]> git.saurik.com Git - apple/xnu.git/blob - bsd/miscfs/specfs/spec_vnops.c
fd79c99fa304d08d732784ab4055fe871416dba9
[apple/xnu.git] / bsd / miscfs / specfs / spec_vnops.c
1 /*
2 * Copyright (c) 2000-2012 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1989, 1993, 1995
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)spec_vnops.c 8.14 (Berkeley) 5/21/95
62 */
63
64 #include <sys/param.h>
65 #include <sys/proc_internal.h>
66 #include <sys/kauth.h>
67 #include <sys/systm.h>
68 #include <sys/kernel.h>
69 #include <sys/conf.h>
70 #include <sys/buf_internal.h>
71 #include <sys/mount_internal.h>
72 #include <sys/vnode_internal.h>
73 #include <sys/file_internal.h>
74 #include <sys/namei.h>
75 #include <sys/stat.h>
76 #include <sys/errno.h>
77 #include <sys/ioctl.h>
78 #include <sys/file.h>
79 #include <sys/user.h>
80 #include <sys/malloc.h>
81 #include <sys/disk.h>
82 #include <sys/uio_internal.h>
83 #include <sys/resource.h>
84 #include <miscfs/specfs/specdev.h>
85 #include <vfs/vfs_support.h>
86 #include <kern/assert.h>
87 #include <kern/task.h>
88 #include <pexpert/pexpert.h>
89
90 #include <sys/kdebug.h>
91
92 /* XXX following three prototypes should be in a header file somewhere */
93 extern dev_t chrtoblk(dev_t dev);
94 extern boolean_t iskmemdev(dev_t dev);
95 extern int bpfkqfilter(dev_t dev, struct knote *kn);
96 extern int ptsd_kqfilter(dev_t dev, struct knote *kn);
97
98 extern int ignore_is_ssd;
99
100 struct vnode *speclisth[SPECHSZ];
101
102 /* symbolic sleep message strings for devices */
103 char devopn[] = "devopn";
104 char devio[] = "devio";
105 char devwait[] = "devwait";
106 char devin[] = "devin";
107 char devout[] = "devout";
108 char devioc[] = "devioc";
109 char devcls[] = "devcls";
110
111 #define VOPFUNC int (*)(void *)
112
113 int (**spec_vnodeop_p)(void *);
114 struct vnodeopv_entry_desc spec_vnodeop_entries[] = {
115 { &vnop_default_desc, (VOPFUNC)vn_default_error },
116 { &vnop_lookup_desc, (VOPFUNC)spec_lookup }, /* lookup */
117 { &vnop_create_desc, (VOPFUNC)err_create }, /* create */
118 { &vnop_mknod_desc, (VOPFUNC)err_mknod }, /* mknod */
119 { &vnop_open_desc, (VOPFUNC)spec_open }, /* open */
120 { &vnop_close_desc, (VOPFUNC)spec_close }, /* close */
121 { &vnop_access_desc, (VOPFUNC)spec_access }, /* access */
122 { &vnop_getattr_desc, (VOPFUNC)spec_getattr }, /* getattr */
123 { &vnop_setattr_desc, (VOPFUNC)spec_setattr }, /* setattr */
124 { &vnop_read_desc, (VOPFUNC)spec_read }, /* read */
125 { &vnop_write_desc, (VOPFUNC)spec_write }, /* write */
126 { &vnop_ioctl_desc, (VOPFUNC)spec_ioctl }, /* ioctl */
127 { &vnop_select_desc, (VOPFUNC)spec_select }, /* select */
128 { &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */
129 { &vnop_mmap_desc, (VOPFUNC)err_mmap }, /* mmap */
130 { &vnop_fsync_desc, (VOPFUNC)spec_fsync }, /* fsync */
131 { &vnop_remove_desc, (VOPFUNC)err_remove }, /* remove */
132 { &vnop_link_desc, (VOPFUNC)err_link }, /* link */
133 { &vnop_rename_desc, (VOPFUNC)err_rename }, /* rename */
134 { &vnop_mkdir_desc, (VOPFUNC)err_mkdir }, /* mkdir */
135 { &vnop_rmdir_desc, (VOPFUNC)err_rmdir }, /* rmdir */
136 { &vnop_symlink_desc, (VOPFUNC)err_symlink }, /* symlink */
137 { &vnop_readdir_desc, (VOPFUNC)err_readdir }, /* readdir */
138 { &vnop_readlink_desc, (VOPFUNC)err_readlink }, /* readlink */
139 { &vnop_inactive_desc, (VOPFUNC)nop_inactive }, /* inactive */
140 { &vnop_reclaim_desc, (VOPFUNC)nop_reclaim }, /* reclaim */
141 { &vnop_strategy_desc, (VOPFUNC)spec_strategy }, /* strategy */
142 { &vnop_pathconf_desc, (VOPFUNC)spec_pathconf }, /* pathconf */
143 { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
144 { &vnop_bwrite_desc, (VOPFUNC)spec_bwrite }, /* bwrite */
145 { &vnop_pagein_desc, (VOPFUNC)err_pagein }, /* Pagein */
146 { &vnop_pageout_desc, (VOPFUNC)err_pageout }, /* Pageout */
147 { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* Copyfile */
148 { &vnop_blktooff_desc, (VOPFUNC)spec_blktooff }, /* blktooff */
149 { &vnop_offtoblk_desc, (VOPFUNC)spec_offtoblk }, /* offtoblk */
150 { &vnop_blockmap_desc, (VOPFUNC)spec_blockmap }, /* blockmap */
151 { (struct vnodeop_desc*)NULL, (int(*)())NULL }
152 };
153 struct vnodeopv_desc spec_vnodeop_opv_desc =
154 { &spec_vnodeop_p, spec_vnodeop_entries };
155
156
157 static void set_blocksize(vnode_t, dev_t);
158
159 #define LOWPRI_TIER1_WINDOW_MSECS 25
160 #define LOWPRI_TIER2_WINDOW_MSECS 100
161 #define LOWPRI_TIER3_WINDOW_MSECS 500
162
163 #define LOWPRI_TIER1_IO_PERIOD_MSECS 15
164 #define LOWPRI_TIER2_IO_PERIOD_MSECS 50
165 #define LOWPRI_TIER3_IO_PERIOD_MSECS 200
166
167 #define LOWPRI_TIER1_IO_PERIOD_SSD_MSECS 5
168 #define LOWPRI_TIER2_IO_PERIOD_SSD_MSECS 15
169 #define LOWPRI_TIER3_IO_PERIOD_SSD_MSECS 25
170
171
172 int throttle_windows_msecs[THROTTLE_LEVEL_END + 1] = {
173 0,
174 LOWPRI_TIER1_WINDOW_MSECS,
175 LOWPRI_TIER2_WINDOW_MSECS,
176 LOWPRI_TIER3_WINDOW_MSECS,
177 };
178
179 int throttle_io_period_msecs[THROTTLE_LEVEL_END + 1] = {
180 0,
181 LOWPRI_TIER1_IO_PERIOD_MSECS,
182 LOWPRI_TIER2_IO_PERIOD_MSECS,
183 LOWPRI_TIER3_IO_PERIOD_MSECS,
184 };
185
186 int throttle_io_period_ssd_msecs[THROTTLE_LEVEL_END + 1] = {
187 0,
188 LOWPRI_TIER1_IO_PERIOD_SSD_MSECS,
189 LOWPRI_TIER2_IO_PERIOD_SSD_MSECS,
190 LOWPRI_TIER3_IO_PERIOD_SSD_MSECS,
191 };
192
193
194 int throttled_count[THROTTLE_LEVEL_END + 1];
195
196 struct _throttle_io_info_t {
197 lck_mtx_t throttle_lock;
198
199 struct timeval throttle_last_write_timestamp;
200 struct timeval throttle_min_timer_deadline;
201 struct timeval throttle_window_start_timestamp[THROTTLE_LEVEL_END + 1];
202 struct timeval throttle_last_IO_timestamp[THROTTLE_LEVEL_END + 1];
203 pid_t throttle_last_IO_pid[THROTTLE_LEVEL_END + 1];
204 struct timeval throttle_start_IO_period_timestamp[THROTTLE_LEVEL_END + 1];
205
206 TAILQ_HEAD( , uthread) throttle_uthlist[THROTTLE_LEVEL_END + 1]; /* Lists of throttled uthreads */
207 int throttle_next_wake_level;
208
209 thread_call_t throttle_timer_call;
210 int32_t throttle_timer_ref;
211 int32_t throttle_timer_active;
212
213 int32_t throttle_io_count;
214 int32_t throttle_io_count_begin;
215 int *throttle_io_periods;
216 uint32_t throttle_io_period_num;
217
218 int32_t throttle_refcnt;
219 int32_t throttle_alloc;
220 int32_t throttle_disabled;
221 int32_t throttle_is_fusion_with_priority;
222 };
223
224 struct _throttle_io_info_t _throttle_io_info[LOWPRI_MAX_NUM_DEV];
225
226
227 int lowpri_throttle_enabled = 1;
228
229
230
231 static void throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd);
232 static int throttle_get_thread_throttle_level(uthread_t ut);
233
234 /*
235 * Trivial lookup routine that always fails.
236 */
237 int
238 spec_lookup(struct vnop_lookup_args *ap)
239 {
240
241 *ap->a_vpp = NULL;
242 return (ENOTDIR);
243 }
244
245 static void
246 set_blocksize(struct vnode *vp, dev_t dev)
247 {
248 int (*size)(dev_t);
249 int rsize;
250
251 if ((major(dev) < nblkdev) && (size = bdevsw[major(dev)].d_psize)) {
252 rsize = (*size)(dev);
253 if (rsize <= 0) /* did size fail? */
254 vp->v_specsize = DEV_BSIZE;
255 else
256 vp->v_specsize = rsize;
257 }
258 else
259 vp->v_specsize = DEV_BSIZE;
260 }
261
262 void
263 set_fsblocksize(struct vnode *vp)
264 {
265
266 if (vp->v_type == VBLK) {
267 dev_t dev = (dev_t)vp->v_rdev;
268 int maj = major(dev);
269
270 if ((u_int)maj >= (u_int)nblkdev)
271 return;
272
273 vnode_lock(vp);
274 set_blocksize(vp, dev);
275 vnode_unlock(vp);
276 }
277
278 }
279
280
281 /*
282 * Open a special file.
283 */
284 int
285 spec_open(struct vnop_open_args *ap)
286 {
287 struct proc *p = vfs_context_proc(ap->a_context);
288 kauth_cred_t cred = vfs_context_ucred(ap->a_context);
289 struct vnode *vp = ap->a_vp;
290 dev_t bdev, dev = (dev_t)vp->v_rdev;
291 int maj = major(dev);
292 int error;
293
294 /*
295 * Don't allow open if fs is mounted -nodev.
296 */
297 if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_NODEV))
298 return (ENXIO);
299
300 switch (vp->v_type) {
301
302 case VCHR:
303 if ((u_int)maj >= (u_int)nchrdev)
304 return (ENXIO);
305 if (cred != FSCRED && (ap->a_mode & FWRITE)) {
306 /*
307 * When running in very secure mode, do not allow
308 * opens for writing of any disk character devices.
309 */
310 if (securelevel >= 2 && isdisk(dev, VCHR))
311 return (EPERM);
312
313 /* Never allow writing to /dev/mem or /dev/kmem */
314 if (iskmemdev(dev))
315 return (EPERM);
316 /*
317 * When running in secure mode, do not allow opens for
318 * writing of character devices whose corresponding block
319 * devices are currently mounted.
320 */
321 if (securelevel >= 1) {
322 if ((bdev = chrtoblk(dev)) != NODEV && check_mountedon(bdev, VBLK, &error))
323 return (error);
324 }
325 }
326
327 devsw_lock(dev, S_IFCHR);
328 error = (*cdevsw[maj].d_open)(dev, ap->a_mode, S_IFCHR, p);
329
330 if (error == 0) {
331 vp->v_specinfo->si_opencount++;
332 }
333
334 devsw_unlock(dev, S_IFCHR);
335
336 if (error == 0 && cdevsw[maj].d_type == D_DISK && !vp->v_un.vu_specinfo->si_initted) {
337 int isssd = 0;
338 uint64_t throttle_mask = 0;
339 uint32_t devbsdunit = 0;
340
341 if (VNOP_IOCTL(vp, DKIOCGETTHROTTLEMASK, (caddr_t)&throttle_mask, 0, NULL) == 0) {
342
343 if (throttle_mask != 0 &&
344 VNOP_IOCTL(vp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, ap->a_context) == 0) {
345 /*
346 * as a reasonable approximation, only use the lowest bit of the mask
347 * to generate a disk unit number
348 */
349 devbsdunit = num_trailing_0(throttle_mask);
350
351 vnode_lock(vp);
352
353 vp->v_un.vu_specinfo->si_isssd = isssd;
354 vp->v_un.vu_specinfo->si_devbsdunit = devbsdunit;
355 vp->v_un.vu_specinfo->si_throttle_mask = throttle_mask;
356 vp->v_un.vu_specinfo->si_throttleable = 1;
357 vp->v_un.vu_specinfo->si_initted = 1;
358
359 vnode_unlock(vp);
360 }
361 }
362 if (vp->v_un.vu_specinfo->si_initted == 0) {
363 vnode_lock(vp);
364 vp->v_un.vu_specinfo->si_initted = 1;
365 vnode_unlock(vp);
366 }
367 }
368 return (error);
369
370 case VBLK:
371 if ((u_int)maj >= (u_int)nblkdev)
372 return (ENXIO);
373 /*
374 * When running in very secure mode, do not allow
375 * opens for writing of any disk block devices.
376 */
377 if (securelevel >= 2 && cred != FSCRED &&
378 (ap->a_mode & FWRITE) && bdevsw[maj].d_type == D_DISK)
379 return (EPERM);
380 /*
381 * Do not allow opens of block devices that are
382 * currently mounted.
383 */
384 if ( (error = vfs_mountedon(vp)) )
385 return (error);
386
387 devsw_lock(dev, S_IFBLK);
388 error = (*bdevsw[maj].d_open)(dev, ap->a_mode, S_IFBLK, p);
389 if (!error) {
390 vp->v_specinfo->si_opencount++;
391 }
392 devsw_unlock(dev, S_IFBLK);
393
394 if (!error) {
395 u_int64_t blkcnt;
396 u_int32_t blksize;
397 int setsize = 0;
398 u_int32_t size512 = 512;
399
400
401 if (!VNOP_IOCTL(vp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, ap->a_context)) {
402 /* Switch to 512 byte sectors (temporarily) */
403
404 if (!VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, ap->a_context)) {
405 /* Get the number of 512 byte physical blocks. */
406 if (!VNOP_IOCTL(vp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, ap->a_context)) {
407 setsize = 1;
408 }
409 }
410 /* If it doesn't set back, we can't recover */
411 if (VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, ap->a_context))
412 error = ENXIO;
413 }
414
415
416 vnode_lock(vp);
417 set_blocksize(vp, dev);
418
419 /*
420 * Cache the size in bytes of the block device for later
421 * use by spec_write().
422 */
423 if (setsize)
424 vp->v_specdevsize = blkcnt * (u_int64_t)size512;
425 else
426 vp->v_specdevsize = (u_int64_t)0; /* Default: Can't get */
427
428 vnode_unlock(vp);
429
430 }
431 return(error);
432 default:
433 panic("spec_open type");
434 }
435 return (0);
436 }
437
438 /*
439 * Vnode op for read
440 */
441 int
442 spec_read(struct vnop_read_args *ap)
443 {
444 struct vnode *vp = ap->a_vp;
445 struct uio *uio = ap->a_uio;
446 struct buf *bp;
447 daddr64_t bn, nextbn;
448 long bsize, bscale;
449 int devBlockSize=0;
450 int n, on;
451 int error = 0;
452 dev_t dev;
453
454 #if DIAGNOSTIC
455 if (uio->uio_rw != UIO_READ)
456 panic("spec_read mode");
457 if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg))
458 panic("spec_read proc");
459 #endif
460 if (uio_resid(uio) == 0)
461 return (0);
462
463 switch (vp->v_type) {
464
465 case VCHR:
466 if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) {
467 struct _throttle_io_info_t *throttle_info;
468
469 throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit];
470 throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd);
471 }
472 error = (*cdevsw[major(vp->v_rdev)].d_read)
473 (vp->v_rdev, uio, ap->a_ioflag);
474
475 return (error);
476
477 case VBLK:
478 if (uio->uio_offset < 0)
479 return (EINVAL);
480
481 dev = vp->v_rdev;
482
483 devBlockSize = vp->v_specsize;
484
485 if (devBlockSize > PAGE_SIZE)
486 return (EINVAL);
487
488 bscale = PAGE_SIZE / devBlockSize;
489 bsize = bscale * devBlockSize;
490
491 do {
492 on = uio->uio_offset % bsize;
493
494 bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ (bscale - 1));
495
496 if (vp->v_speclastr + bscale == bn) {
497 nextbn = bn + bscale;
498 error = buf_breadn(vp, bn, (int)bsize, &nextbn,
499 (int *)&bsize, 1, NOCRED, &bp);
500 } else
501 error = buf_bread(vp, bn, (int)bsize, NOCRED, &bp);
502
503 vnode_lock(vp);
504 vp->v_speclastr = bn;
505 vnode_unlock(vp);
506
507 n = bsize - buf_resid(bp);
508 if ((on > n) || error) {
509 if (!error)
510 error = EINVAL;
511 buf_brelse(bp);
512 return (error);
513 }
514 n = min((unsigned)(n - on), uio_resid(uio));
515
516 error = uiomove((char *)buf_dataptr(bp) + on, n, uio);
517 if (n + on == bsize)
518 buf_markaged(bp);
519 buf_brelse(bp);
520 } while (error == 0 && uio_resid(uio) > 0 && n != 0);
521 return (error);
522
523 default:
524 panic("spec_read type");
525 }
526 /* NOTREACHED */
527
528 return (0);
529 }
530
531 /*
532 * Vnode op for write
533 */
534 int
535 spec_write(struct vnop_write_args *ap)
536 {
537 struct vnode *vp = ap->a_vp;
538 struct uio *uio = ap->a_uio;
539 struct buf *bp;
540 daddr64_t bn;
541 int bsize, blkmask, bscale;
542 int io_sync;
543 int devBlockSize=0;
544 int n, on;
545 int error = 0;
546 dev_t dev;
547
548 #if DIAGNOSTIC
549 if (uio->uio_rw != UIO_WRITE)
550 panic("spec_write mode");
551 if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg))
552 panic("spec_write proc");
553 #endif
554
555 switch (vp->v_type) {
556
557 case VCHR:
558 if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) {
559 struct _throttle_io_info_t *throttle_info;
560
561 throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit];
562
563 throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd);
564
565 microuptime(&throttle_info->throttle_last_write_timestamp);
566 }
567 error = (*cdevsw[major(vp->v_rdev)].d_write)
568 (vp->v_rdev, uio, ap->a_ioflag);
569
570 return (error);
571
572 case VBLK:
573 if (uio_resid(uio) == 0)
574 return (0);
575 if (uio->uio_offset < 0)
576 return (EINVAL);
577
578 io_sync = (ap->a_ioflag & IO_SYNC);
579
580 dev = (vp->v_rdev);
581
582 devBlockSize = vp->v_specsize;
583 if (devBlockSize > PAGE_SIZE)
584 return(EINVAL);
585
586 bscale = PAGE_SIZE / devBlockSize;
587 blkmask = bscale - 1;
588 bsize = bscale * devBlockSize;
589
590
591 do {
592 bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ blkmask);
593 on = uio->uio_offset % bsize;
594
595 n = min((unsigned)(bsize - on), uio_resid(uio));
596
597 /*
598 * Use buf_getblk() as an optimization IFF:
599 *
600 * 1) We are reading exactly a block on a block
601 * aligned boundary
602 * 2) We know the size of the device from spec_open
603 * 3) The read doesn't span the end of the device
604 *
605 * Otherwise, we fall back on buf_bread().
606 */
607 if (n == bsize &&
608 vp->v_specdevsize != (u_int64_t)0 &&
609 (uio->uio_offset + (u_int64_t)n) > vp->v_specdevsize) {
610 /* reduce the size of the read to what is there */
611 n = (uio->uio_offset + (u_int64_t)n) - vp->v_specdevsize;
612 }
613
614 if (n == bsize)
615 bp = buf_getblk(vp, bn, bsize, 0, 0, BLK_WRITE);
616 else
617 error = (int)buf_bread(vp, bn, bsize, NOCRED, &bp);
618
619 /* Translate downstream error for upstream, if needed */
620 if (!error)
621 error = (int)buf_error(bp);
622 if (error) {
623 buf_brelse(bp);
624 return (error);
625 }
626 n = min(n, bsize - buf_resid(bp));
627
628 error = uiomove((char *)buf_dataptr(bp) + on, n, uio);
629 if (error) {
630 buf_brelse(bp);
631 return (error);
632 }
633 buf_markaged(bp);
634
635 if (io_sync)
636 error = buf_bwrite(bp);
637 else {
638 if ((n + on) == bsize)
639 error = buf_bawrite(bp);
640 else
641 error = buf_bdwrite(bp);
642 }
643 } while (error == 0 && uio_resid(uio) > 0 && n != 0);
644 return (error);
645
646 default:
647 panic("spec_write type");
648 }
649 /* NOTREACHED */
650
651 return (0);
652 }
653
654 /*
655 * Device ioctl operation.
656 */
657 int
658 spec_ioctl(struct vnop_ioctl_args *ap)
659 {
660 proc_t p = vfs_context_proc(ap->a_context);
661 dev_t dev = ap->a_vp->v_rdev;
662 int retval = 0;
663
664 KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_START,
665 dev, ap->a_command, ap->a_fflag, ap->a_vp->v_type, 0);
666
667 switch (ap->a_vp->v_type) {
668
669 case VCHR:
670 retval = (*cdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data,
671 ap->a_fflag, p);
672 break;
673
674 case VBLK:
675 if (kdebug_enable) {
676 if (ap->a_command == DKIOCUNMAP) {
677 dk_unmap_t *unmap;
678 dk_extent_t *extent;
679 uint32_t i;
680
681 unmap = (dk_unmap_t *)ap->a_data;
682 extent = unmap->extents;
683
684 for (i = 0; i < unmap->extentsCount; i++, extent++) {
685 KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 1) | DBG_FUNC_NONE, dev,
686 extent->offset/ap->a_vp->v_specsize, extent->length, 0, 0);
687 }
688 } else if (ap->a_command == DKIOCSYNCHRONIZE) {
689 dk_synchronize_t *synch;
690 synch = (dk_synchronize_t *)ap->a_data;
691 KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 1) | DBG_FUNC_NONE, dev, ap->a_command,
692 synch->options, 0, 0);
693 }
694 }
695 retval = (*bdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data, ap->a_fflag, p);
696 break;
697
698 default:
699 panic("spec_ioctl");
700 /* NOTREACHED */
701 }
702 KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_END,
703 dev, ap->a_command, ap->a_fflag, retval, 0);
704
705 return (retval);
706 }
707
708 int
709 spec_select(struct vnop_select_args *ap)
710 {
711 proc_t p = vfs_context_proc(ap->a_context);
712 dev_t dev;
713
714 switch (ap->a_vp->v_type) {
715
716 default:
717 return (1); /* XXX */
718
719 case VCHR:
720 dev = ap->a_vp->v_rdev;
721 return (*cdevsw[major(dev)].d_select)(dev, ap->a_which, ap->a_wql, p);
722 }
723 }
724
725 static int filt_specattach(struct knote *kn);
726
727 int
728 spec_kqfilter(vnode_t vp, struct knote *kn)
729 {
730 dev_t dev;
731 int err;
732
733 assert(vnode_ischr(vp));
734
735 dev = vnode_specrdev(vp);
736
737 #if NETWORKING
738 /* Try a bpf device, as defined in bsd/net/bpf.c */
739 if ((err = bpfkqfilter(dev, kn)) == 0) {
740 return err;
741 }
742 #endif
743 /* Try to attach to other char special devices */
744 err = filt_specattach(kn);
745
746 return err;
747 }
748
749 /*
750 * Synch buffers associated with a block device
751 */
752 int
753 spec_fsync_internal(vnode_t vp, int waitfor, __unused vfs_context_t context)
754 {
755 if (vp->v_type == VCHR)
756 return (0);
757 /*
758 * Flush all dirty buffers associated with a block device.
759 */
760 buf_flushdirtyblks(vp, (waitfor == MNT_WAIT || waitfor == MNT_DWAIT), 0, "spec_fsync");
761
762 return (0);
763 }
764
765 int
766 spec_fsync(struct vnop_fsync_args *ap)
767 {
768 return spec_fsync_internal(ap->a_vp, ap->a_waitfor, ap->a_context);
769 }
770
771
772 /*
773 * Just call the device strategy routine
774 */
775 void throttle_init(void);
776
777
778 #if 0
779 #define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) \
780 do { \
781 if ((debug_info)->alloc) \
782 printf("%s: "format, __FUNCTION__, ## args); \
783 } while(0)
784
785 #else
786 #define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...)
787 #endif
788
789
790 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER1], 0, "");
791 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER2], 0, "");
792 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER3], 0, "");
793
794 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER1], 0, "");
795 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER2], 0, "");
796 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER3], 0, "");
797
798 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER1], 0, "");
799 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER2], 0, "");
800 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER3], 0, "");
801
802 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &lowpri_throttle_enabled, 0, "");
803
804
805 static lck_grp_t *throttle_mtx_grp;
806 static lck_attr_t *throttle_mtx_attr;
807 static lck_grp_attr_t *throttle_mtx_grp_attr;
808
809
810 /*
811 * throttled I/O helper function
812 * convert the index of the lowest set bit to a device index
813 */
814 int
815 num_trailing_0(uint64_t n)
816 {
817 /*
818 * since in most cases the number of trailing 0s is very small,
819 * we simply counting sequentially from the lowest bit
820 */
821 if (n == 0)
822 return sizeof(n) * 8;
823 int count = 0;
824 while (!ISSET(n, 1)) {
825 n >>= 1;
826 ++count;
827 }
828 return count;
829 }
830
831
832 /*
833 * Release the reference and if the item was allocated and this is the last
834 * reference then free it.
835 *
836 * This routine always returns the old value.
837 */
838 static int
839 throttle_info_rel(struct _throttle_io_info_t *info)
840 {
841 SInt32 oldValue = OSDecrementAtomic(&info->throttle_refcnt);
842
843 DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n",
844 info, (int)(oldValue -1), info );
845
846 /* The reference count just went negative, very bad */
847 if (oldValue == 0)
848 panic("throttle info ref cnt went negative!");
849
850 /*
851 * Once reference count is zero, no one else should be able to take a
852 * reference
853 */
854 if ((info->throttle_refcnt == 0) && (info->throttle_alloc)) {
855 DEBUG_ALLOC_THROTTLE_INFO("Freeing info = %p\n", info);
856
857 lck_mtx_destroy(&info->throttle_lock, throttle_mtx_grp);
858 FREE(info, M_TEMP);
859 }
860 return oldValue;
861 }
862
863
864 /*
865 * Just take a reference on the throttle info structure.
866 *
867 * This routine always returns the old value.
868 */
869 static SInt32
870 throttle_info_ref(struct _throttle_io_info_t *info)
871 {
872 SInt32 oldValue = OSIncrementAtomic(&info->throttle_refcnt);
873
874 DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n",
875 info, (int)(oldValue -1), info );
876 /* Allocated items should never have a reference of zero */
877 if (info->throttle_alloc && (oldValue == 0))
878 panic("Taking a reference without calling create throttle info!\n");
879
880 return oldValue;
881 }
882
883 /*
884 * on entry the throttle_lock is held...
885 * this function is responsible for taking
886 * and dropping the reference on the info
887 * structure which will keep it from going
888 * away while the timer is running if it
889 * happens to have been dynamically allocated by
890 * a network fileystem kext which is now trying
891 * to free it
892 */
893 static uint32_t
894 throttle_timer_start(struct _throttle_io_info_t *info, boolean_t update_io_count, int wakelevel)
895 {
896 struct timeval elapsed;
897 struct timeval now;
898 struct timeval period;
899 uint64_t elapsed_msecs;
900 int throttle_level;
901 int level;
902 int msecs;
903 boolean_t throttled = FALSE;
904 boolean_t need_timer = FALSE;
905
906 microuptime(&now);
907
908 if (update_io_count == TRUE) {
909 info->throttle_io_count_begin = info->throttle_io_count;
910 info->throttle_io_period_num++;
911
912 while (wakelevel >= THROTTLE_LEVEL_THROTTLED)
913 info->throttle_start_IO_period_timestamp[wakelevel--] = now;
914
915 info->throttle_min_timer_deadline = now;
916
917 msecs = info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED];
918 period.tv_sec = msecs / 1000;
919 period.tv_usec = (msecs % 1000) * 1000;
920
921 timevaladd(&info->throttle_min_timer_deadline, &period);
922 }
923 for (throttle_level = THROTTLE_LEVEL_START; throttle_level < THROTTLE_LEVEL_END; throttle_level++) {
924
925 elapsed = now;
926 timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]);
927 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
928
929 for (level = throttle_level + 1; level <= THROTTLE_LEVEL_END; level++) {
930
931 if (!TAILQ_EMPTY(&info->throttle_uthlist[level])) {
932
933 if (elapsed_msecs < (uint64_t)throttle_windows_msecs[level]) {
934 /*
935 * we had an I/O occur at a higher priority tier within
936 * this tier's throttle window
937 */
938 throttled = TRUE;
939 }
940 /*
941 * we assume that the windows are the same or longer
942 * as we drop through the throttling tiers... thus
943 * we can stop looking once we run into a tier with
944 * threads to schedule regardless of whether it's
945 * still in its throttling window or not
946 */
947 break;
948 }
949 }
950 if (throttled == TRUE)
951 break;
952 }
953 if (throttled == TRUE) {
954 uint64_t deadline = 0;
955 struct timeval target;
956 struct timeval min_target;
957
958 /*
959 * we've got at least one tier still in a throttled window
960 * so we need a timer running... compute the next deadline
961 * and schedule it
962 */
963 for (level = throttle_level+1; level <= THROTTLE_LEVEL_END; level++) {
964
965 if (TAILQ_EMPTY(&info->throttle_uthlist[level]))
966 continue;
967
968 target = info->throttle_start_IO_period_timestamp[level];
969
970 msecs = info->throttle_io_periods[level];
971 period.tv_sec = msecs / 1000;
972 period.tv_usec = (msecs % 1000) * 1000;
973
974 timevaladd(&target, &period);
975
976 if (need_timer == FALSE || timevalcmp(&target, &min_target, <)) {
977 min_target = target;
978 need_timer = TRUE;
979 }
980 }
981 if (timevalcmp(&info->throttle_min_timer_deadline, &now, >)) {
982 if (timevalcmp(&info->throttle_min_timer_deadline, &min_target, >))
983 min_target = info->throttle_min_timer_deadline;
984 }
985
986 if (info->throttle_timer_active) {
987 if (thread_call_cancel(info->throttle_timer_call) == FALSE) {
988 /*
989 * couldn't kill the timer because it's already
990 * been dispatched, so don't try to start a new
991 * one... once we drop the lock, the timer will
992 * proceed and eventually re-run this function
993 */
994 need_timer = FALSE;
995 } else
996 info->throttle_timer_active = 0;
997 }
998 if (need_timer == TRUE) {
999 /*
1000 * This is defined as an int (32-bit) rather than a 64-bit
1001 * value because it would need a really big period in the
1002 * order of ~500 days to overflow this. So, we let this be
1003 * 32-bit which allows us to use the clock_interval_to_deadline()
1004 * routine.
1005 */
1006 int target_msecs;
1007
1008 if (info->throttle_timer_ref == 0) {
1009 /*
1010 * take a reference for the timer
1011 */
1012 throttle_info_ref(info);
1013
1014 info->throttle_timer_ref = 1;
1015 }
1016 elapsed = min_target;
1017 timevalsub(&elapsed, &now);
1018 target_msecs = elapsed.tv_sec * 1000 + elapsed.tv_usec / 1000;
1019
1020 if (target_msecs <= 0) {
1021 /*
1022 * we may have computed a deadline slightly in the past
1023 * due to various factors... if so, just set the timer
1024 * to go off in the near future (we don't need to be precise)
1025 */
1026 target_msecs = 1;
1027 }
1028 clock_interval_to_deadline(target_msecs, 1000000, &deadline);
1029
1030 thread_call_enter_delayed(info->throttle_timer_call, deadline);
1031 info->throttle_timer_active = 1;
1032 }
1033 }
1034 return (throttle_level);
1035 }
1036
1037
1038 static void
1039 throttle_timer(struct _throttle_io_info_t *info)
1040 {
1041 uthread_t ut, utlist;
1042 struct timeval elapsed;
1043 struct timeval now;
1044 uint64_t elapsed_msecs;
1045 int throttle_level;
1046 int level;
1047 int wake_level;
1048 caddr_t wake_address = NULL;
1049 boolean_t update_io_count = FALSE;
1050 boolean_t need_wakeup = FALSE;
1051 boolean_t need_release = FALSE;
1052
1053 ut = NULL;
1054 lck_mtx_lock(&info->throttle_lock);
1055
1056 info->throttle_timer_active = 0;
1057 microuptime(&now);
1058
1059 elapsed = now;
1060 timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[THROTTLE_LEVEL_THROTTLED]);
1061 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1062
1063 if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED]) {
1064
1065 wake_level = info->throttle_next_wake_level;
1066
1067 for (level = THROTTLE_LEVEL_START; level < THROTTLE_LEVEL_END; level++) {
1068
1069 elapsed = now;
1070 timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[wake_level]);
1071 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1072
1073 if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[wake_level] && !TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) {
1074 /*
1075 * we're closing out the current IO period...
1076 * if we have a waiting thread, wake it up
1077 * after we have reset the I/O window info
1078 */
1079 need_wakeup = TRUE;
1080 update_io_count = TRUE;
1081
1082 info->throttle_next_wake_level = wake_level - 1;
1083
1084 if (info->throttle_next_wake_level == THROTTLE_LEVEL_START)
1085 info->throttle_next_wake_level = THROTTLE_LEVEL_END;
1086
1087 break;
1088 }
1089 wake_level--;
1090
1091 if (wake_level == THROTTLE_LEVEL_START)
1092 wake_level = THROTTLE_LEVEL_END;
1093 }
1094 }
1095 if (need_wakeup == TRUE) {
1096 if (!TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) {
1097
1098 ut = (uthread_t)TAILQ_FIRST(&info->throttle_uthlist[wake_level]);
1099 TAILQ_REMOVE(&info->throttle_uthlist[wake_level], ut, uu_throttlelist);
1100 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1101
1102 wake_address = (caddr_t)&ut->uu_on_throttlelist;
1103 }
1104 } else
1105 wake_level = THROTTLE_LEVEL_START;
1106
1107 throttle_level = throttle_timer_start(info, update_io_count, wake_level);
1108
1109 if (wake_address != NULL)
1110 wakeup(wake_address);
1111
1112 for (level = THROTTLE_LEVEL_THROTTLED; level <= throttle_level; level++) {
1113
1114 TAILQ_FOREACH_SAFE(ut, &info->throttle_uthlist[level], uu_throttlelist, utlist) {
1115
1116 TAILQ_REMOVE(&info->throttle_uthlist[level], ut, uu_throttlelist);
1117 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1118
1119 wakeup(&ut->uu_on_throttlelist);
1120 }
1121 }
1122 if (info->throttle_timer_active == 0 && info->throttle_timer_ref) {
1123 info->throttle_timer_ref = 0;
1124 need_release = TRUE;
1125 }
1126 lck_mtx_unlock(&info->throttle_lock);
1127
1128 if (need_release == TRUE)
1129 throttle_info_rel(info);
1130 }
1131
1132
1133 static int
1134 throttle_add_to_list(struct _throttle_io_info_t *info, uthread_t ut, int mylevel, boolean_t insert_tail)
1135 {
1136 boolean_t start_timer = FALSE;
1137 int level = THROTTLE_LEVEL_START;
1138
1139 if (TAILQ_EMPTY(&info->throttle_uthlist[mylevel])) {
1140 info->throttle_start_IO_period_timestamp[mylevel] = info->throttle_last_IO_timestamp[mylevel];
1141 start_timer = TRUE;
1142 }
1143
1144 if (insert_tail == TRUE)
1145 TAILQ_INSERT_TAIL(&info->throttle_uthlist[mylevel], ut, uu_throttlelist);
1146 else
1147 TAILQ_INSERT_HEAD(&info->throttle_uthlist[mylevel], ut, uu_throttlelist);
1148
1149 ut->uu_on_throttlelist = mylevel;
1150
1151 if (start_timer == TRUE) {
1152 /* we may need to start or rearm the timer */
1153 level = throttle_timer_start(info, FALSE, THROTTLE_LEVEL_START);
1154
1155 if (level == THROTTLE_LEVEL_END) {
1156 if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) {
1157 TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
1158
1159 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1160 }
1161 }
1162 }
1163 return (level);
1164 }
1165
1166 static void
1167 throttle_init_throttle_window(void)
1168 {
1169 int throttle_window_size;
1170
1171 /*
1172 * The hierarchy of throttle window values is as follows:
1173 * - Global defaults
1174 * - Device tree properties
1175 * - Boot-args
1176 * All values are specified in msecs.
1177 */
1178
1179 /* Override global values with device-tree properties */
1180 if (PE_get_default("kern.io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size)))
1181 throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size;
1182
1183 if (PE_get_default("kern.io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size)))
1184 throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size;
1185
1186 if (PE_get_default("kern.io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size)))
1187 throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size;
1188
1189 /* Override with boot-args */
1190 if (PE_parse_boot_argn("io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size)))
1191 throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size;
1192
1193 if (PE_parse_boot_argn("io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size)))
1194 throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size;
1195
1196 if (PE_parse_boot_argn("io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size)))
1197 throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size;
1198 }
1199
1200 static void
1201 throttle_init_throttle_period(struct _throttle_io_info_t *info, boolean_t isssd)
1202 {
1203 int throttle_period_size;
1204
1205 /*
1206 * The hierarchy of throttle period values is as follows:
1207 * - Global defaults
1208 * - Device tree properties
1209 * - Boot-args
1210 * All values are specified in msecs.
1211 */
1212
1213 /* Assign global defaults */
1214 if ((isssd == TRUE) && (info->throttle_is_fusion_with_priority == 0))
1215 info->throttle_io_periods = &throttle_io_period_ssd_msecs[0];
1216 else
1217 info->throttle_io_periods = &throttle_io_period_msecs[0];
1218
1219 /* Override global values with device-tree properties */
1220 if (PE_get_default("kern.io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size)))
1221 info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size;
1222
1223 if (PE_get_default("kern.io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size)))
1224 info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size;
1225
1226 if (PE_get_default("kern.io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size)))
1227 info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size;
1228
1229 /* Override with boot-args */
1230 if (PE_parse_boot_argn("io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size)))
1231 info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size;
1232
1233 if (PE_parse_boot_argn("io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size)))
1234 info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size;
1235
1236 if (PE_parse_boot_argn("io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size)))
1237 info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size;
1238
1239 }
1240
1241 #if CONFIG_IOSCHED
1242 extern void vm_io_reprioritize_init(void);
1243 int iosched_enabled = 1;
1244 #endif
1245
1246 void
1247 throttle_init(void)
1248 {
1249 struct _throttle_io_info_t *info;
1250 int i;
1251 int level;
1252 #if CONFIG_IOSCHED
1253 int iosched;
1254 #endif
1255 /*
1256 * allocate lock group attribute and group
1257 */
1258 throttle_mtx_grp_attr = lck_grp_attr_alloc_init();
1259 throttle_mtx_grp = lck_grp_alloc_init("throttle I/O", throttle_mtx_grp_attr);
1260
1261 /* Update throttle parameters based on device tree configuration */
1262 throttle_init_throttle_window();
1263
1264 /*
1265 * allocate the lock attribute
1266 */
1267 throttle_mtx_attr = lck_attr_alloc_init();
1268
1269 for (i = 0; i < LOWPRI_MAX_NUM_DEV; i++) {
1270 info = &_throttle_io_info[i];
1271
1272 lck_mtx_init(&info->throttle_lock, throttle_mtx_grp, throttle_mtx_attr);
1273 info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info);
1274
1275 for (level = 0; level <= THROTTLE_LEVEL_END; level++) {
1276 TAILQ_INIT(&info->throttle_uthlist[level]);
1277 info->throttle_last_IO_pid[level] = 0;
1278 }
1279 info->throttle_next_wake_level = THROTTLE_LEVEL_END;
1280 info->throttle_disabled = 0;
1281 info->throttle_is_fusion_with_priority = 0;
1282 }
1283 #if CONFIG_IOSCHED
1284 if (PE_parse_boot_argn("iosched", &iosched, sizeof(iosched))) {
1285 iosched_enabled = iosched;
1286 }
1287 if (iosched_enabled) {
1288 /* Initialize I/O Reprioritization mechanism */
1289 vm_io_reprioritize_init();
1290 }
1291 #endif
1292 }
1293
1294 void
1295 sys_override_io_throttle(int flag)
1296 {
1297 if (flag == THROTTLE_IO_ENABLE)
1298 lowpri_throttle_enabled = 1;
1299
1300 if (flag == THROTTLE_IO_DISABLE)
1301 lowpri_throttle_enabled = 0;
1302 }
1303
1304 int rethrottle_removed_from_list = 0;
1305 int rethrottle_moved_to_new_list = 0;
1306
1307 /*
1308 * move a throttled thread to the appropriate state based
1309 * on it's new throttle level... throttle_add_to_list will
1310 * reset the timer deadline if necessary... it may also
1311 * leave the thread off of the queue if we're already outside
1312 * the throttle window for the new level
1313 * takes a valid uthread (which may or may not be on the
1314 * throttle queue) as input
1315 *
1316 * NOTE: This is called with the task lock held.
1317 */
1318
1319 void
1320 rethrottle_thread(uthread_t ut)
1321 {
1322 struct _throttle_io_info_t *info;
1323 int my_new_level;
1324
1325 if ((info = ut->uu_throttle_info) == NULL)
1326 return;
1327
1328 lck_mtx_lock(&info->throttle_lock);
1329
1330 if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) {
1331
1332 my_new_level = throttle_get_thread_throttle_level(ut);
1333
1334 if (my_new_level != ut->uu_on_throttlelist) {
1335
1336 TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
1337 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1338
1339 if (my_new_level >= THROTTLE_LEVEL_THROTTLED) {
1340 throttle_add_to_list(info, ut, my_new_level, TRUE);
1341 rethrottle_moved_to_new_list++;
1342 }
1343
1344 /* Thread no longer in window, need to wake it up */
1345 if (ut->uu_on_throttlelist == THROTTLE_LEVEL_NONE) {
1346 wakeup(&ut->uu_on_throttlelist);
1347 rethrottle_removed_from_list++;
1348 }
1349 }
1350 }
1351
1352 lck_mtx_unlock(&info->throttle_lock);
1353 }
1354
1355
1356 /*
1357 * KPI routine
1358 *
1359 * Create and take a reference on a throttle info structure and return a
1360 * pointer for the file system to use when calling throttle_info_update.
1361 * Calling file system must have a matching release for every create.
1362 */
1363 void *
1364 throttle_info_create(void)
1365 {
1366 struct _throttle_io_info_t *info;
1367 int level;
1368
1369 MALLOC(info, struct _throttle_io_info_t *, sizeof(*info), M_TEMP, M_ZERO | M_WAITOK);
1370 /* Should never happen but just in case */
1371 if (info == NULL)
1372 return NULL;
1373 /* Mark that this one was allocated and needs to be freed */
1374 DEBUG_ALLOC_THROTTLE_INFO("Creating info = %p\n", info, info );
1375 info->throttle_alloc = TRUE;
1376
1377 lck_mtx_init(&info->throttle_lock, throttle_mtx_grp, throttle_mtx_attr);
1378 info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info);
1379
1380 for (level = 0; level <= THROTTLE_LEVEL_END; level++) {
1381 TAILQ_INIT(&info->throttle_uthlist[level]);
1382 }
1383 info->throttle_next_wake_level = THROTTLE_LEVEL_END;
1384
1385 /* Take a reference */
1386 OSIncrementAtomic(&info->throttle_refcnt);
1387 return info;
1388 }
1389
1390 /*
1391 * KPI routine
1392 *
1393 * Release the throttle info pointer if all the reference are gone. Should be
1394 * called to release reference taken by throttle_info_create
1395 */
1396 void
1397 throttle_info_release(void *throttle_info)
1398 {
1399 DEBUG_ALLOC_THROTTLE_INFO("Releaseing info = %p\n",
1400 (struct _throttle_io_info_t *)throttle_info,
1401 (struct _throttle_io_info_t *)throttle_info);
1402 if (throttle_info) /* Just to be careful */
1403 throttle_info_rel(throttle_info);
1404 }
1405
1406 /*
1407 * KPI routine
1408 *
1409 * File Systems that create an info structure, need to call this routine in
1410 * their mount routine (used by cluster code). File Systems that call this in
1411 * their mount routines must call throttle_info_mount_rel in their unmount
1412 * routines.
1413 */
1414 void
1415 throttle_info_mount_ref(mount_t mp, void *throttle_info)
1416 {
1417 if ((throttle_info == NULL) || (mp == NULL))
1418 return;
1419 throttle_info_ref(throttle_info);
1420
1421 /*
1422 * We already have a reference release it before adding the new one
1423 */
1424 if (mp->mnt_throttle_info)
1425 throttle_info_rel(mp->mnt_throttle_info);
1426 mp->mnt_throttle_info = throttle_info;
1427 }
1428
1429 /*
1430 * Private KPI routine
1431 *
1432 * return a handle for accessing throttle_info given a throttle_mask. The
1433 * handle must be released by throttle_info_rel_by_mask
1434 */
1435 int
1436 throttle_info_ref_by_mask(uint64_t throttle_mask, throttle_info_handle_t *throttle_info_handle)
1437 {
1438 int dev_index;
1439 struct _throttle_io_info_t *info;
1440
1441 if (throttle_info_handle == NULL)
1442 return EINVAL;
1443
1444 dev_index = num_trailing_0(throttle_mask);
1445 info = &_throttle_io_info[dev_index];
1446 throttle_info_ref(info);
1447 *(struct _throttle_io_info_t**)throttle_info_handle = info;
1448
1449 return 0;
1450 }
1451
1452 /*
1453 * Private KPI routine
1454 *
1455 * release the handle obtained by throttle_info_ref_by_mask
1456 */
1457 void
1458 throttle_info_rel_by_mask(throttle_info_handle_t throttle_info_handle)
1459 {
1460 /*
1461 * for now the handle is just a pointer to _throttle_io_info_t
1462 */
1463 throttle_info_rel((struct _throttle_io_info_t*)throttle_info_handle);
1464 }
1465
1466 /*
1467 * KPI routine
1468 *
1469 * File Systems that throttle_info_mount_ref, must call this routine in their
1470 * umount routine.
1471 */
1472 void
1473 throttle_info_mount_rel(mount_t mp)
1474 {
1475 if (mp->mnt_throttle_info)
1476 throttle_info_rel(mp->mnt_throttle_info);
1477 mp->mnt_throttle_info = NULL;
1478 }
1479
1480 void
1481 throttle_info_get_last_io_time(mount_t mp, struct timeval *tv)
1482 {
1483 struct _throttle_io_info_t *info;
1484
1485 if (mp == NULL)
1486 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1487 else if (mp->mnt_throttle_info == NULL)
1488 info = &_throttle_io_info[mp->mnt_devbsdunit];
1489 else
1490 info = mp->mnt_throttle_info;
1491
1492 *tv = info->throttle_last_write_timestamp;
1493 }
1494
1495 void
1496 update_last_io_time(mount_t mp)
1497 {
1498 struct _throttle_io_info_t *info;
1499
1500 if (mp == NULL)
1501 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1502 else if (mp->mnt_throttle_info == NULL)
1503 info = &_throttle_io_info[mp->mnt_devbsdunit];
1504 else
1505 info = mp->mnt_throttle_info;
1506
1507 microuptime(&info->throttle_last_write_timestamp);
1508 if (mp != NULL)
1509 mp->mnt_last_write_completed_timestamp = info->throttle_last_write_timestamp;
1510 }
1511
1512
1513 int
1514 throttle_get_io_policy(uthread_t *ut)
1515 {
1516 if (ut != NULL)
1517 *ut = get_bsdthread_info(current_thread());
1518
1519 return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO));
1520 }
1521
1522 int
1523 throttle_get_passive_io_policy(uthread_t *ut)
1524 {
1525 if (ut != NULL)
1526 *ut = get_bsdthread_info(current_thread());
1527
1528 return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_PASSIVE_IO));
1529 }
1530
1531
1532 static int
1533 throttle_get_thread_throttle_level(uthread_t ut)
1534 {
1535 int thread_throttle_level;
1536
1537 if (ut == NULL)
1538 ut = get_bsdthread_info(current_thread());
1539
1540 thread_throttle_level = proc_get_effective_thread_policy(ut->uu_thread, TASK_POLICY_IO);
1541
1542 /* Bootcache misses should always be throttled */
1543 if (ut->uu_throttle_bc == TRUE)
1544 thread_throttle_level = THROTTLE_LEVEL_TIER3;
1545
1546 return (thread_throttle_level);
1547 }
1548
1549
1550 static int
1551 throttle_io_will_be_throttled_internal(void * throttle_info, int * mylevel, int * throttling_level)
1552 {
1553 struct _throttle_io_info_t *info = throttle_info;
1554 struct timeval elapsed;
1555 uint64_t elapsed_msecs;
1556 int thread_throttle_level;
1557 int throttle_level;
1558
1559 if ((thread_throttle_level = throttle_get_thread_throttle_level(NULL)) < THROTTLE_LEVEL_THROTTLED)
1560 return (THROTTLE_DISENGAGED);
1561
1562 for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) {
1563
1564 microuptime(&elapsed);
1565 timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]);
1566 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1567
1568 if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level])
1569 break;
1570 }
1571 if (throttle_level >= thread_throttle_level) {
1572 /*
1573 * we're beyond all of the throttle windows
1574 * that affect the throttle level of this thread,
1575 * so go ahead and treat as normal I/O
1576 */
1577 return (THROTTLE_DISENGAGED);
1578 }
1579 if (mylevel)
1580 *mylevel = thread_throttle_level;
1581 if (throttling_level)
1582 *throttling_level = throttle_level;
1583
1584 if (info->throttle_io_count != info->throttle_io_count_begin) {
1585 /*
1586 * we've already issued at least one throttleable I/O
1587 * in the current I/O window, so avoid issuing another one
1588 */
1589 return (THROTTLE_NOW);
1590 }
1591 /*
1592 * we're in the throttle window, so
1593 * cut the I/O size back
1594 */
1595 return (THROTTLE_ENGAGED);
1596 }
1597
1598 /*
1599 * If we have a mount point and it has a throttle info pointer then
1600 * use it to do the check, otherwise use the device unit number to find
1601 * the correct throttle info array element.
1602 */
1603 int
1604 throttle_io_will_be_throttled(__unused int lowpri_window_msecs, mount_t mp)
1605 {
1606 struct _throttle_io_info_t *info;
1607
1608 /*
1609 * Should we just return zero if no mount point
1610 */
1611 if (mp == NULL)
1612 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1613 else if (mp->mnt_throttle_info == NULL)
1614 info = &_throttle_io_info[mp->mnt_devbsdunit];
1615 else
1616 info = mp->mnt_throttle_info;
1617
1618 if (info->throttle_is_fusion_with_priority) {
1619 uthread_t ut = get_bsdthread_info(current_thread());
1620 if (ut->uu_lowpri_window == 0)
1621 return (THROTTLE_DISENGAGED);
1622 }
1623
1624 if (info->throttle_disabled)
1625 return (THROTTLE_DISENGAGED);
1626 else
1627 return throttle_io_will_be_throttled_internal(info, NULL, NULL);
1628 }
1629
1630 /*
1631 * Routine to increment I/O throttling counters maintained in the proc
1632 */
1633
1634 static void
1635 throttle_update_proc_stats(pid_t throttling_pid, int count)
1636 {
1637 proc_t throttling_proc;
1638 proc_t throttled_proc = current_proc();
1639
1640 /* The throttled_proc is always the current proc; so we are not concerned with refs */
1641 OSAddAtomic64(count, &(throttled_proc->was_throttled));
1642
1643 /* The throttling pid might have exited by now */
1644 throttling_proc = proc_find(throttling_pid);
1645 if (throttling_proc != PROC_NULL) {
1646 OSAddAtomic64(count, &(throttling_proc->did_throttle));
1647 proc_rele(throttling_proc);
1648 }
1649 }
1650
1651 /*
1652 * Block until woken up by the throttle timer or by a rethrottle call.
1653 * As long as we hold the throttle_lock while querying the throttle tier, we're
1654 * safe against seeing an old throttle tier after a rethrottle.
1655 */
1656 uint32_t
1657 throttle_lowpri_io(int sleep_amount)
1658 {
1659 uthread_t ut;
1660 struct _throttle_io_info_t *info;
1661 int throttle_type = 0;
1662 int mylevel = 0;
1663 int throttling_level = THROTTLE_LEVEL_NONE;
1664 int sleep_cnt = 0;
1665 uint32_t throttle_io_period_num = 0;
1666 boolean_t insert_tail = TRUE;
1667
1668 ut = get_bsdthread_info(current_thread());
1669
1670 if (ut->uu_lowpri_window == 0)
1671 return (0);
1672
1673 info = ut->uu_throttle_info;
1674
1675 if (info == NULL) {
1676 ut->uu_throttle_bc = FALSE;
1677 ut->uu_lowpri_window = 0;
1678 return (0);
1679 }
1680
1681 lck_mtx_lock(&info->throttle_lock);
1682
1683 if (sleep_amount == 0)
1684 goto done;
1685
1686 if (sleep_amount == 1 && ut->uu_throttle_bc == FALSE)
1687 sleep_amount = 0;
1688
1689 throttle_io_period_num = info->throttle_io_period_num;
1690
1691 while ( (throttle_type = throttle_io_will_be_throttled_internal(info, &mylevel, &throttling_level)) ) {
1692
1693 if (throttle_type == THROTTLE_ENGAGED) {
1694 if (sleep_amount == 0)
1695 break;
1696 if (info->throttle_io_period_num < throttle_io_period_num)
1697 break;
1698 if ((info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount)
1699 break;
1700 }
1701 if (ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED) {
1702 if (throttle_add_to_list(info, ut, mylevel, insert_tail) == THROTTLE_LEVEL_END)
1703 goto done;
1704 }
1705 assert(throttling_level >= THROTTLE_LEVEL_START && throttling_level <= THROTTLE_LEVEL_END);
1706 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, PROCESS_THROTTLED)) | DBG_FUNC_NONE,
1707 info->throttle_last_IO_pid[throttling_level], throttling_level, proc_selfpid(), mylevel, 0);
1708
1709
1710 if (sleep_cnt == 0) {
1711 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START,
1712 throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0);
1713 throttled_count[mylevel]++;
1714 }
1715 msleep((caddr_t)&ut->uu_on_throttlelist, &info->throttle_lock, PRIBIO + 1, "throttle_lowpri_io", NULL);
1716
1717 sleep_cnt++;
1718
1719 if (sleep_amount == 0)
1720 insert_tail = FALSE;
1721 else if (info->throttle_io_period_num < throttle_io_period_num ||
1722 (info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) {
1723 insert_tail = FALSE;
1724 sleep_amount = 0;
1725 }
1726 }
1727 done:
1728 if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) {
1729 TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
1730 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1731 }
1732
1733 lck_mtx_unlock(&info->throttle_lock);
1734
1735 if (sleep_cnt) {
1736 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END,
1737 throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0);
1738 /*
1739 * We update the stats for the last pid which opened a throttle window for the throttled thread.
1740 * This might not be completely accurate since the multiple throttles seen by the lower tier pid
1741 * might have been caused by various higher prio pids. However, updating these stats accurately
1742 * means doing a proc_find while holding the throttle lock which leads to deadlock.
1743 */
1744 throttle_update_proc_stats(info->throttle_last_IO_pid[throttling_level], sleep_cnt);
1745 }
1746
1747 throttle_info_rel(info);
1748
1749 ut->uu_throttle_info = NULL;
1750 ut->uu_throttle_bc = FALSE;
1751 ut->uu_lowpri_window = 0;
1752
1753 return (sleep_cnt);
1754 }
1755
1756 /*
1757 * KPI routine
1758 *
1759 * set a kernel thread's IO policy. policy can be:
1760 * IOPOL_NORMAL, IOPOL_THROTTLE, IOPOL_PASSIVE, IOPOL_UTILITY, IOPOL_STANDARD
1761 *
1762 * explanations about these policies are in the man page of setiopolicy_np
1763 */
1764 void throttle_set_thread_io_policy(int policy)
1765 {
1766 proc_set_task_policy(current_task(), current_thread(),
1767 TASK_POLICY_INTERNAL, TASK_POLICY_IOPOL,
1768 policy);
1769 }
1770
1771
1772 void throttle_info_reset_window(uthread_t ut)
1773 {
1774 struct _throttle_io_info_t *info;
1775
1776 if (ut == NULL)
1777 ut = get_bsdthread_info(current_thread());
1778
1779 if ( (info = ut->uu_throttle_info) ) {
1780 throttle_info_rel(info);
1781
1782 ut->uu_throttle_info = NULL;
1783 ut->uu_lowpri_window = 0;
1784 ut->uu_throttle_bc = FALSE;
1785 }
1786 }
1787
1788 static
1789 void throttle_info_set_initial_window(uthread_t ut, struct _throttle_io_info_t *info, boolean_t BC_throttle, boolean_t isssd)
1790 {
1791 if (lowpri_throttle_enabled == 0 || info->throttle_disabled)
1792 return;
1793
1794 if (info->throttle_io_periods == 0) {
1795 throttle_init_throttle_period(info, isssd);
1796 }
1797 if (ut->uu_throttle_info == NULL) {
1798
1799 ut->uu_throttle_info = info;
1800 throttle_info_ref(info);
1801 DEBUG_ALLOC_THROTTLE_INFO("updating info = %p\n", info, info );
1802
1803 ut->uu_lowpri_window = 1;
1804 ut->uu_throttle_bc = BC_throttle;
1805 }
1806 }
1807
1808
1809 static
1810 void throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd)
1811 {
1812 int thread_throttle_level;
1813
1814 if (lowpri_throttle_enabled == 0 || info->throttle_disabled)
1815 return;
1816
1817 if (ut == NULL)
1818 ut = get_bsdthread_info(current_thread());
1819
1820 thread_throttle_level = throttle_get_thread_throttle_level(ut);
1821
1822 if (thread_throttle_level != THROTTLE_LEVEL_NONE) {
1823 if(!ISSET(flags, B_PASSIVE)) {
1824 microuptime(&info->throttle_window_start_timestamp[thread_throttle_level]);
1825 info->throttle_last_IO_pid[thread_throttle_level] = proc_selfpid();
1826 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, OPEN_THROTTLE_WINDOW)) | DBG_FUNC_NONE,
1827 current_proc()->p_pid, thread_throttle_level, 0, 0, 0);
1828 }
1829 microuptime(&info->throttle_last_IO_timestamp[thread_throttle_level]);
1830 }
1831
1832
1833 if (thread_throttle_level >= THROTTLE_LEVEL_THROTTLED) {
1834 /*
1835 * I'd really like to do the IOSleep here, but
1836 * we may be holding all kinds of filesystem related locks
1837 * and the pages for this I/O marked 'busy'...
1838 * we don't want to cause a normal task to block on
1839 * one of these locks while we're throttling a task marked
1840 * for low priority I/O... we'll mark the uthread and
1841 * do the delay just before we return from the system
1842 * call that triggered this I/O or from vnode_pagein
1843 */
1844 OSAddAtomic(1, &info->throttle_io_count);
1845
1846 throttle_info_set_initial_window(ut, info, FALSE, isssd);
1847 }
1848 }
1849
1850 void *throttle_info_update_by_mount(mount_t mp)
1851 {
1852 struct _throttle_io_info_t *info;
1853 uthread_t ut;
1854 boolean_t isssd = FALSE;
1855
1856 ut = get_bsdthread_info(current_thread());
1857
1858 if (mp != NULL) {
1859 if ((mp->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
1860 isssd = TRUE;
1861 info = &_throttle_io_info[mp->mnt_devbsdunit];
1862 } else
1863 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1864
1865 if (!ut->uu_lowpri_window)
1866 throttle_info_set_initial_window(ut, info, FALSE, isssd);
1867
1868 return info;
1869 }
1870
1871
1872 /*
1873 * KPI routine
1874 *
1875 * this is usually called before every I/O, used for throttled I/O
1876 * book keeping. This routine has low overhead and does not sleep
1877 */
1878 void throttle_info_update(void *throttle_info, int flags)
1879 {
1880 if (throttle_info)
1881 throttle_info_update_internal(throttle_info, NULL, flags, FALSE);
1882 }
1883
1884 /*
1885 * KPI routine
1886 *
1887 * this is usually called before every I/O, used for throttled I/O
1888 * book keeping. This routine has low overhead and does not sleep
1889 */
1890 void throttle_info_update_by_mask(void *throttle_info_handle, int flags)
1891 {
1892 void *throttle_info = throttle_info_handle;
1893
1894 /*
1895 * for now we only use the lowest bit of the throttle mask, so the
1896 * handle is the same as the throttle_info. Later if we store a
1897 * set of throttle infos in the handle, we will want to loop through
1898 * them and call throttle_info_update in a loop
1899 */
1900 throttle_info_update(throttle_info, flags);
1901 }
1902 /*
1903 * KPI routine
1904 *
1905 * This routine marks the throttle info as disabled. Used for mount points which
1906 * support I/O scheduling.
1907 */
1908
1909 void throttle_info_disable_throttle(int devno, boolean_t isfusion)
1910 {
1911 struct _throttle_io_info_t *info;
1912
1913 if (devno < 0 || devno >= LOWPRI_MAX_NUM_DEV)
1914 panic("Illegal devno (%d) passed into throttle_info_disable_throttle()", devno);
1915
1916 info = &_throttle_io_info[devno];
1917 // don't disable software throttling on devices that are part of a fusion device
1918 // and override the software throttle periods to use HDD periods
1919 if (isfusion) {
1920 info->throttle_is_fusion_with_priority = isfusion;
1921 throttle_init_throttle_period(info, FALSE);
1922 }
1923 info->throttle_disabled = !info->throttle_is_fusion_with_priority;
1924 return;
1925 }
1926
1927
1928 /*
1929 * KPI routine (private)
1930 * Called to determine if this IO is being throttled to this level so that it can be treated specially
1931 */
1932 int throttle_info_io_will_be_throttled(void * throttle_info, int policy)
1933 {
1934 struct _throttle_io_info_t *info = throttle_info;
1935 struct timeval elapsed;
1936 uint64_t elapsed_msecs;
1937 int throttle_level;
1938 int thread_throttle_level;
1939
1940 switch (policy) {
1941
1942 case IOPOL_THROTTLE:
1943 thread_throttle_level = THROTTLE_LEVEL_TIER3;
1944 break;
1945 case IOPOL_UTILITY:
1946 thread_throttle_level = THROTTLE_LEVEL_TIER2;
1947 break;
1948 case IOPOL_STANDARD:
1949 thread_throttle_level = THROTTLE_LEVEL_TIER1;
1950 break;
1951 default:
1952 thread_throttle_level = THROTTLE_LEVEL_TIER0;
1953 break;
1954 }
1955 for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) {
1956
1957 microuptime(&elapsed);
1958 timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]);
1959 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1960
1961 if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level])
1962 break;
1963 }
1964 if (throttle_level >= thread_throttle_level) {
1965 /*
1966 * we're beyond all of the throttle windows
1967 * so go ahead and treat as normal I/O
1968 */
1969 return (THROTTLE_DISENGAGED);
1970 }
1971 /*
1972 * we're in the throttle window
1973 */
1974 return (THROTTLE_ENGAGED);
1975 }
1976
1977 int
1978 spec_strategy(struct vnop_strategy_args *ap)
1979 {
1980 buf_t bp;
1981 int bflags;
1982 int io_tier;
1983 int passive;
1984 dev_t bdev;
1985 uthread_t ut;
1986 mount_t mp;
1987 struct bufattr *bap;
1988 int strategy_ret;
1989 struct _throttle_io_info_t *throttle_info;
1990 boolean_t isssd = FALSE;
1991 int code = 0;
1992
1993 proc_t curproc = current_proc();
1994
1995 bp = ap->a_bp;
1996 bdev = buf_device(bp);
1997 mp = buf_vnode(bp)->v_mount;
1998 bap = &bp->b_attr;
1999
2000 io_tier = throttle_get_io_policy(&ut);
2001 passive = throttle_get_passive_io_policy(&ut);
2002
2003 if (bp->b_flags & B_META)
2004 bap->ba_flags |= BA_META;
2005
2006 #if CONFIG_IOSCHED
2007 /*
2008 * For I/O Scheduling, we currently do not have a way to track and expedite metadata I/Os.
2009 * To ensure we dont get into priority inversions due to metadata I/Os, we use the following rules:
2010 * For metadata reads, ceil all I/Os to IOSCHED_METADATA_TIER & mark them passive if the I/O tier was upgraded
2011 * For metadata writes, unconditionally mark them as IOSCHED_METADATA_TIER and passive
2012 */
2013 if (bap->ba_flags & BA_META) {
2014 if (mp && (mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) {
2015 if (bp->b_flags & B_READ) {
2016 if (io_tier > IOSCHED_METADATA_TIER) {
2017 io_tier = IOSCHED_METADATA_TIER;
2018 passive = 1;
2019 }
2020 } else {
2021 io_tier = IOSCHED_METADATA_TIER;
2022 passive = 1;
2023 }
2024 }
2025 }
2026 #endif /* CONFIG_IOSCHED */
2027
2028 SET_BUFATTR_IO_TIER(bap, io_tier);
2029
2030 if (passive) {
2031 bp->b_flags |= B_PASSIVE;
2032 bap->ba_flags |= BA_PASSIVE;
2033 }
2034
2035 if ((curproc != NULL) && ((curproc->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP))
2036 bap->ba_flags |= BA_DELAYIDLESLEEP;
2037
2038 bflags = bp->b_flags;
2039
2040 if (((bflags & B_READ) == 0) && ((bflags & B_ASYNC) == 0))
2041 bufattr_markquickcomplete(bap);
2042
2043 if (bflags & B_READ)
2044 code |= DKIO_READ;
2045 if (bflags & B_ASYNC)
2046 code |= DKIO_ASYNC;
2047 if (bflags & B_META)
2048 code |= DKIO_META;
2049 else if (bflags & B_PAGEIO)
2050 code |= DKIO_PAGING;
2051
2052 if (io_tier != 0)
2053 code |= DKIO_THROTTLE;
2054
2055 code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK);
2056
2057 if (bflags & B_PASSIVE)
2058 code |= DKIO_PASSIVE;
2059
2060 if (bap->ba_flags & BA_NOCACHE)
2061 code |= DKIO_NOCACHE;
2062
2063 if (kdebug_enable) {
2064 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, FSDBG_CODE(DBG_DKRW, code) | DBG_FUNC_NONE,
2065 buf_kernel_addrperm_addr(bp), bdev, (int)buf_blkno(bp), buf_count(bp), 0);
2066 }
2067
2068 thread_update_io_stats(current_thread(), buf_count(bp), code);
2069
2070 if (mp != NULL) {
2071 if ((mp->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
2072 isssd = TRUE;
2073 throttle_info = &_throttle_io_info[mp->mnt_devbsdunit];
2074 } else
2075 throttle_info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
2076
2077 throttle_info_update_internal(throttle_info, ut, bflags, isssd);
2078
2079 if ((bflags & B_READ) == 0) {
2080 microuptime(&throttle_info->throttle_last_write_timestamp);
2081
2082 if (mp) {
2083 mp->mnt_last_write_issued_timestamp = throttle_info->throttle_last_write_timestamp;
2084 INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_write_size);
2085 }
2086 } else if (mp) {
2087 INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_read_size);
2088 }
2089 /*
2090 * The BootCache may give us special information about
2091 * the IO, so it returns special values that we check
2092 * for here.
2093 *
2094 * IO_SATISFIED_BY_CACHE
2095 * The read has been satisfied by the boot cache. Don't
2096 * throttle the thread unnecessarily.
2097 *
2098 * IO_SHOULD_BE_THROTTLED
2099 * The boot cache is playing back a playlist and this IO
2100 * cut through. Throttle it so we're not cutting through
2101 * the boot cache too often.
2102 *
2103 * Note that typical strategy routines are defined with
2104 * a void return so we'll get garbage here. In the
2105 * unlikely case the garbage matches our special return
2106 * value, it's not a big deal since we're only adjusting
2107 * the throttling delay.
2108 */
2109 #define IO_SATISFIED_BY_CACHE ((int)0xcafefeed)
2110 #define IO_SHOULD_BE_THROTTLED ((int)0xcafebeef)
2111 typedef int strategy_fcn_ret_t(struct buf *bp);
2112
2113 strategy_ret = (*(strategy_fcn_ret_t*)bdevsw[major(bdev)].d_strategy)(bp);
2114
2115 if (IO_SATISFIED_BY_CACHE == strategy_ret) {
2116 /*
2117 * If this was a throttled IO satisfied by the boot cache,
2118 * don't delay the thread.
2119 */
2120 throttle_info_reset_window(ut);
2121
2122 } else if (IO_SHOULD_BE_THROTTLED == strategy_ret) {
2123 /*
2124 * If the boot cache indicates this IO should be throttled,
2125 * delay the thread.
2126 */
2127 throttle_info_set_initial_window(ut, throttle_info, TRUE, isssd);
2128 }
2129 return (0);
2130 }
2131
2132
2133 /*
2134 * This is a noop, simply returning what one has been given.
2135 */
2136 int
2137 spec_blockmap(__unused struct vnop_blockmap_args *ap)
2138 {
2139 return (ENOTSUP);
2140 }
2141
2142
2143 /*
2144 * Device close routine
2145 */
2146 int
2147 spec_close(struct vnop_close_args *ap)
2148 {
2149 struct vnode *vp = ap->a_vp;
2150 dev_t dev = vp->v_rdev;
2151 int error = 0;
2152 int flags = ap->a_fflag;
2153 struct proc *p = vfs_context_proc(ap->a_context);
2154 struct session *sessp;
2155
2156 switch (vp->v_type) {
2157
2158 case VCHR:
2159 /*
2160 * Hack: a tty device that is a controlling terminal
2161 * has a reference from the session structure.
2162 * We cannot easily tell that a character device is
2163 * a controlling terminal, unless it is the closing
2164 * process' controlling terminal. In that case,
2165 * if the reference count is 1 (this is the very
2166 * last close)
2167 */
2168 sessp = proc_session(p);
2169 devsw_lock(dev, S_IFCHR);
2170 if (sessp != SESSION_NULL) {
2171 if (vp == sessp->s_ttyvp && vcount(vp) == 1) {
2172 struct tty *tp = TTY_NULL;
2173
2174 devsw_unlock(dev, S_IFCHR);
2175 session_lock(sessp);
2176 if (vp == sessp->s_ttyvp) {
2177 tp = SESSION_TP(sessp);
2178 sessp->s_ttyvp = NULL;
2179 sessp->s_ttyvid = 0;
2180 sessp->s_ttyp = TTY_NULL;
2181 sessp->s_ttypgrpid = NO_PID;
2182 }
2183 session_unlock(sessp);
2184
2185 if (tp != TTY_NULL) {
2186 /*
2187 * We may have won a race with a proc_exit
2188 * of the session leader, the winner
2189 * clears the flag (even if not set)
2190 */
2191 tty_lock(tp);
2192 ttyclrpgrphup(tp);
2193 tty_unlock(tp);
2194
2195 ttyfree(tp);
2196 }
2197 devsw_lock(dev, S_IFCHR);
2198 }
2199 session_rele(sessp);
2200 }
2201
2202 if (--vp->v_specinfo->si_opencount < 0)
2203 panic("negative open count (c, %u, %u)", major(dev), minor(dev));
2204
2205 /*
2206 * close on last reference or on vnode revoke call
2207 */
2208 if (vcount(vp) == 0 || (flags & IO_REVOKE) != 0)
2209 error = cdevsw[major(dev)].d_close(dev, flags, S_IFCHR, p);
2210
2211 devsw_unlock(dev, S_IFCHR);
2212 break;
2213
2214 case VBLK:
2215 /*
2216 * If there is more than one outstanding open, don't
2217 * send the close to the device.
2218 */
2219 devsw_lock(dev, S_IFBLK);
2220 if (vcount(vp) > 1) {
2221 vp->v_specinfo->si_opencount--;
2222 devsw_unlock(dev, S_IFBLK);
2223 return (0);
2224 }
2225 devsw_unlock(dev, S_IFBLK);
2226
2227 /*
2228 * On last close of a block device (that isn't mounted)
2229 * we must invalidate any in core blocks, so that
2230 * we can, for instance, change floppy disks.
2231 */
2232 if ((error = spec_fsync_internal(vp, MNT_WAIT, ap->a_context)))
2233 return (error);
2234
2235 error = buf_invalidateblks(vp, BUF_WRITE_DATA, 0, 0);
2236 if (error)
2237 return (error);
2238
2239 devsw_lock(dev, S_IFBLK);
2240
2241 if (--vp->v_specinfo->si_opencount < 0)
2242 panic("negative open count (b, %u, %u)", major(dev), minor(dev));
2243
2244 if (vcount(vp) == 0)
2245 error = bdevsw[major(dev)].d_close(dev, flags, S_IFBLK, p);
2246
2247 devsw_unlock(dev, S_IFBLK);
2248 break;
2249
2250 default:
2251 panic("spec_close: not special");
2252 return(EBADF);
2253 }
2254
2255 return error;
2256 }
2257
2258 /*
2259 * Return POSIX pathconf information applicable to special devices.
2260 */
2261 int
2262 spec_pathconf(struct vnop_pathconf_args *ap)
2263 {
2264
2265 switch (ap->a_name) {
2266 case _PC_LINK_MAX:
2267 *ap->a_retval = LINK_MAX;
2268 return (0);
2269 case _PC_MAX_CANON:
2270 *ap->a_retval = MAX_CANON;
2271 return (0);
2272 case _PC_MAX_INPUT:
2273 *ap->a_retval = MAX_INPUT;
2274 return (0);
2275 case _PC_PIPE_BUF:
2276 *ap->a_retval = PIPE_BUF;
2277 return (0);
2278 case _PC_CHOWN_RESTRICTED:
2279 *ap->a_retval = 200112; /* _POSIX_CHOWN_RESTRICTED */
2280 return (0);
2281 case _PC_VDISABLE:
2282 *ap->a_retval = _POSIX_VDISABLE;
2283 return (0);
2284 default:
2285 return (EINVAL);
2286 }
2287 /* NOTREACHED */
2288 }
2289
2290 /*
2291 * Special device failed operation
2292 */
2293 int
2294 spec_ebadf(__unused void *dummy)
2295 {
2296
2297 return (EBADF);
2298 }
2299
2300 /* Blktooff derives file offset from logical block number */
2301 int
2302 spec_blktooff(struct vnop_blktooff_args *ap)
2303 {
2304 struct vnode *vp = ap->a_vp;
2305
2306 switch (vp->v_type) {
2307 case VCHR:
2308 *ap->a_offset = (off_t)-1; /* failure */
2309 return (ENOTSUP);
2310
2311 case VBLK:
2312 printf("spec_blktooff: not implemented for VBLK\n");
2313 *ap->a_offset = (off_t)-1; /* failure */
2314 return (ENOTSUP);
2315
2316 default:
2317 panic("spec_blktooff type");
2318 }
2319 /* NOTREACHED */
2320
2321 return (0);
2322 }
2323
2324 /* Offtoblk derives logical block number from file offset */
2325 int
2326 spec_offtoblk(struct vnop_offtoblk_args *ap)
2327 {
2328 struct vnode *vp = ap->a_vp;
2329
2330 switch (vp->v_type) {
2331 case VCHR:
2332 *ap->a_lblkno = (daddr64_t)-1; /* failure */
2333 return (ENOTSUP);
2334
2335 case VBLK:
2336 printf("spec_offtoblk: not implemented for VBLK\n");
2337 *ap->a_lblkno = (daddr64_t)-1; /* failure */
2338 return (ENOTSUP);
2339
2340 default:
2341 panic("spec_offtoblk type");
2342 }
2343 /* NOTREACHED */
2344
2345 return (0);
2346 }
2347
2348 static void filt_specdetach(struct knote *kn);
2349 static int filt_spec(struct knote *kn, long hint);
2350 static unsigned filt_specpeek(struct knote *kn);
2351
2352 struct filterops spec_filtops = {
2353 .f_isfd = 1,
2354 .f_attach = filt_specattach,
2355 .f_detach = filt_specdetach,
2356 .f_event = filt_spec,
2357 .f_peek = filt_specpeek
2358 };
2359
2360 static int
2361 filter_to_seltype(int16_t filter)
2362 {
2363 switch (filter) {
2364 case EVFILT_READ:
2365 return FREAD;
2366 case EVFILT_WRITE:
2367 return FWRITE;
2368 break;
2369 default:
2370 panic("filt_to_seltype(): invalid filter %d\n", filter);
2371 return 0;
2372 }
2373 }
2374
2375 static int
2376 filt_specattach(struct knote *kn)
2377 {
2378 vnode_t vp;
2379 dev_t dev;
2380
2381 vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; /* Already have iocount, and vnode is alive */
2382
2383 assert(vnode_ischr(vp));
2384
2385 dev = vnode_specrdev(vp);
2386
2387 if (major(dev) > nchrdev) {
2388 return ENXIO;
2389 }
2390
2391 /*
2392 * For a few special kinds of devices, we can attach knotes with
2393 * no restrictions because their "select" vectors return the amount
2394 * of data available. Others require an explicit NOTE_LOWAT with
2395 * data of 1, indicating that the caller doesn't care about actual
2396 * data counts, just an indication that the device has data.
2397 */
2398
2399 if ((cdevsw_flags[major(dev)] & CDEVSW_SELECT_KQUEUE) == 0 &&
2400 ((kn->kn_sfflags & NOTE_LOWAT) == 0 || kn->kn_sdata != 1)) {
2401 return EINVAL;
2402 }
2403
2404 kn->kn_hook_data = 0;
2405
2406 kn->kn_fop = &spec_filtops;
2407 kn->kn_hookid = vnode_vid(vp);
2408
2409 knote_markstayqueued(kn);
2410
2411 return 0;
2412 }
2413
2414 static void
2415 filt_specdetach(struct knote *kn)
2416 {
2417 knote_clearstayqueued(kn);
2418
2419 /*
2420 * This is potentially tricky: the device's selinfo waitq that was
2421 * tricked into being part of this knote's waitq set may not be a part
2422 * of any other set, and the device itself may have revoked the memory
2423 * in which the waitq was held. We use the knote's kn_hook_data field
2424 * to keep the ID of the waitq's prepost table object. This
2425 * object keeps a pointer back to the waitq, and gives us a safe way
2426 * to decouple the dereferencing of driver allocated memory: if the
2427 * driver goes away (taking the waitq with it) then the prepost table
2428 * object will be invalidated. The waitq details are handled in the
2429 * waitq API invoked here.
2430 */
2431 if (kn->kn_hook_data) {
2432 waitq_unlink_by_prepost_id(kn->kn_hook_data, kn->kn_kq->kq_wqs);
2433 kn->kn_hook_data = 0;
2434 }
2435 }
2436
2437 static int
2438 filt_spec(struct knote *kn, long hint)
2439 {
2440 vnode_t vp;
2441 uthread_t uth;
2442 struct waitq_set *old_wqs;
2443 vfs_context_t ctx;
2444 int selres;
2445 int error;
2446 int use_offset;
2447 dev_t dev;
2448 uint64_t flags;
2449 uint64_t rsvd, rsvd_arg;
2450 uint64_t *rlptr = NULL;
2451
2452 if (hint != 0) {
2453 panic("filt_spec(): nonzero hint?");
2454 }
2455
2456 uth = get_bsdthread_info(current_thread());
2457 ctx = vfs_context_current();
2458 vp = (vnode_t)kn->kn_fp->f_fglob->fg_data;
2459
2460 error = vnode_getwithvid(vp, kn->kn_hookid);
2461 if (error != 0) {
2462 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2463 return 1;
2464 }
2465
2466 dev = vnode_specrdev(vp);
2467 flags = cdevsw_flags[major(dev)];
2468 use_offset = ((flags & CDEVSW_USE_OFFSET) != 0);
2469
2470 /*
2471 * This function may be called many times to link or re-link the
2472 * underlying vnode to the kqueue. If we've already linked the two,
2473 * we will have a valid kn_hook_data which ties us to the underlying
2474 * device's waitq via a the waitq's prepost table object. However,
2475 * devices can abort any select action by calling selthreadclear().
2476 * This is OK because the table object will be invalidated by the
2477 * driver (through a call to selthreadclear), so any attempt to access
2478 * the associated waitq will fail because the table object is invalid.
2479 *
2480 * Even if we've already registered, we need to pass a pointer
2481 * to a reserved link structure. Otherwise, selrecord() will
2482 * infer that we're in the second pass of select() and won't
2483 * actually do anything!
2484 */
2485 rsvd = rsvd_arg = waitq_link_reserve(NULL);
2486 rlptr = (void *)&rsvd_arg;
2487
2488 /*
2489 * Trick selrecord() into hooking kqueue's wait queue set
2490 * set into device's selinfo wait queue
2491 */
2492 old_wqs = uth->uu_wqset;
2493 uth->uu_wqset = kn->kn_kq->kq_wqs;
2494 selres = VNOP_SELECT(vp, filter_to_seltype(kn->kn_filter),
2495 0, rlptr, ctx);
2496 uth->uu_wqset = old_wqs;
2497
2498 /*
2499 * make sure to cleanup the reserved link - this guards against
2500 * drivers that may not actually call selrecord().
2501 */
2502 waitq_link_release(rsvd);
2503 if (rsvd != rsvd_arg) {
2504 /* the driver / handler called selrecord() */
2505 struct waitq *wq;
2506 memcpy(&wq, rlptr, sizeof(void *));
2507
2508 /*
2509 * The waitq_get_prepost_id() function will (potentially)
2510 * allocate a prepost table object for the waitq and return
2511 * the table object's ID to us. It will also set the
2512 * waitq_prepost_id field within the waitq structure.
2513 *
2514 * We can just overwrite kn_hook_data because it's simply a
2515 * table ID used to grab a reference when needed.
2516 *
2517 * We have a reference on the vnode, so we know that the
2518 * device won't go away while we get this ID.
2519 */
2520 kn->kn_hook_data = waitq_get_prepost_id(wq);
2521 }
2522
2523 if (use_offset) {
2524 if (kn->kn_fp->f_fglob->fg_offset >= (uint32_t)selres) {
2525 kn->kn_data = 0;
2526 } else {
2527 kn->kn_data = ((uint32_t)selres) - kn->kn_fp->f_fglob->fg_offset;
2528 }
2529 } else {
2530 kn->kn_data = selres;
2531 }
2532
2533 vnode_put(vp);
2534
2535 if ((kn->kn_sfflags & NOTE_LOWAT) != 0)
2536 return (kn->kn_data >= kn->kn_sdata);
2537
2538 return (kn->kn_data != 0);
2539 }
2540
2541 static unsigned
2542 filt_specpeek(struct knote *kn)
2543 {
2544 vnode_t vp;
2545 uthread_t uth;
2546 struct waitq_set *old_wqs;
2547 vfs_context_t ctx;
2548 int error, selres;
2549 uint64_t rsvd, rsvd_arg;
2550 uint64_t *rlptr = NULL;
2551
2552 uth = get_bsdthread_info(current_thread());
2553 ctx = vfs_context_current();
2554 vp = (vnode_t)kn->kn_fp->f_fglob->fg_data;
2555
2556 error = vnode_getwithvid(vp, kn->kn_hookid);
2557 if (error != 0) {
2558 return 1; /* Just like VNOP_SELECT() on recycled vnode */
2559 }
2560
2561 /*
2562 * Even if we've already registered, we need to pass a pointer
2563 * to a reserved link structure. Otherwise, selrecord() will
2564 * infer that we're in the second pass of select() and won't
2565 * actually do anything!
2566 */
2567 rsvd = rsvd_arg = waitq_link_reserve(NULL);
2568 rlptr = (void *)&rsvd_arg;
2569
2570 old_wqs = uth->uu_wqset;
2571 uth->uu_wqset = kn->kn_kq->kq_wqs;
2572 selres = VNOP_SELECT(vp, filter_to_seltype(kn->kn_filter),
2573 0, (void *)rlptr, ctx);
2574 uth->uu_wqset = old_wqs;
2575
2576 /*
2577 * make sure to cleanup the reserved link - this guards against
2578 * drivers that may not actually call selrecord()
2579 */
2580 waitq_link_release(rsvd);
2581 if (rsvd != rsvd_arg) {
2582 /* the driver / handler called selrecord() */
2583 struct waitq *wq;
2584 memcpy(&wq, rlptr, sizeof(void *));
2585
2586 /*
2587 * The waitq_get_prepost_id() function will (potentially)
2588 * allocate a prepost table object for the waitq and return
2589 * the table object's ID to us. It will also set the
2590 * waitq_prepost_id field within the waitq structure.
2591 *
2592 * We can just overwrite kn_hook_data because it's simply a
2593 * table ID used to grab a reference when needed.
2594 *
2595 * We have a reference on the vnode, so we know that the
2596 * device won't go away while we get this ID.
2597 */
2598 kn->kn_hook_data = waitq_get_prepost_id(wq);
2599 }
2600
2601 vnode_put(vp);
2602 return selres;
2603 }
2604