]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_fsevents.c
fd363613211bb670bb456ddee59785554f7f3e7e
[apple/xnu.git] / bsd / vfs / vfs_fsevents.c
1 /*
2 * Copyright (c) 2004-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <stdarg.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/event.h> // for kqueue related stuff
32 #include <sys/fsevents.h>
33
34 #if CONFIG_FSE
35 #include <sys/namei.h>
36 #include <sys/filedesc.h>
37 #include <sys/kernel.h>
38 #include <sys/file_internal.h>
39 #include <sys/stat.h>
40 #include <sys/vnode_internal.h>
41 #include <sys/mount_internal.h>
42 #include <sys/proc_internal.h>
43 #include <sys/kauth.h>
44 #include <sys/uio.h>
45 #include <sys/malloc.h>
46 #include <sys/dirent.h>
47 #include <sys/attr.h>
48 #include <sys/sysctl.h>
49 #include <sys/ubc.h>
50 #include <machine/cons.h>
51 #include <miscfs/specfs/specdev.h>
52 #include <miscfs/devfs/devfs.h>
53 #include <sys/filio.h>
54 #include <kern/locks.h>
55 #include <libkern/OSAtomic.h>
56 #include <kern/zalloc.h>
57 #include <mach/mach_time.h>
58 #include <kern/thread_call.h>
59 #include <kern/clock.h>
60
61 #include <security/audit/audit.h>
62 #include <bsm/audit_kevents.h>
63
64 #include <pexpert/pexpert.h>
65
66 typedef struct kfs_event {
67 LIST_ENTRY(kfs_event) kevent_list;
68 int16_t type; // type code of this event
69 u_int16_t flags, // per-event flags
70 len; // the length of the path in "str"
71 int32_t refcount; // number of clients referencing this
72 pid_t pid; // pid of the process that did the op
73
74 uint64_t abstime; // when this event happened (mach_absolute_time())
75 ino64_t ino;
76 dev_t dev;
77 int32_t mode;
78 uid_t uid;
79 gid_t gid;
80
81 const char *str;
82
83 struct kfs_event *dest; // if this is a two-file op
84 } kfs_event;
85
86 // flags for the flags field
87 #define KFSE_COMBINED_EVENTS 0x0001
88 #define KFSE_CONTAINS_DROPPED_EVENTS 0x0002
89 #define KFSE_RECYCLED_EVENT 0x0004
90 #define KFSE_BEING_CREATED 0x0008
91
92 LIST_HEAD(kfse_list, kfs_event) kfse_list_head = LIST_HEAD_INITIALIZER(x);
93 int num_events_outstanding = 0;
94 int num_pending_rename = 0;
95
96
97 struct fsevent_handle;
98
99 typedef struct fs_event_watcher {
100 int8_t *event_list; // the events we're interested in
101 int32_t num_events;
102 dev_t *devices_not_to_watch; // report events from devices not in this list
103 uint32_t num_devices;
104 int32_t flags;
105 kfs_event **event_queue;
106 int32_t eventq_size; // number of event pointers in queue
107 int32_t num_readers;
108 int32_t rd; // read index into the event_queue
109 int32_t wr; // write index into the event_queue
110 int32_t blockers;
111 int32_t my_id;
112 uint32_t num_dropped;
113 uint64_t max_event_id;
114 struct fsevent_handle *fseh;
115 pid_t pid;
116 char proc_name[(2 * MAXCOMLEN) + 1];
117 } fs_event_watcher;
118
119 // fs_event_watcher flags
120 #define WATCHER_DROPPED_EVENTS 0x0001
121 #define WATCHER_CLOSING 0x0002
122 #define WATCHER_WANTS_COMPACT_EVENTS 0x0004
123 #define WATCHER_WANTS_EXTENDED_INFO 0x0008
124 #define WATCHER_APPLE_SYSTEM_SERVICE 0x0010 // fseventsd, coreservicesd, mds
125
126 #define MAX_WATCHERS 8
127 static fs_event_watcher *watcher_table[MAX_WATCHERS];
128
129 #define DEFAULT_MAX_KFS_EVENTS 4096
130 static int max_kfs_events = DEFAULT_MAX_KFS_EVENTS;
131
132 // we allocate kfs_event structures out of this zone
133 static zone_t event_zone;
134 static int fs_event_init = 0;
135
136 //
137 // this array records whether anyone is interested in a
138 // particular type of event. if no one is, we bail out
139 // early from the event delivery
140 //
141 static int16_t fs_event_type_watchers[FSE_MAX_EVENTS];
142
143 static int watcher_add_event(fs_event_watcher *watcher, kfs_event *kfse);
144 static void fsevents_wakeup(fs_event_watcher *watcher);
145
146 //
147 // Locks
148 //
149 static lck_grp_attr_t * fsevent_group_attr;
150 static lck_attr_t * fsevent_lock_attr;
151 static lck_grp_t * fsevent_mutex_group;
152
153 static lck_grp_t * fsevent_rw_group;
154
155 static lck_rw_t event_handling_lock; // handles locking for event manipulation and recycling
156 static lck_mtx_t watch_table_lock;
157 static lck_mtx_t event_buf_lock;
158 static lck_mtx_t event_writer_lock;
159
160
161 /* Explicitly declare qsort so compiler doesn't complain */
162 __private_extern__ void qsort(
163 void * array,
164 size_t nmembers,
165 size_t member_size,
166 int (*)(const void *, const void *));
167
168 static int
169 is_ignored_directory(const char *path) {
170
171 if (!path) {
172 return 0;
173 }
174
175 #define IS_TLD(x) strnstr((char *) path, x, MAXPATHLEN)
176 if (IS_TLD("/.Spotlight-V100/") ||
177 IS_TLD("/.MobileBackups/") ||
178 IS_TLD("/Backups.backupdb/")) {
179 return 1;
180 }
181 #undef IS_TLD
182
183 return 0;
184 }
185
186 static void
187 fsevents_internal_init(void)
188 {
189 int i;
190
191 if (fs_event_init++ != 0) {
192 return;
193 }
194
195 for(i=0; i < FSE_MAX_EVENTS; i++) {
196 fs_event_type_watchers[i] = 0;
197 }
198
199 memset(watcher_table, 0, sizeof(watcher_table));
200
201 fsevent_lock_attr = lck_attr_alloc_init();
202 fsevent_group_attr = lck_grp_attr_alloc_init();
203 fsevent_mutex_group = lck_grp_alloc_init("fsevent-mutex", fsevent_group_attr);
204 fsevent_rw_group = lck_grp_alloc_init("fsevent-rw", fsevent_group_attr);
205
206 lck_mtx_init(&watch_table_lock, fsevent_mutex_group, fsevent_lock_attr);
207 lck_mtx_init(&event_buf_lock, fsevent_mutex_group, fsevent_lock_attr);
208 lck_mtx_init(&event_writer_lock, fsevent_mutex_group, fsevent_lock_attr);
209
210 lck_rw_init(&event_handling_lock, fsevent_rw_group, fsevent_lock_attr);
211
212 PE_get_default("kern.maxkfsevents", &max_kfs_events, sizeof(max_kfs_events));
213
214 event_zone = zinit(sizeof(kfs_event),
215 max_kfs_events * sizeof(kfs_event),
216 max_kfs_events * sizeof(kfs_event),
217 "fs-event-buf");
218 if (event_zone == NULL) {
219 printf("fsevents: failed to initialize the event zone.\n");
220 }
221
222 // mark the zone as exhaustible so that it will not
223 // ever grow beyond what we initially filled it with
224 zone_change(event_zone, Z_EXHAUST, TRUE);
225 zone_change(event_zone, Z_COLLECT, FALSE);
226 zone_change(event_zone, Z_CALLERACCT, FALSE);
227
228 if (zfill(event_zone, max_kfs_events) < max_kfs_events) {
229 printf("fsevents: failed to pre-fill the event zone.\n");
230 }
231
232 }
233
234 static void
235 lock_watch_table(void)
236 {
237 lck_mtx_lock(&watch_table_lock);
238 }
239
240 static void
241 unlock_watch_table(void)
242 {
243 lck_mtx_unlock(&watch_table_lock);
244 }
245
246 static void
247 lock_fs_event_list(void)
248 {
249 lck_mtx_lock(&event_buf_lock);
250 }
251
252 static void
253 unlock_fs_event_list(void)
254 {
255 lck_mtx_unlock(&event_buf_lock);
256 }
257
258 // forward prototype
259 static void release_event_ref(kfs_event *kfse);
260
261 static int
262 watcher_cares_about_dev(fs_event_watcher *watcher, dev_t dev)
263 {
264 unsigned int i;
265
266 // if devices_not_to_watch is NULL then we care about all
267 // events from all devices
268 if (watcher->devices_not_to_watch == NULL) {
269 return 1;
270 }
271
272 for(i=0; i < watcher->num_devices; i++) {
273 if (dev == watcher->devices_not_to_watch[i]) {
274 // found a match! that means we do not
275 // want events from this device.
276 return 0;
277 }
278 }
279
280 // if we're here it's not in the devices_not_to_watch[]
281 // list so that means we do care about it
282 return 1;
283 }
284
285
286 int
287 need_fsevent(int type, vnode_t vp)
288 {
289 if (type >= 0 && type < FSE_MAX_EVENTS && fs_event_type_watchers[type] == 0)
290 return (0);
291
292 // events in /dev aren't really interesting...
293 if (vp->v_tag == VT_DEVFS) {
294 return (0);
295 }
296
297 return 1;
298 }
299
300
301 #define is_throw_away(x) ((x) == FSE_STAT_CHANGED || (x) == FSE_CONTENT_MODIFIED)
302
303
304 // Ways that an event can be reused:
305 //
306 // "combined" events mean that there were two events for
307 // the same vnode or path and we're combining both events
308 // into a single event. The primary event gets a bit that
309 // marks it as having been combined. The secondary event
310 // is essentially dropped and the kfse structure reused.
311 //
312 // "collapsed" means that multiple events below a given
313 // directory are collapsed into a single event. in this
314 // case, the directory that we collapse into and all of
315 // its children must be re-scanned.
316 //
317 // "recycled" means that we're completely blowing away
318 // the event since there are other events that have info
319 // about the same vnode or path (and one of those other
320 // events will be marked as combined or collapsed as
321 // appropriate).
322 //
323 #define KFSE_COMBINED 0x0001
324 #define KFSE_COLLAPSED 0x0002
325 #define KFSE_RECYCLED 0x0004
326
327 int num_dropped = 0;
328 int num_parent_switch = 0;
329 int num_recycled_rename = 0;
330
331 static struct timeval last_print;
332
333 //
334 // These variables are used to track coalescing multiple identical
335 // events for the same vnode/pathname. If we get the same event
336 // type and same vnode/pathname as the previous event, we just drop
337 // the event since it's superfluous. This improves some micro-
338 // benchmarks considerably and actually has a real-world impact on
339 // tests like a Finder copy where multiple stat-changed events can
340 // get coalesced.
341 //
342 static int last_event_type=-1;
343 static void *last_ptr=NULL;
344 static char last_str[MAXPATHLEN];
345 static int last_nlen=0;
346 static int last_vid=-1;
347 static uint64_t last_coalesced_time=0;
348 static void *last_event_ptr=NULL;
349 int last_coalesced = 0;
350 static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 };
351
352
353 int
354 add_fsevent(int type, vfs_context_t ctx, ...)
355 {
356 struct proc *p = vfs_context_proc(ctx);
357 int i, arg_type, ret;
358 kfs_event *kfse, *kfse_dest=NULL, *cur;
359 fs_event_watcher *watcher;
360 va_list ap;
361 int error = 0, did_alloc=0;
362 dev_t dev = 0;
363 uint64_t now, elapsed;
364 char *pathbuff=NULL;
365 int pathbuff_len;
366
367
368
369 va_start(ap, ctx);
370
371 // ignore bogus event types..
372 if (type < 0 || type >= FSE_MAX_EVENTS) {
373 return EINVAL;
374 }
375
376 // if no one cares about this type of event, bail out
377 if (fs_event_type_watchers[type] == 0) {
378 va_end(ap);
379
380 return 0;
381 }
382
383 now = mach_absolute_time();
384
385 // find a free event and snag it for our use
386 // NOTE: do not do anything that would block until
387 // the lock is dropped.
388 lock_fs_event_list();
389
390 //
391 // check if this event is identical to the previous one...
392 // (as long as it's not an event type that can never be the
393 // same as a previous event)
394 //
395 if (type != FSE_CREATE_FILE && type != FSE_DELETE && type != FSE_RENAME && type != FSE_EXCHANGE && type != FSE_CHOWN && type != FSE_DOCID_CHANGED && type != FSE_DOCID_CREATED) {
396 void *ptr=NULL;
397 int vid=0, was_str=0, nlen=0;
398
399 for(arg_type=va_arg(ap, int32_t); arg_type != FSE_ARG_DONE; arg_type=va_arg(ap, int32_t)) {
400 switch(arg_type) {
401 case FSE_ARG_VNODE: {
402 ptr = va_arg(ap, void *);
403 vid = vnode_vid((struct vnode *)ptr);
404 last_str[0] = '\0';
405 break;
406 }
407 case FSE_ARG_STRING: {
408 nlen = va_arg(ap, int32_t);
409 ptr = va_arg(ap, void *);
410 was_str = 1;
411 break;
412 }
413 }
414 if (ptr != NULL) {
415 break;
416 }
417 }
418
419 if ( sTimebaseInfo.denom == 0 ) {
420 (void) clock_timebase_info(&sTimebaseInfo);
421 }
422
423 elapsed = (now - last_coalesced_time);
424 if (sTimebaseInfo.denom != sTimebaseInfo.numer) {
425 if (sTimebaseInfo.denom == 1) {
426 elapsed *= sTimebaseInfo.numer;
427 } else {
428 // this could overflow... the worst that will happen is that we'll
429 // send (or not send) an extra event so I'm not going to worry about
430 // doing the math right like dtrace_abs_to_nano() does.
431 elapsed = (elapsed * sTimebaseInfo.numer) / (uint64_t)sTimebaseInfo.denom;
432 }
433 }
434
435 if (type == last_event_type
436 && (elapsed < 1000000000)
437 &&
438 ((vid && vid == last_vid && last_ptr == ptr)
439 ||
440 (last_str[0] && last_nlen == nlen && ptr && strcmp(last_str, ptr) == 0))
441 ) {
442
443 last_coalesced++;
444 unlock_fs_event_list();
445 va_end(ap);
446
447 return 0;
448 } else {
449 last_ptr = ptr;
450 if (was_str) {
451 strlcpy(last_str, ptr, sizeof(last_str));
452 }
453 last_nlen = nlen;
454 last_vid = vid;
455 last_event_type = type;
456 last_coalesced_time = now;
457 }
458 }
459 va_start(ap, ctx);
460
461
462 kfse = zalloc_noblock(event_zone);
463 if (kfse && (type == FSE_RENAME || type == FSE_EXCHANGE)) {
464 kfse_dest = zalloc_noblock(event_zone);
465 if (kfse_dest == NULL) {
466 did_alloc = 1;
467 zfree(event_zone, kfse);
468 kfse = NULL;
469 }
470 }
471
472
473 if (kfse == NULL) { // yikes! no free events
474 unlock_fs_event_list();
475 lock_watch_table();
476
477 for(i=0; i < MAX_WATCHERS; i++) {
478 watcher = watcher_table[i];
479 if (watcher == NULL) {
480 continue;
481 }
482
483 watcher->flags |= WATCHER_DROPPED_EVENTS;
484 fsevents_wakeup(watcher);
485 }
486 unlock_watch_table();
487
488 {
489 struct timeval current_tv;
490
491 num_dropped++;
492
493 // only print a message at most once every 5 seconds
494 microuptime(&current_tv);
495 if ((current_tv.tv_sec - last_print.tv_sec) > 10) {
496 int ii;
497 void *junkptr=zalloc_noblock(event_zone), *listhead=kfse_list_head.lh_first;
498
499 printf("add_fsevent: event queue is full! dropping events (num dropped events: %d; num events outstanding: %d).\n", num_dropped, num_events_outstanding);
500 printf("add_fsevent: kfse_list head %p ; num_pending_rename %d\n", listhead, num_pending_rename);
501 printf("add_fsevent: zalloc sez: %p\n", junkptr);
502 printf("add_fsevent: event_zone info: %d 0x%x\n", ((int *)event_zone)[0], ((int *)event_zone)[1]);
503 lock_watch_table();
504 for(ii=0; ii < MAX_WATCHERS; ii++) {
505 if (watcher_table[ii] == NULL) {
506 continue;
507 }
508
509 printf("add_fsevent: watcher %s %p: rd %4d wr %4d q_size %4d flags 0x%x\n",
510 watcher_table[ii]->proc_name,
511 watcher_table[ii],
512 watcher_table[ii]->rd, watcher_table[ii]->wr,
513 watcher_table[ii]->eventq_size, watcher_table[ii]->flags);
514 }
515 unlock_watch_table();
516
517 last_print = current_tv;
518 if (junkptr) {
519 zfree(event_zone, junkptr);
520 }
521 }
522 }
523
524 if (pathbuff) {
525 release_pathbuff(pathbuff);
526 pathbuff = NULL;
527 }
528 return ENOSPC;
529 }
530
531 memset(kfse, 0, sizeof(kfs_event));
532 kfse->refcount = 1;
533 OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse->flags);
534
535 last_event_ptr = kfse;
536 kfse->type = type;
537 kfse->abstime = now;
538 kfse->pid = p->p_pid;
539 if (type == FSE_RENAME || type == FSE_EXCHANGE) {
540 memset(kfse_dest, 0, sizeof(kfs_event));
541 kfse_dest->refcount = 1;
542 OSBitOrAtomic16(KFSE_BEING_CREATED, &kfse_dest->flags);
543 kfse_dest->type = type;
544 kfse_dest->pid = p->p_pid;
545 kfse_dest->abstime = now;
546
547 kfse->dest = kfse_dest;
548 }
549
550 num_events_outstanding++;
551 if (kfse->type == FSE_RENAME) {
552 num_pending_rename++;
553 }
554 LIST_INSERT_HEAD(&kfse_list_head, kfse, kevent_list);
555
556 if (kfse->refcount < 1) {
557 panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount);
558 }
559
560 unlock_fs_event_list(); // at this point it's safe to unlock
561
562 //
563 // now process the arguments passed in and copy them into
564 // the kfse
565 //
566
567 cur = kfse;
568
569 if (type == FSE_DOCID_CREATED || type == FSE_DOCID_CHANGED) {
570 uint64_t val;
571
572 //
573 // These events are special and not like the other events. They only
574 // have a dev_t, src inode #, dest inode #, and a doc-id. We use the
575 // fields that we can in the kfse but have to overlay the dest inode
576 // number and the doc-id on the other fields.
577 //
578
579 // First the dev_t
580 arg_type = va_arg(ap, int32_t);
581 if (arg_type == FSE_ARG_DEV) {
582 cur->dev = (dev_t)(va_arg(ap, dev_t));
583 } else {
584 cur->dev = (dev_t)0xbadc0de1;
585 }
586
587 // next the source inode #
588 arg_type = va_arg(ap, int32_t);
589 if (arg_type == FSE_ARG_INO) {
590 cur->ino = (ino64_t)(va_arg(ap, ino64_t));
591 } else {
592 cur->ino = 0xbadc0de2;
593 }
594
595 // now the dest inode #
596 arg_type = va_arg(ap, int32_t);
597 if (arg_type == FSE_ARG_INO) {
598 val = (ino64_t)(va_arg(ap, ino64_t));
599 } else {
600 val = 0xbadc0de2;
601 }
602 // overlay the dest inode number on the str/dest pointer fields
603 memcpy(&cur->str, &val, sizeof(ino64_t));
604
605
606 // and last the document-id
607 arg_type = va_arg(ap, int32_t);
608 if (arg_type == FSE_ARG_INT32) {
609 val = (uint64_t)va_arg(ap, uint32_t);
610 } else if (arg_type == FSE_ARG_INT64) {
611 val = (uint64_t)va_arg(ap, uint64_t);
612 } else {
613 val = 0xbadc0de3;
614 }
615
616 // the docid is 64-bit and overlays the uid/gid fields
617 memcpy(&cur->uid, &val, sizeof(uint64_t));
618
619 goto done_with_args;
620 }
621
622 for(arg_type=va_arg(ap, int32_t); arg_type != FSE_ARG_DONE; arg_type=va_arg(ap, int32_t))
623
624 switch(arg_type) {
625 case FSE_ARG_VNODE: {
626 // this expands out into multiple arguments to the client
627 struct vnode *vp;
628 struct vnode_attr va;
629
630 if (kfse->str != NULL) {
631 cur = kfse_dest;
632 }
633
634 vp = va_arg(ap, struct vnode *);
635 if (vp == NULL) {
636 panic("add_fsevent: you can't pass me a NULL vnode ptr (type %d)!\n",
637 cur->type);
638 }
639
640 VATTR_INIT(&va);
641 VATTR_WANTED(&va, va_fsid);
642 VATTR_WANTED(&va, va_fileid);
643 VATTR_WANTED(&va, va_mode);
644 VATTR_WANTED(&va, va_uid);
645 VATTR_WANTED(&va, va_gid);
646 if ((ret = vnode_getattr(vp, &va, vfs_context_kernel())) != 0) {
647 // printf("add_fsevent: failed to getattr on vp %p (%d)\n", cur->fref.vp, ret);
648 cur->str = NULL;
649 error = EINVAL;
650 goto clean_up;
651 }
652
653 cur->dev = dev = (dev_t)va.va_fsid;
654 cur->ino = (ino64_t)va.va_fileid;
655 cur->mode = (int32_t)vnode_vttoif(vnode_vtype(vp)) | va.va_mode;
656 cur->uid = va.va_uid;
657 cur->gid = va.va_gid;
658
659 // if we haven't gotten the path yet, get it.
660 if (pathbuff == NULL) {
661 pathbuff = get_pathbuff();
662 pathbuff_len = MAXPATHLEN;
663
664 pathbuff[0] = '\0';
665 if ((ret = vn_getpath(vp, pathbuff, &pathbuff_len)) != 0 || pathbuff[0] == '\0') {
666
667 cur->flags |= KFSE_CONTAINS_DROPPED_EVENTS;
668
669 do {
670 if (vp->v_parent != NULL) {
671 vp = vp->v_parent;
672 } else if (vp->v_mount) {
673 strlcpy(pathbuff, vp->v_mount->mnt_vfsstat.f_mntonname, MAXPATHLEN);
674 break;
675 } else {
676 vp = NULL;
677 }
678
679 if (vp == NULL) {
680 break;
681 }
682
683 pathbuff_len = MAXPATHLEN;
684 ret = vn_getpath(vp, pathbuff, &pathbuff_len);
685 } while (ret == ENOSPC);
686
687 if (ret != 0 || vp == NULL) {
688 error = ENOENT;
689 goto clean_up;
690 }
691 }
692 }
693
694 // store the path by adding it to the global string table
695 cur->len = pathbuff_len;
696 cur->str = vfs_addname(pathbuff, pathbuff_len, 0, 0);
697 if (cur->str == NULL || cur->str[0] == '\0') {
698 panic("add_fsevent: was not able to add path %s to event %p.\n", pathbuff, cur);
699 }
700
701 release_pathbuff(pathbuff);
702 pathbuff = NULL;
703
704 break;
705 }
706
707 case FSE_ARG_FINFO: {
708 fse_info *fse;
709
710 fse = va_arg(ap, fse_info *);
711
712 cur->dev = dev = (dev_t)fse->dev;
713 cur->ino = (ino64_t)fse->ino;
714 cur->mode = (int32_t)fse->mode;
715 cur->uid = (uid_t)fse->uid;
716 cur->gid = (uid_t)fse->gid;
717 // if it's a hard-link and this is the last link, flag it
718 if ((fse->mode & FSE_MODE_HLINK) && fse->nlink == 0) {
719 cur->mode |= FSE_MODE_LAST_HLINK;
720 }
721 if (cur->mode & FSE_TRUNCATED_PATH) {
722 cur->flags |= KFSE_CONTAINS_DROPPED_EVENTS;
723 cur->mode &= ~FSE_TRUNCATED_PATH;
724 }
725 break;
726 }
727
728 case FSE_ARG_STRING:
729 if (kfse->str != NULL) {
730 cur = kfse_dest;
731 }
732
733 cur->len = (int16_t)(va_arg(ap, int32_t) & 0x7fff);
734 if (cur->len >= 1) {
735 cur->str = vfs_addname(va_arg(ap, char *), cur->len, 0, 0);
736 } else {
737 printf("add_fsevent: funny looking string length: %d\n", (int)cur->len);
738 cur->len = 2;
739 cur->str = vfs_addname("/", cur->len, 0, 0);
740 }
741 if (cur->str[0] == 0) {
742 printf("add_fsevent: bogus looking string (len %d)\n", cur->len);
743 }
744 break;
745
746 case FSE_ARG_INT32: {
747 uint32_t ival = (uint32_t)va_arg(ap, int32_t);
748 kfse->uid = (ino64_t)ival;
749 break;
750 }
751
752 default:
753 printf("add_fsevent: unknown type %d\n", arg_type);
754 // just skip one 32-bit word and hope we sync up...
755 (void)va_arg(ap, int32_t);
756 }
757
758 done_with_args:
759 va_end(ap);
760
761 OSBitAndAtomic16(~KFSE_BEING_CREATED, &kfse->flags);
762 if (kfse_dest) {
763 OSBitAndAtomic16(~KFSE_BEING_CREATED, &kfse_dest->flags);
764 }
765
766 //
767 // now we have to go and let everyone know that
768 // is interested in this type of event
769 //
770 lock_watch_table();
771
772 for(i=0; i < MAX_WATCHERS; i++) {
773 watcher = watcher_table[i];
774 if (watcher == NULL) {
775 continue;
776 }
777
778 if ( watcher->event_list[type] == FSE_REPORT
779 && watcher_cares_about_dev(watcher, dev)) {
780
781 if (watcher_add_event(watcher, kfse) != 0) {
782 watcher->num_dropped++;
783 continue;
784 }
785 }
786
787 // if (kfse->refcount < 1) {
788 // panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount);
789 // }
790 }
791
792 unlock_watch_table();
793
794 clean_up:
795
796 if (pathbuff) {
797 release_pathbuff(pathbuff);
798 pathbuff = NULL;
799 }
800
801 release_event_ref(kfse);
802
803 return error;
804 }
805
806
807 static void
808 release_event_ref(kfs_event *kfse)
809 {
810 int old_refcount;
811 kfs_event copy, dest_copy;
812
813
814 old_refcount = OSAddAtomic(-1, &kfse->refcount);
815 if (old_refcount > 1) {
816 return;
817 }
818
819 lock_fs_event_list();
820 if (last_event_ptr == kfse) {
821 last_event_ptr = NULL;
822 last_event_type = -1;
823 last_coalesced_time = 0;
824 }
825
826 if (kfse->refcount < 0) {
827 panic("release_event_ref: bogus kfse refcount %d\n", kfse->refcount);
828 }
829
830 if (kfse->refcount > 0 || kfse->type == FSE_INVALID) {
831 // This is very subtle. Either of these conditions can
832 // be true if an event got recycled while we were waiting
833 // on the fs_event_list lock or the event got recycled,
834 // delivered, _and_ free'd by someone else while we were
835 // waiting on the fs event list lock. In either case
836 // we need to just unlock the list and return without
837 // doing anything because if the refcount is > 0 then
838 // someone else will take care of free'ing it and when
839 // the kfse->type is invalid then someone else already
840 // has handled free'ing the event (while we were blocked
841 // on the event list lock).
842 //
843 unlock_fs_event_list();
844 return;
845 }
846
847 //
848 // make a copy of this so we can free things without
849 // holding the fs_event_buf lock
850 //
851 copy = *kfse;
852 if (kfse->dest && OSAddAtomic(-1, &kfse->dest->refcount) == 1) {
853 dest_copy = *kfse->dest;
854 } else {
855 dest_copy.str = NULL;
856 dest_copy.len = 0;
857 dest_copy.type = FSE_INVALID;
858 }
859
860 kfse->pid = kfse->type; // save this off for debugging...
861 kfse->uid = (uid_t)(long)kfse->str; // save this off for debugging...
862 kfse->gid = (gid_t)(long)current_thread();
863
864 kfse->str = (char *)0xdeadbeef; // XXXdbg - catch any cheaters...
865
866 if (dest_copy.type != FSE_INVALID) {
867 kfse->dest->str = (char *)0xbadc0de; // XXXdbg - catch any cheaters...
868 kfse->dest->type = FSE_INVALID;
869
870 if (kfse->dest->kevent_list.le_prev != NULL) {
871 num_events_outstanding--;
872 LIST_REMOVE(kfse->dest, kevent_list);
873 memset(&kfse->dest->kevent_list, 0xa5, sizeof(kfse->dest->kevent_list));
874 }
875
876 zfree(event_zone, kfse->dest);
877 }
878
879 // mark this fsevent as invalid
880 {
881 int otype;
882
883 otype = kfse->type;
884 kfse->type = FSE_INVALID;
885
886 if (kfse->kevent_list.le_prev != NULL) {
887 num_events_outstanding--;
888 if (otype == FSE_RENAME) {
889 num_pending_rename--;
890 }
891 LIST_REMOVE(kfse, kevent_list);
892 memset(&kfse->kevent_list, 0, sizeof(kfse->kevent_list));
893 }
894 }
895
896 zfree(event_zone, kfse);
897
898 unlock_fs_event_list();
899
900 // if we have a pointer in the union
901 if (copy.str && copy.type != FSE_DOCID_CHANGED) {
902 if (copy.len == 0) { // and it's not a string
903 panic("%s:%d: no more fref.vp!\n", __FILE__, __LINE__);
904 // vnode_rele_ext(copy.fref.vp, O_EVTONLY, 0);
905 } else { // else it's a string
906 vfs_removename(copy.str);
907 }
908 }
909
910 if (dest_copy.type != FSE_INVALID && dest_copy.str) {
911 if (dest_copy.len == 0) {
912 panic("%s:%d: no more fref.vp!\n", __FILE__, __LINE__);
913 // vnode_rele_ext(dest_copy.fref.vp, O_EVTONLY, 0);
914 } else {
915 vfs_removename(dest_copy.str);
916 }
917 }
918 }
919
920 static int
921 add_watcher(int8_t *event_list, int32_t num_events, int32_t eventq_size, fs_event_watcher **watcher_out, void *fseh)
922 {
923 int i;
924 fs_event_watcher *watcher;
925
926 if (eventq_size <= 0 || eventq_size > 100*max_kfs_events) {
927 eventq_size = max_kfs_events;
928 }
929
930 // Note: the event_queue follows the fs_event_watcher struct
931 // in memory so we only have to do one allocation
932 MALLOC(watcher,
933 fs_event_watcher *,
934 sizeof(fs_event_watcher) + eventq_size * sizeof(kfs_event *),
935 M_TEMP, M_WAITOK);
936 if (watcher == NULL) {
937 return ENOMEM;
938 }
939
940 watcher->event_list = event_list;
941 watcher->num_events = num_events;
942 watcher->devices_not_to_watch = NULL;
943 watcher->num_devices = 0;
944 watcher->flags = 0;
945 watcher->event_queue = (kfs_event **)&watcher[1];
946 watcher->eventq_size = eventq_size;
947 watcher->rd = 0;
948 watcher->wr = 0;
949 watcher->blockers = 0;
950 watcher->num_readers = 0;
951 watcher->max_event_id = 0;
952 watcher->fseh = fseh;
953 watcher->pid = proc_selfpid();
954 proc_selfname(watcher->proc_name, sizeof(watcher->proc_name));
955
956 watcher->num_dropped = 0; // XXXdbg - debugging
957
958 if (!strncmp(watcher->proc_name, "fseventsd", sizeof(watcher->proc_name)) ||
959 !strncmp(watcher->proc_name, "coreservicesd", sizeof(watcher->proc_name)) ||
960 !strncmp(watcher->proc_name, "mds", sizeof(watcher->proc_name))) {
961 watcher->flags |= WATCHER_APPLE_SYSTEM_SERVICE;
962 } else {
963 printf("fsevents: watcher %s (pid: %d) - Using /dev/fsevents directly is unsupported. Migrate to FSEventsFramework\n",
964 watcher->proc_name, watcher->pid);
965 }
966
967 lock_watch_table();
968
969 // find a slot for the new watcher
970 for(i=0; i < MAX_WATCHERS; i++) {
971 if (watcher_table[i] == NULL) {
972 watcher->my_id = i;
973 watcher_table[i] = watcher;
974 break;
975 }
976 }
977
978 if (i >= MAX_WATCHERS) {
979 printf("fsevents: too many watchers!\n");
980 unlock_watch_table();
981 FREE(watcher, M_TEMP);
982 return ENOSPC;
983 }
984
985 // now update the global list of who's interested in
986 // events of a particular type...
987 for(i=0; i < num_events; i++) {
988 if (event_list[i] != FSE_IGNORE && i < FSE_MAX_EVENTS) {
989 fs_event_type_watchers[i]++;
990 }
991 }
992
993 unlock_watch_table();
994
995 *watcher_out = watcher;
996
997 return 0;
998 }
999
1000
1001
1002 static void
1003 remove_watcher(fs_event_watcher *target)
1004 {
1005 int i, j, counter=0;
1006 fs_event_watcher *watcher;
1007 kfs_event *kfse;
1008
1009 lock_watch_table();
1010
1011 for(j=0; j < MAX_WATCHERS; j++) {
1012 watcher = watcher_table[j];
1013 if (watcher != target) {
1014 continue;
1015 }
1016
1017 watcher_table[j] = NULL;
1018
1019 for(i=0; i < watcher->num_events; i++) {
1020 if (watcher->event_list[i] != FSE_IGNORE && i < FSE_MAX_EVENTS) {
1021 fs_event_type_watchers[i]--;
1022 }
1023 }
1024
1025 if (watcher->flags & WATCHER_CLOSING) {
1026 unlock_watch_table();
1027 return;
1028 }
1029
1030 // printf("fsevents: removing watcher %p (rd %d wr %d num_readers %d flags 0x%x)\n", watcher, watcher->rd, watcher->wr, watcher->num_readers, watcher->flags);
1031 watcher->flags |= WATCHER_CLOSING;
1032 OSAddAtomic(1, &watcher->num_readers);
1033
1034 unlock_watch_table();
1035
1036 while (watcher->num_readers > 1 && counter++ < 5000) {
1037 lock_watch_table();
1038 fsevents_wakeup(watcher); // in case they're asleep
1039 unlock_watch_table();
1040
1041 tsleep(watcher, PRIBIO, "fsevents-close", 1);
1042 }
1043 if (counter++ >= 5000) {
1044 // printf("fsevents: close: still have readers! (%d)\n", watcher->num_readers);
1045 panic("fsevents: close: still have readers! (%d)\n", watcher->num_readers);
1046 }
1047
1048 // drain the event_queue
1049
1050 lck_rw_lock_exclusive(&event_handling_lock);
1051 while(watcher->rd != watcher->wr) {
1052 kfse = watcher->event_queue[watcher->rd];
1053 watcher->event_queue[watcher->rd] = NULL;
1054 watcher->rd = (watcher->rd+1) % watcher->eventq_size;
1055 OSSynchronizeIO();
1056 if (kfse != NULL && kfse->type != FSE_INVALID && kfse->refcount >= 1) {
1057 release_event_ref(kfse);
1058 }
1059 }
1060 lck_rw_unlock_exclusive(&event_handling_lock);
1061
1062 if (watcher->event_list) {
1063 FREE(watcher->event_list, M_TEMP);
1064 watcher->event_list = NULL;
1065 }
1066 if (watcher->devices_not_to_watch) {
1067 FREE(watcher->devices_not_to_watch, M_TEMP);
1068 watcher->devices_not_to_watch = NULL;
1069 }
1070 FREE(watcher, M_TEMP);
1071
1072 return;
1073 }
1074
1075 unlock_watch_table();
1076 }
1077
1078
1079 #define EVENT_DELAY_IN_MS 10
1080 static thread_call_t event_delivery_timer = NULL;
1081 static int timer_set = 0;
1082
1083
1084 static void
1085 delayed_event_delivery(__unused void *param0, __unused void *param1)
1086 {
1087 int i;
1088
1089 lock_watch_table();
1090
1091 for(i=0; i < MAX_WATCHERS; i++) {
1092 if (watcher_table[i] != NULL && watcher_table[i]->rd != watcher_table[i]->wr) {
1093 fsevents_wakeup(watcher_table[i]);
1094 }
1095 }
1096
1097 timer_set = 0;
1098
1099 unlock_watch_table();
1100 }
1101
1102
1103 //
1104 // The watch table must be locked before calling this function.
1105 //
1106 static void
1107 schedule_event_wakeup(void)
1108 {
1109 uint64_t deadline;
1110
1111 if (event_delivery_timer == NULL) {
1112 event_delivery_timer = thread_call_allocate((thread_call_func_t)delayed_event_delivery, NULL);
1113 }
1114
1115 clock_interval_to_deadline(EVENT_DELAY_IN_MS, 1000 * 1000, &deadline);
1116
1117 thread_call_enter_delayed(event_delivery_timer, deadline);
1118 timer_set = 1;
1119 }
1120
1121
1122
1123 #define MAX_NUM_PENDING 16
1124
1125 //
1126 // NOTE: the watch table must be locked before calling
1127 // this routine.
1128 //
1129 static int
1130 watcher_add_event(fs_event_watcher *watcher, kfs_event *kfse)
1131 {
1132 if (kfse->abstime > watcher->max_event_id) {
1133 watcher->max_event_id = kfse->abstime;
1134 }
1135
1136 if (((watcher->wr + 1) % watcher->eventq_size) == watcher->rd) {
1137 watcher->flags |= WATCHER_DROPPED_EVENTS;
1138 fsevents_wakeup(watcher);
1139 return ENOSPC;
1140 }
1141
1142 OSAddAtomic(1, &kfse->refcount);
1143 watcher->event_queue[watcher->wr] = kfse;
1144 OSSynchronizeIO();
1145 watcher->wr = (watcher->wr + 1) % watcher->eventq_size;
1146
1147 //
1148 // wake up the watcher if there are more than MAX_NUM_PENDING events.
1149 // otherwise schedule a timer (if one isn't already set) which will
1150 // send any pending events if no more are received in the next
1151 // EVENT_DELAY_IN_MS milli-seconds.
1152 //
1153 int32_t num_pending = 0;
1154 if (watcher->rd < watcher->wr) {
1155 num_pending = watcher->wr - watcher->rd;
1156 }
1157
1158 if (watcher->rd > watcher->wr) {
1159 num_pending = watcher->wr + watcher->eventq_size - watcher->rd;
1160 }
1161
1162 if (num_pending > (watcher->eventq_size*3/4) && !(watcher->flags & WATCHER_APPLE_SYSTEM_SERVICE)) {
1163 /* Non-Apple Service is falling behind, start dropping events for this process */
1164 lck_rw_lock_exclusive(&event_handling_lock);
1165 while (watcher->rd != watcher->wr) {
1166 kfse = watcher->event_queue[watcher->rd];
1167 watcher->event_queue[watcher->rd] = NULL;
1168 watcher->rd = (watcher->rd+1) % watcher->eventq_size;
1169 OSSynchronizeIO();
1170 if (kfse != NULL && kfse->type != FSE_INVALID && kfse->refcount >= 1) {
1171 release_event_ref(kfse);
1172 }
1173 }
1174 watcher->flags |= WATCHER_DROPPED_EVENTS;
1175 lck_rw_unlock_exclusive(&event_handling_lock);
1176
1177 printf("fsevents: watcher falling behind: %s (pid: %d) rd: %4d wr: %4d q_size: %4d flags: 0x%x\n",
1178 watcher->proc_name, watcher->pid, watcher->rd, watcher->wr,
1179 watcher->eventq_size, watcher->flags);
1180
1181 fsevents_wakeup(watcher);
1182 } else if (num_pending > MAX_NUM_PENDING) {
1183 fsevents_wakeup(watcher);
1184 } else if (timer_set == 0) {
1185 schedule_event_wakeup();
1186 }
1187
1188 return 0;
1189 }
1190
1191 static int
1192 fill_buff(uint16_t type, int32_t size, const void *data,
1193 char *buff, int32_t *_buff_idx, int32_t buff_sz,
1194 struct uio *uio)
1195 {
1196 int32_t amt, error = 0, buff_idx = *_buff_idx;
1197 uint16_t tmp;
1198
1199 //
1200 // the +1 on the size is to guarantee that the main data
1201 // copy loop will always copy at least 1 byte
1202 //
1203 if ((buff_sz - buff_idx) <= (int)(2*sizeof(uint16_t) + 1)) {
1204 if (buff_idx > uio_resid(uio)) {
1205 error = ENOSPC;
1206 goto get_out;
1207 }
1208
1209 error = uiomove(buff, buff_idx, uio);
1210 if (error) {
1211 goto get_out;
1212 }
1213 buff_idx = 0;
1214 }
1215
1216 // copy out the header (type & size)
1217 memcpy(&buff[buff_idx], &type, sizeof(uint16_t));
1218 buff_idx += sizeof(uint16_t);
1219
1220 tmp = size & 0xffff;
1221 memcpy(&buff[buff_idx], &tmp, sizeof(uint16_t));
1222 buff_idx += sizeof(uint16_t);
1223
1224 // now copy the body of the data, flushing along the way
1225 // if the buffer fills up.
1226 //
1227 while(size > 0) {
1228 amt = (size < (buff_sz - buff_idx)) ? size : (buff_sz - buff_idx);
1229 memcpy(&buff[buff_idx], data, amt);
1230
1231 size -= amt;
1232 buff_idx += amt;
1233 data = (const char *)data + amt;
1234 if (size > (buff_sz - buff_idx)) {
1235 if (buff_idx > uio_resid(uio)) {
1236 error = ENOSPC;
1237 goto get_out;
1238 }
1239 error = uiomove(buff, buff_idx, uio);
1240 if (error) {
1241 goto get_out;
1242 }
1243 buff_idx = 0;
1244 }
1245
1246 if (amt == 0) { // just in case...
1247 break;
1248 }
1249 }
1250
1251 get_out:
1252 *_buff_idx = buff_idx;
1253
1254 return error;
1255 }
1256
1257
1258 static int copy_out_kfse(fs_event_watcher *watcher, kfs_event *kfse, struct uio *uio) __attribute__((noinline));
1259
1260 static int
1261 copy_out_kfse(fs_event_watcher *watcher, kfs_event *kfse, struct uio *uio)
1262 {
1263 int error;
1264 uint16_t tmp16;
1265 int32_t type;
1266 kfs_event *cur;
1267 char evbuff[512];
1268 int evbuff_idx = 0;
1269
1270 if (kfse->type == FSE_INVALID) {
1271 panic("fsevents: copy_out_kfse: asked to copy out an invalid event (kfse %p, refcount %d fref ptr %p)\n", kfse, kfse->refcount, kfse->str);
1272 }
1273
1274 if (kfse->flags & KFSE_BEING_CREATED) {
1275 return 0;
1276 }
1277
1278 if (kfse->type == FSE_RENAME && kfse->dest == NULL) {
1279 //
1280 // This can happen if an event gets recycled but we had a
1281 // pointer to it in our event queue. The event is the
1282 // destination of a rename which we'll process separately
1283 // (that is, another kfse points to this one so it's ok
1284 // to skip this guy because we'll process it when we process
1285 // the other one)
1286 error = 0;
1287 goto get_out;
1288 }
1289
1290 if (watcher->flags & WATCHER_WANTS_EXTENDED_INFO) {
1291
1292 type = (kfse->type & 0xfff);
1293
1294 if (kfse->flags & KFSE_CONTAINS_DROPPED_EVENTS) {
1295 type |= (FSE_CONTAINS_DROPPED_EVENTS << FSE_FLAG_SHIFT);
1296 } else if (kfse->flags & KFSE_COMBINED_EVENTS) {
1297 type |= (FSE_COMBINED_EVENTS << FSE_FLAG_SHIFT);
1298 }
1299
1300 } else {
1301 type = (int32_t)kfse->type;
1302 }
1303
1304 // copy out the type of the event
1305 memcpy(evbuff, &type, sizeof(int32_t));
1306 evbuff_idx += sizeof(int32_t);
1307
1308 // copy out the pid of the person that generated the event
1309 memcpy(&evbuff[evbuff_idx], &kfse->pid, sizeof(pid_t));
1310 evbuff_idx += sizeof(pid_t);
1311
1312 cur = kfse;
1313
1314 copy_again:
1315
1316 if (kfse->type == FSE_DOCID_CHANGED || kfse->type == FSE_DOCID_CREATED) {
1317 dev_t dev = cur->dev;
1318 ino_t ino = cur->ino;
1319 uint64_t ival;
1320
1321 error = fill_buff(FSE_ARG_DEV, sizeof(dev_t), &dev, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1322 if (error != 0) {
1323 goto get_out;
1324 }
1325
1326 error = fill_buff(FSE_ARG_INO, sizeof(ino_t), &ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1327 if (error != 0) {
1328 goto get_out;
1329 }
1330
1331 memcpy(&ino, &cur->str, sizeof(ino_t));
1332 error = fill_buff(FSE_ARG_INO, sizeof(ino_t), &ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1333 if (error != 0) {
1334 goto get_out;
1335 }
1336
1337 memcpy(&ival, &cur->uid, sizeof(uint64_t)); // the docid gets stuffed into the ino field
1338 error = fill_buff(FSE_ARG_INT64, sizeof(uint64_t), &ival, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1339 if (error != 0) {
1340 goto get_out;
1341 }
1342
1343 goto done;
1344 }
1345
1346 if (cur->str == NULL || cur->str[0] == '\0') {
1347 printf("copy_out_kfse:2: empty/short path (%s)\n", cur->str);
1348 error = fill_buff(FSE_ARG_STRING, 2, "/", evbuff, &evbuff_idx, sizeof(evbuff), uio);
1349 } else {
1350 error = fill_buff(FSE_ARG_STRING, cur->len, cur->str, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1351 }
1352 if (error != 0) {
1353 goto get_out;
1354 }
1355
1356 if (cur->dev == 0 && cur->ino == 0) {
1357 // this happens when a rename event happens and the
1358 // destination of the rename did not previously exist.
1359 // it thus has no other file info so skip copying out
1360 // the stuff below since it isn't initialized
1361 goto done;
1362 }
1363
1364
1365 if (watcher->flags & WATCHER_WANTS_COMPACT_EVENTS) {
1366 int32_t finfo_size;
1367
1368 finfo_size = sizeof(dev_t) + sizeof(ino64_t) + sizeof(int32_t) + sizeof(uid_t) + sizeof(gid_t);
1369 error = fill_buff(FSE_ARG_FINFO, finfo_size, &cur->ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1370 if (error != 0) {
1371 goto get_out;
1372 }
1373 } else {
1374 ino_t ino;
1375
1376 error = fill_buff(FSE_ARG_DEV, sizeof(dev_t), &cur->dev, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1377 if (error != 0) {
1378 goto get_out;
1379 }
1380
1381 ino = (ino_t)cur->ino;
1382 error = fill_buff(FSE_ARG_INO, sizeof(ino_t), &ino, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1383 if (error != 0) {
1384 goto get_out;
1385 }
1386
1387 error = fill_buff(FSE_ARG_MODE, sizeof(int32_t), &cur->mode, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1388 if (error != 0) {
1389 goto get_out;
1390 }
1391
1392 error = fill_buff(FSE_ARG_UID, sizeof(uid_t), &cur->uid, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1393 if (error != 0) {
1394 goto get_out;
1395 }
1396
1397 error = fill_buff(FSE_ARG_GID, sizeof(gid_t), &cur->gid, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1398 if (error != 0) {
1399 goto get_out;
1400 }
1401 }
1402
1403
1404 if (cur->dest) {
1405 cur = cur->dest;
1406 goto copy_again;
1407 }
1408
1409 done:
1410 // very last thing: the time stamp
1411 error = fill_buff(FSE_ARG_INT64, sizeof(uint64_t), &cur->abstime, evbuff, &evbuff_idx, sizeof(evbuff), uio);
1412 if (error != 0) {
1413 goto get_out;
1414 }
1415
1416 // check if the FSE_ARG_DONE will fit
1417 if (sizeof(uint16_t) > sizeof(evbuff) - evbuff_idx) {
1418 if (evbuff_idx > uio_resid(uio)) {
1419 error = ENOSPC;
1420 goto get_out;
1421 }
1422 error = uiomove(evbuff, evbuff_idx, uio);
1423 if (error) {
1424 goto get_out;
1425 }
1426 evbuff_idx = 0;
1427 }
1428
1429 tmp16 = FSE_ARG_DONE;
1430 memcpy(&evbuff[evbuff_idx], &tmp16, sizeof(uint16_t));
1431 evbuff_idx += sizeof(uint16_t);
1432
1433 // flush any remaining data in the buffer (and hopefully
1434 // in most cases this is the only uiomove we'll do)
1435 if (evbuff_idx > uio_resid(uio)) {
1436 error = ENOSPC;
1437 } else {
1438 error = uiomove(evbuff, evbuff_idx, uio);
1439 }
1440
1441 get_out:
1442
1443 return error;
1444 }
1445
1446
1447
1448 static int
1449 fmod_watch(fs_event_watcher *watcher, struct uio *uio)
1450 {
1451 int error=0;
1452 user_ssize_t last_full_event_resid;
1453 kfs_event *kfse;
1454 uint16_t tmp16;
1455 int skipped;
1456
1457 last_full_event_resid = uio_resid(uio);
1458
1459 // need at least 2048 bytes of space (maxpathlen + 1 event buf)
1460 if (uio_resid(uio) < 2048 || watcher == NULL) {
1461 return EINVAL;
1462 }
1463
1464 if (watcher->flags & WATCHER_CLOSING) {
1465 return 0;
1466 }
1467
1468 if (OSAddAtomic(1, &watcher->num_readers) != 0) {
1469 // don't allow multiple threads to read from the fd at the same time
1470 OSAddAtomic(-1, &watcher->num_readers);
1471 return EAGAIN;
1472 }
1473
1474 restart_watch:
1475 if (watcher->rd == watcher->wr) {
1476 if (watcher->flags & WATCHER_CLOSING) {
1477 OSAddAtomic(-1, &watcher->num_readers);
1478 return 0;
1479 }
1480 OSAddAtomic(1, &watcher->blockers);
1481
1482 // there's nothing to do, go to sleep
1483 error = tsleep((caddr_t)watcher, PUSER|PCATCH, "fsevents_empty", 0);
1484
1485 OSAddAtomic(-1, &watcher->blockers);
1486
1487 if (error != 0 || (watcher->flags & WATCHER_CLOSING)) {
1488 OSAddAtomic(-1, &watcher->num_readers);
1489 return error;
1490 }
1491 }
1492
1493 // if we dropped events, return that as an event first
1494 if (watcher->flags & WATCHER_DROPPED_EVENTS) {
1495 int32_t val = FSE_EVENTS_DROPPED;
1496
1497 error = uiomove((caddr_t)&val, sizeof(int32_t), uio);
1498 if (error == 0) {
1499 val = 0; // a fake pid
1500 error = uiomove((caddr_t)&val, sizeof(int32_t), uio);
1501
1502 tmp16 = FSE_ARG_DONE; // makes it a consistent msg
1503 error = uiomove((caddr_t)&tmp16, sizeof(int16_t), uio);
1504
1505 last_full_event_resid = uio_resid(uio);
1506 }
1507
1508 if (error) {
1509 OSAddAtomic(-1, &watcher->num_readers);
1510 return error;
1511 }
1512
1513 watcher->flags &= ~WATCHER_DROPPED_EVENTS;
1514 }
1515
1516 skipped = 0;
1517
1518 lck_rw_lock_shared(&event_handling_lock);
1519 while (uio_resid(uio) > 0 && watcher->rd != watcher->wr) {
1520 if (watcher->flags & WATCHER_CLOSING) {
1521 break;
1522 }
1523
1524 //
1525 // check if the event is something of interest to us
1526 // (since it may have been recycled/reused and changed
1527 // its type or which device it is for)
1528 //
1529 kfse = watcher->event_queue[watcher->rd];
1530 if (!kfse || kfse->type == FSE_INVALID || kfse->refcount < 1) {
1531 break;
1532 }
1533
1534 if (watcher->event_list[kfse->type] == FSE_REPORT && watcher_cares_about_dev(watcher, kfse->dev)) {
1535
1536 if (!(watcher->flags & WATCHER_APPLE_SYSTEM_SERVICE) && kfse->type != FSE_DOCID_CHANGED && is_ignored_directory(kfse->str)) {
1537 // If this is not an Apple System Service, skip specified directories
1538 // radar://12034844
1539 error = 0;
1540 skipped = 1;
1541 } else {
1542
1543 skipped = 0;
1544 if (last_event_ptr == kfse) {
1545 last_event_ptr = NULL;
1546 last_event_type = -1;
1547 last_coalesced_time = 0;
1548 }
1549 error = copy_out_kfse(watcher, kfse, uio);
1550 if (error != 0) {
1551 // if an event won't fit or encountered an error while
1552 // we were copying it out, then backup to the last full
1553 // event and just bail out. if the error was ENOENT
1554 // then we can continue regular processing, otherwise
1555 // we should unlock things and return.
1556 uio_setresid(uio, last_full_event_resid);
1557 if (error != ENOENT) {
1558 lck_rw_unlock_shared(&event_handling_lock);
1559 error = 0;
1560 goto get_out;
1561 }
1562 }
1563
1564 last_full_event_resid = uio_resid(uio);
1565 }
1566 }
1567
1568 watcher->event_queue[watcher->rd] = NULL;
1569 watcher->rd = (watcher->rd + 1) % watcher->eventq_size;
1570 OSSynchronizeIO();
1571 release_event_ref(kfse);
1572 }
1573 lck_rw_unlock_shared(&event_handling_lock);
1574
1575 if (skipped && error == 0) {
1576 goto restart_watch;
1577 }
1578
1579 get_out:
1580 OSAddAtomic(-1, &watcher->num_readers);
1581
1582 return error;
1583 }
1584
1585
1586 // release any references we might have on vnodes which are
1587 // the mount point passed to us (so that it can be cleanly
1588 // unmounted).
1589 //
1590 // since we don't want to lose the events we'll convert the
1591 // vnode refs to full paths.
1592 //
1593 void
1594 fsevent_unmount(__unused struct mount *mp)
1595 {
1596 // we no longer maintain pointers to vnodes so
1597 // there is nothing to do...
1598 }
1599
1600
1601 //
1602 // /dev/fsevents device code
1603 //
1604 static int fsevents_installed = 0;
1605
1606 typedef struct fsevent_handle {
1607 UInt32 flags;
1608 SInt32 active;
1609 fs_event_watcher *watcher;
1610 struct klist knotes;
1611 struct selinfo si;
1612 } fsevent_handle;
1613
1614 #define FSEH_CLOSING 0x0001
1615
1616 static int
1617 fseventsf_read(struct fileproc *fp, struct uio *uio,
1618 __unused int flags, __unused vfs_context_t ctx)
1619 {
1620 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1621 int error;
1622
1623 error = fmod_watch(fseh->watcher, uio);
1624
1625 return error;
1626 }
1627
1628
1629 static int
1630 fseventsf_write(__unused struct fileproc *fp, __unused struct uio *uio,
1631 __unused int flags, __unused vfs_context_t ctx)
1632 {
1633 return EIO;
1634 }
1635
1636 #pragma pack(push, 4)
1637 typedef struct ext_fsevent_dev_filter_args {
1638 uint32_t num_devices;
1639 user_addr_t devices;
1640 } ext_fsevent_dev_filter_args;
1641 #pragma pack(pop)
1642
1643 #define NEW_FSEVENTS_DEVICE_FILTER _IOW('s', 100, ext_fsevent_dev_filter_args)
1644
1645 typedef struct old_fsevent_dev_filter_args {
1646 uint32_t num_devices;
1647 int32_t devices;
1648 } old_fsevent_dev_filter_args;
1649
1650 #define OLD_FSEVENTS_DEVICE_FILTER _IOW('s', 100, old_fsevent_dev_filter_args)
1651
1652 #if __LP64__
1653 /* need this in spite of the padding due to alignment of devices */
1654 typedef struct fsevent_dev_filter_args32 {
1655 uint32_t num_devices;
1656 uint32_t devices;
1657 int32_t pad1;
1658 } fsevent_dev_filter_args32;
1659 #endif
1660
1661 static int
1662 fseventsf_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, vfs_context_t ctx)
1663 {
1664 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1665 int ret = 0;
1666 ext_fsevent_dev_filter_args *devfilt_args, _devfilt_args;
1667
1668 if (proc_is64bit(vfs_context_proc(ctx))) {
1669 devfilt_args = (ext_fsevent_dev_filter_args *)data;
1670 }
1671 else if (cmd == OLD_FSEVENTS_DEVICE_FILTER) {
1672 old_fsevent_dev_filter_args *udev_filt_args = (old_fsevent_dev_filter_args *)data;
1673
1674 devfilt_args = &_devfilt_args;
1675 memset(devfilt_args, 0, sizeof(ext_fsevent_dev_filter_args));
1676
1677 devfilt_args->num_devices = udev_filt_args->num_devices;
1678 devfilt_args->devices = CAST_USER_ADDR_T(udev_filt_args->devices);
1679 }
1680 else {
1681 #if __LP64__
1682 fsevent_dev_filter_args32 *udev_filt_args = (fsevent_dev_filter_args32 *)data;
1683 #else
1684 fsevent_dev_filter_args *udev_filt_args = (fsevent_dev_filter_args *)data;
1685 #endif
1686
1687 devfilt_args = &_devfilt_args;
1688 memset(devfilt_args, 0, sizeof(ext_fsevent_dev_filter_args));
1689
1690 devfilt_args->num_devices = udev_filt_args->num_devices;
1691 devfilt_args->devices = CAST_USER_ADDR_T(udev_filt_args->devices);
1692 }
1693
1694 OSAddAtomic(1, &fseh->active);
1695 if (fseh->flags & FSEH_CLOSING) {
1696 OSAddAtomic(-1, &fseh->active);
1697 return 0;
1698 }
1699
1700 switch (cmd) {
1701 case FIONBIO:
1702 case FIOASYNC:
1703 break;
1704
1705 case FSEVENTS_WANT_COMPACT_EVENTS: {
1706 fseh->watcher->flags |= WATCHER_WANTS_COMPACT_EVENTS;
1707 break;
1708 }
1709
1710 case FSEVENTS_WANT_EXTENDED_INFO: {
1711 fseh->watcher->flags |= WATCHER_WANTS_EXTENDED_INFO;
1712 break;
1713 }
1714
1715 case FSEVENTS_GET_CURRENT_ID: {
1716 *(uint64_t *)data = fseh->watcher->max_event_id;
1717 ret = 0;
1718 break;
1719 }
1720
1721 case OLD_FSEVENTS_DEVICE_FILTER:
1722 case NEW_FSEVENTS_DEVICE_FILTER: {
1723 int new_num_devices;
1724 dev_t *devices_not_to_watch, *tmp=NULL;
1725
1726 if (devfilt_args->num_devices > 256) {
1727 ret = EINVAL;
1728 break;
1729 }
1730
1731 new_num_devices = devfilt_args->num_devices;
1732 if (new_num_devices == 0) {
1733 tmp = fseh->watcher->devices_not_to_watch;
1734
1735 lock_watch_table();
1736 fseh->watcher->devices_not_to_watch = NULL;
1737 fseh->watcher->num_devices = new_num_devices;
1738 unlock_watch_table();
1739
1740 if (tmp) {
1741 FREE(tmp, M_TEMP);
1742 }
1743 break;
1744 }
1745
1746 MALLOC(devices_not_to_watch, dev_t *,
1747 new_num_devices * sizeof(dev_t),
1748 M_TEMP, M_WAITOK);
1749 if (devices_not_to_watch == NULL) {
1750 ret = ENOMEM;
1751 break;
1752 }
1753
1754 ret = copyin(devfilt_args->devices,
1755 (void *)devices_not_to_watch,
1756 new_num_devices * sizeof(dev_t));
1757 if (ret) {
1758 FREE(devices_not_to_watch, M_TEMP);
1759 break;
1760 }
1761
1762 lock_watch_table();
1763 fseh->watcher->num_devices = new_num_devices;
1764 tmp = fseh->watcher->devices_not_to_watch;
1765 fseh->watcher->devices_not_to_watch = devices_not_to_watch;
1766 unlock_watch_table();
1767
1768 if (tmp) {
1769 FREE(tmp, M_TEMP);
1770 }
1771
1772 break;
1773 }
1774
1775 default:
1776 ret = EINVAL;
1777 break;
1778 }
1779
1780 OSAddAtomic(-1, &fseh->active);
1781 return (ret);
1782 }
1783
1784
1785 static int
1786 fseventsf_select(struct fileproc *fp, int which, __unused void *wql, vfs_context_t ctx)
1787 {
1788 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1789 int ready = 0;
1790
1791 if ((which != FREAD) || (fseh->watcher->flags & WATCHER_CLOSING)) {
1792 return 0;
1793 }
1794
1795
1796 // if there's nothing in the queue, we're not ready
1797 if (fseh->watcher->rd != fseh->watcher->wr) {
1798 ready = 1;
1799 }
1800
1801 if (!ready) {
1802 selrecord(vfs_context_proc(ctx), &fseh->si, wql);
1803 }
1804
1805 return ready;
1806 }
1807
1808
1809 #if NOTUSED
1810 static int
1811 fseventsf_stat(__unused struct fileproc *fp, __unused struct stat *sb, __unused vfs_context_t ctx)
1812 {
1813 return ENOTSUP;
1814 }
1815 #endif
1816
1817 static int
1818 fseventsf_close(struct fileglob *fg, __unused vfs_context_t ctx)
1819 {
1820 fsevent_handle *fseh = (struct fsevent_handle *)fg->fg_data;
1821 fs_event_watcher *watcher;
1822
1823 OSBitOrAtomic(FSEH_CLOSING, &fseh->flags);
1824 while (OSAddAtomic(0, &fseh->active) > 0) {
1825 tsleep((caddr_t)fseh->watcher, PRIBIO, "fsevents-close", 1);
1826 }
1827
1828 watcher = fseh->watcher;
1829 fg->fg_data = NULL;
1830 fseh->watcher = NULL;
1831
1832 remove_watcher(watcher);
1833 FREE(fseh, M_TEMP);
1834
1835 return 0;
1836 }
1837
1838 static void
1839 filt_fsevent_detach(struct knote *kn)
1840 {
1841 fsevent_handle *fseh = (struct fsevent_handle *)kn->kn_hook;
1842
1843 lock_watch_table();
1844
1845 KNOTE_DETACH(&fseh->knotes, kn);
1846
1847 unlock_watch_table();
1848 }
1849
1850 /*
1851 * Determine whether this knote should be active
1852 *
1853 * This is kind of subtle.
1854 * --First, notice if the vnode has been revoked: in so, override hint
1855 * --EVFILT_READ knotes are checked no matter what the hint is
1856 * --Other knotes activate based on hint.
1857 * --If hint is revoke, set special flags and activate
1858 */
1859 static int
1860 filt_fsevent(struct knote *kn, long hint)
1861 {
1862 fsevent_handle *fseh = (struct fsevent_handle *)kn->kn_hook;
1863 int activate = 0;
1864 int32_t rd, wr, amt;
1865
1866 if (NOTE_REVOKE == hint) {
1867 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1868 activate = 1;
1869 }
1870
1871 rd = fseh->watcher->rd;
1872 wr = fseh->watcher->wr;
1873 if (rd <= wr) {
1874 amt = wr - rd;
1875 } else {
1876 amt = fseh->watcher->eventq_size - (rd - wr);
1877 }
1878
1879 switch(kn->kn_filter) {
1880 case EVFILT_READ:
1881 kn->kn_data = amt;
1882
1883 if (kn->kn_data != 0) {
1884 activate = 1;
1885 }
1886 break;
1887 case EVFILT_VNODE:
1888 /* Check events this note matches against the hint */
1889 if (kn->kn_sfflags & hint) {
1890 kn->kn_fflags |= hint; /* Set which event occurred */
1891 }
1892 if (kn->kn_fflags != 0) {
1893 activate = 1;
1894 }
1895 break;
1896 default: {
1897 // nothing to do...
1898 break;
1899 }
1900 }
1901
1902 return (activate);
1903 }
1904
1905
1906 struct filterops fsevent_filtops = {
1907 .f_isfd = 1,
1908 .f_attach = NULL,
1909 .f_detach = filt_fsevent_detach,
1910 .f_event = filt_fsevent
1911 };
1912
1913 static int
1914 fseventsf_kqfilter(__unused struct fileproc *fp, __unused struct knote *kn, __unused vfs_context_t ctx)
1915 {
1916 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1917
1918 kn->kn_hook = (void*)fseh;
1919 kn->kn_hookid = 1;
1920 kn->kn_fop = &fsevent_filtops;
1921
1922 lock_watch_table();
1923
1924 KNOTE_ATTACH(&fseh->knotes, kn);
1925
1926 unlock_watch_table();
1927 return 0;
1928 }
1929
1930
1931 static int
1932 fseventsf_drain(struct fileproc *fp, __unused vfs_context_t ctx)
1933 {
1934 int counter = 0;
1935 fsevent_handle *fseh = (struct fsevent_handle *)fp->f_fglob->fg_data;
1936
1937 fseh->watcher->flags |= WATCHER_CLOSING;
1938
1939 // if there are people still waiting, sleep for 10ms to
1940 // let them clean up and get out of there. however we
1941 // also don't want to get stuck forever so if they don't
1942 // exit after 5 seconds we're tearing things down anyway.
1943 while(fseh->watcher->blockers && counter++ < 500) {
1944 // issue wakeup in case anyone is blocked waiting for an event
1945 // do this each time we wakeup in case the blocker missed
1946 // the wakeup due to the unprotected test of WATCHER_CLOSING
1947 // and decision to tsleep in fmod_watch... this bit of
1948 // latency is a decent tradeoff against not having to
1949 // take and drop a lock in fmod_watch
1950 lock_watch_table();
1951 fsevents_wakeup(fseh->watcher);
1952 unlock_watch_table();
1953
1954 tsleep((caddr_t)fseh->watcher, PRIBIO, "watcher-close", 1);
1955 }
1956
1957 return 0;
1958 }
1959
1960
1961 static int
1962 fseventsopen(__unused dev_t dev, __unused int flag, __unused int mode, __unused struct proc *p)
1963 {
1964 if (!kauth_cred_issuser(kauth_cred_get())) {
1965 return EPERM;
1966 }
1967
1968 return 0;
1969 }
1970
1971 static int
1972 fseventsclose(__unused dev_t dev, __unused int flag, __unused int mode, __unused struct proc *p)
1973 {
1974 return 0;
1975 }
1976
1977 static int
1978 fseventsread(__unused dev_t dev, __unused struct uio *uio, __unused int ioflag)
1979 {
1980 return EIO;
1981 }
1982
1983
1984 static int
1985 parse_buffer_and_add_events(const char *buffer, int bufsize, vfs_context_t ctx, long *remainder)
1986 {
1987 const fse_info *finfo, *dest_finfo;
1988 const char *path, *ptr, *dest_path, *event_start=buffer;
1989 int path_len, type, dest_path_len, err = 0;
1990
1991
1992 ptr = buffer;
1993 while ((ptr+sizeof(int)+sizeof(fse_info)+1) < buffer+bufsize) {
1994 type = *(const int *)ptr;
1995 if (type < 0 || type >= FSE_MAX_EVENTS) {
1996 err = EINVAL;
1997 break;
1998 }
1999
2000 ptr += sizeof(int);
2001
2002 finfo = (const fse_info *)ptr;
2003 ptr += sizeof(fse_info);
2004
2005 path = ptr;
2006 while(ptr < buffer+bufsize && *ptr != '\0') {
2007 ptr++;
2008 }
2009
2010 if (ptr >= buffer+bufsize) {
2011 break;
2012 }
2013
2014 ptr++; // advance over the trailing '\0'
2015
2016 path_len = ptr - path;
2017
2018 if (type != FSE_RENAME && type != FSE_EXCHANGE) {
2019 event_start = ptr; // record where the next event starts
2020
2021 err = add_fsevent(type, ctx, FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo, FSE_ARG_DONE);
2022 if (err) {
2023 break;
2024 }
2025 continue;
2026 }
2027
2028 //
2029 // if we're here we have to slurp up the destination finfo
2030 // and path so that we can pass them to the add_fsevent()
2031 // call. basically it's a copy of the above code.
2032 //
2033 dest_finfo = (const fse_info *)ptr;
2034 ptr += sizeof(fse_info);
2035
2036 dest_path = ptr;
2037 while(ptr < buffer+bufsize && *ptr != '\0') {
2038 ptr++;
2039 }
2040
2041 if (ptr >= buffer+bufsize) {
2042 break;
2043 }
2044
2045 ptr++; // advance over the trailing '\0'
2046 event_start = ptr; // record where the next event starts
2047
2048 dest_path_len = ptr - dest_path;
2049 //
2050 // If the destination inode number is non-zero, generate a rename
2051 // with both source and destination FSE_ARG_FINFO. Otherwise generate
2052 // a rename with only one FSE_ARG_FINFO. If you need to inject an
2053 // exchange with an inode of zero, just make that inode (and its path)
2054 // come in as the first one, not the second.
2055 //
2056 if (dest_finfo->ino) {
2057 err = add_fsevent(type, ctx,
2058 FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo,
2059 FSE_ARG_STRING, dest_path_len, dest_path, FSE_ARG_FINFO, dest_finfo,
2060 FSE_ARG_DONE);
2061 } else {
2062 err = add_fsevent(type, ctx,
2063 FSE_ARG_STRING, path_len, path, FSE_ARG_FINFO, finfo,
2064 FSE_ARG_STRING, dest_path_len, dest_path,
2065 FSE_ARG_DONE);
2066 }
2067
2068 if (err) {
2069 break;
2070 }
2071
2072 }
2073
2074 // if the last event wasn't complete, set the remainder
2075 // to be the last event start boundary.
2076 //
2077 *remainder = (long)((buffer+bufsize) - event_start);
2078
2079 return err;
2080 }
2081
2082
2083 //
2084 // Note: this buffer size can not ever be less than
2085 // 2*MAXPATHLEN + 2*sizeof(fse_info) + sizeof(int)
2086 // because that is the max size for a single event.
2087 // I made it 4k to be a "nice" size. making it
2088 // smaller is not a good idea.
2089 //
2090 #define WRITE_BUFFER_SIZE 4096
2091 char *write_buffer=NULL;
2092
2093 static int
2094 fseventswrite(__unused dev_t dev, struct uio *uio, __unused int ioflag)
2095 {
2096 int error=0, count;
2097 vfs_context_t ctx = vfs_context_current();
2098 long offset=0, remainder;
2099
2100 lck_mtx_lock(&event_writer_lock);
2101
2102 if (write_buffer == NULL) {
2103 if (kmem_alloc(kernel_map, (vm_offset_t *)&write_buffer, WRITE_BUFFER_SIZE)) {
2104 lck_mtx_unlock(&event_writer_lock);
2105 return ENOMEM;
2106 }
2107 }
2108
2109 //
2110 // this loop copies in and processes the events written.
2111 // it takes care to copy in reasonable size chunks and
2112 // process them. if there is an event that spans a chunk
2113 // boundary we're careful to copy those bytes down to the
2114 // beginning of the buffer and read the next chunk in just
2115 // after it.
2116 //
2117 while(uio_resid(uio)) {
2118 if (uio_resid(uio) > (WRITE_BUFFER_SIZE-offset)) {
2119 count = WRITE_BUFFER_SIZE - offset;
2120 } else {
2121 count = uio_resid(uio);
2122 }
2123
2124 error = uiomove(write_buffer+offset, count, uio);
2125 if (error) {
2126 break;
2127 }
2128
2129 // printf("fsevents: write: copied in %d bytes (offset: %ld)\n", count, offset);
2130 error = parse_buffer_and_add_events(write_buffer, offset+count, ctx, &remainder);
2131 if (error) {
2132 break;
2133 }
2134
2135 //
2136 // if there's any remainder, copy it down to the beginning
2137 // of the buffer so that it will get processed the next time
2138 // through the loop. note that the remainder always starts
2139 // at an event boundary.
2140 //
2141 if (remainder != 0) {
2142 // printf("fsevents: write: an event spanned a %d byte boundary. remainder: %ld\n",
2143 // WRITE_BUFFER_SIZE, remainder);
2144 memmove(write_buffer, (write_buffer+count+offset) - remainder, remainder);
2145 offset = remainder;
2146 } else {
2147 offset = 0;
2148 }
2149 }
2150
2151 lck_mtx_unlock(&event_writer_lock);
2152
2153 return error;
2154 }
2155
2156
2157 static const struct fileops fsevents_fops = {
2158 DTYPE_FSEVENTS,
2159 fseventsf_read,
2160 fseventsf_write,
2161 fseventsf_ioctl,
2162 fseventsf_select,
2163 fseventsf_close,
2164 fseventsf_kqfilter,
2165 fseventsf_drain
2166 };
2167
2168 typedef struct ext_fsevent_clone_args {
2169 user_addr_t event_list;
2170 int32_t num_events;
2171 int32_t event_queue_depth;
2172 user_addr_t fd;
2173 } ext_fsevent_clone_args;
2174
2175 typedef struct old_fsevent_clone_args {
2176 uint32_t event_list;
2177 int32_t num_events;
2178 int32_t event_queue_depth;
2179 uint32_t fd;
2180 } old_fsevent_clone_args;
2181
2182 #define OLD_FSEVENTS_CLONE _IOW('s', 1, old_fsevent_clone_args)
2183
2184 static int
2185 fseventsioctl(__unused dev_t dev, u_long cmd, caddr_t data, __unused int flag, struct proc *p)
2186 {
2187 struct fileproc *f;
2188 int fd, error;
2189 fsevent_handle *fseh = NULL;
2190 ext_fsevent_clone_args *fse_clone_args, _fse_clone;
2191 int8_t *event_list;
2192 int is64bit = proc_is64bit(p);
2193
2194 switch (cmd) {
2195 case OLD_FSEVENTS_CLONE: {
2196 old_fsevent_clone_args *old_args = (old_fsevent_clone_args *)data;
2197
2198 fse_clone_args = &_fse_clone;
2199 memset(fse_clone_args, 0, sizeof(ext_fsevent_clone_args));
2200
2201 fse_clone_args->event_list = CAST_USER_ADDR_T(old_args->event_list);
2202 fse_clone_args->num_events = old_args->num_events;
2203 fse_clone_args->event_queue_depth = old_args->event_queue_depth;
2204 fse_clone_args->fd = CAST_USER_ADDR_T(old_args->fd);
2205 goto handle_clone;
2206 }
2207
2208 case FSEVENTS_CLONE:
2209 if (is64bit) {
2210 fse_clone_args = (ext_fsevent_clone_args *)data;
2211 } else {
2212 fsevent_clone_args *ufse_clone = (fsevent_clone_args *)data;
2213
2214 fse_clone_args = &_fse_clone;
2215 memset(fse_clone_args, 0, sizeof(ext_fsevent_clone_args));
2216
2217 fse_clone_args->event_list = CAST_USER_ADDR_T(ufse_clone->event_list);
2218 fse_clone_args->num_events = ufse_clone->num_events;
2219 fse_clone_args->event_queue_depth = ufse_clone->event_queue_depth;
2220 fse_clone_args->fd = CAST_USER_ADDR_T(ufse_clone->fd);
2221 }
2222
2223 handle_clone:
2224 if (fse_clone_args->num_events < 0 || fse_clone_args->num_events > 4096) {
2225 return EINVAL;
2226 }
2227
2228 MALLOC(fseh, fsevent_handle *, sizeof(fsevent_handle),
2229 M_TEMP, M_WAITOK);
2230 if (fseh == NULL) {
2231 return ENOMEM;
2232 }
2233 memset(fseh, 0, sizeof(fsevent_handle));
2234
2235 klist_init(&fseh->knotes);
2236
2237 MALLOC(event_list, int8_t *,
2238 fse_clone_args->num_events * sizeof(int8_t),
2239 M_TEMP, M_WAITOK);
2240 if (event_list == NULL) {
2241 FREE(fseh, M_TEMP);
2242 return ENOMEM;
2243 }
2244
2245 error = copyin(fse_clone_args->event_list,
2246 (void *)event_list,
2247 fse_clone_args->num_events * sizeof(int8_t));
2248 if (error) {
2249 FREE(event_list, M_TEMP);
2250 FREE(fseh, M_TEMP);
2251 return error;
2252 }
2253
2254 error = add_watcher(event_list,
2255 fse_clone_args->num_events,
2256 fse_clone_args->event_queue_depth,
2257 &fseh->watcher,
2258 fseh);
2259 if (error) {
2260 FREE(event_list, M_TEMP);
2261 FREE(fseh, M_TEMP);
2262 return error;
2263 }
2264
2265 fseh->watcher->fseh = fseh;
2266
2267 error = falloc(p, &f, &fd, vfs_context_current());
2268 if (error) {
2269 remove_watcher(fseh->watcher);
2270 FREE(event_list, M_TEMP);
2271 FREE(fseh, M_TEMP);
2272 return (error);
2273 }
2274 proc_fdlock(p);
2275 f->f_fglob->fg_flag = FREAD | FWRITE;
2276 f->f_fglob->fg_ops = &fsevents_fops;
2277 f->f_fglob->fg_data = (caddr_t) fseh;
2278 proc_fdunlock(p);
2279 error = copyout((void *)&fd, fse_clone_args->fd, sizeof(int32_t));
2280 if (error != 0) {
2281 fp_free(p, fd, f);
2282 } else {
2283 proc_fdlock(p);
2284 procfdtbl_releasefd(p, fd, NULL);
2285 fp_drop(p, fd, f, 1);
2286 proc_fdunlock(p);
2287 }
2288 break;
2289
2290 default:
2291 error = EINVAL;
2292 break;
2293 }
2294
2295 return error;
2296 }
2297
2298 static void
2299 fsevents_wakeup(fs_event_watcher *watcher)
2300 {
2301 selwakeup(&watcher->fseh->si);
2302 KNOTE(&watcher->fseh->knotes, NOTE_WRITE|NOTE_NONE);
2303 wakeup((caddr_t)watcher);
2304 }
2305
2306
2307 /*
2308 * A struct describing which functions will get invoked for certain
2309 * actions.
2310 */
2311 static struct cdevsw fsevents_cdevsw =
2312 {
2313 fseventsopen, /* open */
2314 fseventsclose, /* close */
2315 fseventsread, /* read */
2316 fseventswrite, /* write */
2317 fseventsioctl, /* ioctl */
2318 (stop_fcn_t *)&nulldev, /* stop */
2319 (reset_fcn_t *)&nulldev, /* reset */
2320 NULL, /* tty's */
2321 eno_select, /* select */
2322 eno_mmap, /* mmap */
2323 eno_strat, /* strategy */
2324 eno_getc, /* getc */
2325 eno_putc, /* putc */
2326 0 /* type */
2327 };
2328
2329
2330 /*
2331 * Called to initialize our device,
2332 * and to register ourselves with devfs
2333 */
2334
2335 void
2336 fsevents_init(void)
2337 {
2338 int ret;
2339
2340 if (fsevents_installed) {
2341 return;
2342 }
2343
2344 fsevents_installed = 1;
2345
2346 ret = cdevsw_add(-1, &fsevents_cdevsw);
2347 if (ret < 0) {
2348 fsevents_installed = 0;
2349 return;
2350 }
2351
2352 devfs_make_node(makedev (ret, 0), DEVFS_CHAR,
2353 UID_ROOT, GID_WHEEL, 0644, "fsevents", 0);
2354
2355 fsevents_internal_init();
2356 }
2357
2358
2359 char *
2360 get_pathbuff(void)
2361 {
2362 char *path;
2363
2364 MALLOC_ZONE(path, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
2365 return path;
2366 }
2367
2368 void
2369 release_pathbuff(char *path)
2370 {
2371
2372 if (path == NULL) {
2373 return;
2374 }
2375 FREE_ZONE(path, MAXPATHLEN, M_NAMEI);
2376 }
2377
2378 int
2379 get_fse_info(struct vnode *vp, fse_info *fse, __unused vfs_context_t ctx)
2380 {
2381 struct vnode_attr va;
2382
2383 VATTR_INIT(&va);
2384 VATTR_WANTED(&va, va_fsid);
2385 VATTR_WANTED(&va, va_fileid);
2386 VATTR_WANTED(&va, va_mode);
2387 VATTR_WANTED(&va, va_uid);
2388 VATTR_WANTED(&va, va_gid);
2389 if (vp->v_flag & VISHARDLINK) {
2390 if (vp->v_type == VDIR) {
2391 VATTR_WANTED(&va, va_dirlinkcount);
2392 } else {
2393 VATTR_WANTED(&va, va_nlink);
2394 }
2395 }
2396
2397 if (vnode_getattr(vp, &va, vfs_context_kernel()) != 0) {
2398 memset(fse, 0, sizeof(fse_info));
2399 return -1;
2400 }
2401
2402 return vnode_get_fse_info_from_vap(vp, fse, &va);
2403 }
2404
2405 int
2406 vnode_get_fse_info_from_vap(vnode_t vp, fse_info *fse, struct vnode_attr *vap)
2407 {
2408 fse->ino = (ino64_t)vap->va_fileid;
2409 fse->dev = (dev_t)vap->va_fsid;
2410 fse->mode = (int32_t)vnode_vttoif(vnode_vtype(vp)) | vap->va_mode;
2411 fse->uid = (uid_t)vap->va_uid;
2412 fse->gid = (gid_t)vap->va_gid;
2413 if (vp->v_flag & VISHARDLINK) {
2414 fse->mode |= FSE_MODE_HLINK;
2415 if (vp->v_type == VDIR) {
2416 fse->nlink = (uint64_t)vap->va_dirlinkcount;
2417 } else {
2418 fse->nlink = (uint64_t)vap->va_nlink;
2419 }
2420 }
2421
2422 return 0;
2423 }
2424
2425 void
2426 create_fsevent_from_kevent(vnode_t vp, uint32_t kevents, struct vnode_attr *vap)
2427 {
2428 int fsevent_type=FSE_CONTENT_MODIFIED, len; // the default is the most pessimistic
2429 char pathbuf[MAXPATHLEN];
2430 fse_info fse;
2431
2432
2433 if (kevents & VNODE_EVENT_DELETE) {
2434 fsevent_type = FSE_DELETE;
2435 } else if (kevents & (VNODE_EVENT_EXTEND|VNODE_EVENT_WRITE)) {
2436 fsevent_type = FSE_CONTENT_MODIFIED;
2437 } else if (kevents & VNODE_EVENT_LINK) {
2438 fsevent_type = FSE_CREATE_FILE;
2439 } else if (kevents & VNODE_EVENT_RENAME) {
2440 fsevent_type = FSE_CREATE_FILE; // XXXdbg - should use FSE_RENAME but we don't have the destination info;
2441 } else if (kevents & (VNODE_EVENT_FILE_CREATED|VNODE_EVENT_FILE_REMOVED|VNODE_EVENT_DIR_CREATED|VNODE_EVENT_DIR_REMOVED)) {
2442 fsevent_type = FSE_STAT_CHANGED; // XXXdbg - because vp is a dir and the thing created/removed lived inside it
2443 } else { // a catch all for VNODE_EVENT_PERMS, VNODE_EVENT_ATTRIB and anything else
2444 fsevent_type = FSE_STAT_CHANGED;
2445 }
2446
2447 // printf("convert_kevent: kevents 0x%x fsevent type 0x%x (for %s)\n", kevents, fsevent_type, vp->v_name ? vp->v_name : "(no-name)");
2448
2449 fse.dev = vap->va_fsid;
2450 fse.ino = vap->va_fileid;
2451 fse.mode = vnode_vttoif(vnode_vtype(vp)) | (uint32_t)vap->va_mode;
2452 if (vp->v_flag & VISHARDLINK) {
2453 fse.mode |= FSE_MODE_HLINK;
2454 if (vp->v_type == VDIR) {
2455 fse.nlink = vap->va_dirlinkcount;
2456 } else {
2457 fse.nlink = vap->va_nlink;
2458 }
2459 }
2460
2461 if (vp->v_type == VDIR) {
2462 fse.mode |= FSE_REMOTE_DIR_EVENT;
2463 }
2464
2465
2466 fse.uid = vap->va_uid;
2467 fse.gid = vap->va_gid;
2468
2469 len = sizeof(pathbuf);
2470 if (vn_getpath(vp, pathbuf, &len) == 0) {
2471 add_fsevent(fsevent_type, vfs_context_current(), FSE_ARG_STRING, len, pathbuf, FSE_ARG_FINFO, &fse, FSE_ARG_DONE);
2472 }
2473 return;
2474 }
2475
2476 #else /* CONFIG_FSE */
2477 /*
2478 * The get_pathbuff and release_pathbuff routines are used in places not
2479 * related to fsevents, and it's a handy abstraction, so define trivial
2480 * versions that don't cache a pool of buffers. This way, we don't have
2481 * to conditionalize the callers, and they still get the advantage of the
2482 * pool of buffers if CONFIG_FSE is turned on.
2483 */
2484 char *
2485 get_pathbuff(void)
2486 {
2487 char *path;
2488 MALLOC_ZONE(path, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
2489 return path;
2490 }
2491
2492 void
2493 release_pathbuff(char *path)
2494 {
2495 FREE_ZONE(path, MAXPATHLEN, M_NAMEI);
2496 }
2497 #endif /* CONFIG_FSE */