]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_cache.c
fe7fe5269231c825bbbedaf17879afe0b7c68385
[apple/xnu.git] / bsd / vfs / vfs_cache.c
1 /*
2 * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
23 /*
24 * Copyright (c) 1989, 1993, 1995
25 * The Regents of the University of California. All rights reserved.
26 *
27 * This code is derived from software contributed to Berkeley by
28 * Poul-Henning Kamp of the FreeBSD Project.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 * 3. All advertising materials mentioning features or use of this software
39 * must display the following acknowledgement:
40 * This product includes software developed by the University of
41 * California, Berkeley and its contributors.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 *
59 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
60 */
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/time.h>
64 #include <sys/mount_internal.h>
65 #include <sys/vnode_internal.h>
66 #include <sys/namei.h>
67 #include <sys/errno.h>
68 #include <sys/malloc.h>
69 #include <sys/kauth.h>
70 #include <sys/user.h>
71
72 /*
73 * Name caching works as follows:
74 *
75 * Names found by directory scans are retained in a cache
76 * for future reference. It is managed LRU, so frequently
77 * used names will hang around. Cache is indexed by hash value
78 * obtained from (vp, name) where vp refers to the directory
79 * containing name.
80 *
81 * If it is a "negative" entry, (i.e. for a name that is known NOT to
82 * exist) the vnode pointer will be NULL.
83 *
84 * Upon reaching the last segment of a path, if the reference
85 * is for DELETE, or NOCACHE is set (rewrite), and the
86 * name is located in the cache, it will be dropped.
87 */
88
89 /*
90 * Structures associated with name cacheing.
91 */
92
93 LIST_HEAD(nchashhead, namecache) *nchashtbl; /* Hash Table */
94 u_long nchashmask;
95 u_long nchash; /* size of hash table - 1 */
96 long numcache; /* number of cache entries allocated */
97 int desiredNodes;
98 int desiredNegNodes;
99 TAILQ_HEAD(, namecache) nchead; /* chain of all name cache entries */
100 TAILQ_HEAD(, namecache) neghead; /* chain of only negative cache entries */
101 struct nchstats nchstats; /* cache effectiveness statistics */
102
103 /* vars for name cache list lock */
104 lck_grp_t * namecache_lck_grp;
105 lck_grp_attr_t * namecache_lck_grp_attr;
106 lck_attr_t * namecache_lck_attr;
107 lck_mtx_t * namecache_mtx_lock;
108
109 static vnode_t cache_lookup_locked(vnode_t dvp, struct componentname *cnp);
110 static int remove_name_locked(const char *);
111 static char *add_name_locked(const char *, size_t, u_int, u_int);
112 static void init_string_table(void);
113 static void cache_delete(struct namecache *, int);
114 static void dump_string_table(void);
115
116 static void init_crc32(void);
117 static unsigned int crc32tab[256];
118
119
120 #define NCHHASH(dvp, hash_val) \
121 (&nchashtbl[(dvp->v_id ^ (hash_val)) & nchashmask])
122
123
124
125 //
126 // This function builds the path to a filename in "buff". The
127 // length of the buffer *INCLUDING* the trailing zero byte is
128 // returned in outlen. NOTE: the length includes the trailing
129 // zero byte and thus the length is one greater than what strlen
130 // would return. This is important and lots of code elsewhere
131 // in the kernel assumes this behavior.
132 //
133 int
134 build_path(vnode_t first_vp, char *buff, int buflen, int *outlen)
135 {
136 vnode_t vp = first_vp;
137 char *end, *str;
138 int len, ret=0, counter=0;
139
140 end = &buff[buflen-1];
141 *end = '\0';
142
143 /*
144 * if this is the root dir of a file system...
145 */
146 if (vp && (vp->v_flag & VROOT) && vp->v_mount) {
147 /*
148 * then if it's the root fs, just put in a '/' and get out of here
149 */
150 if (vp->v_mount->mnt_flag & MNT_ROOTFS) {
151 *--end = '/';
152 goto out;
153 } else {
154 /*
155 * else just use the covered vnode to get the mount path
156 */
157 vp = vp->v_mount->mnt_vnodecovered;
158 }
159 }
160 name_cache_lock();
161
162 while (vp && vp->v_parent != vp) {
163 /*
164 * the maximum depth of a file system hierarchy is MAXPATHLEN/2
165 * (with single-char names separated by slashes). we panic if
166 * we've ever looped more than that.
167 */
168 if (counter++ > MAXPATHLEN/2) {
169 panic("build_path: vnode parent chain is too long! vp 0x%x\n", vp);
170 }
171 str = vp->v_name;
172
173 if (str == NULL) {
174 if (vp->v_parent != NULL) {
175 ret = EINVAL;
176 }
177 break;
178 }
179 len = strlen(str);
180
181 /*
182 * check that there's enough space (make sure to include space for the '/')
183 */
184 if ((end - buff) < (len + 1)) {
185 ret = ENOSPC;
186 break;
187 }
188 /*
189 * copy it backwards
190 */
191 str += len;
192
193 for (; len > 0; len--) {
194 *--end = *--str;
195 }
196 /*
197 * put in the path separator
198 */
199 *--end = '/';
200
201 /*
202 * walk up the chain (as long as we're not the root)
203 */
204 if (vp == first_vp && (vp->v_flag & VROOT)) {
205 if (vp->v_mount && vp->v_mount->mnt_vnodecovered) {
206 vp = vp->v_mount->mnt_vnodecovered->v_parent;
207 } else {
208 vp = NULLVP;
209 }
210 } else {
211 vp = vp->v_parent;
212 }
213 /*
214 * check if we're crossing a mount point and
215 * switch the vp if we are.
216 */
217 if (vp && (vp->v_flag & VROOT) && vp->v_mount) {
218 vp = vp->v_mount->mnt_vnodecovered;
219 }
220 }
221 name_cache_unlock();
222 out:
223 /*
224 * slide it down to the beginning of the buffer
225 */
226 memmove(buff, end, &buff[buflen] - end);
227
228 *outlen = &buff[buflen] - end; // length includes the trailing zero byte
229
230 return ret;
231 }
232
233
234 /*
235 * return NULLVP if vp's parent doesn't
236 * exist, or we can't get a valid iocount
237 * else return the parent of vp
238 */
239 vnode_t
240 vnode_getparent(vnode_t vp)
241 {
242 vnode_t pvp = NULLVP;
243 int pvid;
244
245 name_cache_lock();
246 /*
247 * v_parent is stable behind the name_cache lock
248 * however, the only thing we can really guarantee
249 * is that we've grabbed a valid iocount on the
250 * parent of 'vp' at the time we took the name_cache lock...
251 * once we drop the lock, vp could get re-parented
252 */
253 if ( (pvp = vp->v_parent) != NULLVP ) {
254 pvid = pvp->v_id;
255
256 name_cache_unlock();
257
258 if (vnode_getwithvid(pvp, pvid) != 0)
259 pvp = NULL;
260 } else
261 name_cache_unlock();
262
263 return (pvp);
264 }
265
266 char *
267 vnode_getname(vnode_t vp)
268 {
269 char *name = NULL;
270
271 name_cache_lock();
272
273 if (vp->v_name)
274 name = add_name_locked(vp->v_name, strlen(vp->v_name), 0, 0);
275 name_cache_unlock();
276
277 return (name);
278 }
279
280 void
281 vnode_putname(char *name)
282 {
283 name_cache_lock();
284
285 remove_name_locked(name);
286
287 name_cache_unlock();
288 }
289
290
291 /*
292 * if VNODE_UPDATE_PARENT, and we can take
293 * a reference on dvp, then update vp with
294 * it's new parent... if vp already has a parent,
295 * then drop the reference vp held on it
296 *
297 * if VNODE_UPDATE_NAME,
298 * then drop string ref on v_name if it exists, and if name is non-NULL
299 * then pick up a string reference on name and record it in v_name...
300 * optionally pass in the length and hashval of name if known
301 *
302 * if VNODE_UPDATE_CACHE, flush the name cache entries associated with vp
303 */
304 void
305 vnode_update_identity(vnode_t vp, vnode_t dvp, char *name, int name_len, int name_hashval, int flags)
306 {
307 struct namecache *ncp;
308 vnode_t old_parentvp = NULLVP;
309
310
311 if (flags & VNODE_UPDATE_PARENT) {
312 if (dvp && vnode_ref(dvp) != 0)
313 dvp = NULLVP;
314 } else
315 dvp = NULLVP;
316 name_cache_lock();
317
318 if ( (flags & VNODE_UPDATE_NAME) && (name != vp->v_name) ) {
319 if (vp->v_name != NULL) {
320 remove_name_locked(vp->v_name);
321 vp->v_name = NULL;
322 }
323 if (name && *name) {
324 if (name_len == 0)
325 name_len = strlen(name);
326 vp->v_name = add_name_locked(name, name_len, name_hashval, 0);
327 }
328 }
329 if (flags & VNODE_UPDATE_PARENT) {
330 if (dvp != vp && dvp != vp->v_parent) {
331 old_parentvp = vp->v_parent;
332 vp->v_parent = dvp;
333 dvp = NULLVP;
334
335 if (old_parentvp)
336 flags |= VNODE_UPDATE_CACHE;
337 }
338 }
339 if (flags & VNODE_UPDATE_CACHE) {
340 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
341 cache_delete(ncp, 1);
342 }
343 name_cache_unlock();
344
345 if (dvp != NULLVP)
346 vnode_rele(dvp);
347
348 if (old_parentvp) {
349 struct uthread *ut;
350
351 ut = get_bsdthread_info(current_thread());
352
353 /*
354 * indicated to vnode_rele that it shouldn't do a
355 * vnode_reclaim at this time... instead it will
356 * chain the vnode to the uu_vreclaims list...
357 * we'll be responsible for calling vnode_reclaim
358 * on each of the vnodes in this list...
359 */
360 ut->uu_defer_reclaims = 1;
361 ut->uu_vreclaims = NULLVP;
362
363 while ( (vp = old_parentvp) != NULLVP ) {
364
365 vnode_lock(vp);
366
367 vnode_rele_internal(vp, 0, 0, 1);
368
369 /*
370 * check to see if the vnode is now in the state
371 * that would have triggered a vnode_reclaim in vnode_rele
372 * if it is, we save it's parent pointer and then NULL
373 * out the v_parent field... we'll drop the reference
374 * that was held on the next iteration of this loop...
375 * this short circuits a potential deep recursion if we
376 * have a long chain of parents in this state...
377 * we'll sit in this loop until we run into
378 * a parent in this chain that is not in this state
379 *
380 * make our check and the node_rele atomic
381 * with respect to the current vnode we're working on
382 * by holding the vnode lock
383 * if vnode_rele deferred the vnode_reclaim and has put
384 * this vnode on the list to be reaped by us, than
385 * it has left this vnode with an iocount == 1
386 */
387 if ( (vp->v_iocount == 1) && (vp->v_usecount == 0) &&
388 ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM)) {
389 /*
390 * vnode_rele wanted to do a vnode_reclaim on this vnode
391 * it should be sitting on the head of the uu_vreclaims chain
392 * pull the parent pointer now so that when we do the
393 * vnode_reclaim for each of the vnodes in the uu_vreclaims
394 * list, we won't recurse back through here
395 */
396 name_cache_lock();
397 old_parentvp = vp->v_parent;
398 vp->v_parent = NULLVP;
399 name_cache_unlock();
400 } else {
401 /*
402 * we're done... we ran into a vnode that isn't
403 * being terminated
404 */
405 old_parentvp = NULLVP;
406 }
407 vnode_unlock(vp);
408 }
409 ut->uu_defer_reclaims = 0;
410
411 while ( (vp = ut->uu_vreclaims) != NULLVP) {
412 ut->uu_vreclaims = vp->v_defer_reclaimlist;
413
414 /*
415 * vnode_put will drive the vnode_reclaim if
416 * we are still the only reference on this vnode
417 */
418 vnode_put(vp);
419 }
420 }
421 }
422
423
424 /*
425 * Mark a vnode as having multiple hard links. HFS makes use of this
426 * because it keeps track of each link separately, and wants to know
427 * which link was actually used.
428 *
429 * This will cause the name cache to force a VNOP_LOOKUP on the vnode
430 * so that HFS can post-process the lookup. Also, volfs will call
431 * VNOP_GETATTR2 to determine the parent, instead of using v_parent.
432 */
433 void vnode_set_hard_link(vnode_t vp)
434 {
435 vnode_lock(vp);
436
437 /*
438 * In theory, we're changing the vnode's identity as far as the
439 * name cache is concerned, so we ought to grab the name cache lock
440 * here. However, there is already a race, and grabbing the name
441 * cache lock only makes the race window slightly smaller.
442 *
443 * The race happens because the vnode already exists in the name
444 * cache, and could be found by one thread before another thread
445 * can set the hard link flag.
446 */
447
448 vp->v_flag |= VISHARDLINK;
449
450 vnode_unlock(vp);
451 }
452
453
454 void vnode_uncache_credentials(vnode_t vp)
455 {
456 kauth_cred_t ucred = NULL;
457
458 if (vp->v_cred) {
459 vnode_lock(vp);
460
461 ucred = vp->v_cred;
462 vp->v_cred = NULL;
463
464 vnode_unlock(vp);
465
466 if (ucred)
467 kauth_cred_rele(ucred);
468 }
469 }
470
471
472 void vnode_cache_credentials(vnode_t vp, vfs_context_t context)
473 {
474 kauth_cred_t ucred;
475 kauth_cred_t tcred = NOCRED;
476 struct timeval tv;
477
478 ucred = vfs_context_ucred(context);
479
480 if (vp->v_cred != ucred || (vp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE)) {
481 vnode_lock(vp);
482
483 microuptime(&tv);
484 vp->v_cred_timestamp = tv.tv_sec;
485
486 if (vp->v_cred != ucred) {
487 kauth_cred_ref(ucred);
488
489 tcred = vp->v_cred;
490 vp->v_cred = ucred;
491 }
492 vnode_unlock(vp);
493
494 if (tcred)
495 kauth_cred_rele(tcred);
496 }
497 }
498
499 /* reverse_lookup - lookup by walking back up the parent chain while leveraging
500 * use of the name cache lock in order to protect our starting vnode.
501 * NOTE - assumes you already have search access to starting point.
502 * returns 0 when we have reached the root, current working dir, or chroot root
503 *
504 */
505 int
506 reverse_lookup(vnode_t start_vp, vnode_t *lookup_vpp, struct filedesc *fdp, vfs_context_t context, int *dp_authorized)
507 {
508 int vid, done = 0;
509 int auth_opaque = 0;
510 vnode_t dp = start_vp;
511 vnode_t vp = NULLVP;
512 kauth_cred_t ucred;
513 struct timeval tv;
514
515 ucred = vfs_context_ucred(context);
516 *lookup_vpp = start_vp;
517
518 name_cache_lock();
519
520 if ( dp->v_mount && (dp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE) ) {
521 auth_opaque = 1;
522 microuptime(&tv);
523 }
524 for (;;) {
525 *dp_authorized = 0;
526
527 if (auth_opaque && ((tv.tv_sec - dp->v_cred_timestamp) > VCRED_EXPIRED))
528 break;
529 if (dp->v_cred != ucred)
530 break;
531 /*
532 * indicate that we're allowed to traverse this directory...
533 * even if we bail for some reason, this information is valid and is used
534 * to avoid doing a vnode_authorize
535 */
536 *dp_authorized = 1;
537
538 if ((dp->v_flag & VROOT) != 0 || /* Hit "/" */
539 (dp == fdp->fd_cdir) || /* Hit process's working directory */
540 (dp == fdp->fd_rdir)) { /* Hit process chroot()-ed root */
541 done = 1;
542 break;
543 }
544
545 if ( (vp = dp->v_parent) == NULLVP)
546 break;
547
548 dp = vp;
549 *lookup_vpp = dp;
550 } /* for (;;) */
551
552 vid = dp->v_id;
553
554 name_cache_unlock();
555
556 if (done == 0 && dp != start_vp) {
557 if (vnode_getwithvid(dp, vid) != 0) {
558 *lookup_vpp = start_vp;
559 }
560 }
561
562 return((done == 1) ? 0 : -1);
563 }
564
565 int
566 cache_lookup_path(struct nameidata *ndp, struct componentname *cnp, vnode_t dp, vfs_context_t context, int *trailing_slash, int *dp_authorized)
567 {
568 char *cp; /* pointer into pathname argument */
569 int vid, vvid;
570 int auth_opaque = 0;
571 vnode_t vp = NULLVP;
572 vnode_t tdp = NULLVP;
573 kauth_cred_t ucred;
574 struct timeval tv;
575 unsigned int hash;
576
577 ucred = vfs_context_ucred(context);
578 *trailing_slash = 0;
579
580 name_cache_lock();
581
582
583 if ( dp->v_mount && (dp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE) ) {
584 auth_opaque = 1;
585 microuptime(&tv);
586 }
587 for (;;) {
588 /*
589 * Search a directory.
590 *
591 * The cn_hash value is for use by cache_lookup
592 * The last component of the filename is left accessible via
593 * cnp->cn_nameptr for callers that need the name.
594 */
595 hash = 0;
596 cp = cnp->cn_nameptr;
597
598 while (*cp && (*cp != '/')) {
599 hash ^= crc32tab[((hash >> 24) ^ (unsigned char)*cp++)];
600 }
601 /*
602 * the crc generator can legitimately generate
603 * a 0... however, 0 for us means that we
604 * haven't computed a hash, so use 1 instead
605 */
606 if (hash == 0)
607 hash = 1;
608 cnp->cn_hash = hash;
609 cnp->cn_namelen = cp - cnp->cn_nameptr;
610
611 ndp->ni_pathlen -= cnp->cn_namelen;
612 ndp->ni_next = cp;
613
614 /*
615 * Replace multiple slashes by a single slash and trailing slashes
616 * by a null. This must be done before VNOP_LOOKUP() because some
617 * fs's don't know about trailing slashes. Remember if there were
618 * trailing slashes to handle symlinks, existing non-directories
619 * and non-existing files that won't be directories specially later.
620 */
621 while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
622 cp++;
623 ndp->ni_pathlen--;
624
625 if (*cp == '\0') {
626 *trailing_slash = 1;
627 *ndp->ni_next = '\0';
628 }
629 }
630 ndp->ni_next = cp;
631
632 cnp->cn_flags &= ~(MAKEENTRY | ISLASTCN | ISDOTDOT);
633
634 if (*cp == '\0')
635 cnp->cn_flags |= ISLASTCN;
636
637 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
638 cnp->cn_flags |= ISDOTDOT;
639
640 *dp_authorized = 0;
641
642 if (auth_opaque && ((tv.tv_sec - dp->v_cred_timestamp) > VCRED_EXPIRED))
643 break;
644
645 if (dp->v_cred != ucred)
646 break;
647 /*
648 * indicate that we're allowed to traverse this directory...
649 * even if we fail the cache lookup or decide to bail for
650 * some other reason, this information is valid and is used
651 * to avoid doing a vnode_authorize before the call to VNOP_LOOKUP
652 */
653 *dp_authorized = 1;
654
655 if ( (cnp->cn_flags & (ISLASTCN | ISDOTDOT)) ) {
656 if (cnp->cn_nameiop != LOOKUP)
657 break;
658 if (cnp->cn_flags & (LOCKPARENT | NOCACHE))
659 break;
660 if (cnp->cn_flags & ISDOTDOT) {
661 /*
662 * Quit here only if we can't use
663 * the parent directory pointer or
664 * don't have one. Otherwise, we'll
665 * use it below.
666 */
667 if ((dp->v_flag & VROOT) ||
668 dp->v_parent == NULLVP)
669 break;
670 }
671 }
672
673 /*
674 * "." and ".." aren't supposed to be cached, so check
675 * for them before checking the cache.
676 */
677 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.')
678 vp = dp;
679 else if (cnp->cn_flags & ISDOTDOT)
680 vp = dp->v_parent;
681 else {
682 if ( (vp = cache_lookup_locked(dp, cnp)) == NULLVP)
683 break;
684 }
685
686 if ( (cnp->cn_flags & ISLASTCN) )
687 break;
688
689 if (vp->v_type != VDIR) {
690 if (vp->v_type != VLNK)
691 vp = NULL;
692 break;
693 }
694 if (vp->v_mountedhere && ((cnp->cn_flags & NOCROSSMOUNT) == 0))
695 break;
696
697 dp = vp;
698 vp = NULLVP;
699
700 cnp->cn_nameptr = ndp->ni_next + 1;
701 ndp->ni_pathlen--;
702 while (*cnp->cn_nameptr == '/') {
703 cnp->cn_nameptr++;
704 ndp->ni_pathlen--;
705 }
706 }
707 if (vp != NULLVP)
708 vvid = vp->v_id;
709 vid = dp->v_id;
710
711 name_cache_unlock();
712
713
714 if ((vp != NULLVP) && (vp->v_type != VLNK) &&
715 ((cnp->cn_flags & (ISLASTCN | LOCKPARENT | WANTPARENT | SAVESTART)) == ISLASTCN)) {
716 /*
717 * if we've got a child and it's the last component, and
718 * the lookup doesn't need to return the parent then we
719 * can skip grabbing an iocount on the parent, since all
720 * we're going to do with it is a vnode_put just before
721 * we return from 'lookup'. If it's a symbolic link,
722 * we need the parent in case the link happens to be
723 * a relative pathname.
724 */
725 tdp = dp;
726 dp = NULLVP;
727 } else {
728 need_dp:
729 /*
730 * return the last directory we looked at
731 * with an io reference held
732 */
733 if (dp == ndp->ni_usedvp) {
734 /*
735 * if this vnode matches the one passed in via USEDVP
736 * than this context already holds an io_count... just
737 * use vnode_get to get an extra ref for lookup to play
738 * with... can't use the getwithvid variant here because
739 * it will block behind a vnode_drain which would result
740 * in a deadlock (since we already own an io_count that the
741 * vnode_drain is waiting on)... vnode_get grabs the io_count
742 * immediately w/o waiting... it always succeeds
743 */
744 vnode_get(dp);
745 } else if ( (vnode_getwithvid(dp, vid)) ) {
746 /*
747 * failure indicates the vnode
748 * changed identity or is being
749 * TERMINATED... in either case
750 * punt this lookup
751 */
752 return (ENOENT);
753 }
754 }
755 if (vp != NULLVP) {
756 if ( (vnode_getwithvid(vp, vvid)) ) {
757 vp = NULLVP;
758
759 /*
760 * can't get reference on the vp we'd like
761 * to return... if we didn't grab a reference
762 * on the directory (due to fast path bypass),
763 * then we need to do it now... we can't return
764 * with both ni_dvp and ni_vp NULL, and no
765 * error condition
766 */
767 if (dp == NULLVP) {
768 dp = tdp;
769 goto need_dp;
770 }
771 }
772 }
773 ndp->ni_dvp = dp;
774 ndp->ni_vp = vp;
775
776 return (0);
777 }
778
779
780 static vnode_t
781 cache_lookup_locked(vnode_t dvp, struct componentname *cnp)
782 {
783 register struct namecache *ncp;
784 register struct nchashhead *ncpp;
785 register long namelen = cnp->cn_namelen;
786 char *nameptr = cnp->cn_nameptr;
787 unsigned int hashval = (cnp->cn_hash & NCHASHMASK);
788 vnode_t vp;
789
790 ncpp = NCHHASH(dvp, cnp->cn_hash);
791 LIST_FOREACH(ncp, ncpp, nc_hash) {
792 if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
793 if (memcmp(ncp->nc_name, nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
794 break;
795 }
796 }
797 if (ncp == 0)
798 /*
799 * We failed to find an entry
800 */
801 return (NULL);
802
803 vp = ncp->nc_vp;
804 if (vp && (vp->v_flag & VISHARDLINK)) {
805 /*
806 * The file system wants a VNOP_LOOKUP on this vnode
807 */
808 vp = NULL;
809 }
810
811 return (vp);
812 }
813
814
815 //
816 // Have to take a len argument because we may only need to
817 // hash part of a componentname.
818 //
819 static unsigned int
820 hash_string(const char *cp, int len)
821 {
822 unsigned hash = 0;
823
824 if (len) {
825 while (len--) {
826 hash ^= crc32tab[((hash >> 24) ^ (unsigned char)*cp++)];
827 }
828 } else {
829 while (*cp != '\0') {
830 hash ^= crc32tab[((hash >> 24) ^ (unsigned char)*cp++)];
831 }
832 }
833 /*
834 * the crc generator can legitimately generate
835 * a 0... however, 0 for us means that we
836 * haven't computed a hash, so use 1 instead
837 */
838 if (hash == 0)
839 hash = 1;
840 return hash;
841 }
842
843
844 /*
845 * Lookup an entry in the cache
846 *
847 * We don't do this if the segment name is long, simply so the cache
848 * can avoid holding long names (which would either waste space, or
849 * add greatly to the complexity).
850 *
851 * Lookup is called with dvp pointing to the directory to search,
852 * cnp pointing to the name of the entry being sought. If the lookup
853 * succeeds, the vnode is returned in *vpp, and a status of -1 is
854 * returned. If the lookup determines that the name does not exist
855 * (negative cacheing), a status of ENOENT is returned. If the lookup
856 * fails, a status of zero is returned.
857 */
858
859 int
860 cache_lookup(dvp, vpp, cnp)
861 struct vnode *dvp;
862 struct vnode **vpp;
863 struct componentname *cnp;
864 {
865 register struct namecache *ncp;
866 register struct nchashhead *ncpp;
867 register long namelen = cnp->cn_namelen;
868 char *nameptr = cnp->cn_nameptr;
869 unsigned int hashval = (cnp->cn_hash & NCHASHMASK);
870 uint32_t vid;
871 vnode_t vp;
872
873 name_cache_lock();
874
875 ncpp = NCHHASH(dvp, cnp->cn_hash);
876 LIST_FOREACH(ncp, ncpp, nc_hash) {
877 if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
878 if (memcmp(ncp->nc_name, nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
879 break;
880 }
881 }
882 /* We failed to find an entry */
883 if (ncp == 0) {
884 nchstats.ncs_miss++;
885 name_cache_unlock();
886 return (0);
887 }
888
889 /* We don't want to have an entry, so dump it */
890 if ((cnp->cn_flags & MAKEENTRY) == 0) {
891 nchstats.ncs_badhits++;
892 cache_delete(ncp, 1);
893 name_cache_unlock();
894 return (0);
895 }
896 vp = ncp->nc_vp;
897
898 /* We found a "positive" match, return the vnode */
899 if (vp) {
900 nchstats.ncs_goodhits++;
901
902 vid = vp->v_id;
903 name_cache_unlock();
904
905 if (vnode_getwithvid(vp, vid)) {
906 name_cache_lock();
907 nchstats.ncs_badvid++;
908 name_cache_unlock();
909 return (0);
910 }
911 *vpp = vp;
912 return (-1);
913 }
914
915 /* We found a negative match, and want to create it, so purge */
916 if (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) {
917 nchstats.ncs_badhits++;
918 cache_delete(ncp, 1);
919 name_cache_unlock();
920 return (0);
921 }
922
923 /*
924 * We found a "negative" match, ENOENT notifies client of this match.
925 * The nc_whiteout field records whether this is a whiteout.
926 */
927 nchstats.ncs_neghits++;
928
929 if (ncp->nc_whiteout)
930 cnp->cn_flags |= ISWHITEOUT;
931 name_cache_unlock();
932 return (ENOENT);
933 }
934
935 /*
936 * Add an entry to the cache.
937 */
938 void
939 cache_enter(dvp, vp, cnp)
940 struct vnode *dvp;
941 struct vnode *vp;
942 struct componentname *cnp;
943 {
944 register struct namecache *ncp, *negp;
945 register struct nchashhead *ncpp;
946
947 if (cnp->cn_hash == 0)
948 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
949
950 name_cache_lock();
951
952 /* if the entry is for -ve caching vp is null */
953 if ((vp != NULLVP) && (LIST_FIRST(&vp->v_nclinks))) {
954 /*
955 * someone beat us to the punch..
956 * this vnode is already in the cache
957 */
958 name_cache_unlock();
959 return;
960 }
961 /*
962 * We allocate a new entry if we are less than the maximum
963 * allowed and the one at the front of the list is in use.
964 * Otherwise we use the one at the front of the list.
965 */
966 if (numcache < desiredNodes &&
967 ((ncp = nchead.tqh_first) == NULL ||
968 ncp->nc_hash.le_prev != 0)) {
969 /*
970 * Allocate one more entry
971 */
972 ncp = (struct namecache *)_MALLOC_ZONE((u_long)sizeof *ncp, M_CACHE, M_WAITOK);
973 numcache++;
974 } else {
975 /*
976 * reuse an old entry
977 */
978 ncp = TAILQ_FIRST(&nchead);
979 TAILQ_REMOVE(&nchead, ncp, nc_entry);
980
981 if (ncp->nc_hash.le_prev != 0) {
982 /*
983 * still in use... we need to
984 * delete it before re-using it
985 */
986 nchstats.ncs_stolen++;
987 cache_delete(ncp, 0);
988 }
989 }
990 nchstats.ncs_enters++;
991
992 /*
993 * Fill in cache info, if vp is NULL this is a "negative" cache entry.
994 */
995 ncp->nc_vp = vp;
996 ncp->nc_dvp = dvp;
997 ncp->nc_hashval = cnp->cn_hash;
998 ncp->nc_whiteout = FALSE;
999 ncp->nc_name = add_name_locked(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, 0);
1000
1001 /*
1002 * make us the newest entry in the cache
1003 * i.e. we'll be the last to be stolen
1004 */
1005 TAILQ_INSERT_TAIL(&nchead, ncp, nc_entry);
1006
1007 ncpp = NCHHASH(dvp, cnp->cn_hash);
1008 #if DIAGNOSTIC
1009 {
1010 register struct namecache *p;
1011
1012 for (p = ncpp->lh_first; p != 0; p = p->nc_hash.le_next)
1013 if (p == ncp)
1014 panic("cache_enter: duplicate");
1015 }
1016 #endif
1017 /*
1018 * make us available to be found via lookup
1019 */
1020 LIST_INSERT_HEAD(ncpp, ncp, nc_hash);
1021
1022 if (vp) {
1023 /*
1024 * add to the list of name cache entries
1025 * that point at vp
1026 */
1027 LIST_INSERT_HEAD(&vp->v_nclinks, ncp, nc_un.nc_link);
1028 } else {
1029 /*
1030 * this is a negative cache entry (vp == NULL)
1031 * stick it on the negative cache list
1032 * and record the whiteout state
1033 */
1034 TAILQ_INSERT_TAIL(&neghead, ncp, nc_un.nc_negentry);
1035
1036 if (cnp->cn_flags & ISWHITEOUT)
1037 ncp->nc_whiteout = TRUE;
1038 nchstats.ncs_negtotal++;
1039
1040 if (nchstats.ncs_negtotal > desiredNegNodes) {
1041 /*
1042 * if we've reached our desired limit
1043 * of negative cache entries, delete
1044 * the oldest
1045 */
1046 negp = TAILQ_FIRST(&neghead);
1047 TAILQ_REMOVE(&neghead, negp, nc_un.nc_negentry);
1048
1049 cache_delete(negp, 1);
1050 }
1051 }
1052 /*
1053 * add us to the list of name cache entries that
1054 * are children of dvp
1055 */
1056 LIST_INSERT_HEAD(&dvp->v_ncchildren, ncp, nc_child);
1057
1058 name_cache_unlock();
1059 }
1060
1061
1062 /*
1063 * Initialize CRC-32 remainder table.
1064 */
1065 static void init_crc32(void)
1066 {
1067 /*
1068 * the CRC-32 generator polynomial is:
1069 * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^10
1070 * + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
1071 */
1072 unsigned int crc32_polynomial = 0x04c11db7;
1073 unsigned int i,j;
1074
1075 /*
1076 * pre-calculate the CRC-32 remainder for each possible octet encoding
1077 */
1078 for (i = 0; i < 256; i++) {
1079 unsigned int crc_rem = i << 24;
1080
1081 for (j = 0; j < 8; j++) {
1082 if (crc_rem & 0x80000000)
1083 crc_rem = (crc_rem << 1) ^ crc32_polynomial;
1084 else
1085 crc_rem = (crc_rem << 1);
1086 }
1087 crc32tab[i] = crc_rem;
1088 }
1089 }
1090
1091
1092 /*
1093 * Name cache initialization, from vfs_init() when we are booting
1094 */
1095 void
1096 nchinit(void)
1097 {
1098 desiredNegNodes = (desiredvnodes / 10);
1099 desiredNodes = desiredvnodes + desiredNegNodes;
1100
1101 TAILQ_INIT(&nchead);
1102 TAILQ_INIT(&neghead);
1103
1104 init_crc32();
1105
1106 nchashtbl = hashinit(MAX(4096, (2 *desiredNodes)), M_CACHE, &nchash);
1107 nchashmask = nchash;
1108 nchash++;
1109
1110 init_string_table();
1111
1112 /* Allocate mount list lock group attribute and group */
1113 namecache_lck_grp_attr= lck_grp_attr_alloc_init();
1114 lck_grp_attr_setstat(namecache_lck_grp_attr);
1115
1116 namecache_lck_grp = lck_grp_alloc_init("Name Cache", namecache_lck_grp_attr);
1117
1118 /* Allocate mount list lock attribute */
1119 namecache_lck_attr = lck_attr_alloc_init();
1120 //lck_attr_setdebug(namecache_lck_attr);
1121
1122 /* Allocate mount list lock */
1123 namecache_mtx_lock = lck_mtx_alloc_init(namecache_lck_grp, namecache_lck_attr);
1124
1125
1126 }
1127
1128 void
1129 name_cache_lock(void)
1130 {
1131 lck_mtx_lock(namecache_mtx_lock);
1132 }
1133
1134 void
1135 name_cache_unlock(void)
1136 {
1137 lck_mtx_unlock(namecache_mtx_lock);
1138
1139 }
1140
1141
1142 int
1143 resize_namecache(u_int newsize)
1144 {
1145 struct nchashhead *new_table;
1146 struct nchashhead *old_table;
1147 struct nchashhead *old_head, *head;
1148 struct namecache *entry, *next;
1149 uint32_t i, hashval;
1150 int dNodes, dNegNodes;
1151 u_long new_size, old_size;
1152
1153 dNegNodes = (newsize / 10);
1154 dNodes = newsize + dNegNodes;
1155
1156 // we don't support shrinking yet
1157 if (dNodes < desiredNodes) {
1158 return 0;
1159 }
1160 new_table = hashinit(2 * dNodes, M_CACHE, &nchashmask);
1161 new_size = nchashmask + 1;
1162
1163 if (new_table == NULL) {
1164 return ENOMEM;
1165 }
1166
1167 name_cache_lock();
1168 // do the switch!
1169 old_table = nchashtbl;
1170 nchashtbl = new_table;
1171 old_size = nchash;
1172 nchash = new_size;
1173
1174 // walk the old table and insert all the entries into
1175 // the new table
1176 //
1177 for(i=0; i < old_size; i++) {
1178 old_head = &old_table[i];
1179 for (entry=old_head->lh_first; entry != NULL; entry=next) {
1180 //
1181 // XXXdbg - Beware: this assumes that hash_string() does
1182 // the same thing as what happens in
1183 // lookup() over in vfs_lookup.c
1184 hashval = hash_string(entry->nc_name, 0);
1185 entry->nc_hashval = hashval;
1186 head = NCHHASH(entry->nc_dvp, hashval);
1187
1188 next = entry->nc_hash.le_next;
1189 LIST_INSERT_HEAD(head, entry, nc_hash);
1190 }
1191 }
1192 desiredNodes = dNodes;
1193 desiredNegNodes = dNegNodes;
1194
1195 name_cache_unlock();
1196 FREE(old_table, M_CACHE);
1197
1198 return 0;
1199 }
1200
1201 static void
1202 cache_delete(struct namecache *ncp, int age_entry)
1203 {
1204 nchstats.ncs_deletes++;
1205
1206 if (ncp->nc_vp) {
1207 LIST_REMOVE(ncp, nc_un.nc_link);
1208 } else {
1209 TAILQ_REMOVE(&neghead, ncp, nc_un.nc_negentry);
1210 nchstats.ncs_negtotal--;
1211 }
1212 LIST_REMOVE(ncp, nc_child);
1213
1214 LIST_REMOVE(ncp, nc_hash);
1215 /*
1216 * this field is used to indicate
1217 * that the entry is in use and
1218 * must be deleted before it can
1219 * be reused...
1220 */
1221 ncp->nc_hash.le_prev = NULL;
1222
1223 if (age_entry) {
1224 /*
1225 * make it the next one available
1226 * for cache_enter's use
1227 */
1228 TAILQ_REMOVE(&nchead, ncp, nc_entry);
1229 TAILQ_INSERT_HEAD(&nchead, ncp, nc_entry);
1230 }
1231 remove_name_locked(ncp->nc_name);
1232 ncp->nc_name = NULL;
1233 }
1234
1235
1236 /*
1237 * purge the entry associated with the
1238 * specified vnode from the name cache
1239 */
1240 void
1241 cache_purge(vnode_t vp)
1242 {
1243 struct namecache *ncp;
1244
1245 if ((LIST_FIRST(&vp->v_nclinks) == NULL) && (LIST_FIRST(&vp->v_ncchildren) == NULL))
1246 return;
1247
1248 name_cache_lock();
1249
1250 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
1251 cache_delete(ncp, 1);
1252
1253 while ( (ncp = LIST_FIRST(&vp->v_ncchildren)) )
1254 cache_delete(ncp, 1);
1255
1256 name_cache_unlock();
1257 }
1258
1259 /*
1260 * Purge all negative cache entries that are children of the
1261 * given vnode. A case-insensitive file system (or any file
1262 * system that has multiple equivalent names for the same
1263 * directory entry) can use this when creating or renaming
1264 * to remove negative entries that may no longer apply.
1265 */
1266 void
1267 cache_purge_negatives(vnode_t vp)
1268 {
1269 struct namecache *ncp;
1270
1271 name_cache_lock();
1272
1273 LIST_FOREACH(ncp, &vp->v_ncchildren, nc_child)
1274 if (ncp->nc_vp == NULL)
1275 cache_delete(ncp , 1);
1276
1277 name_cache_unlock();
1278 }
1279
1280 /*
1281 * Flush all entries referencing a particular filesystem.
1282 *
1283 * Since we need to check it anyway, we will flush all the invalid
1284 * entries at the same time.
1285 */
1286 void
1287 cache_purgevfs(mp)
1288 struct mount *mp;
1289 {
1290 struct nchashhead *ncpp;
1291 struct namecache *ncp;
1292
1293 name_cache_lock();
1294 /* Scan hash tables for applicable entries */
1295 for (ncpp = &nchashtbl[nchash - 1]; ncpp >= nchashtbl; ncpp--) {
1296 restart:
1297 for (ncp = ncpp->lh_first; ncp != 0; ncp = ncp->nc_hash.le_next) {
1298 if (ncp->nc_dvp->v_mount == mp) {
1299 cache_delete(ncp, 0);
1300 goto restart;
1301 }
1302 }
1303 }
1304 name_cache_unlock();
1305 }
1306
1307
1308
1309 //
1310 // String ref routines
1311 //
1312 static LIST_HEAD(stringhead, string_t) *string_ref_table;
1313 static u_long string_table_mask;
1314 static uint32_t max_chain_len=0;
1315 static struct stringhead *long_chain_head=NULL;
1316 static uint32_t filled_buckets=0;
1317 static uint32_t num_dups=0;
1318 static uint32_t nstrings=0;
1319
1320 typedef struct string_t {
1321 LIST_ENTRY(string_t) hash_chain;
1322 unsigned char *str;
1323 uint32_t refcount;
1324 } string_t;
1325
1326
1327
1328 static int
1329 resize_string_ref_table(void)
1330 {
1331 struct stringhead *new_table;
1332 struct stringhead *old_table;
1333 struct stringhead *old_head, *head;
1334 string_t *entry, *next;
1335 uint32_t i, hashval;
1336 u_long new_mask, old_mask;
1337
1338 new_table = hashinit((string_table_mask + 1) * 2, M_CACHE, &new_mask);
1339 if (new_table == NULL) {
1340 return ENOMEM;
1341 }
1342
1343 // do the switch!
1344 old_table = string_ref_table;
1345 string_ref_table = new_table;
1346 old_mask = string_table_mask;
1347 string_table_mask = new_mask;
1348
1349 printf("resize: max chain len %d, new table size %d\n",
1350 max_chain_len, new_mask + 1);
1351 max_chain_len = 0;
1352 long_chain_head = NULL;
1353 filled_buckets = 0;
1354
1355 // walk the old table and insert all the entries into
1356 // the new table
1357 //
1358 for(i=0; i <= old_mask; i++) {
1359 old_head = &old_table[i];
1360 for (entry=old_head->lh_first; entry != NULL; entry=next) {
1361 hashval = hash_string(entry->str, 0);
1362 head = &string_ref_table[hashval & string_table_mask];
1363 if (head->lh_first == NULL) {
1364 filled_buckets++;
1365 }
1366
1367 next = entry->hash_chain.le_next;
1368 LIST_INSERT_HEAD(head, entry, hash_chain);
1369 }
1370 }
1371
1372 FREE(old_table, M_CACHE);
1373
1374 return 0;
1375 }
1376
1377
1378 static void
1379 init_string_table(void)
1380 {
1381 string_ref_table = hashinit(4096, M_CACHE, &string_table_mask);
1382 }
1383
1384
1385 char *
1386 vfs_addname(const char *name, size_t len, u_int hashval, u_int flags)
1387 {
1388 char * ptr;
1389
1390 name_cache_lock();
1391 ptr = add_name_locked(name, len, hashval, flags);
1392 name_cache_unlock();
1393
1394 return(ptr);
1395 }
1396
1397 static char *
1398 add_name_locked(const char *name, size_t len, u_int hashval, __unused u_int flags)
1399 {
1400 struct stringhead *head;
1401 string_t *entry;
1402 uint32_t chain_len = 0;
1403
1404 //
1405 // If the table gets more than 3/4 full, resize it
1406 //
1407 if (4*filled_buckets >= ((string_table_mask + 1) * 3)) {
1408 if (resize_string_ref_table() != 0) {
1409 printf("failed to resize the hash table.\n");
1410 }
1411 }
1412 if (hashval == 0) {
1413 hashval = hash_string(name, 0);
1414 }
1415
1416 head = &string_ref_table[hashval & string_table_mask];
1417 for (entry=head->lh_first; entry != NULL; chain_len++, entry=entry->hash_chain.le_next) {
1418 if (memcmp(entry->str, name, len) == 0 && entry->str[len] == '\0') {
1419 entry->refcount++;
1420 num_dups++;
1421 break;
1422 }
1423 }
1424
1425 if (entry == NULL) {
1426 // it wasn't already there so add it.
1427 MALLOC(entry, string_t *, sizeof(string_t) + len + 1, M_TEMP, M_WAITOK);
1428
1429 // have to get "head" again because we could have blocked
1430 // in malloc and thus head could have changed.
1431 //
1432 head = &string_ref_table[hashval & string_table_mask];
1433 if (head->lh_first == NULL) {
1434 filled_buckets++;
1435 }
1436
1437 entry->str = (char *)((char *)entry + sizeof(string_t));
1438 strncpy(entry->str, name, len);
1439 entry->str[len] = '\0';
1440 entry->refcount = 1;
1441 LIST_INSERT_HEAD(head, entry, hash_chain);
1442
1443 if (chain_len > max_chain_len) {
1444 max_chain_len = chain_len;
1445 long_chain_head = head;
1446 }
1447
1448 nstrings++;
1449 }
1450
1451 return entry->str;
1452 }
1453
1454 int
1455 vfs_removename(const char *nameref)
1456 {
1457 int i;
1458
1459 name_cache_lock();
1460 i = remove_name_locked(nameref);
1461 name_cache_unlock();
1462
1463 return(i);
1464
1465 }
1466
1467
1468 static int
1469 remove_name_locked(const char *nameref)
1470 {
1471 struct stringhead *head;
1472 string_t *entry;
1473 uint32_t hashval;
1474 char * ptr;
1475
1476 hashval = hash_string(nameref, 0);
1477 head = &string_ref_table[hashval & string_table_mask];
1478 for (entry=head->lh_first; entry != NULL; entry=entry->hash_chain.le_next) {
1479 if (entry->str == (unsigned char *)nameref) {
1480 entry->refcount--;
1481 if (entry->refcount == 0) {
1482 LIST_REMOVE(entry, hash_chain);
1483 if (head->lh_first == NULL) {
1484 filled_buckets--;
1485 }
1486 ptr = entry->str;
1487 entry->str = NULL;
1488 nstrings--;
1489
1490 FREE(entry, M_TEMP);
1491 } else {
1492 num_dups--;
1493 }
1494
1495 return 0;
1496 }
1497 }
1498
1499 return ENOENT;
1500 }
1501
1502
1503 void
1504 dump_string_table(void)
1505 {
1506 struct stringhead *head;
1507 string_t *entry;
1508 u_long i;
1509
1510 name_cache_lock();
1511 for (i = 0; i <= string_table_mask; i++) {
1512 head = &string_ref_table[i];
1513 for (entry=head->lh_first; entry != NULL; entry=entry->hash_chain.le_next) {
1514 printf("%6d - %s\n", entry->refcount, entry->str);
1515 }
1516 }
1517 name_cache_unlock();
1518 }