]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_time.c
f7eeeb6390b615127fab1f05dd0599d185565cc2
[apple/xnu.git] / bsd / kern / kern_time.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
23 /*
24 * Copyright (c) 1982, 1986, 1989, 1993
25 * The Regents of the University of California. All rights reserved.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
35 * 3. All advertising materials mentioning features or use of this software
36 * must display the following acknowledgement:
37 * This product includes software developed by the University of
38 * California, Berkeley and its contributors.
39 * 4. Neither the name of the University nor the names of its contributors
40 * may be used to endorse or promote products derived from this software
41 * without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 *
55 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
56 */
57
58 #include <sys/param.h>
59 #include <sys/resourcevar.h>
60 #include <sys/kernel.h>
61 #include <sys/systm.h>
62 #include <sys/proc.h>
63 #include <sys/vnode.h>
64
65 #include <sys/mount.h>
66
67 #include <kern/cpu_number.h>
68
69 #include <kern/clock.h>
70
71 #define HZ 100 /* XXX */
72
73 struct timeval time;
74
75 /*
76 * Time of day and interval timer support.
77 *
78 * These routines provide the kernel entry points to get and set
79 * the time-of-day and per-process interval timers. Subroutines
80 * here provide support for adding and subtracting timeval structures
81 * and decrementing interval timers, optionally reloading the interval
82 * timers when they expire.
83 */
84 struct gettimeofday_args{
85 struct timeval *tp;
86 struct timezone *tzp;
87 };
88 /* ARGSUSED */
89 int
90 gettimeofday(p, uap, retval)
91 struct proc *p;
92 register struct gettimeofday_args *uap;
93 register_t *retval;
94 {
95 struct timeval atv;
96 int error = 0;
97
98 if (uap->tp) {
99 microtime(&atv);
100 if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
101 sizeof (atv)))
102 return(error);
103 }
104
105 if (uap->tzp)
106 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
107 sizeof (tz));
108
109 return(error);
110 }
111
112 struct settimeofday_args {
113 struct timeval *tv;
114 struct timezone *tzp;
115 };
116 /* ARGSUSED */
117 int
118 settimeofday(p, uap, retval)
119 struct proc *p;
120 struct settimeofday_args *uap;
121 register_t *retval;
122 {
123 struct timeval atv;
124 struct timezone atz;
125 int error, s;
126
127 if (error = suser(p->p_ucred, &p->p_acflag))
128 return (error);
129 /* Verify all parameters before changing time. */
130 if (uap->tv && (error = copyin((caddr_t)uap->tv,
131 (caddr_t)&atv, sizeof(atv))))
132 return (error);
133 if (uap->tzp && (error = copyin((caddr_t)uap->tzp,
134 (caddr_t)&atz, sizeof(atz))))
135 return (error);
136 if (uap->tv)
137 setthetime(&atv);
138 if (uap->tzp)
139 tz = atz;
140 return (0);
141 }
142
143 setthetime(tv)
144 struct timeval *tv;
145 {
146 mach_timespec_t now;
147 long delta;
148 int s;
149
150 now.tv_sec = tv->tv_sec;
151 now.tv_nsec = tv->tv_usec * NSEC_PER_USEC;
152
153 clock_set_calendar_value(now);
154 delta = tv->tv_sec - time.tv_sec;
155 boottime.tv_sec += delta;
156 #if NFSCLIENT || NFSSERVER
157 lease_updatetime(delta);
158 #endif
159 s = splhigh();
160 microtime(&time);
161 splx(s);
162 }
163
164 int tickadj = 240000 / (60 * HZ); /* "standard" clock skew, us./tick */
165 int tickdelta; /* current clock skew, us. per tick */
166 long timedelta; /* unapplied time correction, us. */
167 long bigadj = 1000000; /* use 10x skew above bigadj us. */
168
169 struct adjtime_args {
170 struct timeval *delta;
171 struct timeval *olddelta;
172 };
173 /* ARGSUSED */
174 int
175 adjtime(p, uap, retval)
176 struct proc *p;
177 register struct adjtime_args *uap;
178 register_t *retval;
179 {
180 struct timeval atv, oatv;
181 register long ndelta;
182 int s, error;
183
184 if (error = suser(p->p_ucred, &p->p_acflag))
185 return (error);
186 if(error = copyin((caddr_t)uap->delta, (caddr_t)&atv,
187 sizeof (struct timeval)))
188 return(error);
189
190 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
191 if (timedelta == 0)
192 if (ndelta > bigadj)
193 tickdelta = 10 * tickadj;
194 else
195 tickdelta = tickadj;
196 if (ndelta % tickdelta)
197 ndelta = ndelta / tickdelta * tickdelta;
198
199 s = splclock();
200 if (uap->olddelta) {
201 oatv.tv_sec = timedelta / 1000000;
202 oatv.tv_usec = timedelta % 1000000;
203 }
204 timedelta = ndelta;
205 splx(s);
206
207 if (uap->olddelta)
208 (void) copyout((caddr_t)&oatv, (caddr_t)uap->olddelta,
209 sizeof (struct timeval));
210 return(0);
211 }
212
213 #define SECDAY ((unsigned)(24*60*60)) /* seconds per day */
214 #define SECYR ((unsigned)(365*SECDAY)) /* per common year */
215 #define YRREF 70 /* UNIX time referenced to 1970 */
216
217 /*
218 * Initialze the time of day register.
219 * Trust the RTC except for the case where it is set before
220 * the UNIX epoch. In that case use the the UNIX epoch.
221 * The argument passed in is ignored.
222 */
223 void
224 inittodr(base)
225 time_t base;
226 {
227 /*
228 * Assertion:
229 * The calendar has already been
230 * set up from the battery clock.
231 *
232 * The value returned by microtime()
233 * is gotten from the calendar.
234 */
235 microtime(&time);
236
237 /*
238 * This variable still exists to keep
239 * 'w' happy. It should only be considered
240 * an approximation.
241 */
242 boottime.tv_sec = time.tv_sec;
243 boottime.tv_usec = 0;
244
245 /*
246 * If the RTC does not have acceptable value, i.e. time before
247 * the UNIX epoch, set it to the UNIX epoch
248 */
249 if (time.tv_sec < 0) {
250 printf ("WARNING: preposterous time in Real Time Clock");
251 time.tv_sec = 0; /* the UNIX epoch */
252 time.tv_usec = 0;
253 setthetime(&time);
254 boottime = time;
255 printf(" -- CHECK AND RESET THE DATE!\n");
256 }
257
258 return;
259 }
260
261 /*
262 * Get value of an interval timer. The process virtual and
263 * profiling virtual time timers are kept in the u. area, since
264 * they can be swapped out. These are kept internally in the
265 * way they are specified externally: in time until they expire.
266 *
267 * The real time interval timer is kept in the process table slot
268 * for the process, and its value (it_value) is kept as an
269 * absolute time rather than as a delta, so that it is easy to keep
270 * periodic real-time signals from drifting.
271 *
272 * Virtual time timers are processed in the hardclock() routine of
273 * kern_clock.c. The real time timer is processed by a timeout
274 * routine, called from the softclock() routine. Since a callout
275 * may be delayed in real time due to interrupt processing in the system,
276 * it is possible for the real time timeout routine (realitexpire, given below),
277 * to be delayed in real time past when it is supposed to occur. It
278 * does not suffice, therefore, to reload the real timer .it_value from the
279 * real time timers .it_interval. Rather, we compute the next time in
280 * absolute time the timer should go off.
281 */
282
283 struct getitimer_args {
284 u_int which;
285 struct itimerval *itv;
286 };
287 /* ARGSUSED */
288 int
289 getitimer(p, uap, retval)
290 struct proc *p;
291 register struct getitimer_args *uap;
292 register_t *retval;
293 {
294 struct itimerval aitv;
295 int s;
296
297 if (uap->which > ITIMER_PROF)
298 return(EINVAL);
299
300 s = splclock();
301 if (uap->which == ITIMER_REAL) {
302 /*
303 * Convert from absoulte to relative time in .it_value
304 * part of real time timer. If time for real time timer
305 * has passed return 0, else return difference between
306 * current time and time for the timer to go off.
307 */
308 aitv = p->p_realtimer;
309 if (timerisset(&aitv.it_value))
310 if (timercmp(&aitv.it_value, &time, <))
311 timerclear(&aitv.it_value);
312 else
313 timevalsub(&aitv.it_value, &time);
314 } else
315 aitv =p->p_stats->p_timer[uap->which];
316 splx(s);
317 return(copyout((caddr_t)&aitv, (caddr_t)uap->itv,
318 sizeof (struct itimerval)));
319 }
320
321 struct setitimer_args {
322 u_int which;
323 struct itimerval *itv;
324 struct itimerval *oitv;
325 };
326 /* ARGSUSED */
327 int
328 setitimer(p, uap, retval)
329 struct proc *p;
330 register struct setitimer_args *uap;
331 register_t *retval;
332 {
333 struct itimerval aitv;
334 register struct itimerval *itvp;
335 int s, error;
336
337 if (uap->which > ITIMER_PROF)
338 return(EINVAL);
339 itvp = uap->itv;
340 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
341 sizeof(struct itimerval))))
342 return (error);
343 if ((uap->itv = uap->oitv) &&
344 (error = getitimer(p, uap, retval)))
345 return (error);
346 if (itvp == 0)
347 return (0);
348 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
349 return (EINVAL);
350 s = splclock();
351 if (uap->which == ITIMER_REAL) {
352 untimeout(realitexpire, (caddr_t)p);
353 if (timerisset(&aitv.it_value)) {
354 timevaladd(&aitv.it_value, &time);
355 timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
356 }
357 p->p_realtimer = aitv;
358 } else
359 p->p_stats->p_timer[uap->which] = aitv;
360 splx(s);
361 return(0); /* To insure good return value on success */
362 }
363
364 /*
365 * Real interval timer expired:
366 * send process whose timer expired an alarm signal.
367 * If time is not set up to reload, then just return.
368 * Else compute next time timer should go off which is > current time.
369 * This is where delay in processing this timeout causes multiple
370 * SIGALRM calls to be compressed into one.
371 */
372 void
373 realitexpire(arg)
374 void *arg;
375 {
376 register struct proc *p;
377 int s;
378 boolean_t funnel_state;
379
380 funnel_state = thread_funnel_set(kernel_flock,TRUE);
381
382 p = (struct proc *)arg;
383 psignal(p, SIGALRM);
384 if (!timerisset(&p->p_realtimer.it_interval)) {
385 timerclear(&p->p_realtimer.it_value);
386 (void) thread_funnel_set(kernel_flock, FALSE);
387 return;
388 }
389
390 /*
391 * If the time's way off, don't try to compensate by getting
392 * there incrementally.
393 */
394 s = splclock();
395 if (p->p_realtimer.it_value.tv_sec < time.tv_sec - 10) {
396 p->p_realtimer.it_value = time;
397 timeout(realitexpire, (caddr_t)p,
398 hzto(&p->p_realtimer.it_value));
399 splx(s);
400 (void) thread_funnel_set(kernel_flock, FALSE);
401 return;
402
403 }
404 splx(s);
405
406 for (;;) {
407 s = splclock();
408 timevaladd(&p->p_realtimer.it_value,
409 &p->p_realtimer.it_interval);
410 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
411 timeout(realitexpire, (caddr_t)p,
412 hzto(&p->p_realtimer.it_value));
413 splx(s);
414 (void) thread_funnel_set(kernel_flock, FALSE);
415 return;
416 }
417 splx(s);
418 }
419
420 (void) thread_funnel_set(kernel_flock, FALSE);
421 }
422
423 /*
424 * Check that a proposed value to load into the .it_value or
425 * .it_interval part of an interval timer is acceptable, and
426 * fix it to have at least minimal value (i.e. if it is less
427 * than the resolution of the clock, round it up.)
428 */
429 int
430 itimerfix(tv)
431 struct timeval *tv;
432 {
433
434 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
435 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
436 return (EINVAL);
437 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
438 tv->tv_usec = tick;
439 return (0);
440 }
441
442 /*
443 * Decrement an interval timer by a specified number
444 * of microseconds, which must be less than a second,
445 * i.e. < 1000000. If the timer expires, then reload
446 * it. In this case, carry over (usec - old value) to
447 * reducint the value reloaded into the timer so that
448 * the timer does not drift. This routine assumes
449 * that it is called in a context where the timers
450 * on which it is operating cannot change in value.
451 */
452 int
453 itimerdecr(itp, usec)
454 register struct itimerval *itp;
455 int usec;
456 {
457
458 if (itp->it_value.tv_usec < usec) {
459 if (itp->it_value.tv_sec == 0) {
460 /* expired, and already in next interval */
461 usec -= itp->it_value.tv_usec;
462 goto expire;
463 }
464 itp->it_value.tv_usec += 1000000;
465 itp->it_value.tv_sec--;
466 }
467 itp->it_value.tv_usec -= usec;
468 usec = 0;
469 if (timerisset(&itp->it_value))
470 return (1);
471 /* expired, exactly at end of interval */
472 expire:
473 if (timerisset(&itp->it_interval)) {
474 itp->it_value = itp->it_interval;
475 itp->it_value.tv_usec -= usec;
476 if (itp->it_value.tv_usec < 0) {
477 itp->it_value.tv_usec += 1000000;
478 itp->it_value.tv_sec--;
479 }
480 } else
481 itp->it_value.tv_usec = 0; /* sec is already 0 */
482 return (0);
483 }
484
485 /*
486 * Add and subtract routines for timevals.
487 * N.B.: subtract routine doesn't deal with
488 * results which are before the beginning,
489 * it just gets very confused in this case.
490 * Caveat emptor.
491 */
492 void
493 timevaladd(t1, t2)
494 struct timeval *t1, *t2;
495 {
496
497 t1->tv_sec += t2->tv_sec;
498 t1->tv_usec += t2->tv_usec;
499 timevalfix(t1);
500 }
501 void
502 timevalsub(t1, t2)
503 struct timeval *t1, *t2;
504 {
505
506 t1->tv_sec -= t2->tv_sec;
507 t1->tv_usec -= t2->tv_usec;
508 timevalfix(t1);
509 }
510 void
511 timevalfix(t1)
512 struct timeval *t1;
513 {
514
515 if (t1->tv_usec < 0) {
516 t1->tv_sec--;
517 t1->tv_usec += 1000000;
518 }
519 if (t1->tv_usec >= 1000000) {
520 t1->tv_sec++;
521 t1->tv_usec -= 1000000;
522 }
523 }
524
525 /*
526 * Return the best possible estimate of the time in the timeval
527 * to which tvp points.
528 */
529 void
530 microtime(struct timeval * tvp)
531 {
532 mach_timespec_t now = clock_get_calendar_value();
533
534 tvp->tv_sec = now.tv_sec;
535 tvp->tv_usec = now.tv_nsec / NSEC_PER_USEC;
536 }