2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 #include <kern/cpu_number.h>
61 #include <kern/kalloc.h>
62 #include <kern/cpu_data.h>
63 #include <mach/mach_types.h>
64 #include <mach/machine.h>
65 #include <kern/etimer.h>
66 #include <mach/vm_map.h>
67 #include <mach/machine/vm_param.h>
68 #include <vm/vm_kern.h>
69 #include <vm/vm_map.h>
71 #include <i386/lock.h>
72 #include <i386/mp_desc.h>
73 #include <i386/misc_protos.h>
75 #include <i386/pmap.h>
77 #include <i386/pmap_internal.h>
80 #include <i386/machine_check.h>
83 #include <kern/misc_protos.h>
86 #define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE)
87 #define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE)
89 // Declare macros that will declare the externs
90 #define TRAP(n, name) extern void *name ;
91 #define TRAP_ERR(n, name) extern void *name ;
92 #define TRAP_SPC(n, name) extern void *name ;
93 #define TRAP_IST(n, name) extern void *name ;
94 #define INTERRUPT(n) extern void *_intr_ ## n ;
95 #define USER_TRAP(n, name) extern void *name ;
96 #define USER_TRAP_SPC(n, name) extern void *name ;
98 // Include the table to declare the externs
99 #include "../x86_64/idt_table.h"
101 // Undef the macros, then redefine them so we can declare the table
110 #define TRAP(n, name) \
119 #define TRAP_ERR TRAP
120 #define TRAP_SPC TRAP
122 #define TRAP_IST(n, name) \
131 #define INTERRUPT(n) \
133 (uintptr_t)&_intr_ ## n,\
140 #define USER_TRAP(n, name) \
149 #define USER_TRAP_SPC USER_TRAP
151 // Declare the table using the macros we just set up
152 struct fake_descriptor64 master_idt64
[IDTSZ
]
153 __attribute__ ((section("__HIB,__desc")))
154 __attribute__ ((aligned(PAGE_SIZE
))) = {
155 #include "../x86_64/idt_table.h"
160 * The i386 needs an interrupt stack to keep the PCB stack from being
161 * overrun by interrupts. All interrupt stacks MUST lie at lower addresses
162 * than any thread`s kernel stack.
166 * First cpu`s interrupt stack.
168 extern uint32_t low_intstack
[]; /* bottom */
169 extern uint32_t low_eintstack
[]; /* top */
172 * Per-cpu data area pointers.
173 * The master cpu (cpu 0) has its data area statically allocated;
174 * others are allocated dynamically and this array is updated at runtime.
176 cpu_data_t cpu_data_master
= {
177 .cpu_this
= &cpu_data_master
,
178 .cpu_nanotime
= &pal_rtc_nanotime_info
,
179 .cpu_int_stack_top
= (vm_offset_t
) low_eintstack
,
181 .cpu_is64bit
= FALSE
,
186 cpu_data_t
*cpu_data_ptr
[MAX_CPUS
] = { [0] = &cpu_data_master
};
188 decl_simple_lock_data(,ncpus_lock
); /* protects real_ncpus */
189 unsigned int real_ncpus
= 1;
190 unsigned int max_ncpus
= MAX_CPUS
;
193 extern void *hi_remap_text
;
194 #define HI_TEXT(lo_text) \
195 (((uint32_t)&lo_text - (uint32_t)&hi_remap_text) + HIGH_MEM_BASE)
197 extern void hi_sysenter(void);
202 } __attribute__((__packed__
)) table_descriptor64_t
;
204 extern table_descriptor64_t gdtptr64
;
205 extern table_descriptor64_t idtptr64
;
207 extern void hi64_sysenter(void);
208 extern void hi64_syscall(void);
210 #if defined(__x86_64__) && !defined(UBER64)
211 #define UBER64(x) ((uintptr_t)x)
215 * Multiprocessor i386/i486 systems use a separate copy of the
216 * GDT, IDT, LDT, and kernel TSS per processor. The first three
217 * are separate to avoid lock contention: the i386 uses locked
218 * memory cycles to access the descriptor tables. The TSS is
219 * separate since each processor needs its own kernel stack,
220 * and since using a TSS marks it busy.
224 * Allocate and initialize the per-processor descriptor tables.
227 struct fake_descriptor ldt_desc_pattern
= {
229 LDTSZ_MIN
* sizeof(struct fake_descriptor
) - 1,
231 ACC_P
|ACC_PL_K
|ACC_LDT
234 struct fake_descriptor tss_desc_pattern
= {
236 sizeof(struct i386_tss
) - 1,
238 ACC_P
|ACC_PL_K
|ACC_TSS
241 struct fake_descriptor cpudata_desc_pattern
= {
243 sizeof(cpu_data_t
)-1,
245 ACC_P
|ACC_PL_K
|ACC_DATA_W
248 #if NCOPY_WINDOWS > 0
249 struct fake_descriptor userwindow_desc_pattern
= {
251 ((NBPDE
* NCOPY_WINDOWS
) / PAGE_SIZE
) - 1,
253 ACC_P
|ACC_PL_U
|ACC_DATA_W
257 struct fake_descriptor physwindow_desc_pattern
= {
261 ACC_P
|ACC_PL_K
|ACC_DATA_W
265 * This is the expanded, 64-bit variant of the kernel LDT descriptor.
266 * When switching to 64-bit mode this replaces KERNEL_LDT entry
267 * and the following empty slot. This enables the LDT to be referenced
268 * in the uber-space remapping window on the kernel.
270 struct fake_descriptor64 kernel_ldt_desc64
= {
272 LDTSZ_MIN
*sizeof(struct fake_descriptor
)-1,
274 ACC_P
|ACC_PL_K
|ACC_LDT
,
279 * This is the expanded, 64-bit variant of the kernel TSS descriptor.
280 * It is follows pattern of the KERNEL_LDT.
282 struct fake_descriptor64 kernel_tss_desc64
= {
284 sizeof(struct x86_64_tss
)-1,
286 ACC_P
|ACC_PL_K
|ACC_TSS
,
291 * Convert a descriptor from fake to real format.
293 * Fake descriptor format:
294 * bytes 0..3 base 31..0
295 * bytes 4..5 limit 15..0
296 * byte 6 access byte 2 | limit 19..16
297 * byte 7 access byte 1
299 * Real descriptor format:
300 * bytes 0..1 limit 15..0
301 * bytes 2..3 base 15..0
303 * byte 5 access byte 1
304 * byte 6 access byte 2 | limit 19..16
309 * bytes 4..5 selector
310 * byte 6 word count << 4 (to match fake descriptor)
311 * byte 7 access byte 1
314 * bytes 0..1 offset 15..0
315 * bytes 2..3 selector
317 * byte 5 access byte 1
318 * bytes 6..7 offset 31..16
321 fix_desc(void *d
, int num_desc
) {
322 //early_kprintf("fix_desc(%x, %x)\n", d, num_desc);
323 uint8_t *desc
= (uint8_t*) d
;
326 if ((desc
[7] & 0x14) == 0x04) { /* gate */
332 offset
= *((uint32_t*)(desc
));
333 selector
= *((uint32_t*)(desc
+4));
334 wordcount
= desc
[6] >> 4;
337 *((uint16_t*)desc
) = offset
& 0xFFFF;
338 *((uint16_t*)(desc
+2)) = selector
;
341 *((uint16_t*)(desc
+6)) = offset
>> 16;
343 } else { /* descriptor */
348 base
= *((uint32_t*)(desc
));
349 limit
= *((uint16_t*)(desc
+4));
353 *((uint16_t*)(desc
)) = limit
;
354 *((uint16_t*)(desc
+2)) = base
& 0xFFFF;
355 desc
[4] = (base
>> 16) & 0xFF;
358 desc
[7] = base
>> 24;
361 } while (--num_desc
);
365 fix_desc64(void *descp
, int count
)
367 struct fake_descriptor64
*fakep
;
369 struct real_gate64 gate
;
370 struct real_descriptor64 desc
;
374 fakep
= (struct fake_descriptor64
*) descp
;
376 for (i
= 0; i
< count
; i
++, fakep
++) {
378 * Construct the real decriptor locally.
381 bzero((void *) &real
, sizeof(real
));
383 switch (fakep
->access
& ACC_TYPE
) {
389 real
.gate
.offset_low16
= (uint16_t)(fakep
->offset64
& 0xFFFF);
390 real
.gate
.selector16
= fakep
->lim_or_seg
& 0xFFFF;
391 real
.gate
.IST
= fakep
->size_or_IST
& 0x7;
392 real
.gate
.access8
= fakep
->access
;
393 real
.gate
.offset_high16
= (uint16_t)((fakep
->offset64
>>16) & 0xFFFF);
394 real
.gate
.offset_top32
= (uint32_t)(fakep
->offset64
>>32);
396 default: /* Otherwise */
397 real
.desc
.limit_low16
= fakep
->lim_or_seg
& 0xFFFF;
398 real
.desc
.base_low16
= (uint16_t)(fakep
->offset64
& 0xFFFF);
399 real
.desc
.base_med8
= (uint8_t)((fakep
->offset64
>> 16) & 0xFF);
400 real
.desc
.access8
= fakep
->access
;
401 real
.desc
.limit_high4
= (fakep
->lim_or_seg
>> 16) & 0xFF;
402 real
.desc
.granularity4
= fakep
->size_or_IST
;
403 real
.desc
.base_high8
= (uint8_t)((fakep
->offset64
>> 24) & 0xFF);
404 real
.desc
.base_top32
= (uint32_t)(fakep
->offset64
>>32);
408 * Now copy back over the fake structure.
410 bcopy((void *) &real
, (void *) fakep
, sizeof(real
));
416 cpu_desc_init(cpu_data_t
*cdp
)
418 cpu_desc_index_t
*cdi
= &cdp
->cpu_desc_index
;
420 if (cdp
== &cpu_data_master
) {
422 * Fix up the entries in the GDT to point to
423 * this LDT and this TSS.
425 struct fake_descriptor temp_fake_desc
;
426 temp_fake_desc
= ldt_desc_pattern
;
427 temp_fake_desc
.offset
= (vm_offset_t
) &master_ldt
;
428 fix_desc(&temp_fake_desc
, 1);
429 *(struct fake_descriptor
*) &master_gdt
[sel_idx(KERNEL_LDT
)] =
431 *(struct fake_descriptor
*) &master_gdt
[sel_idx(USER_LDT
)] =
434 temp_fake_desc
= tss_desc_pattern
;
435 temp_fake_desc
.offset
= (vm_offset_t
) &master_ktss
;
436 fix_desc(&temp_fake_desc
, 1);
437 *(struct fake_descriptor
*) &master_gdt
[sel_idx(KERNEL_TSS
)] =
440 temp_fake_desc
= cpudata_desc_pattern
;
441 temp_fake_desc
.offset
= (vm_offset_t
) &cpu_data_master
;
442 fix_desc(&temp_fake_desc
, 1);
443 *(struct fake_descriptor
*) &master_gdt
[sel_idx(CPU_DATA_GS
)] =
446 fix_desc((void *)&master_idt
, IDTSZ
);
448 cdi
->cdi_idt
.ptr
= master_idt
;
449 cdi
->cdi_gdt
.ptr
= (void *)master_gdt
;
453 * Master CPU uses the tables built at boot time.
454 * Just set the index pointers to the high shared-mapping space.
455 * Note that the sysenter stack uses empty space above the ktss
456 * in the HIGH_FIXED_KTSS page. In this case we don't map the
457 * the real master_sstk in low memory.
459 cdi
->cdi_ktss
= (struct i386_tss
*)
460 pmap_index_to_virt(HIGH_FIXED_KTSS
) ;
461 cdi
->cdi_sstk
= (vm_offset_t
) (cdi
->cdi_ktss
+ 1) +
462 (vm_offset_t
) &master_sstk
.top
-
463 (vm_offset_t
) &master_sstk
;
465 cpu_desc_table_t
*cdt
= (cpu_desc_table_t
*) cdp
->cpu_desc_tablep
;
467 vm_offset_t cpu_hi_desc
;
469 cpu_hi_desc
= pmap_cpu_high_shared_remap(
472 (vm_offset_t
) cdt
, 1);
475 * Per-cpu GDT, IDT, LDT, KTSS descriptors are allocated in one
476 * block (cpu_desc_table) and double-mapped into high shared space
477 * in one page window.
478 * Also, a transient stack for the fast sysenter path. The top of
479 * which is set at context switch time to point to the PCB using
482 cdi
->cdi_gdt
.ptr
= (struct fake_descriptor
*) (cpu_hi_desc
+
483 offsetof(cpu_desc_table_t
, gdt
[0]));
484 cdi
->cdi_idt
.ptr
= (struct fake_descriptor
*) (cpu_hi_desc
+
485 offsetof(cpu_desc_table_t
, idt
[0]));
486 cdi
->cdi_ktss
= (struct i386_tss
*) (cpu_hi_desc
+
487 offsetof(cpu_desc_table_t
, ktss
));
488 cdi
->cdi_sstk
= cpu_hi_desc
+ offsetof(cpu_desc_table_t
, sstk
.top
);
491 * LDT descriptors are mapped into a seperate area.
493 cdi
->cdi_ldt
= (struct fake_descriptor
*)
494 pmap_cpu_high_shared_remap(
497 (vm_offset_t
) cdp
->cpu_ldtp
,
498 HIGH_CPU_LDT_END
- HIGH_CPU_LDT_BEGIN
+ 1);
503 bcopy((char *)master_idt
, (char *)cdt
->idt
, sizeof(master_idt
));
504 bcopy((char *)master_gdt
, (char *)cdt
->gdt
, sizeof(master_gdt
));
505 bcopy((char *)master_ldt
, (char *)cdp
->cpu_ldtp
, sizeof(master_ldt
));
506 bzero((char *)&cdt
->ktss
, sizeof(struct i386_tss
));
509 * Fix up the entries in the GDT to point to
510 * this LDT and this TSS.
512 struct fake_descriptor temp_ldt
= ldt_desc_pattern
;
513 temp_ldt
.offset
= (vm_offset_t
)cdi
->cdi_ldt
;
514 fix_desc(&temp_ldt
, 1);
516 cdt
->gdt
[sel_idx(KERNEL_LDT
)] = temp_ldt
;
517 cdt
->gdt
[sel_idx(USER_LDT
)] = temp_ldt
;
519 cdt
->gdt
[sel_idx(KERNEL_TSS
)] = tss_desc_pattern
;
520 cdt
->gdt
[sel_idx(KERNEL_TSS
)].offset
= (vm_offset_t
) cdi
->cdi_ktss
;
521 fix_desc(&cdt
->gdt
[sel_idx(KERNEL_TSS
)], 1);
523 cdt
->gdt
[sel_idx(CPU_DATA_GS
)] = cpudata_desc_pattern
;
524 cdt
->gdt
[sel_idx(CPU_DATA_GS
)].offset
= (vm_offset_t
) cdp
;
525 fix_desc(&cdt
->gdt
[sel_idx(CPU_DATA_GS
)], 1);
527 cdt
->ktss
.ss0
= KERNEL_DS
;
528 cdt
->ktss
.io_bit_map_offset
= 0x0FFF; /* no IO bitmap */
530 cpu_userwindow_init(cdp
->cpu_number
);
531 cpu_physwindow_init(cdp
->cpu_number
);
535 #endif /* __i386__ */
538 cpu_desc_init64(cpu_data_t
*cdp
)
540 cpu_desc_index_t
*cdi
= &cdp
->cpu_desc_index
;
542 if (cdp
== &cpu_data_master
) {
544 * Master CPU uses the tables built at boot time.
545 * Just set the index pointers to the low memory space.
547 cdi
->cdi_ktss
= (void *)&master_ktss64
;
548 cdi
->cdi_sstk
= (vm_offset_t
) &master_sstk
.top
;
550 cdi
->cdi_gdt
.ptr
= (void *)MASTER_GDT_ALIAS
;
551 cdi
->cdi_idt
.ptr
= (void *)MASTER_IDT_ALIAS
;
553 cdi
->cdi_gdt
.ptr
= (void *)master_gdt
;
554 cdi
->cdi_idt
.ptr
= (void *)master_idt64
;
556 cdi
->cdi_ldt
= (struct fake_descriptor
*) master_ldt
;
558 /* Replace the expanded LDTs and TSS slots in the GDT */
559 kernel_ldt_desc64
.offset64
= UBER64(&master_ldt
);
560 *(struct fake_descriptor64
*) &master_gdt
[sel_idx(KERNEL_LDT
)] =
562 *(struct fake_descriptor64
*) &master_gdt
[sel_idx(USER_LDT
)] =
564 kernel_tss_desc64
.offset64
= UBER64(&master_ktss64
);
565 *(struct fake_descriptor64
*) &master_gdt
[sel_idx(KERNEL_TSS
)] =
568 /* Fix up the expanded descriptors for 64-bit. */
569 fix_desc64((void *) &master_idt64
, IDTSZ
);
570 fix_desc64((void *) &master_gdt
[sel_idx(KERNEL_LDT
)], 1);
571 fix_desc64((void *) &master_gdt
[sel_idx(USER_LDT
)], 1);
572 fix_desc64((void *) &master_gdt
[sel_idx(KERNEL_TSS
)], 1);
575 * Set the double-fault stack as IST1 in the 64-bit TSS
578 master_ktss64
.ist1
= (uintptr_t) low_eintstack
;
580 master_ktss64
.ist1
= UBER64((uintptr_t) df_task_stack_end
);
584 cpu_desc_table64_t
*cdt
= (cpu_desc_table64_t
*) cdp
->cpu_desc_tablep
;
586 * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel
587 * heap (cpu_desc_table).
588 * LDT descriptors are mapped into a separate area.
591 cdi
->cdi_idt
.ptr
= (void *)MASTER_IDT_ALIAS
;
593 cdi
->cdi_idt
.ptr
= (void *)cdt
->idt
;
595 cdi
->cdi_gdt
.ptr
= (struct fake_descriptor
*)cdt
->gdt
;
596 cdi
->cdi_ktss
= (void *)&cdt
->ktss
;
597 cdi
->cdi_sstk
= (vm_offset_t
)&cdt
->sstk
.top
;
598 cdi
->cdi_ldt
= cdp
->cpu_ldtp
;
604 bcopy((char *)master_idt64
, (char *)cdt
->idt
, sizeof(master_idt64
));
606 bcopy((char *)master_gdt
, (char *)cdt
->gdt
, sizeof(master_gdt
));
607 bcopy((char *)master_ldt
, (char *)cdp
->cpu_ldtp
, sizeof(master_ldt
));
608 bcopy((char *)&master_ktss64
, (char *)&cdt
->ktss
, sizeof(struct x86_64_tss
));
611 * Fix up the entries in the GDT to point to
612 * this LDT and this TSS.
614 kernel_ldt_desc64
.offset64
= UBER64(cdi
->cdi_ldt
);
615 *(struct fake_descriptor64
*) &cdt
->gdt
[sel_idx(KERNEL_LDT
)] =
617 fix_desc64(&cdt
->gdt
[sel_idx(KERNEL_LDT
)], 1);
619 kernel_ldt_desc64
.offset64
= UBER64(cdi
->cdi_ldt
);
620 *(struct fake_descriptor64
*) &cdt
->gdt
[sel_idx(USER_LDT
)] =
622 fix_desc64(&cdt
->gdt
[sel_idx(USER_LDT
)], 1);
624 kernel_tss_desc64
.offset64
= UBER64(cdi
->cdi_ktss
);
625 *(struct fake_descriptor64
*) &cdt
->gdt
[sel_idx(KERNEL_TSS
)] =
627 fix_desc64(&cdt
->gdt
[sel_idx(KERNEL_TSS
)], 1);
629 /* Set (zeroed) double-fault stack as IST1 */
630 bzero((void *) cdt
->dfstk
, sizeof(cdt
->dfstk
));
631 cdt
->ktss
.ist1
= UBER64((unsigned long)cdt
->dfstk
+ sizeof(cdt
->dfstk
));
633 cdt
->gdt
[sel_idx(CPU_DATA_GS
)] = cpudata_desc_pattern
;
634 cdt
->gdt
[sel_idx(CPU_DATA_GS
)].offset
= (vm_offset_t
) cdp
;
635 fix_desc(&cdt
->gdt
[sel_idx(CPU_DATA_GS
)], 1);
637 /* Allocate copyio windows */
638 cpu_userwindow_init(cdp
->cpu_number
);
639 cpu_physwindow_init(cdp
->cpu_number
);
643 /* Require that the top of the sysenter stack is 16-byte aligned */
644 if ((cdi
->cdi_sstk
% 16) != 0)
645 panic("cpu_desc_init64() sysenter stack not 16-byte aligned");
650 cpu_desc_load(cpu_data_t
*cdp
)
652 cpu_desc_index_t
*cdi
= &cdp
->cpu_desc_index
;
654 cdi
->cdi_idt
.size
= 0x1000 + cdp
->cpu_number
;
655 cdi
->cdi_gdt
.size
= sizeof(struct real_descriptor
)*GDTSZ
- 1;
657 lgdt((uintptr_t *) &cdi
->cdi_gdt
);
658 lidt((uintptr_t *) &cdi
->cdi_idt
);
663 __asm__
volatile("mov %0, %%gs" : : "rm" ((unsigned short)(CPU_DATA_GS
)));
665 #endif /* __i386__ */
668 cpu_desc_load64(cpu_data_t
*cdp
)
670 cpu_desc_index_t
*cdi
= &cdp
->cpu_desc_index
;
674 * Load up the new descriptors etc
675 * ml_load_desc64() expects these global pseudo-descriptors:
676 * gdtptr64 -> per-cpu gdt
677 * idtptr64 -> per-cpu idt
678 * These are 10-byte descriptors with 64-bit addresses into
681 * Refer to commpage/cpu_number.s for the IDT limit trick.
683 gdtptr64
.length
= GDTSZ
* sizeof(struct real_descriptor
) - 1;
684 gdtptr64
.offset
[0] = (uint32_t) cdi
->cdi_gdt
.ptr
;
685 gdtptr64
.offset
[1] = KERNEL_UBER_BASE_HI32
;
686 idtptr64
.length
= 0x1000 + cdp
->cpu_number
;
687 idtptr64
.offset
[0] = (uint32_t) cdi
->cdi_idt
.ptr
;
688 idtptr64
.offset
[1] = KERNEL_UBER_BASE_HI32
;
690 /* Make sure busy bit is cleared in the TSS */
691 gdt_desc_p(KERNEL_TSS
)->access
&= ~ACC_TSS_BUSY
;
695 /* Load the GDT, LDT, IDT and TSS */
696 cdi
->cdi_gdt
.size
= sizeof(struct real_descriptor
)*GDTSZ
- 1;
697 cdi
->cdi_idt
.size
= 0x1000 + cdp
->cpu_number
;
698 lgdt((uintptr_t *) &cdi
->cdi_gdt
);
699 lidt((uintptr_t *) &cdi
->cdi_idt
);
703 /* Stuff the kernel per-cpu data area address into the MSRs */
704 wrmsr64(MSR_IA32_GS_BASE
, (uintptr_t) cdp
);
705 wrmsr64(MSR_IA32_KERNEL_GS_BASE
, (uintptr_t) cdp
);
707 #if GPROF // Hack to enable mcount to work on K64
708 __asm__
volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS
)));
715 * Set MSRs for sysenter/sysexit for 32-bit.
718 fast_syscall_init(__unused cpu_data_t
*cdp
)
720 wrmsr(MSR_IA32_SYSENTER_CS
, SYSENTER_CS
, 0);
721 wrmsr(MSR_IA32_SYSENTER_EIP
, HI_TEXT(hi_sysenter
), 0);
722 wrmsr(MSR_IA32_SYSENTER_ESP
, current_sstk(), 0);
727 * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit.
730 fast_syscall_init64(__unused cpu_data_t
*cdp
)
732 wrmsr64(MSR_IA32_SYSENTER_CS
, SYSENTER_CS
);
733 wrmsr64(MSR_IA32_SYSENTER_EIP
, UBER64((uintptr_t) hi64_sysenter
));
734 wrmsr64(MSR_IA32_SYSENTER_ESP
, UBER64(current_sstk()));
735 /* Enable syscall/sysret */
736 wrmsr64(MSR_IA32_EFER
, rdmsr64(MSR_IA32_EFER
) | MSR_IA32_EFER_SCE
);
739 * MSRs for 64-bit syscall/sysret
740 * Note USER_CS because sysret uses this + 16 when returning to
743 wrmsr64(MSR_IA32_LSTAR
, UBER64((uintptr_t) hi64_syscall
));
744 wrmsr64(MSR_IA32_STAR
, (((uint64_t)USER_CS
) << 48) |
745 (((uint64_t)KERNEL64_CS
) << 32));
747 * Emulate eflags cleared by sysenter but note that
748 * we also clear the trace trap to avoid the complications
749 * of single-stepping into a syscall. The nested task bit
750 * is also cleared to avoid a spurious "task switch"
751 * should we choose to return via an IRET.
753 wrmsr64(MSR_IA32_FMASK
, EFL_DF
|EFL_IF
|EFL_TF
|EFL_NT
);
757 * Set the Kernel GS base MSR to point to per-cpu data in uber-space.
758 * The uber-space handler (hi64_syscall) uses the swapgs instruction.
760 wrmsr64(MSR_IA32_KERNEL_GS_BASE
, UBER64(cdp
));
762 #if ONLY_SAFE_FOR_LINDA_SERIAL
763 kprintf("fast_syscall_init64() KERNEL_GS_BASE=0x%016llx\n",
764 rdmsr64(MSR_IA32_KERNEL_GS_BASE
));
771 cpu_data_alloc(boolean_t is_boot_cpu
)
777 assert(real_ncpus
== 1);
779 if (cdp
->cpu_processor
== NULL
) {
780 simple_lock_init(&ncpus_lock
, 0);
781 cdp
->cpu_processor
= cpu_processor_alloc(TRUE
);
782 #if NCOPY_WINDOWS > 0
783 cdp
->cpu_pmap
= pmap_cpu_alloc(TRUE
);
790 * Allocate per-cpu data:
792 ret
= kmem_alloc(kernel_map
, (vm_offset_t
*) &cdp
, sizeof(cpu_data_t
));
793 if (ret
!= KERN_SUCCESS
) {
794 printf("cpu_data_alloc() failed, ret=%d\n", ret
);
797 bzero((void*) cdp
, sizeof(cpu_data_t
));
801 cdp
->cpu_is64bit
= cpu_mode_is64bit();
804 * Allocate interrupt stack:
806 ret
= kmem_alloc(kernel_map
,
807 (vm_offset_t
*) &cdp
->cpu_int_stack_top
,
809 if (ret
!= KERN_SUCCESS
) {
810 printf("cpu_data_alloc() int stack failed, ret=%d\n", ret
);
813 bzero((void*) cdp
->cpu_int_stack_top
, INTSTACK_SIZE
);
814 cdp
->cpu_int_stack_top
+= INTSTACK_SIZE
;
817 * Allocate descriptor table:
818 * Size depends on cpu mode.
821 ret
= kmem_alloc(kernel_map
,
822 (vm_offset_t
*) &cdp
->cpu_desc_tablep
,
823 cdp
->cpu_is64bit
? sizeof(cpu_desc_table64_t
)
824 : sizeof(cpu_desc_table_t
));
825 if (ret
!= KERN_SUCCESS
) {
826 printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret
);
833 ret
= kmem_alloc(kernel_map
,
834 (vm_offset_t
*) &cdp
->cpu_ldtp
,
835 sizeof(struct real_descriptor
) * LDTSZ
);
836 if (ret
!= KERN_SUCCESS
) {
837 printf("cpu_data_alloc() ldt failed, ret=%d\n", ret
);
842 /* Machine-check shadow register allocation. */
846 simple_lock(&ncpus_lock
);
848 cpu_data_ptr
[real_ncpus
] = cdp
;
849 cdp
->cpu_number
= real_ncpus
;
851 simple_unlock(&ncpus_lock
);
853 cdp
->cpu_nanotime
= &pal_rtc_nanotime_info
;
855 kprintf("cpu_data_alloc(%d) %p desc_table: %p "
857 "int_stack: 0x%lx-0x%lx\n",
858 cdp
->cpu_number
, cdp
, cdp
->cpu_desc_tablep
, cdp
->cpu_ldtp
,
859 (long)(cdp
->cpu_int_stack_top
- INTSTACK_SIZE
), (long)(cdp
->cpu_int_stack_top
));
865 if (cdp
->cpu_desc_tablep
)
866 kfree((void *) cdp
->cpu_desc_tablep
,
867 sizeof(*cdp
->cpu_desc_tablep
));
868 if (cdp
->cpu_int_stack_top
)
869 kfree((void *) (cdp
->cpu_int_stack_top
- INTSTACK_SIZE
),
871 kfree((void *) cdp
, sizeof(*cdp
));
877 valid_user_data_selector(uint16_t selector
)
879 sel_t sel
= selector_to_sel(selector
);
884 if (sel
.ti
== SEL_LDT
)
886 else if (sel
.index
< GDTSZ
) {
887 if ((gdt_desc_p(selector
)->access
& ACC_PL_U
) == ACC_PL_U
)
895 valid_user_code_selector(uint16_t selector
)
897 sel_t sel
= selector_to_sel(selector
);
902 if (sel
.ti
== SEL_LDT
) {
903 if (sel
.rpl
== USER_PRIV
)
906 else if (sel
.index
< GDTSZ
&& sel
.rpl
== USER_PRIV
) {
907 if ((gdt_desc_p(selector
)->access
& ACC_PL_U
) == ACC_PL_U
)
915 valid_user_stack_selector(uint16_t selector
)
917 sel_t sel
= selector_to_sel(selector
);
922 if (sel
.ti
== SEL_LDT
) {
923 if (sel
.rpl
== USER_PRIV
)
926 else if (sel
.index
< GDTSZ
&& sel
.rpl
== USER_PRIV
) {
927 if ((gdt_desc_p(selector
)->access
& ACC_PL_U
) == ACC_PL_U
)
935 valid_user_segment_selectors(uint16_t cs
,
942 return valid_user_code_selector(cs
) &&
943 valid_user_stack_selector(ss
) &&
944 valid_user_data_selector(ds
) &&
945 valid_user_data_selector(es
) &&
946 valid_user_data_selector(fs
) &&
947 valid_user_data_selector(gs
);
950 #if NCOPY_WINDOWS > 0
952 static vm_offset_t user_window_base
= 0;
955 cpu_userwindow_init(int cpu
)
957 cpu_data_t
*cdp
= cpu_data_ptr
[cpu
];
958 vm_offset_t user_window
;
962 num_cpus
= ml_get_max_cpus();
965 panic("cpu_userwindow_init: cpu > num_cpus");
967 if (user_window_base
== 0) {
969 if (vm_allocate(kernel_map
, &vaddr
,
970 (NBPDE
* NCOPY_WINDOWS
* num_cpus
) + NBPDE
,
971 VM_FLAGS_ANYWHERE
) != KERN_SUCCESS
)
972 panic("cpu_userwindow_init: "
973 "couldn't allocate user map window");
976 * window must start on a page table boundary
977 * in the virtual address space
979 user_window_base
= (vaddr
+ (NBPDE
- 1)) & ~(NBPDE
- 1);
982 * get rid of any allocation leading up to our
985 vm_deallocate(kernel_map
, vaddr
, user_window_base
- vaddr
);
988 * get rid of tail that we don't need
990 user_window
= user_window_base
+
991 (NBPDE
* NCOPY_WINDOWS
* num_cpus
);
993 vm_deallocate(kernel_map
, user_window
,
995 ((NBPDE
* NCOPY_WINDOWS
* num_cpus
) + NBPDE
)) -
999 user_window
= user_window_base
+ (cpu
* NCOPY_WINDOWS
* NBPDE
);
1001 cdp
->cpu_copywindow_base
= user_window
;
1003 * Abuse this pdp entry, the pdp now actually points to
1004 * an array of copy windows addresses.
1006 cdp
->cpu_copywindow_pdp
= pmap_pde(kernel_pmap
, user_window
);
1009 cpu_desc_index_t
*cdi
= &cdp
->cpu_desc_index
;
1010 cdi
->cdi_gdt
.ptr
[sel_idx(USER_WINDOW_SEL
)] = userwindow_desc_pattern
;
1011 cdi
->cdi_gdt
.ptr
[sel_idx(USER_WINDOW_SEL
)].offset
= user_window
;
1013 fix_desc(&cdi
->cdi_gdt
.ptr
[sel_idx(USER_WINDOW_SEL
)], 1);
1014 #endif /* __i386__ */
1018 cpu_physwindow_init(int cpu
)
1020 cpu_data_t
*cdp
= cpu_data_ptr
[cpu
];
1021 vm_offset_t phys_window
= cdp
->cpu_physwindow_base
;
1023 if (phys_window
== 0) {
1024 if (vm_allocate(kernel_map
, &phys_window
,
1025 PAGE_SIZE
, VM_FLAGS_ANYWHERE
)
1027 panic("cpu_physwindow_init: "
1028 "couldn't allocate phys map window");
1031 * make sure the page that encompasses the
1032 * pte pointer we're interested in actually
1033 * exists in the page table
1035 pmap_expand(kernel_pmap
, phys_window
, PMAP_EXPAND_OPTIONS_NONE
);
1037 cdp
->cpu_physwindow_base
= phys_window
;
1038 cdp
->cpu_physwindow_ptep
= vtopte(phys_window
);
1041 cpu_desc_index_t
*cdi
= &cdp
->cpu_desc_index
;
1042 cdi
->cdi_gdt
.ptr
[sel_idx(PHYS_WINDOW_SEL
)] = physwindow_desc_pattern
;
1043 cdi
->cdi_gdt
.ptr
[sel_idx(PHYS_WINDOW_SEL
)].offset
= phys_window
;
1045 fix_desc(&cdi
->cdi_gdt
.ptr
[sel_idx(PHYS_WINDOW_SEL
)], 1);
1046 #endif /* __i386__ */
1048 #endif /* NCOPY_WINDOWS > 0 */
1051 * Load the segment descriptor tables for the current processor.
1054 cpu_mode_init(cpu_data_t
*cdp
)
1057 if (cdp
->cpu_is64bit
) {
1058 cpu_IA32e_enable(cdp
);
1059 cpu_desc_load64(cdp
);
1060 fast_syscall_init64(cdp
);
1062 fast_syscall_init(cdp
);
1065 fast_syscall_init64(cdp
);
1071 * Allocate a new interrupt stack for the boot processor from the
1072 * heap rather than continue to use the statically allocated space.
1073 * Also switch to a dynamically allocated cpu data area.
1076 cpu_data_realloc(void)
1083 ret
= kmem_alloc(kernel_map
, &stack
, INTSTACK_SIZE
);
1084 if (ret
!= KERN_SUCCESS
) {
1085 panic("cpu_data_realloc() stack alloc, ret=%d\n", ret
);
1087 bzero((void*) stack
, INTSTACK_SIZE
);
1088 stack
+= INTSTACK_SIZE
;
1090 ret
= kmem_alloc(kernel_map
, (vm_offset_t
*) &cdp
, sizeof(cpu_data_t
));
1091 if (ret
!= KERN_SUCCESS
) {
1092 panic("cpu_data_realloc() cpu data alloc, ret=%d\n", ret
);
1095 /* Copy old contents into new area and make fix-ups */
1096 bcopy((void *) &cpu_data_master
, (void*) cdp
, sizeof(cpu_data_t
));
1097 cdp
->cpu_this
= cdp
;
1098 cdp
->cpu_int_stack_top
= stack
;
1099 timer_call_initialize_queue(&cdp
->rtclock_timer
.queue
);
1101 kprintf("Reallocated master cpu data: %p, interrupt stack top: %p\n",
1102 (void *) cdp
, (void *) stack
);
1105 * With interrupts disabled commmit the new areas.
1107 istate
= ml_set_interrupts_enabled(FALSE
);
1108 cpu_data_ptr
[0] = cdp
;
1109 wrmsr64(MSR_IA32_GS_BASE
, (uintptr_t) cdp
);
1110 wrmsr64(MSR_IA32_KERNEL_GS_BASE
, (uintptr_t) cdp
);
1111 (void) ml_set_interrupts_enabled(istate
);
1113 #endif /* __x86_64__ */