]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/mp_desc.c
fd4003f20e591037421863b7539a0b0957df1c2e
[apple/xnu.git] / osfmk / i386 / mp_desc.c
1 /*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 /*
58 */
59
60 #include <kern/cpu_number.h>
61 #include <kern/kalloc.h>
62 #include <kern/cpu_data.h>
63 #include <mach/mach_types.h>
64 #include <mach/machine.h>
65 #include <kern/etimer.h>
66 #include <mach/vm_map.h>
67 #include <mach/machine/vm_param.h>
68 #include <vm/vm_kern.h>
69 #include <vm/vm_map.h>
70
71 #include <i386/lock.h>
72 #include <i386/mp_desc.h>
73 #include <i386/misc_protos.h>
74 #include <i386/mp.h>
75 #include <i386/pmap.h>
76 #if defined(__i386__)
77 #include <i386/pmap_internal.h>
78 #endif /* i386 */
79 #if CONFIG_MCA
80 #include <i386/machine_check.h>
81 #endif
82
83 #include <kern/misc_protos.h>
84
85 #ifdef __x86_64__
86 #define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
87 #define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
88
89 // Declare macros that will declare the externs
90 #define TRAP(n, name) extern void *name ;
91 #define TRAP_ERR(n, name) extern void *name ;
92 #define TRAP_SPC(n, name) extern void *name ;
93 #define TRAP_IST(n, name) extern void *name ;
94 #define INTERRUPT(n) extern void *_intr_ ## n ;
95 #define USER_TRAP(n, name) extern void *name ;
96 #define USER_TRAP_SPC(n, name) extern void *name ;
97
98 // Include the table to declare the externs
99 #include "../x86_64/idt_table.h"
100
101 // Undef the macros, then redefine them so we can declare the table
102 #undef TRAP
103 #undef TRAP_ERR
104 #undef TRAP_SPC
105 #undef TRAP_IST
106 #undef INTERRUPT
107 #undef USER_TRAP
108 #undef USER_TRAP_SPC
109
110 #define TRAP(n, name) \
111 [n] = { \
112 (uintptr_t)&name, \
113 KERNEL64_CS, \
114 0, \
115 K_INTR_GATE, \
116 0 \
117 },
118
119 #define TRAP_ERR TRAP
120 #define TRAP_SPC TRAP
121
122 #define TRAP_IST(n, name) \
123 [n] = { \
124 (uintptr_t)&name, \
125 KERNEL64_CS, \
126 1, \
127 K_INTR_GATE, \
128 0 \
129 },
130
131 #define INTERRUPT(n) \
132 [n] = { \
133 (uintptr_t)&_intr_ ## n,\
134 KERNEL64_CS, \
135 0, \
136 K_INTR_GATE, \
137 0 \
138 },
139
140 #define USER_TRAP(n, name) \
141 [n] = { \
142 (uintptr_t)&name, \
143 KERNEL64_CS, \
144 0, \
145 U_INTR_GATE, \
146 0 \
147 },
148
149 #define USER_TRAP_SPC USER_TRAP
150
151 // Declare the table using the macros we just set up
152 struct fake_descriptor64 master_idt64[IDTSZ]
153 __attribute__ ((section("__HIB,__desc")))
154 __attribute__ ((aligned(PAGE_SIZE))) = {
155 #include "../x86_64/idt_table.h"
156 };
157 #endif
158
159 /*
160 * The i386 needs an interrupt stack to keep the PCB stack from being
161 * overrun by interrupts. All interrupt stacks MUST lie at lower addresses
162 * than any thread`s kernel stack.
163 */
164
165 /*
166 * First cpu`s interrupt stack.
167 */
168 extern uint32_t low_intstack[]; /* bottom */
169 extern uint32_t low_eintstack[]; /* top */
170
171 /*
172 * Per-cpu data area pointers.
173 * The master cpu (cpu 0) has its data area statically allocated;
174 * others are allocated dynamically and this array is updated at runtime.
175 */
176 cpu_data_t cpu_data_master = {
177 .cpu_this = &cpu_data_master,
178 .cpu_nanotime = &pal_rtc_nanotime_info,
179 .cpu_int_stack_top = (vm_offset_t) low_eintstack,
180 #ifdef __i386__
181 .cpu_is64bit = FALSE,
182 #else
183 .cpu_is64bit = TRUE
184 #endif
185 };
186 cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &cpu_data_master };
187
188 decl_simple_lock_data(,ncpus_lock); /* protects real_ncpus */
189 unsigned int real_ncpus = 1;
190 unsigned int max_ncpus = MAX_CPUS;
191
192 #ifdef __i386__
193 extern void *hi_remap_text;
194 #define HI_TEXT(lo_text) \
195 (((uint32_t)&lo_text - (uint32_t)&hi_remap_text) + HIGH_MEM_BASE)
196
197 extern void hi_sysenter(void);
198
199 typedef struct {
200 uint16_t length;
201 uint32_t offset[2];
202 } __attribute__((__packed__)) table_descriptor64_t;
203
204 extern table_descriptor64_t gdtptr64;
205 extern table_descriptor64_t idtptr64;
206 #endif
207 extern void hi64_sysenter(void);
208 extern void hi64_syscall(void);
209
210 #if defined(__x86_64__) && !defined(UBER64)
211 #define UBER64(x) ((uintptr_t)x)
212 #endif
213
214 /*
215 * Multiprocessor i386/i486 systems use a separate copy of the
216 * GDT, IDT, LDT, and kernel TSS per processor. The first three
217 * are separate to avoid lock contention: the i386 uses locked
218 * memory cycles to access the descriptor tables. The TSS is
219 * separate since each processor needs its own kernel stack,
220 * and since using a TSS marks it busy.
221 */
222
223 /*
224 * Allocate and initialize the per-processor descriptor tables.
225 */
226
227 struct fake_descriptor ldt_desc_pattern = {
228 (unsigned int) 0,
229 LDTSZ_MIN * sizeof(struct fake_descriptor) - 1,
230 0,
231 ACC_P|ACC_PL_K|ACC_LDT
232 };
233
234 struct fake_descriptor tss_desc_pattern = {
235 (unsigned int) 0,
236 sizeof(struct i386_tss) - 1,
237 0,
238 ACC_P|ACC_PL_K|ACC_TSS
239 };
240
241 struct fake_descriptor cpudata_desc_pattern = {
242 (unsigned int) 0,
243 sizeof(cpu_data_t)-1,
244 SZ_32,
245 ACC_P|ACC_PL_K|ACC_DATA_W
246 };
247
248 #if NCOPY_WINDOWS > 0
249 struct fake_descriptor userwindow_desc_pattern = {
250 (unsigned int) 0,
251 ((NBPDE * NCOPY_WINDOWS) / PAGE_SIZE) - 1,
252 SZ_32 | SZ_G,
253 ACC_P|ACC_PL_U|ACC_DATA_W
254 };
255 #endif
256
257 struct fake_descriptor physwindow_desc_pattern = {
258 (unsigned int) 0,
259 PAGE_SIZE - 1,
260 SZ_32,
261 ACC_P|ACC_PL_K|ACC_DATA_W
262 };
263
264 /*
265 * This is the expanded, 64-bit variant of the kernel LDT descriptor.
266 * When switching to 64-bit mode this replaces KERNEL_LDT entry
267 * and the following empty slot. This enables the LDT to be referenced
268 * in the uber-space remapping window on the kernel.
269 */
270 struct fake_descriptor64 kernel_ldt_desc64 = {
271 0,
272 LDTSZ_MIN*sizeof(struct fake_descriptor)-1,
273 0,
274 ACC_P|ACC_PL_K|ACC_LDT,
275 0
276 };
277
278 /*
279 * This is the expanded, 64-bit variant of the kernel TSS descriptor.
280 * It is follows pattern of the KERNEL_LDT.
281 */
282 struct fake_descriptor64 kernel_tss_desc64 = {
283 0,
284 sizeof(struct x86_64_tss)-1,
285 0,
286 ACC_P|ACC_PL_K|ACC_TSS,
287 0
288 };
289
290 /*
291 * Convert a descriptor from fake to real format.
292 *
293 * Fake descriptor format:
294 * bytes 0..3 base 31..0
295 * bytes 4..5 limit 15..0
296 * byte 6 access byte 2 | limit 19..16
297 * byte 7 access byte 1
298 *
299 * Real descriptor format:
300 * bytes 0..1 limit 15..0
301 * bytes 2..3 base 15..0
302 * byte 4 base 23..16
303 * byte 5 access byte 1
304 * byte 6 access byte 2 | limit 19..16
305 * byte 7 base 31..24
306 *
307 * Fake gate format:
308 * bytes 0..3 offset
309 * bytes 4..5 selector
310 * byte 6 word count << 4 (to match fake descriptor)
311 * byte 7 access byte 1
312 *
313 * Real gate format:
314 * bytes 0..1 offset 15..0
315 * bytes 2..3 selector
316 * byte 4 word count
317 * byte 5 access byte 1
318 * bytes 6..7 offset 31..16
319 */
320 void
321 fix_desc(void *d, int num_desc) {
322 //early_kprintf("fix_desc(%x, %x)\n", d, num_desc);
323 uint8_t *desc = (uint8_t*) d;
324
325 do {
326 if ((desc[7] & 0x14) == 0x04) { /* gate */
327 uint32_t offset;
328 uint16_t selector;
329 uint8_t wordcount;
330 uint8_t acc;
331
332 offset = *((uint32_t*)(desc));
333 selector = *((uint32_t*)(desc+4));
334 wordcount = desc[6] >> 4;
335 acc = desc[7];
336
337 *((uint16_t*)desc) = offset & 0xFFFF;
338 *((uint16_t*)(desc+2)) = selector;
339 desc[4] = wordcount;
340 desc[5] = acc;
341 *((uint16_t*)(desc+6)) = offset >> 16;
342
343 } else { /* descriptor */
344 uint32_t base;
345 uint16_t limit;
346 uint8_t acc1, acc2;
347
348 base = *((uint32_t*)(desc));
349 limit = *((uint16_t*)(desc+4));
350 acc2 = desc[6];
351 acc1 = desc[7];
352
353 *((uint16_t*)(desc)) = limit;
354 *((uint16_t*)(desc+2)) = base & 0xFFFF;
355 desc[4] = (base >> 16) & 0xFF;
356 desc[5] = acc1;
357 desc[6] = acc2;
358 desc[7] = base >> 24;
359 }
360 desc += 8;
361 } while (--num_desc);
362 }
363
364 void
365 fix_desc64(void *descp, int count)
366 {
367 struct fake_descriptor64 *fakep;
368 union {
369 struct real_gate64 gate;
370 struct real_descriptor64 desc;
371 } real;
372 int i;
373
374 fakep = (struct fake_descriptor64 *) descp;
375
376 for (i = 0; i < count; i++, fakep++) {
377 /*
378 * Construct the real decriptor locally.
379 */
380
381 bzero((void *) &real, sizeof(real));
382
383 switch (fakep->access & ACC_TYPE) {
384 case 0:
385 break;
386 case ACC_CALL_GATE:
387 case ACC_INTR_GATE:
388 case ACC_TRAP_GATE:
389 real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
390 real.gate.selector16 = fakep->lim_or_seg & 0xFFFF;
391 real.gate.IST = fakep->size_or_IST & 0x7;
392 real.gate.access8 = fakep->access;
393 real.gate.offset_high16 = (uint16_t)((fakep->offset64>>16) & 0xFFFF);
394 real.gate.offset_top32 = (uint32_t)(fakep->offset64>>32);
395 break;
396 default: /* Otherwise */
397 real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF;
398 real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF);
399 real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF);
400 real.desc.access8 = fakep->access;
401 real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF;
402 real.desc.granularity4 = fakep->size_or_IST;
403 real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF);
404 real.desc.base_top32 = (uint32_t)(fakep->offset64>>32);
405 }
406
407 /*
408 * Now copy back over the fake structure.
409 */
410 bcopy((void *) &real, (void *) fakep, sizeof(real));
411 }
412 }
413
414 #ifdef __i386__
415 void
416 cpu_desc_init(cpu_data_t *cdp)
417 {
418 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
419
420 if (cdp == &cpu_data_master) {
421 /*
422 * Fix up the entries in the GDT to point to
423 * this LDT and this TSS.
424 */
425 struct fake_descriptor temp_fake_desc;
426 temp_fake_desc = ldt_desc_pattern;
427 temp_fake_desc.offset = (vm_offset_t) &master_ldt;
428 fix_desc(&temp_fake_desc, 1);
429 *(struct fake_descriptor *) &master_gdt[sel_idx(KERNEL_LDT)] =
430 temp_fake_desc;
431 *(struct fake_descriptor *) &master_gdt[sel_idx(USER_LDT)] =
432 temp_fake_desc;
433
434 temp_fake_desc = tss_desc_pattern;
435 temp_fake_desc.offset = (vm_offset_t) &master_ktss;
436 fix_desc(&temp_fake_desc, 1);
437 *(struct fake_descriptor *) &master_gdt[sel_idx(KERNEL_TSS)] =
438 temp_fake_desc;
439
440 temp_fake_desc = cpudata_desc_pattern;
441 temp_fake_desc.offset = (vm_offset_t) &cpu_data_master;
442 fix_desc(&temp_fake_desc, 1);
443 *(struct fake_descriptor *) &master_gdt[sel_idx(CPU_DATA_GS)] =
444 temp_fake_desc;
445
446 fix_desc((void *)&master_idt, IDTSZ);
447
448 cdi->cdi_idt.ptr = master_idt;
449 cdi->cdi_gdt.ptr = (void *)master_gdt;
450
451
452 /*
453 * Master CPU uses the tables built at boot time.
454 * Just set the index pointers to the high shared-mapping space.
455 * Note that the sysenter stack uses empty space above the ktss
456 * in the HIGH_FIXED_KTSS page. In this case we don't map the
457 * the real master_sstk in low memory.
458 */
459 cdi->cdi_ktss = (struct i386_tss *)
460 pmap_index_to_virt(HIGH_FIXED_KTSS) ;
461 cdi->cdi_sstk = (vm_offset_t) (cdi->cdi_ktss + 1) +
462 (vm_offset_t) &master_sstk.top -
463 (vm_offset_t) &master_sstk;
464 } else {
465 cpu_desc_table_t *cdt = (cpu_desc_table_t *) cdp->cpu_desc_tablep;
466
467 vm_offset_t cpu_hi_desc;
468
469 cpu_hi_desc = pmap_cpu_high_shared_remap(
470 cdp->cpu_number,
471 HIGH_CPU_DESC,
472 (vm_offset_t) cdt, 1);
473
474 /*
475 * Per-cpu GDT, IDT, LDT, KTSS descriptors are allocated in one
476 * block (cpu_desc_table) and double-mapped into high shared space
477 * in one page window.
478 * Also, a transient stack for the fast sysenter path. The top of
479 * which is set at context switch time to point to the PCB using
480 * the high address.
481 */
482 cdi->cdi_gdt.ptr = (struct fake_descriptor *) (cpu_hi_desc +
483 offsetof(cpu_desc_table_t, gdt[0]));
484 cdi->cdi_idt.ptr = (struct fake_descriptor *) (cpu_hi_desc +
485 offsetof(cpu_desc_table_t, idt[0]));
486 cdi->cdi_ktss = (struct i386_tss *) (cpu_hi_desc +
487 offsetof(cpu_desc_table_t, ktss));
488 cdi->cdi_sstk = cpu_hi_desc + offsetof(cpu_desc_table_t, sstk.top);
489
490 /*
491 * LDT descriptors are mapped into a seperate area.
492 */
493 cdi->cdi_ldt = (struct fake_descriptor *)
494 pmap_cpu_high_shared_remap(
495 cdp->cpu_number,
496 HIGH_CPU_LDT_BEGIN,
497 (vm_offset_t) cdp->cpu_ldtp,
498 HIGH_CPU_LDT_END - HIGH_CPU_LDT_BEGIN + 1);
499
500 /*
501 * Copy the tables
502 */
503 bcopy((char *)master_idt, (char *)cdt->idt, sizeof(master_idt));
504 bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt));
505 bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt));
506 bzero((char *)&cdt->ktss, sizeof(struct i386_tss));
507
508 /*
509 * Fix up the entries in the GDT to point to
510 * this LDT and this TSS.
511 */
512 struct fake_descriptor temp_ldt = ldt_desc_pattern;
513 temp_ldt.offset = (vm_offset_t)cdi->cdi_ldt;
514 fix_desc(&temp_ldt, 1);
515
516 cdt->gdt[sel_idx(KERNEL_LDT)] = temp_ldt;
517 cdt->gdt[sel_idx(USER_LDT)] = temp_ldt;
518
519 cdt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern;
520 cdt->gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) cdi->cdi_ktss;
521 fix_desc(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
522
523 cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
524 cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
525 fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1);
526
527 cdt->ktss.ss0 = KERNEL_DS;
528 cdt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */
529
530 cpu_userwindow_init(cdp->cpu_number);
531 cpu_physwindow_init(cdp->cpu_number);
532
533 }
534 }
535 #endif /* __i386__ */
536
537 void
538 cpu_desc_init64(cpu_data_t *cdp)
539 {
540 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
541
542 if (cdp == &cpu_data_master) {
543 /*
544 * Master CPU uses the tables built at boot time.
545 * Just set the index pointers to the low memory space.
546 */
547 cdi->cdi_ktss = (void *)&master_ktss64;
548 cdi->cdi_sstk = (vm_offset_t) &master_sstk.top;
549 #if __x86_64__
550 cdi->cdi_gdt.ptr = (void *)MASTER_GDT_ALIAS;
551 cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS;
552 #else
553 cdi->cdi_gdt.ptr = (void *)master_gdt;
554 cdi->cdi_idt.ptr = (void *)master_idt64;
555 #endif
556 cdi->cdi_ldt = (struct fake_descriptor *) master_ldt;
557
558 /* Replace the expanded LDTs and TSS slots in the GDT */
559 kernel_ldt_desc64.offset64 = UBER64(&master_ldt);
560 *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] =
561 kernel_ldt_desc64;
562 *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] =
563 kernel_ldt_desc64;
564 kernel_tss_desc64.offset64 = UBER64(&master_ktss64);
565 *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] =
566 kernel_tss_desc64;
567
568 /* Fix up the expanded descriptors for 64-bit. */
569 fix_desc64((void *) &master_idt64, IDTSZ);
570 fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1);
571 fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1);
572 fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1);
573
574 /*
575 * Set the double-fault stack as IST1 in the 64-bit TSS
576 */
577 #if __x86_64__
578 master_ktss64.ist1 = (uintptr_t) low_eintstack;
579 #else
580 master_ktss64.ist1 = UBER64((uintptr_t) df_task_stack_end);
581 #endif
582
583 } else {
584 cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep;
585 /*
586 * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel
587 * heap (cpu_desc_table).
588 * LDT descriptors are mapped into a separate area.
589 */
590 #if __x86_64__
591 cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS;
592 #else
593 cdi->cdi_idt.ptr = (void *)cdt->idt;
594 #endif
595 cdi->cdi_gdt.ptr = (struct fake_descriptor *)cdt->gdt;
596 cdi->cdi_ktss = (void *)&cdt->ktss;
597 cdi->cdi_sstk = (vm_offset_t)&cdt->sstk.top;
598 cdi->cdi_ldt = cdp->cpu_ldtp;
599
600 /*
601 * Copy the tables
602 */
603 #if !__x86_64__
604 bcopy((char *)master_idt64, (char *)cdt->idt, sizeof(master_idt64));
605 #endif
606 bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt));
607 bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt));
608 bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss));
609
610 /*
611 * Fix up the entries in the GDT to point to
612 * this LDT and this TSS.
613 */
614 kernel_ldt_desc64.offset64 = UBER64(cdi->cdi_ldt);
615 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] =
616 kernel_ldt_desc64;
617 fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1);
618
619 kernel_ldt_desc64.offset64 = UBER64(cdi->cdi_ldt);
620 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] =
621 kernel_ldt_desc64;
622 fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1);
623
624 kernel_tss_desc64.offset64 = UBER64(cdi->cdi_ktss);
625 *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] =
626 kernel_tss_desc64;
627 fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1);
628
629 /* Set (zeroed) double-fault stack as IST1 */
630 bzero((void *) cdt->dfstk, sizeof(cdt->dfstk));
631 cdt->ktss.ist1 = UBER64((unsigned long)cdt->dfstk + sizeof(cdt->dfstk));
632 #ifdef __i386__
633 cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern;
634 cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp;
635 fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1);
636
637 /* Allocate copyio windows */
638 cpu_userwindow_init(cdp->cpu_number);
639 cpu_physwindow_init(cdp->cpu_number);
640 #endif
641 }
642
643 /* Require that the top of the sysenter stack is 16-byte aligned */
644 if ((cdi->cdi_sstk % 16) != 0)
645 panic("cpu_desc_init64() sysenter stack not 16-byte aligned");
646 }
647
648 #ifdef __i386__
649 void
650 cpu_desc_load(cpu_data_t *cdp)
651 {
652 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
653
654 cdi->cdi_idt.size = 0x1000 + cdp->cpu_number;
655 cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1;
656
657 lgdt((uintptr_t *) &cdi->cdi_gdt);
658 lidt((uintptr_t *) &cdi->cdi_idt);
659 lldt(KERNEL_LDT);
660
661 set_tr(KERNEL_TSS);
662
663 __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(CPU_DATA_GS)));
664 }
665 #endif /* __i386__ */
666
667 void
668 cpu_desc_load64(cpu_data_t *cdp)
669 {
670 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
671
672 #ifdef __i386__
673 /*
674 * Load up the new descriptors etc
675 * ml_load_desc64() expects these global pseudo-descriptors:
676 * gdtptr64 -> per-cpu gdt
677 * idtptr64 -> per-cpu idt
678 * These are 10-byte descriptors with 64-bit addresses into
679 * uber-space.
680 *
681 * Refer to commpage/cpu_number.s for the IDT limit trick.
682 */
683 gdtptr64.length = GDTSZ * sizeof(struct real_descriptor) - 1;
684 gdtptr64.offset[0] = (uint32_t) cdi->cdi_gdt.ptr;
685 gdtptr64.offset[1] = KERNEL_UBER_BASE_HI32;
686 idtptr64.length = 0x1000 + cdp->cpu_number;
687 idtptr64.offset[0] = (uint32_t) cdi->cdi_idt.ptr;
688 idtptr64.offset[1] = KERNEL_UBER_BASE_HI32;
689
690 /* Make sure busy bit is cleared in the TSS */
691 gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY;
692
693 ml_load_desc64();
694 #else
695 /* Load the GDT, LDT, IDT and TSS */
696 cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1;
697 cdi->cdi_idt.size = 0x1000 + cdp->cpu_number;
698 lgdt((uintptr_t *) &cdi->cdi_gdt);
699 lidt((uintptr_t *) &cdi->cdi_idt);
700 lldt(KERNEL_LDT);
701 set_tr(KERNEL_TSS);
702
703 /* Stuff the kernel per-cpu data area address into the MSRs */
704 wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
705 wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
706
707 #if GPROF // Hack to enable mcount to work on K64
708 __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS)));
709 #endif
710 #endif
711 }
712
713 #ifdef __i386__
714 /*
715 * Set MSRs for sysenter/sysexit for 32-bit.
716 */
717 static void
718 fast_syscall_init(__unused cpu_data_t *cdp)
719 {
720 wrmsr(MSR_IA32_SYSENTER_CS, SYSENTER_CS, 0);
721 wrmsr(MSR_IA32_SYSENTER_EIP, HI_TEXT(hi_sysenter), 0);
722 wrmsr(MSR_IA32_SYSENTER_ESP, current_sstk(), 0);
723 }
724 #endif
725
726 /*
727 * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
728 */
729 static void
730 fast_syscall_init64(__unused cpu_data_t *cdp)
731 {
732 wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS);
733 wrmsr64(MSR_IA32_SYSENTER_EIP, UBER64((uintptr_t) hi64_sysenter));
734 wrmsr64(MSR_IA32_SYSENTER_ESP, UBER64(current_sstk()));
735 /* Enable syscall/sysret */
736 wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE);
737
738 /*
739 * MSRs for 64-bit syscall/sysret
740 * Note USER_CS because sysret uses this + 16 when returning to
741 * 64-bit code.
742 */
743 wrmsr64(MSR_IA32_LSTAR, UBER64((uintptr_t) hi64_syscall));
744 wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) |
745 (((uint64_t)KERNEL64_CS) << 32));
746 /*
747 * Emulate eflags cleared by sysenter but note that
748 * we also clear the trace trap to avoid the complications
749 * of single-stepping into a syscall. The nested task bit
750 * is also cleared to avoid a spurious "task switch"
751 * should we choose to return via an IRET.
752 */
753 wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT);
754
755 #ifdef __i386__
756 /*
757 * Set the Kernel GS base MSR to point to per-cpu data in uber-space.
758 * The uber-space handler (hi64_syscall) uses the swapgs instruction.
759 */
760 wrmsr64(MSR_IA32_KERNEL_GS_BASE, UBER64(cdp));
761
762 #if ONLY_SAFE_FOR_LINDA_SERIAL
763 kprintf("fast_syscall_init64() KERNEL_GS_BASE=0x%016llx\n",
764 rdmsr64(MSR_IA32_KERNEL_GS_BASE));
765 #endif
766 #endif
767 }
768
769
770 cpu_data_t *
771 cpu_data_alloc(boolean_t is_boot_cpu)
772 {
773 int ret;
774 cpu_data_t *cdp;
775
776 if (is_boot_cpu) {
777 assert(real_ncpus == 1);
778 cdp = cpu_datap(0);
779 if (cdp->cpu_processor == NULL) {
780 simple_lock_init(&ncpus_lock, 0);
781 cdp->cpu_processor = cpu_processor_alloc(TRUE);
782 #if NCOPY_WINDOWS > 0
783 cdp->cpu_pmap = pmap_cpu_alloc(TRUE);
784 #endif
785 }
786 return cdp;
787 }
788
789 /*
790 * Allocate per-cpu data:
791 */
792 ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t));
793 if (ret != KERN_SUCCESS) {
794 printf("cpu_data_alloc() failed, ret=%d\n", ret);
795 goto abort;
796 }
797 bzero((void*) cdp, sizeof(cpu_data_t));
798 cdp->cpu_this = cdp;
799
800 /* Propagate mode */
801 cdp->cpu_is64bit = cpu_mode_is64bit();
802
803 /*
804 * Allocate interrupt stack:
805 */
806 ret = kmem_alloc(kernel_map,
807 (vm_offset_t *) &cdp->cpu_int_stack_top,
808 INTSTACK_SIZE);
809 if (ret != KERN_SUCCESS) {
810 printf("cpu_data_alloc() int stack failed, ret=%d\n", ret);
811 goto abort;
812 }
813 bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE);
814 cdp->cpu_int_stack_top += INTSTACK_SIZE;
815
816 /*
817 * Allocate descriptor table:
818 * Size depends on cpu mode.
819 */
820
821 ret = kmem_alloc(kernel_map,
822 (vm_offset_t *) &cdp->cpu_desc_tablep,
823 cdp->cpu_is64bit ? sizeof(cpu_desc_table64_t)
824 : sizeof(cpu_desc_table_t));
825 if (ret != KERN_SUCCESS) {
826 printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret);
827 goto abort;
828 }
829
830 /*
831 * Allocate LDT
832 */
833 ret = kmem_alloc(kernel_map,
834 (vm_offset_t *) &cdp->cpu_ldtp,
835 sizeof(struct real_descriptor) * LDTSZ);
836 if (ret != KERN_SUCCESS) {
837 printf("cpu_data_alloc() ldt failed, ret=%d\n", ret);
838 goto abort;
839 }
840
841 #if CONFIG_MCA
842 /* Machine-check shadow register allocation. */
843 mca_cpu_alloc(cdp);
844 #endif
845
846 simple_lock(&ncpus_lock);
847
848 cpu_data_ptr[real_ncpus] = cdp;
849 cdp->cpu_number = real_ncpus;
850 real_ncpus++;
851 simple_unlock(&ncpus_lock);
852
853 cdp->cpu_nanotime = &pal_rtc_nanotime_info;
854
855 kprintf("cpu_data_alloc(%d) %p desc_table: %p "
856 "ldt: %p "
857 "int_stack: 0x%lx-0x%lx\n",
858 cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp,
859 (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top));
860
861 return cdp;
862
863 abort:
864 if (cdp) {
865 if (cdp->cpu_desc_tablep)
866 kfree((void *) cdp->cpu_desc_tablep,
867 sizeof(*cdp->cpu_desc_tablep));
868 if (cdp->cpu_int_stack_top)
869 kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE),
870 INTSTACK_SIZE);
871 kfree((void *) cdp, sizeof(*cdp));
872 }
873 return NULL;
874 }
875
876 boolean_t
877 valid_user_data_selector(uint16_t selector)
878 {
879 sel_t sel = selector_to_sel(selector);
880
881 if (selector == 0)
882 return (TRUE);
883
884 if (sel.ti == SEL_LDT)
885 return (TRUE);
886 else if (sel.index < GDTSZ) {
887 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
888 return (TRUE);
889 }
890
891 return (FALSE);
892 }
893
894 boolean_t
895 valid_user_code_selector(uint16_t selector)
896 {
897 sel_t sel = selector_to_sel(selector);
898
899 if (selector == 0)
900 return (FALSE);
901
902 if (sel.ti == SEL_LDT) {
903 if (sel.rpl == USER_PRIV)
904 return (TRUE);
905 }
906 else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
907 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
908 return (TRUE);
909 }
910
911 return (FALSE);
912 }
913
914 boolean_t
915 valid_user_stack_selector(uint16_t selector)
916 {
917 sel_t sel = selector_to_sel(selector);
918
919 if (selector == 0)
920 return (FALSE);
921
922 if (sel.ti == SEL_LDT) {
923 if (sel.rpl == USER_PRIV)
924 return (TRUE);
925 }
926 else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) {
927 if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U)
928 return (TRUE);
929 }
930
931 return (FALSE);
932 }
933
934 boolean_t
935 valid_user_segment_selectors(uint16_t cs,
936 uint16_t ss,
937 uint16_t ds,
938 uint16_t es,
939 uint16_t fs,
940 uint16_t gs)
941 {
942 return valid_user_code_selector(cs) &&
943 valid_user_stack_selector(ss) &&
944 valid_user_data_selector(ds) &&
945 valid_user_data_selector(es) &&
946 valid_user_data_selector(fs) &&
947 valid_user_data_selector(gs);
948 }
949
950 #if NCOPY_WINDOWS > 0
951
952 static vm_offset_t user_window_base = 0;
953
954 void
955 cpu_userwindow_init(int cpu)
956 {
957 cpu_data_t *cdp = cpu_data_ptr[cpu];
958 vm_offset_t user_window;
959 vm_offset_t vaddr;
960 int num_cpus;
961
962 num_cpus = ml_get_max_cpus();
963
964 if (cpu >= num_cpus)
965 panic("cpu_userwindow_init: cpu > num_cpus");
966
967 if (user_window_base == 0) {
968
969 if (vm_allocate(kernel_map, &vaddr,
970 (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE,
971 VM_FLAGS_ANYWHERE) != KERN_SUCCESS)
972 panic("cpu_userwindow_init: "
973 "couldn't allocate user map window");
974
975 /*
976 * window must start on a page table boundary
977 * in the virtual address space
978 */
979 user_window_base = (vaddr + (NBPDE - 1)) & ~(NBPDE - 1);
980
981 /*
982 * get rid of any allocation leading up to our
983 * starting boundary
984 */
985 vm_deallocate(kernel_map, vaddr, user_window_base - vaddr);
986
987 /*
988 * get rid of tail that we don't need
989 */
990 user_window = user_window_base +
991 (NBPDE * NCOPY_WINDOWS * num_cpus);
992
993 vm_deallocate(kernel_map, user_window,
994 (vaddr +
995 ((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) -
996 user_window);
997 }
998
999 user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE);
1000
1001 cdp->cpu_copywindow_base = user_window;
1002 /*
1003 * Abuse this pdp entry, the pdp now actually points to
1004 * an array of copy windows addresses.
1005 */
1006 cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window);
1007
1008 #ifdef __i386__
1009 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
1010 cdi->cdi_gdt.ptr[sel_idx(USER_WINDOW_SEL)] = userwindow_desc_pattern;
1011 cdi->cdi_gdt.ptr[sel_idx(USER_WINDOW_SEL)].offset = user_window;
1012
1013 fix_desc(&cdi->cdi_gdt.ptr[sel_idx(USER_WINDOW_SEL)], 1);
1014 #endif /* __i386__ */
1015 }
1016
1017 void
1018 cpu_physwindow_init(int cpu)
1019 {
1020 cpu_data_t *cdp = cpu_data_ptr[cpu];
1021 vm_offset_t phys_window = cdp->cpu_physwindow_base;
1022
1023 if (phys_window == 0) {
1024 if (vm_allocate(kernel_map, &phys_window,
1025 PAGE_SIZE, VM_FLAGS_ANYWHERE)
1026 != KERN_SUCCESS)
1027 panic("cpu_physwindow_init: "
1028 "couldn't allocate phys map window");
1029
1030 /*
1031 * make sure the page that encompasses the
1032 * pte pointer we're interested in actually
1033 * exists in the page table
1034 */
1035 pmap_expand(kernel_pmap, phys_window, PMAP_EXPAND_OPTIONS_NONE);
1036
1037 cdp->cpu_physwindow_base = phys_window;
1038 cdp->cpu_physwindow_ptep = vtopte(phys_window);
1039 }
1040 #ifdef __i386__
1041 cpu_desc_index_t *cdi = &cdp->cpu_desc_index;
1042 cdi->cdi_gdt.ptr[sel_idx(PHYS_WINDOW_SEL)] = physwindow_desc_pattern;
1043 cdi->cdi_gdt.ptr[sel_idx(PHYS_WINDOW_SEL)].offset = phys_window;
1044
1045 fix_desc(&cdi->cdi_gdt.ptr[sel_idx(PHYS_WINDOW_SEL)], 1);
1046 #endif /* __i386__ */
1047 }
1048 #endif /* NCOPY_WINDOWS > 0 */
1049
1050 /*
1051 * Load the segment descriptor tables for the current processor.
1052 */
1053 void
1054 cpu_mode_init(cpu_data_t *cdp)
1055 {
1056 #ifdef __i386__
1057 if (cdp->cpu_is64bit) {
1058 cpu_IA32e_enable(cdp);
1059 cpu_desc_load64(cdp);
1060 fast_syscall_init64(cdp);
1061 } else {
1062 fast_syscall_init(cdp);
1063 }
1064 #else
1065 fast_syscall_init64(cdp);
1066 #endif
1067 }
1068
1069 #if __x86_64__
1070 /*
1071 * Allocate a new interrupt stack for the boot processor from the
1072 * heap rather than continue to use the statically allocated space.
1073 * Also switch to a dynamically allocated cpu data area.
1074 */
1075 void
1076 cpu_data_realloc(void)
1077 {
1078 int ret;
1079 vm_offset_t stack;
1080 cpu_data_t *cdp;
1081 boolean_t istate;
1082
1083 ret = kmem_alloc(kernel_map, &stack, INTSTACK_SIZE);
1084 if (ret != KERN_SUCCESS) {
1085 panic("cpu_data_realloc() stack alloc, ret=%d\n", ret);
1086 }
1087 bzero((void*) stack, INTSTACK_SIZE);
1088 stack += INTSTACK_SIZE;
1089
1090 ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t));
1091 if (ret != KERN_SUCCESS) {
1092 panic("cpu_data_realloc() cpu data alloc, ret=%d\n", ret);
1093 }
1094
1095 /* Copy old contents into new area and make fix-ups */
1096 bcopy((void *) &cpu_data_master, (void*) cdp, sizeof(cpu_data_t));
1097 cdp->cpu_this = cdp;
1098 cdp->cpu_int_stack_top = stack;
1099 timer_call_initialize_queue(&cdp->rtclock_timer.queue);
1100
1101 kprintf("Reallocated master cpu data: %p, interrupt stack top: %p\n",
1102 (void *) cdp, (void *) stack);
1103
1104 /*
1105 * With interrupts disabled commmit the new areas.
1106 */
1107 istate = ml_set_interrupts_enabled(FALSE);
1108 cpu_data_ptr[0] = cdp;
1109 wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp);
1110 wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp);
1111 (void) ml_set_interrupts_enabled(istate);
1112 }
1113 #endif /* __x86_64__ */