm_chain_get_32(error
, nmc
, reslen
); // length of results
1259 if (reslen
== 0 || reslen
> NFS_MAXPACKET
) {
1264 /* Get the wrap token (current mbuf in the chain starting at the current offset) */
1265 offset
= nmc
->nmc_ptr
- (caddr_t
)mbuf_data(nmc
->nmc_mcur
);
1267 /* split out the wrap token */
1269 error
= gss_normalize_mbuf(nmc
->nmc_mcur
, offset
, &ressize
, &results_mbuf
, &pad_mbuf
, 0);
1275 assert(nfsm_pad(reslen
) == mbuf_len(pad_mbuf
));
1276 mbuf_free(pad_mbuf
);
1279 major
= gss_krb5_unwrap_mbuf((uint32_t *)&error
, cp
->gss_clnt_ctx_id
, &results_mbuf
, 0, ressize
, NULL
, NULL
);
1281 printf("%s unwraped failed %d\n", __func__
, error
);
1285 /* Now replace the wrapped arguments with the unwrapped ones */
1286 mbuf_setnext(prev_mbuf
, results_mbuf
);
1287 nmc
->nmc_mcur
= results_mbuf
;
1288 nmc
->nmc_ptr
= mbuf_data(results_mbuf
);
1289 nmc
->nmc_left
= mbuf_len(results_mbuf
);
1292 * Get the sequence number prepended to the results
1293 * and compare it against the header
1295 nfsm_chain_get_32(error
, nmc
, seqnum
);
1296 if (gsp
->gss_seqnum
!= seqnum
) {
1297 printf("%s bad seqnum\n", __func__
);
1302 SLIST_FOREACH(gsp
, &req
->r_gss_seqlist
, gss_seqnext
) {
1303 if (seqnum
== gsp
->gss_seqnum
) {
1319 * An RPCSEC_GSS request with no integrity or privacy consists
1320 * of just the header mbufs followed by the arg mbufs.
1322 * However, integrity or privacy the original mbufs have mbufs
1323 * prepended and appended to, which means we have to do some work to
1324 * restore the arg mbuf chain to its previous state in case we need to
1327 * The location and length of the args is marked by two fields
1328 * in the request structure: r_gss_argoff and r_gss_arglen,
1329 * which are stashed when the NFS request is built.
1332 nfs_gss_clnt_args_restore(struct nfsreq
*req
)
1334 struct nfs_gss_clnt_ctx
*cp
= req
->r_gss_ctx
;
1335 struct nfsm_chain mchain
, *nmc
= &mchain
;
1336 int error
= 0, merr
;
1339 return NFSERR_EAUTH
;
1342 if ((cp
->gss_clnt_flags
& GSS_CTX_COMPLETE
) == 0) {
1346 /* Nothing to restore for SVC_NONE */
1347 if (cp
->gss_clnt_service
== RPCSEC_GSS_SVC_NONE
) {
1351 nfsm_chain_dissect_init(error
, nmc
, req
->r_mhead
); // start at RPC header
1352 nfsm_chain_adv(error
, nmc
, req
->r_gss_argoff
); // advance to args
1357 if (cp
->gss_clnt_service
== RPCSEC_GSS_SVC_INTEGRITY
) {
1358 error
= rpc_gss_integ_data_restore(cp
->gss_clnt_ctx_id
, &req
->r_mrest
, req
->r_gss_arglen
);
1360 error
= rpc_gss_priv_data_restore(cp
->gss_clnt_ctx_id
, &req
->r_mrest
, req
->r_gss_arglen
);
1363 merr
= mbuf_setnext(nmc
->nmc_mcur
, req
->r_mrest
); /* Should always succeed */
1366 return error
? error
: merr
;
1370 * This function sets up a new context on the client.
1371 * Context setup alternates upcalls to the gssd with NFS nullproc calls
1372 * to the server. Each of these calls exchanges an opaque token, obtained
1373 * via the gssd's calls into the GSS-API on either the client or the server.
1374 * This cycle of calls ends when the client's upcall to the gssd and the
1375 * server's response both return GSS_S_COMPLETE. At this point, the client
1376 * should have its session key and a handle that it can use to refer to its
1377 * new context on the server.
1380 nfs_gss_clnt_ctx_init(struct nfsreq
*req
, struct nfs_gss_clnt_ctx
*cp
)
1382 struct nfsmount
*nmp
= req
->r_nmp
;
1383 gss_buffer_desc cksum
, window
;
1384 uint32_t network_seqnum
;
1385 int client_complete
= 0;
1386 int server_complete
= 0;
1391 /* Initialize a new client context */
1393 if (cp
->gss_clnt_svcname
== NULL
) {
1394 cp
->gss_clnt_svcname
= nfs_gss_clnt_svcname(nmp
, &cp
->gss_clnt_svcnt
, &cp
->gss_clnt_svcnamlen
);
1395 if (cp
->gss_clnt_svcname
== NULL
) {
1396 error
= NFSERR_EAUTH
;
1401 cp
->gss_clnt_proc
= RPCSEC_GSS_INIT
;
1403 cp
->gss_clnt_service
=
1404 req
->r_auth
== RPCAUTH_KRB5
? RPCSEC_GSS_SVC_NONE
:
1405 req
->r_auth
== RPCAUTH_KRB5I
? RPCSEC_GSS_SVC_INTEGRITY
:
1406 req
->r_auth
== RPCAUTH_KRB5P
? RPCSEC_GSS_SVC_PRIVACY
: 0;
1409 * Now loop around alternating gss_init_sec_context and
1410 * gss_accept_sec_context upcalls to the gssd on the client
1411 * and server side until the context is complete - or fails.
1415 /* Upcall to the gss_init_sec_context in the gssd */
1416 error
= nfs_gss_clnt_gssd_upcall(req
, cp
, retrycnt
);
1421 if (cp
->gss_clnt_major
== GSS_S_COMPLETE
) {
1422 client_complete
= 1;
1423 NFS_GSS_DBG("Client complete\n");
1424 if (server_complete
) {
1427 } else if (cp
->gss_clnt_major
!= GSS_S_CONTINUE_NEEDED
) {
1429 * We may have gotten here because the accept sec context
1430 * from the server failed and sent back a GSS token that
1431 * encapsulates a kerberos error token per RFC 1964/4121
1432 * with a status of GSS_S_CONTINUE_NEEDED. That caused us
1433 * to loop to the above up call and received the now
1437 cp
->gss_clnt_gssd_flags
|= GSSD_RESTART
;
1438 NFS_GSS_DBG("Retrying major = %x minor = %d\n", cp
->gss_clnt_major
, (int)cp
->gss_clnt_minor
);
1443 * Pass the token to the server.
1445 error
= nfs_gss_clnt_ctx_callserver(req
, cp
);
1447 if (error
== ENEEDAUTH
&&
1448 (cp
->gss_clnt_proc
== RPCSEC_GSS_INIT
||
1449 cp
->gss_clnt_proc
== RPCSEC_GSS_CONTINUE_INIT
)) {
1451 * We got here because the server had a problem
1452 * trying to establish a context and sent that there
1453 * was a context problem at the rpc sec layer. Perhaps
1454 * gss_accept_sec_context succeeded in user space,
1455 * but the kernel could not handle the etype
1456 * to generate the mic for the verifier of the rpc_sec
1460 cp
->gss_clnt_gssd_flags
|= GSSD_RESTART
;
1461 NFS_GSS_DBG("Retrying major = %x minor = %d\n", cp
->gss_clnt_major
, (int)cp
->gss_clnt_minor
);
1466 if (cp
->gss_clnt_major
== GSS_S_COMPLETE
) {
1467 NFS_GSS_DBG("Server complete\n");
1468 server_complete
= 1;
1469 if (client_complete
) {
1472 } else if (cp
->gss_clnt_major
== GSS_S_CONTINUE_NEEDED
) {
1473 cp
->gss_clnt_proc
= RPCSEC_GSS_CONTINUE_INIT
;
1475 /* Server didn't like us. Try something else */
1477 cp
->gss_clnt_gssd_flags
|= GSSD_RESTART
;
1478 NFS_GSS_DBG("Retrying major = %x minor = %d\n", cp
->gss_clnt_major
, (int)cp
->gss_clnt_minor
);
1483 * The context is apparently established successfully
1485 lck_mtx_lock(&cp
->gss_clnt_mtx
);
1486 cp
->gss_clnt_flags
|= GSS_CTX_COMPLETE
;
1487 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
1488 cp
->gss_clnt_proc
= RPCSEC_GSS_DATA
;
1490 network_seqnum
= htonl(cp
->gss_clnt_seqwin
);
1491 window
.length
= sizeof(cp
->gss_clnt_seqwin
);
1492 window
.value
= &network_seqnum
;
1493 cksum
.value
= cp
->gss_clnt_verf
;
1494 cksum
.length
= cp
->gss_clnt_verflen
;
1495 major
= gss_krb5_verify_mic((uint32_t *)&error
, cp
->gss_clnt_ctx_id
, &window
, &cksum
, NULL
);
1496 cp
->gss_clnt_verflen
= 0;
1497 FREE(cp
->gss_clnt_verf
, M_TEMP
);
1498 cp
->gss_clnt_verf
= NULL
;
1499 if (major
!= GSS_S_COMPLETE
) {
1500 printf("%s: could not verify window\n", __func__
);
1501 error
= NFSERR_EAUTH
;
1506 * Set an initial sequence number somewhat randomized.
1507 * Start small so we don't overflow GSS_MAXSEQ too quickly.
1508 * Add the size of the sequence window so seqbits arithmetic
1509 * doesn't go negative.
1511 cp
->gss_clnt_seqnum
= (random() & 0xffff) + cp
->gss_clnt_seqwin
;
1514 * Allocate a bitmap to keep track of which requests
1515 * are pending within the sequence number window.
1517 MALLOC(cp
->gss_clnt_seqbits
, uint32_t *,
1518 nfsm_rndup((cp
->gss_clnt_seqwin
+ 7) / 8), M_TEMP
, M_WAITOK
| M_ZERO
);
1519 if (cp
->gss_clnt_seqbits
== NULL
) {
1520 error
= NFSERR_EAUTH
;
1525 * If the error is ENEEDAUTH we're not done, so no need
1526 * to wake up other threads again. This thread will retry in
1527 * the find or renew routines.
1529 if (error
== ENEEDAUTH
) {
1530 NFS_GSS_DBG("Returning ENEEDAUTH\n");
1535 * If there's an error, just mark it as invalid.
1536 * It will be removed when the reference count
1539 lck_mtx_lock(&cp
->gss_clnt_mtx
);
1541 cp
->gss_clnt_flags
|= GSS_CTX_INVAL
;
1545 * Wake any threads waiting to use the context
1547 cp
->gss_clnt_thread
= NULL
;
1548 if (cp
->gss_clnt_flags
& GSS_NEEDCTX
) {
1549 cp
->gss_clnt_flags
&= ~GSS_NEEDCTX
;
1552 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
1554 NFS_GSS_DBG("Returning error = %d\n", error
);
1559 * This function calls nfs_gss_clnt_ctx_init() to set up a new context.
1560 * But if there's a failure in trying to establish the context it keeps
1561 * retrying at progressively longer intervals in case the failure is
1562 * due to some transient condition. For instance, the server might be
1563 * failing the context setup because directory services is not coming
1564 * up in a timely fashion.
1567 nfs_gss_clnt_ctx_init_retry(struct nfsreq
*req
, struct nfs_gss_clnt_ctx
*cp
)
1569 struct nfsmount
*nmp
= req
->r_nmp
;
1574 int timeo
= NFS_TRYLATERDEL
;
1576 if (nfs_mount_gone(nmp
)) {
1581 /* For an "intr" mount allow a signal to interrupt the retries */
1582 slpflag
= (NMFLAG(nmp
, INTR
) && !(req
->r_flags
& R_NOINTR
)) ? PCATCH
: 0;
1584 while ((error
= nfs_gss_clnt_ctx_init(req
, cp
)) == ENEEDAUTH
) {
1586 waituntil
= now
.tv_sec
+ timeo
;
1587 while (now
.tv_sec
< waituntil
) {
1588 tsleep(NULL
, PSOCK
| slpflag
, "nfs_gss_clnt_ctx_init_retry", hz
);
1590 error
= nfs_sigintr(req
->r_nmp
, req
, current_thread(), 0);
1598 /* If it's a soft mount just give up after a while */
1599 if ((NMFLAG(nmp
, SOFT
) || (req
->r_flags
& R_SOFT
)) && (retries
> nmp
->nm_retry
)) {
1610 return 0; // success
1614 * Give up on this context
1616 lck_mtx_lock(&cp
->gss_clnt_mtx
);
1617 cp
->gss_clnt_flags
|= GSS_CTX_INVAL
;
1620 * Wake any threads waiting to use the context
1622 cp
->gss_clnt_thread
= NULL
;
1623 if (cp
->gss_clnt_flags
& GSS_NEEDCTX
) {
1624 cp
->gss_clnt_flags
&= ~GSS_NEEDCTX
;
1627 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
1633 * Call the NFS server using a null procedure for context setup.
1634 * Even though it's a null procedure and nominally has no arguments
1635 * RFC 2203 requires that the GSS-API token be passed as an argument
1636 * and received as a reply.
1639 nfs_gss_clnt_ctx_callserver(struct nfsreq
*req
, struct nfs_gss_clnt_ctx
*cp
)
1641 struct nfsm_chain nmreq
, nmrep
;
1642 int error
= 0, status
;
1643 uint32_t major
= cp
->gss_clnt_major
, minor
= cp
->gss_clnt_minor
;
1646 if (nfs_mount_gone(req
->r_nmp
)) {
1649 nfsm_chain_null(&nmreq
);
1650 nfsm_chain_null(&nmrep
);
1651 sz
= NFSX_UNSIGNED
+ nfsm_rndup(cp
->gss_clnt_tokenlen
);
1652 nfsm_chain_build_alloc_init(error
, &nmreq
, sz
);
1653 nfsm_chain_add_32(error
, &nmreq
, cp
->gss_clnt_tokenlen
);
1654 if (cp
->gss_clnt_tokenlen
> 0) {
1655 nfsm_chain_add_opaque(error
, &nmreq
, cp
->gss_clnt_token
, cp
->gss_clnt_tokenlen
);
1657 nfsm_chain_build_done(error
, &nmreq
);
1662 /* Call the server */
1663 error
= nfs_request_gss(req
->r_nmp
->nm_mountp
, &nmreq
, req
->r_thread
, req
->r_cred
,
1664 (req
->r_flags
& R_OPTMASK
), cp
, &nmrep
, &status
);
1665 if (cp
->gss_clnt_token
!= NULL
) {
1666 FREE(cp
->gss_clnt_token
, M_TEMP
);
1667 cp
->gss_clnt_token
= NULL
;
1676 /* Get the server's reply */
1678 nfsm_chain_get_32(error
, &nmrep
, cp
->gss_clnt_handle_len
);
1679 if (cp
->gss_clnt_handle
!= NULL
) {
1680 FREE(cp
->gss_clnt_handle
, M_TEMP
);
1681 cp
->gss_clnt_handle
= NULL
;
1683 if (cp
->gss_clnt_handle_len
> 0 && cp
->gss_clnt_handle_len
< GSS_MAX_CTX_HANDLE_LEN
) {
1684 MALLOC(cp
->gss_clnt_handle
, u_char
*, cp
->gss_clnt_handle_len
, M_TEMP
, M_WAITOK
);
1685 if (cp
->gss_clnt_handle
== NULL
) {
1689 nfsm_chain_get_opaque(error
, &nmrep
, cp
->gss_clnt_handle_len
, cp
->gss_clnt_handle
);
1693 nfsm_chain_get_32(error
, &nmrep
, cp
->gss_clnt_major
);
1694 nfsm_chain_get_32(error
, &nmrep
, cp
->gss_clnt_minor
);
1695 nfsm_chain_get_32(error
, &nmrep
, cp
->gss_clnt_seqwin
);
1696 nfsm_chain_get_32(error
, &nmrep
, cp
->gss_clnt_tokenlen
);
1700 if (cp
->gss_clnt_tokenlen
> 0 && cp
->gss_clnt_tokenlen
< GSS_MAX_TOKEN_LEN
) {
1701 MALLOC(cp
->gss_clnt_token
, u_char
*, cp
->gss_clnt_tokenlen
, M_TEMP
, M_WAITOK
);
1702 if (cp
->gss_clnt_token
== NULL
) {
1706 nfsm_chain_get_opaque(error
, &nmrep
, cp
->gss_clnt_tokenlen
, cp
->gss_clnt_token
);
1712 * Make sure any unusual errors are expanded and logged by gssd
1714 if (cp
->gss_clnt_major
!= GSS_S_COMPLETE
&&
1715 cp
->gss_clnt_major
!= GSS_S_CONTINUE_NEEDED
) {
1716 printf("nfs_gss_clnt_ctx_callserver: gss_clnt_major = %d\n", cp
->gss_clnt_major
);
1717 nfs_gss_clnt_log_error(req
, cp
, major
, minor
);
1721 nfsm_chain_cleanup(&nmreq
);
1722 nfsm_chain_cleanup(&nmrep
);
1728 * We construct the service principal as a gss hostbased service principal of
1729 * the form nfs@<server>, unless the servers principal was passed down in the
1730 * mount arguments. If the arguments don't specify the service principal, the
1731 * server name is extracted the location passed in the mount argument if
1732 * available. Otherwise assume a format of <server>:<path> in the
1733 * mntfromname. We don't currently support url's or other bizarre formats like
1734 * path@server. Mount_url will convert the nfs url into <server>:<path> when
1735 * calling mount, so this works out well in practice.
1740 nfs_gss_clnt_svcname(struct nfsmount
*nmp
, gssd_nametype
*nt
, size_t *len
)
1742 char *svcname
, *d
, *server
;
1745 if (nfs_mount_gone(nmp
)) {
1749 if (nmp
->nm_sprinc
) {
1750 *len
= strlen(nmp
->nm_sprinc
) + 1;
1751 MALLOC(svcname
, char *, *len
, M_TEMP
, M_WAITOK
);
1752 *nt
= GSSD_HOSTBASED
;
1753 if (svcname
== NULL
) {
1756 strlcpy(svcname
, nmp
->nm_sprinc
, *len
);
1758 return (uint8_t *)svcname
;
1761 *nt
= GSSD_HOSTBASED
;
1762 if (nmp
->nm_locations
.nl_numlocs
&& !(NFS_GSS_ISDBG
&& (NFS_DEBUG_FLAGS
& 0x1))) {
1763 lindx
= nmp
->nm_locations
.nl_current
.nli_loc
;
1764 sindx
= nmp
->nm_locations
.nl_current
.nli_serv
;
1765 server
= nmp
->nm_locations
.nl_locations
[lindx
]->nl_servers
[sindx
]->ns_name
;
1766 *len
= (uint32_t)strlen(server
);
1768 /* Older binaries using older mount args end up here */
1769 server
= vfs_statfs(nmp
->nm_mountp
)->f_mntfromname
;
1770 NFS_GSS_DBG("nfs getting gss svcname from %s\n", server
);
1771 d
= strchr(server
, ':');
1772 *len
= (uint32_t)(d
? (d
- server
) : strlen(server
));
1775 *len
+= 5; /* "nfs@" plus null */
1776 MALLOC(svcname
, char *, *len
, M_TEMP
, M_WAITOK
);
1777 strlcpy(svcname
, "nfs", *len
);
1778 strlcat(svcname
, "@", *len
);
1779 strlcat(svcname
, server
, *len
);
1780 NFS_GSS_DBG("nfs svcname = %s\n", svcname
);
1782 return (uint8_t *)svcname
;
1786 * Get a mach port to talk to gssd.
1787 * gssd lives in the root bootstrap, so we call gssd's lookup routine
1788 * to get a send right to talk to a new gssd instance that launchd has launched
1789 * based on the cred's uid and audit session id.
1793 nfs_gss_clnt_get_upcall_port(kauth_cred_t credp
)
1795 mach_port_t gssd_host_port
, uc_port
= IPC_PORT_NULL
;
1800 kr
= host_get_gssd_port(host_priv_self(), &gssd_host_port
);
1801 if (kr
!= KERN_SUCCESS
) {
1802 printf("nfs_gss_get_upcall_port: can't get gssd port, status %x (%d)\n", kr
, kr
);
1803 return IPC_PORT_NULL
;
1805 if (!IPC_PORT_VALID(gssd_host_port
)) {
1806 printf("nfs_gss_get_upcall_port: gssd port not valid\n");
1807 return IPC_PORT_NULL
;
1810 asid
= kauth_cred_getasid(credp
);
1811 uid
= kauth_cred_getauid(credp
);
1812 if (uid
== AU_DEFAUDITID
) {
1813 uid
= kauth_cred_getuid(credp
);
1815 kr
= mach_gss_lookup(gssd_host_port
, uid
, asid
, &uc_port
);
1816 if (kr
!= KERN_SUCCESS
) {
1817 printf("nfs_gss_clnt_get_upcall_port: mach_gssd_lookup failed: status %x (%d)\n", kr
, kr
);
1819 host_release_special_port(gssd_host_port
);
1826 nfs_gss_clnt_log_error(struct nfsreq
*req
, struct nfs_gss_clnt_ctx
*cp
, uint32_t major
, uint32_t minor
)
1828 #define GETMAJERROR(x) (((x) >> GSS_C_ROUTINE_ERROR_OFFSET) & GSS_C_ROUTINE_ERROR_MASK)
1829 struct nfsmount
*nmp
= req
->r_nmp
;
1830 char who
[] = "client";
1831 uint32_t gss_error
= GETMAJERROR(cp
->gss_clnt_major
);
1832 const char *procn
= "unkown";
1837 if (req
->r_thread
) {
1838 proc
= (proc_t
)get_bsdthreadtask_info(req
->r_thread
);
1839 if (proc
!= NULL
&& (proc
->p_fd
== NULL
|| (proc
->p_lflag
& P_LVFORK
))) {
1843 if (*proc
->p_comm
) {
1844 procn
= proc
->p_comm
;
1854 if ((cp
->gss_clnt_major
!= major
|| cp
->gss_clnt_minor
!= minor
||
1855 cp
->gss_clnt_ptime
+ GSS_PRINT_DELAY
< now
.tv_sec
) &&
1856 (nmp
->nm_state
& NFSSTA_MOUNTED
)) {
1858 * Will let gssd do some logging in hopes that it can translate
1861 if (cp
->gss_clnt_minor
&& cp
->gss_clnt_minor
!= minor
) {
1862 (void) mach_gss_log_error(
1864 vfs_statfs(nmp
->nm_mountp
)->f_mntfromname
,
1865 kauth_cred_getuid(cp
->gss_clnt_cred
),
1868 cp
->gss_clnt_minor
);
1870 gss_error
= gss_error
? gss_error
: cp
->gss_clnt_major
;
1873 *%%% It would be really nice to get the terminal from the proc or auditinfo_addr struct and print that here.
1875 printf("NFS: gssd auth failure by %s on audit session %d uid %d proc %s/%d for mount %s. Error: major = %d minor = %d\n",
1876 cp
->gss_clnt_display
? cp
->gss_clnt_display
: who
, kauth_cred_getasid(req
->r_cred
), kauth_cred_getuid(req
->r_cred
),
1877 procn
, pid
, vfs_statfs(nmp
->nm_mountp
)->f_mntfromname
, gss_error
, (int32_t)cp
->gss_clnt_minor
);
1878 cp
->gss_clnt_ptime
= now
.tv_sec
;
1879 switch (gss_error
) {
1880 case 7: printf("NFS: gssd does not have credentials for session %d/%d, (kinit)?\n",
1881 kauth_cred_getasid(req
->r_cred
), kauth_cred_getauid(req
->r_cred
));
1883 case 11: printf("NFS: gssd has expired credentals for session %d/%d, (kinit)?\n",
1884 kauth_cred_getasid(req
->r_cred
), kauth_cred_getauid(req
->r_cred
));
1888 NFS_GSS_DBG("NFS: gssd auth failure by %s on audit session %d uid %d proc %s/%d for mount %s. Error: major = %d minor = %d\n",
1889 cp
->gss_clnt_display
? cp
->gss_clnt_display
: who
, kauth_cred_getasid(req
->r_cred
), kauth_cred_getuid(req
->r_cred
),
1890 procn
, pid
, vfs_statfs(nmp
->nm_mountp
)->f_mntfromname
, gss_error
, (int32_t)cp
->gss_clnt_minor
);
1895 * Make an upcall to the gssd using Mach RPC
1896 * The upcall is made using a host special port.
1897 * This allows launchd to fire up the gssd in the
1898 * user's session. This is important, since gssd
1899 * must have access to the user's credential cache.
1902 nfs_gss_clnt_gssd_upcall(struct nfsreq
*req
, struct nfs_gss_clnt_ctx
*cp
, uint32_t retrycnt
)
1905 gssd_byte_buffer octx
= NULL
;
1906 uint32_t lucidlen
= 0;
1907 void *lucid_ctx_buffer
;
1909 vm_map_copy_t itoken
= NULL
;
1910 gssd_byte_buffer otoken
= NULL
;
1911 mach_msg_type_number_t otokenlen
;
1913 uint8_t *principal
= NULL
;
1915 int32_t nt
= GSSD_STRING_NAME
;
1916 vm_map_copy_t pname
= NULL
;
1917 vm_map_copy_t svcname
= NULL
;
1918 char display_name
[MAX_DISPLAY_STR
] = "";
1920 struct nfsmount
*nmp
= req
->r_nmp
;
1921 uint32_t major
= cp
->gss_clnt_major
, minor
= cp
->gss_clnt_minor
;
1922 uint32_t selected
= (uint32_t)-1;
1923 struct nfs_etype etype
;
1925 if (nmp
== NULL
|| vfs_isforce(nmp
->nm_mountp
) || (nmp
->nm_state
& (NFSSTA_FORCE
| NFSSTA_DEAD
))) {
1929 if (cp
->gss_clnt_gssd_flags
& GSSD_RESTART
) {
1930 if (cp
->gss_clnt_token
) {
1931 FREE(cp
->gss_clnt_token
, M_TEMP
);
1933 cp
->gss_clnt_token
= NULL
;
1934 cp
->gss_clnt_tokenlen
= 0;
1935 cp
->gss_clnt_proc
= RPCSEC_GSS_INIT
;
1936 /* Server's handle isn't valid. Don't reuse */
1937 cp
->gss_clnt_handle_len
= 0;
1938 if (cp
->gss_clnt_handle
!= NULL
) {
1939 FREE(cp
->gss_clnt_handle
, M_TEMP
);
1940 cp
->gss_clnt_handle
= NULL
;
1944 NFS_GSS_DBG("Retrycnt = %d nm_etype.count = %d\n", retrycnt
, nmp
->nm_etype
.count
);
1945 if (retrycnt
>= nmp
->nm_etype
.count
) {
1949 /* Copy the mount etypes to an order set of etypes to try */
1950 etype
= nmp
->nm_etype
;
1953 * If we've already selected an etype, lets put that first in our
1954 * array of etypes to try, since overwhelmingly, that is likely
1955 * to be the etype we want.
1957 if (etype
.selected
< etype
.count
) {
1958 etype
.etypes
[0] = nmp
->nm_etype
.etypes
[etype
.selected
];
1959 for (uint32_t i
= 0; i
< etype
.selected
; i
++) {
1960 etype
.etypes
[i
+ 1] = nmp
->nm_etype
.etypes
[i
];
1962 for (uint32_t i
= etype
.selected
+ 1; i
< etype
.count
; i
++) {
1963 etype
.etypes
[i
] = nmp
->nm_etype
.etypes
[i
];
1967 /* Remove the ones we've already have tried */
1968 for (uint32_t i
= retrycnt
; i
< etype
.count
; i
++) {
1969 etype
.etypes
[i
- retrycnt
] = etype
.etypes
[i
];
1971 etype
.count
= etype
.count
- retrycnt
;
1973 NFS_GSS_DBG("etype count = %d preferred etype = %d\n", etype
.count
, etype
.etypes
[0]);
1976 * NFS currently only supports default principals or
1977 * principals based on the uid of the caller, unless
1978 * the principal to use for the mounting cred was specified
1979 * in the mount argmuments. If the realm to use was specified
1980 * then will send that up as the principal since the realm is
1981 * preceed by an "@" gssd that will try and select the default
1982 * principal for that realm.
1985 if (cp
->gss_clnt_principal
&& cp
->gss_clnt_prinlen
) {
1986 principal
= cp
->gss_clnt_principal
;
1987 plen
= cp
->gss_clnt_prinlen
;
1988 nt
= cp
->gss_clnt_prinnt
;
1989 } else if (nmp
->nm_principal
&& IS_VALID_CRED(nmp
->nm_mcred
) && req
->r_cred
== nmp
->nm_mcred
) {
1990 plen
= (uint32_t)strlen(nmp
->nm_principal
);
1991 principal
= (uint8_t *)nmp
->nm_principal
;
1992 cp
->gss_clnt_prinnt
= nt
= GSSD_USER
;
1993 } else if (nmp
->nm_realm
) {
1994 plen
= (uint32_t)strlen(nmp
->nm_realm
);
1995 principal
= (uint8_t *)nmp
->nm_realm
;
1999 if (!IPC_PORT_VALID(cp
->gss_clnt_mport
)) {
2000 cp
->gss_clnt_mport
= nfs_gss_clnt_get_upcall_port(req
->r_cred
);
2001 if (cp
->gss_clnt_mport
== IPC_PORT_NULL
) {
2007 nfs_gss_mach_alloc_buffer(principal
, plen
, &pname
);
2009 if (cp
->gss_clnt_svcnamlen
) {
2010 nfs_gss_mach_alloc_buffer(cp
->gss_clnt_svcname
, cp
->gss_clnt_svcnamlen
, &svcname
);
2012 if (cp
->gss_clnt_tokenlen
) {
2013 nfs_gss_mach_alloc_buffer(cp
->gss_clnt_token
, cp
->gss_clnt_tokenlen
, &itoken
);
2016 /* Always want to export the lucid context */
2017 cp
->gss_clnt_gssd_flags
|= GSSD_LUCID_CONTEXT
;
2020 kr
= mach_gss_init_sec_context_v3(
2023 (gssd_byte_buffer
) itoken
, (mach_msg_type_number_t
) cp
->gss_clnt_tokenlen
,
2024 kauth_cred_getuid(cp
->gss_clnt_cred
),
2026 (gssd_byte_buffer
)pname
, (mach_msg_type_number_t
) plen
,
2028 (gssd_byte_buffer
)svcname
, (mach_msg_type_number_t
) cp
->gss_clnt_svcnamlen
,
2030 (gssd_etype_list
)etype
.etypes
, (mach_msg_type_number_t
)etype
.count
,
2031 &cp
->gss_clnt_gssd_flags
,
2032 &cp
->gss_clnt_context
,
2033 &cp
->gss_clnt_cred_handle
,
2035 &octx
, (mach_msg_type_number_t
*) &lucidlen
,
2036 &otoken
, &otokenlen
,
2037 cp
->gss_clnt_display
? NULL
: display_name
,
2038 &cp
->gss_clnt_major
,
2039 &cp
->gss_clnt_minor
);
2041 /* Clear the RESTART flag */
2042 cp
->gss_clnt_gssd_flags
&= ~GSSD_RESTART
;
2043 if (cp
->gss_clnt_major
!= GSS_S_CONTINUE_NEEDED
) {
2044 /* We're done with the gssd handles */
2045 cp
->gss_clnt_context
= 0;
2046 cp
->gss_clnt_cred_handle
= 0;
2049 if (kr
!= KERN_SUCCESS
) {
2050 printf("nfs_gss_clnt_gssd_upcall: mach_gss_init_sec_context failed: %x (%d)\n", kr
, kr
);
2051 if (kr
== MIG_SERVER_DIED
&& cp
->gss_clnt_cred_handle
== 0 &&
2052 retry_cnt
++ < NFS_GSS_MACH_MAX_RETRIES
&&
2053 !vfs_isforce(nmp
->nm_mountp
) && (nmp
->nm_state
& (NFSSTA_FORCE
| NFSSTA_DEAD
)) == 0) {
2055 nfs_gss_mach_alloc_buffer(principal
, plen
, &pname
);
2057 if (cp
->gss_clnt_svcnamlen
) {
2058 nfs_gss_mach_alloc_buffer(cp
->gss_clnt_svcname
, cp
->gss_clnt_svcnamlen
, &svcname
);
2060 if (cp
->gss_clnt_tokenlen
> 0) {
2061 nfs_gss_mach_alloc_buffer(cp
->gss_clnt_token
, cp
->gss_clnt_tokenlen
, &itoken
);
2066 host_release_special_port(cp
->gss_clnt_mport
);
2067 cp
->gss_clnt_mport
= IPC_PORT_NULL
;
2071 if (cp
->gss_clnt_display
== NULL
&& *display_name
!= '\0') {
2072 size_t dlen
= strnlen(display_name
, MAX_DISPLAY_STR
) + 1; /* Add extra byte to include '\0' */
2074 if (dlen
< MAX_DISPLAY_STR
) {
2075 MALLOC(cp
->gss_clnt_display
, char *, dlen
, M_TEMP
, M_WAITOK
);
2076 if (cp
->gss_clnt_display
== NULL
) {
2079 bcopy(display_name
, cp
->gss_clnt_display
, dlen
);
2086 * Make sure any unusual errors are expanded and logged by gssd
2088 * XXXX, we need to rethink this and just have gssd return a string for the major and minor codes.
2090 if (cp
->gss_clnt_major
!= GSS_S_COMPLETE
&&
2091 cp
->gss_clnt_major
!= GSS_S_CONTINUE_NEEDED
) {
2092 NFS_GSS_DBG("Up call returned error\n");
2093 nfs_gss_clnt_log_error(req
, cp
, major
, minor
);
2094 /* Server's handle isn't valid. Don't reuse */
2095 cp
->gss_clnt_handle_len
= 0;
2096 if (cp
->gss_clnt_handle
!= NULL
) {
2097 FREE(cp
->gss_clnt_handle
, M_TEMP
);
2098 cp
->gss_clnt_handle
= NULL
;
2103 if (lucidlen
> MAX_LUCIDLEN
) {
2104 printf("nfs_gss_clnt_gssd_upcall: bad context length (%d)\n", lucidlen
);
2105 vm_map_copy_discard((vm_map_copy_t
) octx
);
2106 vm_map_copy_discard((vm_map_copy_t
) otoken
);
2109 MALLOC(lucid_ctx_buffer
, void *, lucidlen
, M_TEMP
, M_WAITOK
| M_ZERO
);
2110 error
= nfs_gss_mach_vmcopyout((vm_map_copy_t
) octx
, lucidlen
, lucid_ctx_buffer
);
2112 vm_map_copy_discard((vm_map_copy_t
) otoken
);
2116 if (cp
->gss_clnt_ctx_id
) {
2117 gss_krb5_destroy_context(cp
->gss_clnt_ctx_id
);
2119 cp
->gss_clnt_ctx_id
= gss_krb5_make_context(lucid_ctx_buffer
, lucidlen
);
2120 if (cp
->gss_clnt_ctx_id
== NULL
) {
2121 printf("Failed to make context from lucid_ctx_buffer\n");
2124 for (uint32_t i
= 0; i
< nmp
->nm_etype
.count
; i
++) {
2125 if (nmp
->nm_etype
.etypes
[i
] == cp
->gss_clnt_ctx_id
->gss_cryptor
.etype
) {
2132 /* Free context token used as input */
2133 if (cp
->gss_clnt_token
) {
2134 FREE(cp
->gss_clnt_token
, M_TEMP
);
2136 cp
->gss_clnt_token
= NULL
;
2137 cp
->gss_clnt_tokenlen
= 0;
2139 if (otokenlen
> 0) {
2140 /* Set context token to gss output token */
2141 MALLOC(cp
->gss_clnt_token
, u_char
*, otokenlen
, M_TEMP
, M_WAITOK
);
2142 if (cp
->gss_clnt_token
== NULL
) {
2143 printf("nfs_gss_clnt_gssd_upcall: could not allocate %d bytes\n", otokenlen
);
2144 vm_map_copy_discard((vm_map_copy_t
) otoken
);
2147 error
= nfs_gss_mach_vmcopyout((vm_map_copy_t
) otoken
, otokenlen
, cp
->gss_clnt_token
);
2149 printf("Could not copyout gss token\n");
2150 FREE(cp
->gss_clnt_token
, M_TEMP
);
2151 cp
->gss_clnt_token
= NULL
;
2152 return NFSERR_EAUTH
;
2154 cp
->gss_clnt_tokenlen
= otokenlen
;
2157 if (selected
!= (uint32_t)-1) {
2158 nmp
->nm_etype
.selected
= selected
;
2159 NFS_GSS_DBG("etype selected = %d\n", nmp
->nm_etype
.etypes
[selected
]);
2161 NFS_GSS_DBG("Up call succeeded major = %d\n", cp
->gss_clnt_major
);
2165 if (cp
->gss_clnt_token
) {
2166 FREE(cp
->gss_clnt_token
, M_TEMP
);
2168 cp
->gss_clnt_token
= NULL
;
2169 cp
->gss_clnt_tokenlen
= 0;
2170 /* Server's handle isn't valid. Don't reuse */
2171 cp
->gss_clnt_handle_len
= 0;
2172 if (cp
->gss_clnt_handle
!= NULL
) {
2173 FREE(cp
->gss_clnt_handle
, M_TEMP
);
2174 cp
->gss_clnt_handle
= NULL
;
2177 NFS_GSS_DBG("Up call returned NFSERR_EAUTH");
2178 return NFSERR_EAUTH
;
2182 * Invoked at the completion of an RPC call that uses an RPCSEC_GSS
2183 * credential. The sequence number window that the server returns
2184 * at context setup indicates the maximum number of client calls that
2185 * can be outstanding on a context. The client maintains a bitmap that
2186 * represents the server's window. Each pending request has a bit set
2187 * in the window bitmap. When a reply comes in or times out, we reset
2188 * the bit in the bitmap and if there are any other threads waiting for
2189 * a context slot we notify the waiting thread(s).
2191 * Note that if a request is retransmitted, it will have a single XID
2192 * but it may be associated with multiple sequence numbers. So we
2193 * may have to reset multiple sequence number bits in the window bitmap.
2196 nfs_gss_clnt_rpcdone(struct nfsreq
*req
)
2198 struct nfs_gss_clnt_ctx
*cp
= req
->r_gss_ctx
;
2199 struct gss_seq
*gsp
, *ngsp
;
2202 if (cp
== NULL
|| !(cp
->gss_clnt_flags
& GSS_CTX_COMPLETE
)) {
2203 return; // no context - don't bother
2206 * Reset the bit for this request in the
2207 * sequence number window to indicate it's done.
2208 * We do this even if the request timed out.
2210 lck_mtx_lock(&cp
->gss_clnt_mtx
);
2211 gsp
= SLIST_FIRST(&req
->r_gss_seqlist
);
2212 if (gsp
&& gsp
->gss_seqnum
> (cp
->gss_clnt_seqnum
- cp
->gss_clnt_seqwin
)) {
2213 win_resetbit(cp
->gss_clnt_seqbits
,
2214 gsp
->gss_seqnum
% cp
->gss_clnt_seqwin
);
2218 * Limit the seqnum list to GSS_CLNT_SEQLISTMAX entries
2220 SLIST_FOREACH_SAFE(gsp
, &req
->r_gss_seqlist
, gss_seqnext
, ngsp
) {
2221 if (++i
> GSS_CLNT_SEQLISTMAX
) {
2222 SLIST_REMOVE(&req
->r_gss_seqlist
, gsp
, gss_seq
, gss_seqnext
);
2228 * If there's a thread waiting for
2229 * the window to advance, wake it up.
2231 if (cp
->gss_clnt_flags
& GSS_NEEDSEQ
) {
2232 cp
->gss_clnt_flags
&= ~GSS_NEEDSEQ
;
2235 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2239 * Create a reference to a context from a request
2240 * and bump the reference count
2243 nfs_gss_clnt_ctx_ref(struct nfsreq
*req
, struct nfs_gss_clnt_ctx
*cp
)
2245 req
->r_gss_ctx
= cp
;
2247 lck_mtx_lock(&cp
->gss_clnt_mtx
);
2248 cp
->gss_clnt_refcnt
++;
2249 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2253 * Remove a context reference from a request
2254 * If the reference count drops to zero, and the
2255 * context is invalid, destroy the context
2258 nfs_gss_clnt_ctx_unref(struct nfsreq
*req
)
2260 struct nfsmount
*nmp
= req
->r_nmp
;
2261 struct nfs_gss_clnt_ctx
*cp
= req
->r_gss_ctx
;
2262 int on_neg_cache
= 0;
2266 char CTXBUF
[NFS_CTXBUFSZ
];
2272 req
->r_gss_ctx
= NULL
;
2274 lck_mtx_lock(&cp
->gss_clnt_mtx
);
2275 if (--cp
->gss_clnt_refcnt
< 0) {
2276 panic("Over release of gss context!\n");
2279 if (cp
->gss_clnt_refcnt
== 0) {
2280 if ((cp
->gss_clnt_flags
& GSS_CTX_INVAL
) &&
2281 cp
->gss_clnt_ctx_id
) {
2282 gss_krb5_destroy_context(cp
->gss_clnt_ctx_id
);
2283 cp
->gss_clnt_ctx_id
= NULL
;
2285 if (cp
->gss_clnt_flags
& GSS_CTX_DESTROY
) {
2287 if ((cp
->gss_clnt_flags
& GSS_CTX_USECOUNT
) && !nfs_gss_clnt_mnt_rele(nmp
)) {
2288 cp
->gss_clnt_flags
&= ~GSS_CTX_USECOUNT
;
2290 if (cp
->gss_clnt_nctime
) {
2295 if (!destroy
&& cp
->gss_clnt_nctime
== 0 &&
2296 (cp
->gss_clnt_flags
& GSS_CTX_INVAL
)) {
2298 cp
->gss_clnt_nctime
= now
.tv_sec
;
2301 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2303 NFS_GSS_DBG("Destroying context %s\n", NFS_GSS_CTX(req
, cp
));
2305 lck_mtx_lock(&nmp
->nm_lock
);
2306 if (cp
->gss_clnt_entries
.tqe_next
!= NFSNOLIST
) {
2307 TAILQ_REMOVE(&nmp
->nm_gsscl
, cp
, gss_clnt_entries
);
2310 nmp
->nm_ncentries
--;
2312 lck_mtx_unlock(&nmp
->nm_lock
);
2314 nfs_gss_clnt_ctx_destroy(cp
);
2315 } else if (neg_cache
) {
2316 NFS_GSS_DBG("Entering context %s into negative cache\n", NFS_GSS_CTX(req
, cp
));
2318 lck_mtx_lock(&nmp
->nm_lock
);
2319 nmp
->nm_ncentries
++;
2320 nfs_gss_clnt_ctx_neg_cache_reap(nmp
);
2321 lck_mtx_unlock(&nmp
->nm_lock
);
2324 NFS_GSS_CLNT_CTX_DUMP(nmp
);
2328 * Try and reap any old negative cache entries.
2332 nfs_gss_clnt_ctx_neg_cache_reap(struct nfsmount
*nmp
)
2334 struct nfs_gss_clnt_ctx
*cp
, *tcp
;
2338 /* Try and reap old, unreferenced, expired contexts */
2341 NFS_GSS_DBG("Reaping contexts ncentries = %d\n", nmp
->nm_ncentries
);
2343 TAILQ_FOREACH_SAFE(cp
, &nmp
->nm_gsscl
, gss_clnt_entries
, tcp
) {
2346 /* Don't reap STICKY contexts */
2347 if ((cp
->gss_clnt_flags
& GSS_CTX_STICKY
) ||
2348 !(cp
->gss_clnt_flags
& GSS_CTX_INVAL
)) {
2351 /* Keep up to GSS_MAX_NEG_CACHE_ENTRIES */
2352 if (nmp
->nm_ncentries
<= GSS_MAX_NEG_CACHE_ENTRIES
) {
2355 /* Contexts too young */
2356 if (cp
->gss_clnt_nctime
+ GSS_NEG_CACHE_TO
>= now
.tv_sec
) {
2359 /* Not referenced, remove it. */
2360 lck_mtx_lock(&cp
->gss_clnt_mtx
);
2361 if (cp
->gss_clnt_refcnt
== 0) {
2362 cp
->gss_clnt_flags
|= GSS_CTX_DESTROY
;
2365 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2367 TAILQ_REMOVE(&nmp
->nm_gsscl
, cp
, gss_clnt_entries
);
2368 nmp
->nm_ncentries
++;
2370 nfs_gss_clnt_ctx_destroy(cp
);
2373 NFS_GSS_DBG("Reaped %d contexts ncentries = %d\n", reaped
, nmp
->nm_ncentries
);
2377 * Clean a context to be cached
2380 nfs_gss_clnt_ctx_clean(struct nfs_gss_clnt_ctx
*cp
)
2382 /* Preserve gss_clnt_mtx */
2383 assert(cp
->gss_clnt_thread
== NULL
); /* Will be set to this thread */
2384 /* gss_clnt_entries we should not be on any list at this point */
2385 cp
->gss_clnt_flags
= 0;
2386 /* gss_clnt_refcnt should be zero */
2387 assert(cp
->gss_clnt_refcnt
== 0);
2389 * We are who we are preserve:
2391 * gss_clnt_principal
2396 /* gss_clnt_proc will be set in nfs_gss_clnt_ctx_init */
2397 cp
->gss_clnt_seqnum
= 0;
2398 /* Preserve gss_clnt_service, we're not changing flavors */
2399 if (cp
->gss_clnt_handle
) {
2400 FREE(cp
->gss_clnt_handle
, M_TEMP
);
2401 cp
->gss_clnt_handle
= NULL
;
2403 cp
->gss_clnt_handle_len
= 0;
2404 cp
->gss_clnt_nctime
= 0;
2405 cp
->gss_clnt_seqwin
= 0;
2406 if (cp
->gss_clnt_seqbits
) {
2407 FREE(cp
->gss_clnt_seqbits
, M_TEMP
);
2408 cp
->gss_clnt_seqbits
= NULL
;
2410 /* Preserve gss_clnt_mport. Still talking to the same gssd */
2411 if (cp
->gss_clnt_verf
) {
2412 FREE(cp
->gss_clnt_verf
, M_TEMP
);
2413 cp
->gss_clnt_verf
= NULL
;
2415 /* Service name might change on failover, so reset it */
2416 if (cp
->gss_clnt_svcname
) {
2417 FREE(cp
->gss_clnt_svcname
, M_TEMP
);
2418 cp
->gss_clnt_svcname
= NULL
;
2419 cp
->gss_clnt_svcnt
= 0;
2421 cp
->gss_clnt_svcnamlen
= 0;
2422 cp
->gss_clnt_cred_handle
= 0;
2423 cp
->gss_clnt_context
= 0;
2424 if (cp
->gss_clnt_token
) {
2425 FREE(cp
->gss_clnt_token
, M_TEMP
);
2426 cp
->gss_clnt_token
= NULL
;
2428 cp
->gss_clnt_tokenlen
= 0;
2429 /* XXX gss_clnt_ctx_id ??? */
2432 * gss_clnt_gssd_flags
2440 * Copy a source context to a new context. This is used to create a new context
2441 * with the identity of the old context for renewal. The old context is invalid
2442 * at this point but may have reference still to it, so it is not safe to use that
2446 nfs_gss_clnt_ctx_copy(struct nfs_gss_clnt_ctx
*scp
, struct nfs_gss_clnt_ctx
**dcpp
)
2448 struct nfs_gss_clnt_ctx
*dcp
;
2450 *dcpp
= (struct nfs_gss_clnt_ctx
*)NULL
;
2451 MALLOC(dcp
, struct nfs_gss_clnt_ctx
*, sizeof(struct nfs_gss_clnt_ctx
), M_TEMP
, M_WAITOK
);
2455 bzero(dcp
, sizeof(struct nfs_gss_clnt_ctx
));
2456 lck_mtx_init(&dcp
->gss_clnt_mtx
, &nfs_gss_clnt_grp
, LCK_ATTR_NULL
);
2457 dcp
->gss_clnt_cred
= scp
->gss_clnt_cred
;
2458 kauth_cred_ref(dcp
->gss_clnt_cred
);
2459 dcp
->gss_clnt_prinlen
= scp
->gss_clnt_prinlen
;
2460 dcp
->gss_clnt_prinnt
= scp
->gss_clnt_prinnt
;
2461 if (scp
->gss_clnt_principal
) {
2462 MALLOC(dcp
->gss_clnt_principal
, uint8_t *, dcp
->gss_clnt_prinlen
, M_TEMP
, M_WAITOK
| M_ZERO
);
2463 if (dcp
->gss_clnt_principal
== NULL
) {
2467 bcopy(scp
->gss_clnt_principal
, dcp
->gss_clnt_principal
, dcp
->gss_clnt_prinlen
);
2469 /* Note we don't preserve the display name, that will be set by a successful up call */
2470 dcp
->gss_clnt_service
= scp
->gss_clnt_service
;
2471 dcp
->gss_clnt_mport
= host_copy_special_port(scp
->gss_clnt_mport
);
2472 dcp
->gss_clnt_ctx_id
= NULL
; /* Will be set from successful upcall */
2473 dcp
->gss_clnt_gssd_flags
= scp
->gss_clnt_gssd_flags
;
2474 dcp
->gss_clnt_major
= scp
->gss_clnt_major
;
2475 dcp
->gss_clnt_minor
= scp
->gss_clnt_minor
;
2476 dcp
->gss_clnt_ptime
= scp
->gss_clnt_ptime
;
2487 nfs_gss_clnt_ctx_destroy(struct nfs_gss_clnt_ctx
*cp
)
2489 NFS_GSS_DBG("Destroying context %d/%d\n",
2490 kauth_cred_getasid(cp
->gss_clnt_cred
),
2491 kauth_cred_getauid(cp
->gss_clnt_cred
));
2493 host_release_special_port(cp
->gss_clnt_mport
);
2494 cp
->gss_clnt_mport
= IPC_PORT_NULL
;
2496 lck_mtx_destroy(&cp
->gss_clnt_mtx
, &nfs_gss_clnt_grp
);
2498 if (IS_VALID_CRED(cp
->gss_clnt_cred
)) {
2499 kauth_cred_unref(&cp
->gss_clnt_cred
);
2501 cp
->gss_clnt_entries
.tqe_next
= NFSNOLIST
;
2502 cp
->gss_clnt_entries
.tqe_prev
= NFSNOLIST
;
2503 if (cp
->gss_clnt_principal
) {
2504 FREE(cp
->gss_clnt_principal
, M_TEMP
);
2505 cp
->gss_clnt_principal
= NULL
;
2507 if (cp
->gss_clnt_display
) {
2508 FREE(cp
->gss_clnt_display
, M_TEMP
);
2509 cp
->gss_clnt_display
= NULL
;
2511 if (cp
->gss_clnt_ctx_id
) {
2512 gss_krb5_destroy_context(cp
->gss_clnt_ctx_id
);
2513 cp
->gss_clnt_ctx_id
= NULL
;
2516 nfs_gss_clnt_ctx_clean(cp
);
2522 * The context for a user is invalid.
2523 * Mark the context as invalid, then
2524 * create a new context.
2527 nfs_gss_clnt_ctx_renew(struct nfsreq
*req
)
2529 struct nfs_gss_clnt_ctx
*cp
= req
->r_gss_ctx
;
2530 struct nfs_gss_clnt_ctx
*ncp
;
2531 struct nfsmount
*nmp
;
2533 char CTXBUF
[NFS_CTXBUFSZ
];
2539 if (req
->r_nmp
== NULL
) {
2544 lck_mtx_lock(&cp
->gss_clnt_mtx
);
2545 if (cp
->gss_clnt_flags
& GSS_CTX_INVAL
) {
2546 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2547 nfs_gss_clnt_ctx_unref(req
);
2548 return 0; // already being renewed
2551 cp
->gss_clnt_flags
|= (GSS_CTX_INVAL
| GSS_CTX_DESTROY
);
2553 if (cp
->gss_clnt_flags
& (GSS_NEEDCTX
| GSS_NEEDSEQ
)) {
2554 cp
->gss_clnt_flags
&= ~GSS_NEEDSEQ
;
2557 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2559 if (cp
->gss_clnt_proc
== RPCSEC_GSS_DESTROY
) {
2560 return EACCES
; /* Destroying a context is best effort. Don't renew. */
2563 * If we're setting up a context let nfs_gss_clnt_ctx_init know this is not working
2564 * and to try some other etype.
2566 if (cp
->gss_clnt_proc
!= RPCSEC_GSS_DATA
) {
2569 error
= nfs_gss_clnt_ctx_copy(cp
, &ncp
);
2570 NFS_GSS_DBG("Renewing context %s\n", NFS_GSS_CTX(req
, ncp
));
2571 nfs_gss_clnt_ctx_unref(req
);
2576 lck_mtx_lock(&nmp
->nm_lock
);
2578 * Note we don't bother taking the new context mutex as we're
2579 * not findable at the moment.
2581 ncp
->gss_clnt_thread
= current_thread();
2582 nfs_gss_clnt_ctx_ref(req
, ncp
);
2583 TAILQ_INSERT_HEAD(&nmp
->nm_gsscl
, ncp
, gss_clnt_entries
);
2584 lck_mtx_unlock(&nmp
->nm_lock
);
2586 error
= nfs_gss_clnt_ctx_init_retry(req
, ncp
); // Initialize new context
2588 nfs_gss_clnt_ctx_unref(req
);
2596 * Destroy all the contexts associated with a mount.
2597 * The contexts are also destroyed by the server.
2600 nfs_gss_clnt_ctx_unmount(struct nfsmount
*nmp
)
2602 struct nfs_gss_clnt_ctx
*cp
;
2603 struct nfsm_chain nmreq
, nmrep
;
2611 req
= zalloc(nfs_req_zone
);
2613 lck_mtx_lock(&nmp
->nm_lock
);
2614 while ((cp
= TAILQ_FIRST(&nmp
->nm_gsscl
))) {
2615 TAILQ_REMOVE(&nmp
->nm_gsscl
, cp
, gss_clnt_entries
);
2616 cp
->gss_clnt_entries
.tqe_next
= NFSNOLIST
;
2617 lck_mtx_lock(&cp
->gss_clnt_mtx
);
2618 if (cp
->gss_clnt_flags
& GSS_CTX_DESTROY
) {
2619 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2622 cp
->gss_clnt_refcnt
++;
2623 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2624 req
->r_gss_ctx
= cp
;
2626 lck_mtx_unlock(&nmp
->nm_lock
);
2628 * Tell the server to destroy its context.
2629 * But don't bother if it's a forced unmount.
2631 if (!nfs_mount_gone(nmp
) &&
2632 (cp
->gss_clnt_flags
& (GSS_CTX_INVAL
| GSS_CTX_DESTROY
| GSS_CTX_COMPLETE
)) == GSS_CTX_COMPLETE
) {
2633 cp
->gss_clnt_proc
= RPCSEC_GSS_DESTROY
;
2636 nfsm_chain_null(&nmreq
);
2637 nfsm_chain_null(&nmrep
);
2638 nfsm_chain_build_alloc_init(error
, &nmreq
, 0);
2639 nfsm_chain_build_done(error
, &nmreq
);
2641 nfs_request_gss(nmp
->nm_mountp
, &nmreq
,
2642 current_thread(), cp
->gss_clnt_cred
, 0, cp
, &nmrep
, &status
);
2644 nfsm_chain_cleanup(&nmreq
);
2645 nfsm_chain_cleanup(&nmrep
);
2649 * Mark the context invalid then drop
2650 * the reference to remove it if its
2653 lck_mtx_lock(&cp
->gss_clnt_mtx
);
2654 cp
->gss_clnt_flags
|= (GSS_CTX_INVAL
| GSS_CTX_DESTROY
);
2655 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2656 nfs_gss_clnt_ctx_unref(req
);
2657 lck_mtx_lock(&nmp
->nm_lock
);
2659 lck_mtx_unlock(&nmp
->nm_lock
);
2660 assert(TAILQ_EMPTY(&nmp
->nm_gsscl
));
2661 NFS_ZFREE(nfs_req_zone
, req
);
2666 * Removes a mounts context for a credential
2669 nfs_gss_clnt_ctx_remove(struct nfsmount
*nmp
, kauth_cred_t cred
)
2671 struct nfs_gss_clnt_ctx
*cp
, *tcp
;
2674 req
= zalloc(nfs_req_zone
);
2677 NFS_GSS_DBG("Enter\n");
2678 NFS_GSS_CLNT_CTX_DUMP(nmp
);
2679 lck_mtx_lock(&nmp
->nm_lock
);
2680 TAILQ_FOREACH_SAFE(cp
, &nmp
->nm_gsscl
, gss_clnt_entries
, tcp
) {
2681 lck_mtx_lock(&cp
->gss_clnt_mtx
);
2682 if (nfs_gss_clnt_ctx_cred_match(cp
->gss_clnt_cred
, cred
)) {
2683 if (cp
->gss_clnt_flags
& GSS_CTX_DESTROY
) {
2684 NFS_GSS_DBG("Found destroyed context %d/%d. refcnt = %d continuing\n",
2685 kauth_cred_getasid(cp
->gss_clnt_cred
),
2686 kauth_cred_getauid(cp
->gss_clnt_cred
),
2687 cp
->gss_clnt_refcnt
);
2688 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2691 cp
->gss_clnt_refcnt
++;
2692 cp
->gss_clnt_flags
|= (GSS_CTX_INVAL
| GSS_CTX_DESTROY
);
2693 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2694 req
->r_gss_ctx
= cp
;
2695 lck_mtx_unlock(&nmp
->nm_lock
);
2697 * Drop the reference to remove it if its
2700 NFS_GSS_DBG("Removed context %d/%d refcnt = %d\n",
2701 kauth_cred_getasid(cp
->gss_clnt_cred
),
2702 kauth_cred_getuid(cp
->gss_clnt_cred
),
2703 cp
->gss_clnt_refcnt
);
2704 nfs_gss_clnt_ctx_unref(req
);
2705 NFS_ZFREE(nfs_req_zone
, req
);
2708 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2711 lck_mtx_unlock(&nmp
->nm_lock
);
2713 NFS_ZFREE(nfs_req_zone
, req
);
2714 NFS_GSS_DBG("Returning ENOENT\n");
2719 * Sets a mounts principal for a session associated with cred.
2722 nfs_gss_clnt_ctx_set_principal(struct nfsmount
*nmp
, vfs_context_t ctx
,
2723 uint8_t *principal
, size_t princlen
, uint32_t nametype
)
2728 NFS_GSS_DBG("Enter:\n");
2730 req
= zalloc_flags(nfs_req_zone
, Z_WAITOK
| Z_ZERO
);
2732 req
->r_auth
= nmp
->nm_auth
;
2733 req
->r_thread
= vfs_context_thread(ctx
);
2734 req
->r_cred
= vfs_context_ucred(ctx
);
2736 error
= nfs_gss_clnt_ctx_find_principal(req
, principal
, princlen
, nametype
);
2737 NFS_GSS_DBG("nfs_gss_clnt_ctx_find_principal returned %d\n", error
);
2739 * We don't care about auth errors. Those would indicate that the context is in the
2740 * neagative cache and if and when the user has credentials for the principal
2741 * we should be good to go in that we will select those credentials for this principal.
2743 if (error
== EACCES
|| error
== EAUTH
|| error
== ENEEDAUTH
) {
2747 /* We're done with this request */
2748 nfs_gss_clnt_ctx_unref(req
);
2749 NFS_ZFREE(nfs_req_zone
, req
);
2754 * Gets a mounts principal from a session associated with cred
2757 nfs_gss_clnt_ctx_get_principal(struct nfsmount
*nmp
, vfs_context_t ctx
,
2758 struct user_nfs_gss_principal
*p
)
2762 struct nfs_gss_clnt_ctx
*cp
;
2763 kauth_cred_t cred
= vfs_context_ucred(ctx
);
2764 const char *princ
= NULL
;
2765 char CTXBUF
[NFS_CTXBUFSZ
];
2767 /* Make sure the the members of the struct user_nfs_gss_principal are initialized */
2768 p
->nametype
= GSSD_STRING_NAME
;
2769 p
->principal
= USER_ADDR_NULL
;
2773 req
= zalloc_flags(nfs_req_zone
, Z_WAITOK
);
2775 lck_mtx_lock(&nmp
->nm_lock
);
2776 TAILQ_FOREACH(cp
, &nmp
->nm_gsscl
, gss_clnt_entries
) {
2777 lck_mtx_lock(&cp
->gss_clnt_mtx
);
2778 if (cp
->gss_clnt_flags
& GSS_CTX_DESTROY
) {
2779 NFS_GSS_DBG("Found destroyed context %s refcnt = %d continuing\n",
2780 NFS_GSS_CTX(req
, cp
),
2781 cp
->gss_clnt_refcnt
);
2782 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2785 if (nfs_gss_clnt_ctx_cred_match(cp
->gss_clnt_cred
, cred
)) {
2786 cp
->gss_clnt_refcnt
++;
2787 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2790 lck_mtx_unlock(&cp
->gss_clnt_mtx
);
2795 lck_mtx_unlock(&nmp
->nm_lock
);
2796 p
->flags
|= NFS_IOC_NO_CRED_FLAG
; /* No credentials, valid or invalid on this mount */
2797 NFS_GSS_DBG("No context found for session %d by uid %d\n",
2798 kauth_cred_getasid(cred
), kauth_cred_getuid(cred
));
2799 NFS_ZFREE(nfs_req_zone
, req
);
2803 /* Indicate if the cred is INVALID */
2804 if (cp
->gss_clnt_flags
& GSS_CTX_INVAL
) {
2805 p
->flags
|= NFS_IOC_INVALID_CRED_FLAG
;
2808 /* We have set a principal on the mount */
2809 if (cp
->gss_clnt_principal
) {
2810 princ
= (char *)cp
->gss_clnt_principal
;
2811 p
->princlen
= cp
->gss_clnt_prinlen
;
2812 p
->nametype
= cp
->gss_clnt_prinnt
;
2813 } else if (cp
->gss_clnt_display
) {
2814 /* We have a successful use the the default credential */
2815 princ
= cp
->gss_clnt_display
;
2816 p
->princlen
= strlen(cp
->gss_clnt_display
);
2820 * If neither of the above is true we have an invalid default credential
2821 * So from above p->principal is USER_ADDR_NULL and princ is NULL
2827 MALLOC(pp
, char *, p
->princlen
, M_TEMP
, M_WAITOK
);
2828 bcopy(princ
, pp
, p
->princlen
);
2829 p
->principal
= CAST_USER_ADDR_T(pp
);
2832 lck_mtx_unlock(&nmp
->nm_lock
);
2834 req
->r_gss_ctx
= cp
;
2835 NFS_GSS_DBG("Found context %s\n", NFS_GSS_CTX(req
, NULL
));
2836 nfs_gss_clnt_ctx_unref(req
);
2837 NFS_ZFREE(nfs_req_zone
, req
);
2840 #endif /* CONFIG_NFS_CLIENT */
2847 #if CONFIG_NFS_SERVER
2850 * Find a server context based on a handle value received
2851 * in an RPCSEC_GSS credential.
2853 static struct nfs_gss_svc_ctx
*
2854 nfs_gss_svc_ctx_find(uint32_t handle
)
2856 struct nfs_gss_svc_ctx_hashhead
*head
;
2857 struct nfs_gss_svc_ctx
*cp
;
2864 head
= &nfs_gss_svc_ctx_hashtbl
[SVC_CTX_HASH(handle
)];
2866 * Don't return a context that is going to expire in GSS_CTX_PEND seconds
2868 clock_interval_to_deadline(GSS_CTX_PEND
, NSEC_PER_SEC
, &timenow
);
2870 lck_mtx_lock(&nfs_gss_svc_ctx_mutex
);
2872 LIST_FOREACH(cp
, head
, gss_svc_entries
) {
2873 if (cp
->gss_svc_handle
== handle
) {
2874 if (timenow
> cp
->gss_svc_incarnation
+ GSS_SVC_CTX_TTL
) {
2876 * Context has or is about to expire. Don't use.
2877 * We'll return null and the client will have to create
2880 cp
->gss_svc_handle
= 0;
2882 * Make sure though that we stay around for GSS_CTX_PEND seconds
2883 * for other threads that might be using the context.
2885 cp
->gss_svc_incarnation
= timenow
;
2890 lck_mtx_lock(&cp
->gss_svc_mtx
);
2891 cp
->gss_svc_refcnt
++;
2892 lck_mtx_unlock(&cp
->gss_svc_mtx
);
2897 lck_mtx_unlock(&nfs_gss_svc_ctx_mutex
);
2903 * Insert a new server context into the hash table
2904 * and start the context reap thread if necessary.
2907 nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx
*cp
)
2909 struct nfs_gss_svc_ctx_hashhead
*head
;
2910 struct nfs_gss_svc_ctx
*p
;
2912 lck_mtx_lock(&nfs_gss_svc_ctx_mutex
);
2915 * Give the client a random handle so that if we reboot
2916 * it's unlikely the client will get a bad context match.
2917 * Make sure it's not zero or already assigned.
2920 cp
->gss_svc_handle
= random();
2921 if (cp
->gss_svc_handle
== 0) {
2924 head
= &nfs_gss_svc_ctx_hashtbl
[SVC_CTX_HASH(cp
->gss_svc_handle
)];
2925 LIST_FOREACH(p
, head
, gss_svc_entries
)
2926 if (p
->gss_svc_handle
== cp
->gss_svc_handle
) {
2930 clock_interval_to_deadline(GSS_CTX_PEND
, NSEC_PER_SEC
,
2931 &cp
->gss_svc_incarnation
);
2932 LIST_INSERT_HEAD(head
, cp
, gss_svc_entries
);
2933 nfs_gss_ctx_count
++;
2935 if (!nfs_gss_timer_on
) {
2936 nfs_gss_timer_on
= 1;
2938 nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call
,
2939 min(GSS_TIMER_PERIOD
, max(GSS_CTX_TTL_MIN
, nfsrv_gss_context_ttl
)) * MSECS_PER_SEC
);
2942 lck_mtx_unlock(&nfs_gss_svc_ctx_mutex
);
2946 * This function is called via the kernel's callout
2947 * mechanism. It runs only when there are
2948 * cached RPCSEC_GSS contexts.
2951 nfs_gss_svc_ctx_timer(__unused
void *param1
, __unused
void *param2
)
2953 struct nfs_gss_svc_ctx
*cp
, *next
;
2958 lck_mtx_lock(&nfs_gss_svc_ctx_mutex
);
2959 clock_get_uptime(&timenow
);
2961 NFS_GSS_DBG("is running\n");
2964 * Scan all the hash chains
2966 for (i
= 0; i
< SVC_CTX_HASHSZ
; i
++) {
2968 * For each hash chain, look for entries
2969 * that haven't been used in a while.
2971 LIST_FOREACH_SAFE(cp
, &nfs_gss_svc_ctx_hashtbl
[i
], gss_svc_entries
, next
) {
2973 if (timenow
> cp
->gss_svc_incarnation
+
2974 (cp
->gss_svc_handle
? GSS_SVC_CTX_TTL
: 0)
2975 && cp
->gss_svc_refcnt
== 0) {
2977 * A stale context - remove it
2979 LIST_REMOVE(cp
, gss_svc_entries
);
2980 NFS_GSS_DBG("Removing contex for %d\n", cp
->gss_svc_uid
);
2981 if (cp
->gss_svc_seqbits
) {
2982 FREE(cp
->gss_svc_seqbits
, M_TEMP
);
2984 lck_mtx_destroy(&cp
->gss_svc_mtx
, &nfs_gss_svc_grp
);
2991 nfs_gss_ctx_count
= contexts
;
2994 * If there are still some cached contexts left,
2995 * set up another callout to check on them later.
2997 nfs_gss_timer_on
= nfs_gss_ctx_count
> 0;
2998 if (nfs_gss_timer_on
) {
2999 nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call
,
3000 min(GSS_TIMER_PERIOD
, max(GSS_CTX_TTL_MIN
, nfsrv_gss_context_ttl
)) * MSECS_PER_SEC
);
3003 lck_mtx_unlock(&nfs_gss_svc_ctx_mutex
);
3007 * Here the server receives an RPCSEC_GSS credential in an
3008 * RPC call header. First there's some checking to make sure
3009 * the credential is appropriate - whether the context is still
3010 * being set up, or is complete. Then we use the handle to find
3011 * the server's context and validate the verifier, which contains
3012 * a signed checksum of the RPC header. If the verifier checks
3013 * out, we extract the user's UID and groups from the context
3014 * and use it to set up a UNIX credential for the user's request.
3017 nfs_gss_svc_cred_get(struct nfsrv_descript
*nd
, struct nfsm_chain
*nmc
)
3019 uint32_t vers
, proc
, seqnum
, service
;
3020 uint32_t handle
, handle_len
;
3022 struct nfs_gss_svc_ctx
*cp
= NULL
;
3023 uint32_t flavor
= 0;
3026 size_t argsize
, start
, header_len
;
3027 gss_buffer_desc cksum
;
3028 struct nfsm_chain nmc_tmp
;
3029 mbuf_t reply_mbuf
, prev_mbuf
, pad_mbuf
;
3031 vers
= proc
= seqnum
= service
= handle_len
= 0;
3034 nfsm_chain_get_32(error
, nmc
, vers
);
3035 if (vers
!= RPCSEC_GSS_VERS_1
) {
3036 error
= NFSERR_AUTHERR
| AUTH_REJECTCRED
;
3040 nfsm_chain_get_32(error
, nmc
, proc
);
3041 nfsm_chain_get_32(error
, nmc
, seqnum
);
3042 nfsm_chain_get_32(error
, nmc
, service
);
3043 nfsm_chain_get_32(error
, nmc
, handle_len
);
3049 * Make sure context setup/destroy is being done with a nullproc
3051 if (proc
!= RPCSEC_GSS_DATA
&& nd
->nd_procnum
!= NFSPROC_NULL
) {
3052 error
= NFSERR_AUTHERR
| RPCSEC_GSS_CREDPROBLEM
;
3057 * If the sequence number is greater than the max
3058 * allowable, reject and have the client init a
3061 if (seqnum
> GSS_MAXSEQ
) {
3062 error
= NFSERR_AUTHERR
| RPCSEC_GSS_CTXPROBLEM
;
3067 service
== RPCSEC_GSS_SVC_NONE
? RPCAUTH_KRB5
:
3068 service
== RPCSEC_GSS_SVC_INTEGRITY
? RPCAUTH_KRB5I
:
3069 service
== RPCSEC_GSS_SVC_PRIVACY
? RPCAUTH_KRB5P
: 0;
3071 if (proc
== RPCSEC_GSS_INIT
) {
3073 * Limit the total number of contexts
3075 if (nfs_gss_ctx_count
> nfs_gss_ctx_max
) {
3076 error
= NFSERR_AUTHERR
| RPCSEC_GSS_CTXPROBLEM
;
3081 * Set up a new context
3083 MALLOC(cp
, struct nfs_gss_svc_ctx
*, sizeof(*cp
), M_TEMP
, M_WAITOK
| M_ZERO
);
3088 lck_mtx_init(&cp
->gss_svc_mtx
, &nfs_gss_svc_grp
, LCK_ATTR_NULL
);
3089 cp
->gss_svc_refcnt
= 1;
3092 * Use the handle to find the context
3094 if (handle_len
!= sizeof(handle
)) {
3095 error
= NFSERR_AUTHERR
| RPCSEC_GSS_CREDPROBLEM
;
3098 nfsm_chain_get_32(error
, nmc
, handle
);
3102 cp
= nfs_gss_svc_ctx_find(handle
);
3104 error
= NFSERR_AUTHERR
| RPCSEC_GSS_CTXPROBLEM
;
3109 cp
->gss_svc_proc
= proc
;
3111 if (proc
== RPCSEC_GSS_DATA
|| proc
== RPCSEC_GSS_DESTROY
) {
3112 struct posix_cred temp_pcred
;
3114 if (cp
->gss_svc_seqwin
== 0) {
3116 * Context isn't complete
3118 error
= NFSERR_AUTHERR
| RPCSEC_GSS_CTXPROBLEM
;
3122 if (!nfs_gss_svc_seqnum_valid(cp
, seqnum
)) {
3124 * Sequence number is bad
3126 error
= EINVAL
; // drop the request
3131 * Validate the verifier.
3132 * The verifier contains an encrypted checksum
3133 * of the call header from the XID up to and
3134 * including the credential. We compute the
3135 * checksum and compare it with what came in
3138 header_len
= nfsm_chain_offset(nmc
);
3139 nfsm_chain_get_32(error
, nmc
, flavor
);
3140 nfsm_chain_get_32(error
, nmc
, cksum
.length
);
3144 if (flavor
!= RPCSEC_GSS
|| cksum
.length
> KRB5_MAX_MIC_SIZE
) {
3145 error
= NFSERR_AUTHERR
| AUTH_BADVERF
;
3147 MALLOC(cksum
.value
, void *, cksum
.length
, M_TEMP
, M_WAITOK
);
3148 nfsm_chain_get_opaque(error
, nmc
, cksum
.length
, cksum
.value
);
3154 /* Now verify the client's call header checksum */
3155 major
= gss_krb5_verify_mic_mbuf((uint32_t *)&error
, cp
->gss_svc_ctx_id
, nmc
->nmc_mhead
, 0, header_len
, &cksum
, NULL
);
3156 (void)gss_release_buffer(NULL
, &cksum
);
3157 if (major
!= GSS_S_COMPLETE
) {
3158 printf("Server header: gss_krb5_verify_mic_mbuf failed %d\n", error
);
3159 error
= NFSERR_AUTHERR
| RPCSEC_GSS_CTXPROBLEM
;
3163 nd
->nd_gss_seqnum
= seqnum
;
3166 * Set up the user's cred
3168 bzero(&temp_pcred
, sizeof(temp_pcred
));
3169 temp_pcred
.cr_uid
= cp
->gss_svc_uid
;
3170 bcopy(cp
->gss_svc_gids
, temp_pcred
.cr_groups
,
3171 sizeof(gid_t
) * cp
->gss_svc_ngroups
);
3172 temp_pcred
.cr_ngroups
= (short)cp
->gss_svc_ngroups
;
3174 nd
->nd_cr
= posix_cred_create(&temp_pcred
);
3175 if (nd
->nd_cr
== NULL
) {
3179 clock_get_uptime(&cp
->gss_svc_incarnation
);
3182 * If the call arguments are integrity or privacy protected
3183 * then we need to check them here.
3186 case RPCSEC_GSS_SVC_NONE
:
3189 case RPCSEC_GSS_SVC_INTEGRITY
:
3191 * Here's what we expect in the integrity call args:
3193 * - length of seq num + call args (4 bytes)
3194 * - sequence number (4 bytes)
3195 * - call args (variable bytes)
3196 * - length of checksum token
3197 * - checksum of seqnum + call args
3199 nfsm_chain_get_32(error
, nmc
, arglen
); // length of args
3200 if (arglen
> NFS_MAXPACKET
) {
3206 nfsm_chain_adv(error
, &nmc_tmp
, arglen
);
3207 nfsm_chain_get_32(error
, &nmc_tmp
, cksum
.length
);
3209 if (cksum
.length
> 0 && cksum
.length
< GSS_MAX_MIC_LEN
) {
3210 MALLOC(cksum
.value
, void *, cksum
.length
, M_TEMP
, M_WAITOK
);
3213 if (cksum
.value
== NULL
) {
3217 nfsm_chain_get_opaque(error
, &nmc_tmp
, cksum
.length
, cksum
.value
);
3219 /* Verify the checksum over the call args */
3220 start
= nfsm_chain_offset(nmc
);
3222 major
= gss_krb5_verify_mic_mbuf((uint32_t *)&error
, cp
->gss_svc_ctx_id
,
3223 nmc
->nmc_mhead
, start
, arglen
, &cksum
, NULL
);
3224 FREE(cksum
.value
, M_TEMP
);
3225 if (major
!= GSS_S_COMPLETE
) {
3226 printf("Server args: gss_krb5_verify_mic_mbuf failed %d\n", error
);
3232 * Get the sequence number prepended to the args
3233 * and compare it against the one sent in the
3236 nfsm_chain_get_32(error
, nmc
, seqnum
);
3237 if (seqnum
!= nd
->nd_gss_seqnum
) {
3238 error
= EBADRPC
; // returns as GARBAGEARGS
3242 case RPCSEC_GSS_SVC_PRIVACY
:
3244 * Here's what we expect in the privacy call args:
3246 * - length of wrap token
3247 * - wrap token (37-40 bytes)
3249 prev_mbuf
= nmc
->nmc_mcur
;
3250 nfsm_chain_get_32(error
, nmc
, arglen
); // length of args
3251 if (arglen
> NFS_MAXPACKET
) {
3256 /* Get the wrap token (current mbuf in the chain starting at the current offset) */
3257 start
= nmc
->nmc_ptr
- (caddr_t
)mbuf_data(nmc
->nmc_mcur
);
3259 /* split out the wrap token */
3261 error
= gss_normalize_mbuf(nmc
->nmc_mcur
, start
, &argsize
, &reply_mbuf
, &pad_mbuf
, 0);
3266 assert(argsize
== arglen
);
3268 assert(nfsm_pad(arglen
) == mbuf_len(pad_mbuf
));
3269 mbuf_free(pad_mbuf
);
3271 assert(nfsm_pad(arglen
) == 0);
3274 major
= gss_krb5_unwrap_mbuf((uint32_t *)&error
, cp
->gss_svc_ctx_id
, &reply_mbuf
, 0, arglen
, NULL
, NULL
);
3275 if (major
!= GSS_S_COMPLETE
) {
3276 printf("%s: gss_krb5_unwrap_mbuf failes %d\n", __func__
, error
);
3280 /* Now replace the wrapped arguments with the unwrapped ones */
3281 mbuf_setnext(prev_mbuf
, reply_mbuf
);
3282 nmc
->nmc_mcur
= reply_mbuf
;
3283 nmc
->nmc_ptr
= mbuf_data(reply_mbuf
);
3284 nmc
->nmc_left
= mbuf_len(reply_mbuf
);
3287 * - sequence number (4 bytes)
3291 // nfsm_chain_reverse(nmc, nfsm_pad(toklen));
3294 * Get the sequence number prepended to the args
3295 * and compare it against the one sent in the
3298 nfsm_chain_get_32(error
, nmc
, seqnum
);
3299 if (seqnum
!= nd
->nd_gss_seqnum
) {
3300 printf("%s: Sequence number mismatch seqnum = %d nd->nd_gss_seqnum = %d\n",
3301 __func__
, seqnum
, nd
->nd_gss_seqnum
);
3302 printmbuf("reply_mbuf", nmc
->nmc_mhead
, 0, 0);
3303 printf("reply_mbuf %p nmc_head %p\n", reply_mbuf
, nmc
->nmc_mhead
);
3304 error
= EBADRPC
; // returns as GARBAGEARGS
3312 * If the proc is RPCSEC_GSS_INIT or RPCSEC_GSS_CONTINUE_INIT
3313 * then we expect a null verifier.
3315 nfsm_chain_get_32(error
, nmc
, flavor
);
3316 nfsm_chain_get_32(error
, nmc
, verflen
);
3317 if (error
|| flavor
!= RPCAUTH_NULL
|| verflen
> 0) {
3318 error
= NFSERR_AUTHERR
| RPCSEC_GSS_CREDPROBLEM
;
3321 if (proc
== RPCSEC_GSS_INIT
) {
3322 lck_mtx_destroy(&cp
->gss_svc_mtx
, &nfs_gss_svc_grp
);
3330 nd
->nd_gss_context
= cp
;
3334 nfs_gss_svc_ctx_deref(cp
);
3340 * Insert the server's verifier into the RPC reply header.
3341 * It contains a signed checksum of the sequence number that
3342 * was received in the RPC call.
3343 * Then go on to add integrity or privacy if necessary.
3346 nfs_gss_svc_verf_put(struct nfsrv_descript
*nd
, struct nfsm_chain
*nmc
)
3348 struct nfs_gss_svc_ctx
*cp
;
3350 gss_buffer_desc cksum
, seqbuf
;
3351 uint32_t network_seqnum
;
3352 cp
= nd
->nd_gss_context
;
3355 if (cp
->gss_svc_major
!= GSS_S_COMPLETE
) {
3357 * If the context isn't yet complete
3358 * then return a null verifier.
3360 nfsm_chain_add_32(error
, nmc
, RPCAUTH_NULL
);
3361 nfsm_chain_add_32(error
, nmc
, 0);
3366 * Compute checksum of the request seq number
3367 * If it's the final reply of context setup
3368 * then return the checksum of the context
3371 seqbuf
.length
= NFSX_UNSIGNED
;
3372 if (cp
->gss_svc_proc
== RPCSEC_GSS_INIT
||
3373 cp
->gss_svc_proc
== RPCSEC_GSS_CONTINUE_INIT
) {
3374 network_seqnum
= htonl(cp
->gss_svc_seqwin
);
3376 network_seqnum
= htonl(nd
->nd_gss_seqnum
);
3378 seqbuf
.value
= &network_seqnum
;
3380 major
= gss_krb5_get_mic((uint32_t *)&error
, cp
->gss_svc_ctx_id
, 0, &seqbuf
, &cksum
);
3381 if (major
!= GSS_S_COMPLETE
) {
3386 * Now wrap it in a token and add
3387 * the verifier to the reply.
3389 nfsm_chain_add_32(error
, nmc
, RPCSEC_GSS
);
3390 nfsm_chain_add_32(error
, nmc
, cksum
.length
);
3391 nfsm_chain_add_opaque(error
, nmc
, cksum
.value
, cksum
.length
);
3392 gss_release_buffer(NULL
, &cksum
);
3398 * The results aren't available yet, but if they need to be
3399 * checksummed for integrity protection or encrypted, then
3400 * we can record the start offset here, insert a place-holder
3401 * for the results length, as well as the sequence number.
3402 * The rest of the work is done later by nfs_gss_svc_protect_reply()
3403 * when the results are available.
3406 nfs_gss_svc_prepare_reply(struct nfsrv_descript
*nd
, struct nfsm_chain
*nmc
)
3408 struct nfs_gss_svc_ctx
*cp
= nd
->nd_gss_context
;
3411 if (cp
->gss_svc_proc
== RPCSEC_GSS_INIT
||
3412 cp
->gss_svc_proc
== RPCSEC_GSS_CONTINUE_INIT
) {
3416 switch (nd
->nd_sec
) {
3422 nd
->nd_gss_mb
= nmc
->nmc_mcur
; // record current mbuf
3423 nfsm_chain_finish_mbuf(error
, nmc
); // split the chain here
3431 * The results are checksummed or encrypted for return to the client
3434 nfs_gss_svc_protect_reply(struct nfsrv_descript
*nd
, mbuf_t mrep __unused
)
3436 struct nfs_gss_svc_ctx
*cp
= nd
->nd_gss_context
;
3437 struct nfsm_chain nmrep_res
, *nmc_res
= &nmrep_res
;
3443 * Using a reference to the mbuf where we previously split the reply
3444 * mbuf chain, we split the mbuf chain argument into two mbuf chains,
3445 * one that allows us to prepend a length field or token, (nmc_pre)
3446 * and the second which holds just the results that we're going to
3447 * checksum and/or encrypt. When we're done, we join the chains back
3451 mb
= nd
->nd_gss_mb
; // the mbuf where we split
3452 results
= mbuf_next(mb
); // first mbuf in the results
3453 error
= mbuf_setnext(mb
, NULL
); // disconnect the chains
3457 nfs_gss_nfsm_chain(nmc_res
, mb
); // set up the prepend chain
3458 nfsm_chain_build_done(error
, nmc_res
);
3463 if (nd
->nd_sec
== RPCAUTH_KRB5I
) {
3464 error
= rpc_gss_integ_data_create(cp
->gss_svc_ctx_id
, &results
, nd
->nd_gss_seqnum
, &reslen
);
3467 error
= rpc_gss_priv_data_create(cp
->gss_svc_ctx_id
, &results
, nd
->nd_gss_seqnum
, &reslen
);
3469 nfs_gss_append_chain(nmc_res
, results
); // Append the results mbufs
3470 nfsm_chain_build_done(error
, nmc_res
);
3476 * This function handles the context setup calls from the client.
3477 * Essentially, it implements the NFS null procedure calls when
3478 * an RPCSEC_GSS credential is used.
3479 * This is the context maintenance function. It creates and
3480 * destroys server contexts at the whim of the client.
3481 * During context creation, it receives GSS-API tokens from the
3482 * client, passes them up to gssd, and returns a received token
3483 * back to the client in the null procedure reply.
3486 nfs_gss_svc_ctx_init(struct nfsrv_descript
*nd
, struct nfsrv_sock
*slp
, mbuf_t
*mrepp
)
3488 struct nfs_gss_svc_ctx
*cp
= NULL
;
3491 struct nfsm_chain
*nmreq
, nmrep
;
3494 nmreq
= &nd
->nd_nmreq
;
3495 nfsm_chain_null(&nmrep
);
3497 cp
= nd
->nd_gss_context
;
3500 switch (cp
->gss_svc_proc
) {
3501 case RPCSEC_GSS_INIT
:
3502 nfs_gss_svc_ctx_insert(cp
);
3505 case RPCSEC_GSS_CONTINUE_INIT
:
3506 /* Get the token from the request */
3507 nfsm_chain_get_32(error
, nmreq
, cp
->gss_svc_tokenlen
);
3508 cp
->gss_svc_token
= NULL
;
3509 if (cp
->gss_svc_tokenlen
> 0 && cp
->gss_svc_tokenlen
< GSS_MAX_TOKEN_LEN
) {
3510 MALLOC(cp
->gss_svc_token
, u_char
*, cp
->gss_svc_tokenlen
, M_TEMP
, M_WAITOK
);
3512 if (cp
->gss_svc_token
== NULL
) {
3513 autherr
= RPCSEC_GSS_CREDPROBLEM
;
3516 nfsm_chain_get_opaque(error
, nmreq
, cp
->gss_svc_tokenlen
, cp
->gss_svc_token
);
3518 /* Use the token in a gss_accept_sec_context upcall */
3519 error
= nfs_gss_svc_gssd_upcall(cp
);
3521 autherr
= RPCSEC_GSS_CREDPROBLEM
;
3522 if (error
== NFSERR_EAUTH
) {
3529 * If the context isn't complete, pass the new token
3530 * back to the client for another round.
3532 if (cp
->gss_svc_major
!= GSS_S_COMPLETE
) {
3537 * Now the server context is complete.
3540 clock_get_uptime(&cp
->gss_svc_incarnation
);
3542 cp
->gss_svc_seqwin
= GSS_SVC_SEQWINDOW
;
3543 MALLOC(cp
->gss_svc_seqbits
, uint32_t *,
3544 nfsm_rndup((cp
->gss_svc_seqwin
+ 7) / 8), M_TEMP
, M_WAITOK
| M_ZERO
);
3545 if (cp
->gss_svc_seqbits
== NULL
) {
3546 autherr
= RPCSEC_GSS_CREDPROBLEM
;
3551 case RPCSEC_GSS_DATA
:
3552 /* Just a nullproc ping - do nothing */
3555 case RPCSEC_GSS_DESTROY
:
3557 * Don't destroy the context immediately because
3558 * other active requests might still be using it.
3559 * Instead, schedule it for destruction after
3560 * GSS_CTX_PEND time has elapsed.
3562 cp
= nfs_gss_svc_ctx_find(cp
->gss_svc_handle
);
3564 cp
->gss_svc_handle
= 0; // so it can't be found
3565 lck_mtx_lock(&cp
->gss_svc_mtx
);
3566 clock_interval_to_deadline(GSS_CTX_PEND
, NSEC_PER_SEC
,
3567 &cp
->gss_svc_incarnation
);
3568 lck_mtx_unlock(&cp
->gss_svc_mtx
);
3572 autherr
= RPCSEC_GSS_CREDPROBLEM
;
3576 /* Now build the reply */
3578 if (nd
->nd_repstat
== 0) {
3579 nd
->nd_repstat
= autherr
? (NFSERR_AUTHERR
| autherr
) : NFSERR_RETVOID
;
3581 sz
= 7 * NFSX_UNSIGNED
+ nfsm_rndup(cp
->gss_svc_tokenlen
); // size of results
3582 error
= nfsrv_rephead(nd
, slp
, &nmrep
, sz
);
3583 *mrepp
= nmrep
.nmc_mhead
;
3584 if (error
|| autherr
) {
3588 if (cp
->gss_svc_proc
== RPCSEC_GSS_INIT
||
3589 cp
->gss_svc_proc
== RPCSEC_GSS_CONTINUE_INIT
) {
3590 nfsm_chain_add_32(error
, &nmrep
, sizeof(cp
->gss_svc_handle
));
3591 nfsm_chain_add_32(error
, &nmrep
, cp
->gss_svc_handle
);
3593 nfsm_chain_add_32(error
, &nmrep
, cp
->gss_svc_major
);
3594 nfsm_chain_add_32(error
, &nmrep
, cp
->gss_svc_minor
);
3595 nfsm_chain_add_32(error
, &nmrep
, cp
->gss_svc_seqwin
);
3597 nfsm_chain_add_32(error
, &nmrep
, cp
->gss_svc_tokenlen
);
3598 if (cp
->gss_svc_token
!= NULL
) {
3599 nfsm_chain_add_opaque(error
, &nmrep
, cp
->gss_svc_token
, cp
->gss_svc_tokenlen
);
3600 FREE(cp
->gss_svc_token
, M_TEMP
);
3601 cp
->gss_svc_token
= NULL
;
3607 nd
->nd_gss_context
= NULL
;
3608 LIST_REMOVE(cp
, gss_svc_entries
);
3609 if (cp
->gss_svc_seqbits
!= NULL
) {
3610 FREE(cp
->gss_svc_seqbits
, M_TEMP
);
3612 if (cp
->gss_svc_token
!= NULL
) {
3613 FREE(cp
->gss_svc_token
, M_TEMP
);
3615 lck_mtx_destroy(&cp
->gss_svc_mtx
, &nfs_gss_svc_grp
);
3619 nfsm_chain_build_done(error
, &nmrep
);
3621 nfsm_chain_cleanup(&nmrep
);
3628 * This is almost a mirror-image of the client side upcall.
3629 * It passes and receives a token, but invokes gss_accept_sec_context.
3630 * If it's the final call of the context setup, then gssd also returns
3631 * the session key and the user's UID.
3634 nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx
*cp
)
3639 gssd_byte_buffer octx
= NULL
;
3640 uint32_t lucidlen
= 0;
3641 void *lucid_ctx_buffer
;
3643 vm_map_copy_t itoken
= NULL
;
3644 gssd_byte_buffer otoken
= NULL
;
3645 mach_msg_type_number_t otokenlen
;
3647 char svcname
[] = "nfs";
3649 kr
= host_get_gssd_port(host_priv_self(), &mp
);
3650 if (kr
!= KERN_SUCCESS
) {
3651 printf("nfs_gss_svc_gssd_upcall: can't get gssd port, status %x (%d)\n", kr
, kr
);
3654 if (!IPC_PORT_VALID(mp
)) {
3655 printf("nfs_gss_svc_gssd_upcall: gssd port not valid\n");
3659 if (cp
->gss_svc_tokenlen
> 0) {
3660 nfs_gss_mach_alloc_buffer(cp
->gss_svc_token
, cp
->gss_svc_tokenlen
, &itoken
);
3664 printf("Calling mach_gss_accept_sec_context\n");
3665 kr
= mach_gss_accept_sec_context(
3667 (gssd_byte_buffer
) itoken
, (mach_msg_type_number_t
) cp
->gss_svc_tokenlen
,
3670 &cp
->gss_svc_context
,
3671 &cp
->gss_svc_cred_handle
,
3675 &cp
->gss_svc_ngroups
,
3676 &octx
, (mach_msg_type_number_t
*) &lucidlen
,
3677 &otoken
, &otokenlen
,
3679 &cp
->gss_svc_minor
);
3681 printf("mach_gss_accept_sec_context returned %d\n", kr
);
3682 if (kr
!= KERN_SUCCESS
) {
3683 printf("nfs_gss_svc_gssd_upcall failed: %x (%d)\n", kr
, kr
);
3684 if (kr
== MIG_SERVER_DIED
&& cp
->gss_svc_context
== 0 &&
3685 retry_cnt
++ < NFS_GSS_MACH_MAX_RETRIES
) {
3686 if (cp
->gss_svc_tokenlen
> 0) {
3687 nfs_gss_mach_alloc_buffer(cp
->gss_svc_token
, cp
->gss_svc_tokenlen
, &itoken
);
3691 host_release_special_port(mp
);
3695 host_release_special_port(mp
);
3698 if (lucidlen
> MAX_LUCIDLEN
) {
3699 printf("nfs_gss_svc_gssd_upcall: bad context length (%d)\n", lucidlen
);
3700 vm_map_copy_discard((vm_map_copy_t
) octx
);
3701 vm_map_copy_discard((vm_map_copy_t
) otoken
);
3704 MALLOC(lucid_ctx_buffer
, void *, lucidlen
, M_TEMP
, M_WAITOK
| M_ZERO
);
3705 error
= nfs_gss_mach_vmcopyout((vm_map_copy_t
) octx
, lucidlen
, lucid_ctx_buffer
);
3707 vm_map_copy_discard((vm_map_copy_t
) otoken
);
3708 FREE(lucid_ctx_buffer
, M_TEMP
);
3711 if (cp
->gss_svc_ctx_id
) {
3712 gss_krb5_destroy_context(cp
->gss_svc_ctx_id
);
3714 cp
->gss_svc_ctx_id
= gss_krb5_make_context(lucid_ctx_buffer
, lucidlen
);
3715 if (cp
->gss_svc_ctx_id
== NULL
) {
3716 printf("Failed to make context from lucid_ctx_buffer\n");
3721 /* Free context token used as input */
3722 if (cp
->gss_svc_token
) {
3723 FREE(cp
->gss_svc_token
, M_TEMP
);
3725 cp
->gss_svc_token
= NULL
;
3726 cp
->gss_svc_tokenlen
= 0;
3728 if (otokenlen
> 0) {
3729 /* Set context token to gss output token */
3730 MALLOC(cp
->gss_svc_token
, u_char
*, otokenlen
, M_TEMP
, M_WAITOK
);
3731 if (cp
->gss_svc_token
== NULL
) {
3732 printf("nfs_gss_svc_gssd_upcall: could not allocate %d bytes\n", otokenlen
);
3733 vm_map_copy_discard((vm_map_copy_t
) otoken
);
3736 error
= nfs_gss_mach_vmcopyout((vm_map_copy_t
) otoken
, otokenlen
, cp
->gss_svc_token
);
3738 FREE(cp
->gss_svc_token
, M_TEMP
);
3739 cp
->gss_svc_token
= NULL
;
3740 return NFSERR_EAUTH
;
3742 cp
->gss_svc_tokenlen
= otokenlen
;
3748 FREE(cp
->gss_svc_token
, M_TEMP
);
3749 cp
->gss_svc_tokenlen
= 0;
3750 cp
->gss_svc_token
= NULL
;
3752 return NFSERR_EAUTH
;
3756 * Validate the sequence number in the credential as described
3757 * in RFC 2203 Section 5.3.3.1
3759 * Here the window of valid sequence numbers is represented by
3760 * a bitmap. As each sequence number is received, its bit is
3761 * set in the bitmap. An invalid sequence number lies below
3762 * the lower bound of the window, or is within the window but
3763 * has its bit already set.
3766 nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx
*cp
, uint32_t seq
)
3768 uint32_t *bits
= cp
->gss_svc_seqbits
;
3769 uint32_t win
= cp
->gss_svc_seqwin
;
3772 lck_mtx_lock(&cp
->gss_svc_mtx
);
3775 * If greater than the window upper bound,
3776 * move the window up, and set the bit.
3778 if (seq
> cp
->gss_svc_seqmax
) {
3779 if (seq
- cp
->gss_svc_seqmax
> win
) {
3780 bzero(bits
, nfsm_rndup((win
+ 7) / 8));
3782 for (i
= cp
->gss_svc_seqmax
+ 1; i
< seq
; i
++) {
3783 win_resetbit(bits
, i
% win
);
3786 win_setbit(bits
, seq
% win
);
3787 cp
->gss_svc_seqmax
= seq
;
3788 lck_mtx_unlock(&cp
->gss_svc_mtx
);
3793 * Invalid if below the lower bound of the window
3795 if (seq
<= cp
->gss_svc_seqmax
- win
) {
3796 lck_mtx_unlock(&cp
->gss_svc_mtx
);
3801 * In the window, invalid if the bit is already set
3803 if (win_getbit(bits
, seq
% win
)) {
3804 lck_mtx_unlock(&cp
->gss_svc_mtx
);
3807 win_setbit(bits
, seq
% win
);
3808 lck_mtx_unlock(&cp
->gss_svc_mtx
);
3813 * Drop a reference to a context
3815 * Note that it's OK for the context to exist
3816 * with a refcount of zero. The refcount isn't
3817 * checked until we're about to reap an expired one.
3820 nfs_gss_svc_ctx_deref(struct nfs_gss_svc_ctx
*cp
)
3822 lck_mtx_lock(&cp
->gss_svc_mtx
);
3823 if (cp
->gss_svc_refcnt
> 0) {
3824 cp
->gss_svc_refcnt
--;
3826 printf("nfs_gss_ctx_deref: zero refcount\n");
3828 lck_mtx_unlock(&cp
->gss_svc_mtx
);
3832 * Called at NFS server shutdown - destroy all contexts
3835 nfs_gss_svc_cleanup(void)
3837 struct nfs_gss_svc_ctx_hashhead
*head
;
3838 struct nfs_gss_svc_ctx
*cp
, *ncp
;
3841 lck_mtx_lock(&nfs_gss_svc_ctx_mutex
);
3844 * Run through all the buckets
3846 for (i
= 0; i
< SVC_CTX_HASHSZ
; i
++) {
3848 * Remove and free all entries in the bucket
3850 head
= &nfs_gss_svc_ctx_hashtbl
[i
];
3851 LIST_FOREACH_SAFE(cp
, head
, gss_svc_entries
, ncp
) {
3852 LIST_REMOVE(cp
, gss_svc_entries
);
3853 if (cp
->gss_svc_seqbits
) {
3854 FREE(cp
->gss_svc_seqbits
, M_TEMP
);
3856 lck_mtx_destroy(&cp
->gss_svc_mtx
, &nfs_gss_svc_grp
);
3861 lck_mtx_unlock(&nfs_gss_svc_ctx_mutex
);
3864 #endif /* CONFIG_NFS_SERVER */
3868 * The following functions are used by both client and server.
3872 * Release a host special port that was obtained by host_get_special_port
3873 * or one of its macros (host_get_gssd_port in this case).
3874 * This really should be in a public kpi.
3877 /* This should be in a public header if this routine is not */
3878 extern void ipc_port_release_send(ipc_port_t
);
3879 extern ipc_port_t
ipc_port_copy_send(ipc_port_t
);
3882 host_release_special_port(mach_port_t mp
)
3884 if (IPC_PORT_VALID(mp
)) {
3885 ipc_port_release_send(mp
);
3890 host_copy_special_port(mach_port_t mp
)
3892 return ipc_port_copy_send(mp
);
3896 * The token that is sent and received in the gssd upcall
3897 * has unbounded variable length. Mach RPC does not pass
3898 * the token in-line. Instead it uses page mapping to handle
3899 * these parameters. This function allocates a VM buffer
3900 * to hold the token for an upcall and copies the token
3901 * (received from the client) into it. The VM buffer is
3902 * marked with a src_destroy flag so that the upcall will
3903 * automatically de-allocate the buffer when the upcall is
3907 nfs_gss_mach_alloc_buffer(u_char
*buf
, size_t buflen
, vm_map_copy_t
*addr
)
3910 vm_offset_t kmem_buf
;
3914 if (buf
== NULL
|| buflen
== 0) {
3918 tbuflen
= vm_map_round_page(buflen
,
3919 vm_map_page_mask(ipc_kernel_map
));
3921 if (tbuflen
< buflen
) {
3922 printf("nfs_gss_mach_alloc_buffer: vm_map_round_page failed\n");
3926 kr
= vm_allocate_kernel(ipc_kernel_map
, &kmem_buf
, tbuflen
, VM_FLAGS_ANYWHERE
, VM_KERN_MEMORY_FILE
);
3928 printf("nfs_gss_mach_alloc_buffer: vm_allocate failed\n");
3932 kr
= vm_map_wire_kernel(ipc_kernel_map
,
3933 vm_map_trunc_page(kmem_buf
,
3934 vm_map_page_mask(ipc_kernel_map
)),
3935 vm_map_round_page(kmem_buf
+ tbuflen
,
3936 vm_map_page_mask(ipc_kernel_map
)),
3937 VM_PROT_READ
| VM_PROT_WRITE
, VM_KERN_MEMORY_FILE
, FALSE
);
3939 printf("nfs_gss_mach_alloc_buffer: vm_map_wire failed\n");
3943 bcopy(buf
, (void *) kmem_buf
, buflen
);
3944 // Shouldn't need to bzero below since vm_allocate returns zeroed pages
3945 // bzero(kmem_buf + buflen, tbuflen - buflen);
3947 kr
= vm_map_unwire(ipc_kernel_map
,
3948 vm_map_trunc_page(kmem_buf
,
3949 vm_map_page_mask(ipc_kernel_map
)),
3950 vm_map_round_page(kmem_buf
+ tbuflen
,
3951 vm_map_page_mask(ipc_kernel_map
)),
3954 printf("nfs_gss_mach_alloc_buffer: vm_map_unwire failed\n");
3958 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
) kmem_buf
,
3959 (vm_map_size_t
) buflen
, TRUE
, addr
);
3961 printf("nfs_gss_mach_alloc_buffer: vm_map_copyin failed\n");
3967 * Here we handle a token received from the gssd via an upcall.
3968 * The received token resides in an allocate VM buffer.
3969 * We copy the token out of this buffer to a chunk of malloc'ed
3970 * memory of the right size, then de-allocate the VM buffer.
3973 nfs_gss_mach_vmcopyout(vm_map_copy_t in
, uint32_t len
, u_char
*out
)
3975 vm_map_offset_t map_data
;
3979 error
= vm_map_copyout(ipc_kernel_map
, &map_data
, in
);
3984 data
= CAST_DOWN(vm_offset_t
, map_data
);
3985 bcopy((void *) data
, out
, len
);
3986 vm_deallocate(ipc_kernel_map
, data
, len
);
3992 * Return the number of bytes in an mbuf chain.
3995 nfs_gss_mchain_length(mbuf_t mhead
)
4000 for (mb
= mhead
; mb
; mb
= mbuf_next(mb
)) {
4001 len
+= mbuf_len(mb
);
4008 * Append an args or results mbuf chain to the header chain
4011 nfs_gss_append_chain(struct nfsm_chain
*nmc
, mbuf_t mc
)
4016 /* Connect the mbuf chains */
4017 error
= mbuf_setnext(nmc
->nmc_mcur
, mc
);
4022 /* Find the last mbuf in the chain */
4024 for (mb
= mc
; mb
; mb
= mbuf_next(mb
)) {
4028 nmc
->nmc_mcur
= tail
;
4029 nmc
->nmc_ptr
= (caddr_t
) mbuf_data(tail
) + mbuf_len(tail
);
4030 nmc
->nmc_left
= mbuf_trailingspace(tail
);
4035 #if CONFIG_NFS_SERVER /* Only used by CONFIG_NFS_SERVER */
4037 * Convert an mbuf chain to an NFS mbuf chain
4040 nfs_gss_nfsm_chain(struct nfsm_chain
*nmc
, mbuf_t mc
)
4044 /* Find the last mbuf in the chain */
4046 for (mb
= mc
; mb
; mb
= mbuf_next(mb
)) {
4050 nmc
->nmc_mhead
= mc
;
4051 nmc
->nmc_mcur
= tail
;
4052 nmc
->nmc_ptr
= (caddr_t
) mbuf_data(tail
) + mbuf_len(tail
);
4053 nmc
->nmc_left
= mbuf_trailingspace(tail
);
4056 #endif /* CONFIG_NFS_SERVER */
4060 #define DISPLAYLEN 16
4061 #define MAXDISPLAYLEN 256
4064 hexdump(const char *msg
, void *data
, size_t len
)
4068 char *p
, disbuf
[3 * DISPLAYLEN
+ 1];
4070 printf("NFS DEBUG %s len=%d:\n", msg
, (uint32_t)len
);
4071 if (len
> MAXDISPLAYLEN
) {
4072 len
= MAXDISPLAYLEN
;
4075 for (i
= 0; i
< len
; i
+= DISPLAYLEN
) {
4076 for (p
= disbuf
, j
= 0; (j
+ i
) < len
&& j
< DISPLAYLEN
; j
++, p
+= 3) {
4077 snprintf(p
, 4, "%02x ", d
[i
+ j
]);
4079 printf("\t%s\n", disbuf
);
4084 #endif /* CONFIG_NFS */