2 * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <kern/locks.h>
80 #include <sys/sysctl.h>
81 #include <sys/mcache.h>
82 #include <sys/kdebug.h>
84 #include <machine/endian.h>
85 #include <pexpert/pexpert.h>
88 #include <libkern/OSAtomic.h>
89 #include <libkern/OSByteOrder.h>
92 #include <net/if_dl.h>
93 #include <net/if_types.h>
94 #include <net/route.h>
95 #include <net/ntstat.h>
96 #include <net/net_osdep.h>
98 #include <net/net_perf.h>
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/ip.h>
103 #include <netinet/in_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet/kpi_ipfilter_var.h>
107 #include <netinet/in_tclass.h>
108 #include <netinet/udp.h>
110 #include <netinet6/nd6.h>
113 #include <security/mac_framework.h>
114 #endif /* CONFIG_MACF_NET */
116 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1)
117 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3)
118 #define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1)
119 #define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1)
122 #include <netinet6/ipsec.h>
123 #include <netkey/key.h>
125 #include <netkey/key_debug.h>
127 #define KEYDEBUG(lev, arg)
132 #include <net/necp.h>
136 #include <netinet/ip_fw.h>
138 #include <netinet/ip_divert.h>
139 #endif /* IPDIVERT */
140 #endif /* IPFIREWALL */
143 #include <netinet/ip_dummynet.h>
147 #include <net/pfvar.h>
150 #if IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG
151 #define print_ip(a) \
152 printf("%ld.%ld.%ld.%ld", (ntohl(a.s_addr) >> 24) & 0xFF, \
153 (ntohl(a.s_addr) >> 16) & 0xFF, \
154 (ntohl(a.s_addr) >> 8) & 0xFF, \
155 (ntohl(a.s_addr)) & 0xFF);
156 #endif /* IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG */
160 static int sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS
;
161 static int sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS
;
162 static int sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS
;
163 static void ip_out_cksum_stats(int, u_int32_t
);
164 static struct mbuf
*ip_insertoptions(struct mbuf
*, struct mbuf
*, int *);
165 static int ip_optcopy(struct ip
*, struct ip
*);
166 static int ip_pcbopts(int, struct mbuf
**, struct mbuf
*);
167 static void imo_trace(struct ip_moptions
*, int);
168 static void ip_mloopback(struct ifnet
*, struct ifnet
*, struct mbuf
*,
169 struct sockaddr_in
*, int);
170 static struct ifaddr
*in_selectsrcif(struct ip
*, struct route
*, unsigned int);
172 extern struct ip_linklocal_stat ip_linklocal_stat
;
174 /* temporary: for testing */
176 extern int ipsec_bypass
;
179 static int ip_maxchainsent
= 0;
180 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxchainsent
,
181 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_maxchainsent
, 0,
182 "use dlil_output_list");
184 static int forge_ce
= 0;
185 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, forge_ce
,
186 CTLFLAG_RW
| CTLFLAG_LOCKED
, &forge_ce
, 0,
190 static int ip_select_srcif_debug
= 0;
191 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, select_srcif_debug
,
192 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_select_srcif_debug
, 0,
193 "log source interface selection debug info");
195 static int ip_output_measure
= 0;
196 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf
,
197 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
198 &ip_output_measure
, 0, sysctl_reset_ip_output_stats
, "I",
199 "Do time measurement");
201 static uint64_t ip_output_measure_bins
= 0;
202 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf_bins
,
203 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_output_measure_bins
, 0,
204 sysctl_ip_output_measure_bins
, "I",
205 "bins for chaining performance data histogram");
207 static net_perf_t net_perf
;
208 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf_data
,
209 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
210 0, 0, sysctl_ip_output_getperf
, "S,net_perf",
211 "IP output performance data (struct net_perf, net/net_perf.h)");
213 __private_extern__
int rfc6864
= 1;
214 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, rfc6864
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
215 &rfc6864
, 0, "updated ip id field behavior");
217 #define IMO_TRACE_HIST_SIZE 32 /* size of trace history */
220 __private_extern__
unsigned int imo_trace_hist_size
= IMO_TRACE_HIST_SIZE
;
222 struct ip_moptions_dbg
{
223 struct ip_moptions imo
; /* ip_moptions */
224 u_int16_t imo_refhold_cnt
; /* # of IMO_ADDREF */
225 u_int16_t imo_refrele_cnt
; /* # of IMO_REMREF */
227 * Alloc and free callers.
232 * Circular lists of IMO_ADDREF and IMO_REMREF callers.
234 ctrace_t imo_refhold
[IMO_TRACE_HIST_SIZE
];
235 ctrace_t imo_refrele
[IMO_TRACE_HIST_SIZE
];
239 static unsigned int imo_debug
= 1; /* debugging (enabled) */
241 static unsigned int imo_debug
; /* debugging (disabled) */
243 static unsigned int imo_size
; /* size of zone element */
244 static struct zone
*imo_zone
; /* zone for ip_moptions */
246 #define IMO_ZONE_MAX 64 /* maximum elements in zone */
247 #define IMO_ZONE_NAME "ip_moptions" /* zone name */
250 * IP output. The packet in mbuf chain m contains a skeletal IP
251 * header (with len, off, ttl, proto, tos, src, dst).
252 * The mbuf chain containing the packet will be freed.
253 * The mbuf opt, if present, will not be freed.
256 ip_output(struct mbuf
*m0
, struct mbuf
*opt
, struct route
*ro
, int flags
,
257 struct ip_moptions
*imo
, struct ip_out_args
*ipoa
)
259 return ip_output_list(m0
, 0, opt
, ro
, flags
, imo
, ipoa
);
263 * IP output. The packet in mbuf chain m contains a skeletal IP
264 * header (with len, off, ttl, proto, tos, src, dst).
265 * The mbuf chain containing the packet will be freed.
266 * The mbuf opt, if present, will not be freed.
268 * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be
269 * skipped and ro->ro_rt would be used. Otherwise the result of route
270 * lookup is stored in ro->ro_rt.
272 * In the IP forwarding case, the packet will arrive with options already
273 * inserted, so must have a NULL opt pointer.
276 ip_output_list(struct mbuf
*m0
, int packetchain
, struct mbuf
*opt
,
277 struct route
*ro
, int flags
, struct ip_moptions
*imo
,
278 struct ip_out_args
*ipoa
)
281 struct ifnet
*ifp
= NULL
; /* not refcnt'd */
282 struct mbuf
*m
= m0
, *prevnxt
= NULL
, **mppn
= &prevnxt
;
283 int hlen
= sizeof(struct ip
);
284 int len
= 0, error
= 0;
285 struct sockaddr_in
*dst
= NULL
;
286 struct in_ifaddr
*ia
= NULL
, *src_ia
= NULL
;
287 struct in_addr pkt_dst
;
288 struct ipf_pktopts
*ippo
= NULL
;
289 ipfilter_t inject_filter_ref
= NULL
;
290 struct mbuf
*packetlist
;
291 uint32_t sw_csum
, pktcnt
= 0, scnt
= 0, bytecnt
= 0;
292 uint32_t packets_processed
= 0;
293 unsigned int ifscope
= IFSCOPE_NONE
;
294 struct flowadv
*adv
= NULL
;
295 struct timeval start_tv
;
297 struct socket
*so
= NULL
;
298 struct secpolicy
*sp
= NULL
;
301 necp_kernel_policy_result necp_result
= 0;
302 necp_kernel_policy_result_parameter necp_result_parameter
;
303 necp_kernel_policy_id necp_matched_policy_id
= 0;
307 struct sockaddr_in
*next_hop_from_ipfwd_tag
= NULL
;
308 #endif /* IPFIREWALL */
309 #if IPFIREWALL || DUMMYNET
311 #endif /* IPFIREWALL || DUMMYNET */
313 struct ip_out_args saved_ipoa
;
314 struct sockaddr_in dst_buf
;
315 #endif /* DUMMYNET */
318 struct ipsec_output_state ipsec_state
;
321 struct route necp_route
;
323 #if IPFIREWALL || DUMMYNET
324 struct ip_fw_args args
;
325 #endif /* IPFIREWALL || DUMMYNET */
326 #if IPFIREWALL_FORWARD
327 struct route sro_fwd
;
328 #endif /* IPFIREWALL_FORWARD */
330 struct route saved_route
;
331 #endif /* DUMMYNET */
332 struct ipf_pktopts ipf_pktopts
;
334 #define ipsec_state ipobz.ipsec_state
335 #define necp_route ipobz.necp_route
336 #define args ipobz.args
337 #define sro_fwd ipobz.sro_fwd
338 #define saved_route ipobz.saved_route
339 #define ipf_pktopts ipobz.ipf_pktopts
342 boolean_t select_srcif
: 1; /* set once */
343 boolean_t srcbound
: 1; /* set once */
344 boolean_t nocell
: 1; /* set once */
345 boolean_t isbroadcast
: 1;
346 boolean_t didfilter
: 1;
347 boolean_t noexpensive
: 1; /* set once */
348 boolean_t awdl_unrestricted
: 1; /* set once */
349 #if IPFIREWALL_FORWARD
350 boolean_t fwd_rewrite_src
: 1;
351 #endif /* IPFIREWALL_FORWARD */
354 } ipobf
= { .raw
= 0 };
356 int interface_mtu
= 0;
359 * Here we check for restrictions when sending frames.
360 * N.B.: IPv4 over internal co-processor interfaces is not allowed.
362 #define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \
363 (((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \
364 ((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \
365 (IFNET_IS_INTCOPROC(_ifp)) || \
366 (!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp)))
368 if (ip_output_measure
) {
369 net_perf_start_time(&net_perf
, &start_tv
);
371 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
373 VERIFY(m0
->m_flags
& M_PKTHDR
);
376 /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */
377 bzero(&ipobz
, sizeof(ipobz
));
380 #if IPFIREWALL || DUMMYNET
381 if (SLIST_EMPTY(&m0
->m_pkthdr
.tags
)) {
385 /* Grab info from mtags prepended to the chain */
387 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
388 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
389 struct dn_pkt_tag
*dn_tag
;
391 dn_tag
= (struct dn_pkt_tag
*)(tag
+ 1);
392 args
.fwa_ipfw_rule
= dn_tag
->dn_ipfw_rule
;
393 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
395 saved_route
= dn_tag
->dn_ro
;
399 bcopy(&dn_tag
->dn_dst
, &dst_buf
, sizeof(dst_buf
));
401 ifp
= dn_tag
->dn_ifp
;
402 flags
= dn_tag
->dn_flags
;
403 if ((dn_tag
->dn_flags
& IP_OUTARGS
)) {
404 saved_ipoa
= dn_tag
->dn_ipoa
;
408 m_tag_delete(m0
, tag
);
410 #endif /* DUMMYNET */
413 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
414 KERNEL_TAG_TYPE_DIVERT
, NULL
)) != NULL
) {
415 struct divert_tag
*div_tag
;
417 div_tag
= (struct divert_tag
*)(tag
+ 1);
418 args
.fwa_divert_rule
= div_tag
->cookie
;
420 m_tag_delete(m0
, tag
);
422 #endif /* IPDIVERT */
425 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
426 KERNEL_TAG_TYPE_IPFORWARD
, NULL
)) != NULL
) {
427 struct ip_fwd_tag
*ipfwd_tag
;
429 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+ 1);
430 next_hop_from_ipfwd_tag
= ipfwd_tag
->next_hop
;
432 m_tag_delete(m0
, tag
);
434 #endif /* IPFIREWALL */
437 #endif /* IPFIREWALL || DUMMYNET */
440 m
->m_pkthdr
.pkt_flags
&= ~(PKTF_LOOP
| PKTF_IFAINFO
);
443 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
444 /* If packet is bound to an interface, check bound policies */
445 if ((flags
& IP_OUTARGS
) && (ipoa
!= NULL
) &&
446 (ipoa
->ipoa_flags
& IPOAF_BOUND_IF
) &&
447 ipoa
->ipoa_boundif
!= IFSCOPE_NONE
) {
448 if (ipsec4_getpolicybyinterface(m
, IPSEC_DIR_OUTBOUND
,
449 &flags
, ipoa
, &sp
) != 0) {
458 if (flags
& IP_OUTARGS
) {
460 * In the forwarding case, only the ifscope value is used,
461 * as source interface selection doesn't take place.
463 if ((ipobf
.select_srcif
= (!(flags
& IP_FORWARDING
) &&
464 (ipoa
->ipoa_flags
& IPOAF_SELECT_SRCIF
)))) {
465 ipf_pktopts
.ippo_flags
|= IPPOF_SELECT_SRCIF
;
468 if ((ipoa
->ipoa_flags
& IPOAF_BOUND_IF
) &&
469 ipoa
->ipoa_boundif
!= IFSCOPE_NONE
) {
470 ifscope
= ipoa
->ipoa_boundif
;
471 ipf_pktopts
.ippo_flags
|=
472 (IPPOF_BOUND_IF
| (ifscope
<< IPPOF_SHIFT_IFSCOPE
));
475 /* double negation needed for bool bit field */
476 ipobf
.srcbound
= !!(ipoa
->ipoa_flags
& IPOAF_BOUND_SRCADDR
);
477 if (ipobf
.srcbound
) {
478 ipf_pktopts
.ippo_flags
|= IPPOF_BOUND_SRCADDR
;
481 ipobf
.select_srcif
= FALSE
;
482 ipobf
.srcbound
= FALSE
;
483 ifscope
= IFSCOPE_NONE
;
484 if (flags
& IP_OUTARGS
) {
485 ipoa
->ipoa_boundif
= IFSCOPE_NONE
;
486 ipoa
->ipoa_flags
&= ~(IPOAF_SELECT_SRCIF
|
487 IPOAF_BOUND_IF
| IPOAF_BOUND_SRCADDR
);
491 if (flags
& IP_OUTARGS
) {
492 if (ipoa
->ipoa_flags
& IPOAF_NO_CELLULAR
) {
494 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFT_CELLULAR
;
496 if (ipoa
->ipoa_flags
& IPOAF_NO_EXPENSIVE
) {
497 ipobf
.noexpensive
= TRUE
;
498 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_EXPENSIVE
;
500 if (ipoa
->ipoa_flags
& IPOAF_AWDL_UNRESTRICTED
) {
501 ipobf
.awdl_unrestricted
= TRUE
;
503 adv
= &ipoa
->ipoa_flowadv
;
504 adv
->code
= FADV_SUCCESS
;
505 ipoa
->ipoa_retflags
= 0;
509 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
510 so
= ipsec_getsocket(m
);
512 (void) ipsec_setsocket(m
, NULL
);
518 if (args
.fwa_ipfw_rule
!= NULL
|| args
.fwa_pf_rule
!= NULL
) {
519 /* dummynet already saw us */
520 ip
= mtod(m
, struct ip
*);
521 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
522 pkt_dst
= ip
->ip_dst
;
523 if (ro
->ro_rt
!= NULL
) {
524 RT_LOCK_SPIN(ro
->ro_rt
);
525 ia
= (struct in_ifaddr
*)ro
->ro_rt
->rt_ifa
;
527 /* Become a regular mutex */
528 RT_CONVERT_LOCK(ro
->ro_rt
);
529 IFA_ADDREF(&ia
->ia_ifa
);
531 RT_UNLOCK(ro
->ro_rt
);
535 if (args
.fwa_ipfw_rule
!= NULL
) {
538 #endif /* IPFIREWALL */
539 if (args
.fwa_pf_rule
!= NULL
) {
543 #endif /* DUMMYNET */
547 ipobf
.isbroadcast
= FALSE
;
548 ipobf
.didfilter
= FALSE
;
549 #if IPFIREWALL_FORWARD
550 ipobf
.fwd_rewrite_src
= FALSE
;
551 #endif /* IPFIREWALL_FORWARD */
553 VERIFY(m
->m_flags
& M_PKTHDR
);
555 * No need to proccess packet twice if we've already seen it.
557 if (!SLIST_EMPTY(&m
->m_pkthdr
.tags
)) {
558 inject_filter_ref
= ipf_get_inject_filter(m
);
560 inject_filter_ref
= NULL
;
564 m
= ip_insertoptions(m
, opt
, &len
);
566 /* Update the chain */
568 if (m0
== packetlist
) {
574 ip
= mtod(m
, struct ip
*);
580 * When dealing with a packet chain, we need to reset "next_hop"
581 * because "dst" may have been changed to the gateway address below
582 * for the previous packet of the chain. This could cause the route
583 * to be inavertandly changed to the route to the gateway address
584 * (instead of the route to the destination).
586 args
.fwa_next_hop
= next_hop_from_ipfwd_tag
;
587 pkt_dst
= args
.fwa_next_hop
? args
.fwa_next_hop
->sin_addr
: ip
->ip_dst
;
588 #else /* !IPFIREWALL */
589 pkt_dst
= ip
->ip_dst
;
590 #endif /* !IPFIREWALL */
593 * We must not send if the packet is destined to network zero.
594 * RFC1122 3.2.1.3 (a) and (b).
596 if (IN_ZERONET(ntohl(pkt_dst
.s_addr
))) {
597 error
= EHOSTUNREACH
;
604 if (!(flags
& (IP_FORWARDING
| IP_RAWOUTPUT
))) {
605 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, hlen
>> 2);
607 if (rfc6864
&& IP_OFF_IS_ATOMIC(ip
->ip_off
)) {
608 // Per RFC6864, value of ip_id is undefined for atomic ip packets
611 ip
->ip_id
= ip_randomid();
613 OSAddAtomic(1, &ipstat
.ips_localout
);
615 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
619 /* For debugging, we let the stack forge congestion */
621 ((ip
->ip_tos
& IPTOS_ECN_MASK
) == IPTOS_ECN_ECT1
||
622 (ip
->ip_tos
& IPTOS_ECN_MASK
) == IPTOS_ECN_ECT0
)) {
623 ip
->ip_tos
= (ip
->ip_tos
& ~IPTOS_ECN_MASK
) | IPTOS_ECN_CE
;
628 KERNEL_DEBUG(DBG_LAYER_BEG
, ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
,
629 ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
631 dst
= SIN(&ro
->ro_dst
);
634 * If there is a cached route,
635 * check that it is to the same destination
636 * and is still up. If not, free it and try again.
637 * The address family should also be checked in case of sharing the
641 if (ro
->ro_rt
!= NULL
) {
642 if (ROUTE_UNUSABLE(ro
) && ip
->ip_src
.s_addr
!= INADDR_ANY
&&
643 !(flags
& (IP_ROUTETOIF
| IP_FORWARDING
))) {
644 src_ia
= ifa_foraddr(ip
->ip_src
.s_addr
);
645 if (src_ia
== NULL
) {
646 error
= EADDRNOTAVAIL
;
649 IFA_REMREF(&src_ia
->ia_ifa
);
653 * Test rt_flags without holding rt_lock for performance
654 * reasons; if the route is down it will hopefully be
655 * caught by the layer below (since it uses this route
656 * as a hint) or during the next transmit.
658 if (ROUTE_UNUSABLE(ro
) || dst
->sin_family
!= AF_INET
||
659 dst
->sin_addr
.s_addr
!= pkt_dst
.s_addr
) {
664 * If we're doing source interface selection, we may not
665 * want to use this route; only synch up the generation
668 if (!ipobf
.select_srcif
&& ro
->ro_rt
!= NULL
&&
669 RT_GENID_OUTOFSYNC(ro
->ro_rt
)) {
670 RT_GENID_SYNC(ro
->ro_rt
);
673 if (ro
->ro_rt
== NULL
) {
674 bzero(dst
, sizeof(*dst
));
675 dst
->sin_family
= AF_INET
;
676 dst
->sin_len
= sizeof(*dst
);
677 dst
->sin_addr
= pkt_dst
;
680 * If routing to interface only,
681 * short circuit routing lookup.
683 if (flags
& IP_ROUTETOIF
) {
685 IFA_REMREF(&ia
->ia_ifa
);
687 if ((ia
= ifatoia(ifa_ifwithdstaddr(sintosa(dst
)))) == NULL
) {
688 ia
= ifatoia(ifa_ifwithnet(sintosa(dst
)));
690 OSAddAtomic(1, &ipstat
.ips_noroute
);
692 /* XXX IPv6 APN fallback notification?? */
698 ipobf
.isbroadcast
= in_broadcast(dst
->sin_addr
, ifp
);
700 * For consistency with other cases below. Loopback
701 * multicast case is handled separately by ip_mloopback().
703 if ((ifp
->if_flags
& IFF_LOOPBACK
) &&
704 !IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
705 m
->m_pkthdr
.rcvif
= ifp
;
706 ip_setsrcifaddr_info(m
, ifp
->if_index
, NULL
);
707 ip_setdstifaddr_info(m
, ifp
->if_index
, NULL
);
709 } else if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
)) &&
710 imo
!= NULL
&& (ifp
= imo
->imo_multicast_ifp
) != NULL
) {
712 * Bypass the normal routing lookup for multicast
713 * packets if the interface is specified.
715 ipobf
.isbroadcast
= FALSE
;
717 IFA_REMREF(&ia
->ia_ifa
);
720 /* Macro takes reference on ia */
723 struct ifaddr
*ia0
= NULL
;
724 boolean_t cloneok
= FALSE
;
726 * Perform source interface selection; the source IP address
727 * must belong to one of the addresses of the interface used
728 * by the route. For performance reasons, do this only if
729 * there is no route, or if the routing table has changed,
730 * or if we haven't done source interface selection on this
731 * route (for this PCB instance) before.
733 if (ipobf
.select_srcif
&&
734 ip
->ip_src
.s_addr
!= INADDR_ANY
&& (ROUTE_UNUSABLE(ro
) ||
735 !(ro
->ro_flags
& ROF_SRCIF_SELECTED
))) {
736 /* Find the source interface */
737 ia0
= in_selectsrcif(ip
, ro
, ifscope
);
740 * If the source address belongs to a restricted
741 * interface and the caller forbids our using
742 * interfaces of such type, pretend that there is no
746 IP_CHECK_RESTRICTIONS(ia0
->ifa_ifp
, ipobf
)) {
749 error
= EHOSTUNREACH
;
750 if (flags
& IP_OUTARGS
) {
751 ipoa
->ipoa_retflags
|= IPOARF_IFDENIED
;
757 * If the source address is spoofed (in the case of
758 * IP_RAWOUTPUT on an unbounded socket), or if this
759 * is destined for local/loopback, just let it go out
760 * using the interface of the route. Otherwise,
761 * there's no interface having such an address,
764 if (ia0
== NULL
&& (!(flags
& IP_RAWOUTPUT
) ||
765 ipobf
.srcbound
) && ifscope
!= lo_ifp
->if_index
) {
766 error
= EADDRNOTAVAIL
;
771 * If the caller didn't explicitly specify the scope,
772 * pick it up from the source interface. If the cached
773 * route was wrong and was blown away as part of source
774 * interface selection, don't mask out RTF_PRCLONING
775 * since that route may have been allocated by the ULP,
776 * unless the IP header was created by the caller or
777 * the destination is IPv4 LLA. The check for the
778 * latter is needed because IPv4 LLAs are never scoped
779 * in the current implementation, and we don't want to
780 * replace the resolved IPv4 LLA route with one whose
781 * gateway points to that of the default gateway on
782 * the primary interface of the system.
785 if (ifscope
== IFSCOPE_NONE
) {
786 ifscope
= ia0
->ifa_ifp
->if_index
;
788 cloneok
= (!(flags
& IP_RAWOUTPUT
) &&
789 !(IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
))));
794 * If this is the case, we probably don't want to allocate
795 * a protocol-cloned route since we didn't get one from the
796 * ULP. This lets TCP do its thing, while not burdening
797 * forwarding or ICMP with the overhead of cloning a route.
798 * Of course, we still want to do any cloning requested by
799 * the link layer, as this is probably required in all cases
800 * for correct operation (as it is for ARP).
802 if (ro
->ro_rt
== NULL
) {
803 unsigned long ign
= RTF_PRCLONING
;
805 * We make an exception here: if the destination
806 * address is INADDR_BROADCAST, allocate a protocol-
807 * cloned host route so that we end up with a route
808 * marked with the RTF_BROADCAST flag. Otherwise,
809 * we would end up referring to the default route,
810 * instead of creating a cloned host route entry.
811 * That would introduce inconsistencies between ULPs
812 * that allocate a route and those that don't. The
813 * RTF_BROADCAST route is important since we'd want
814 * to send out undirected IP broadcast packets using
815 * link-level broadcast address. Another exception
816 * is for ULP-created routes that got blown away by
817 * source interface selection (see above).
819 * These exceptions will no longer be necessary when
820 * the RTF_PRCLONING scheme is no longer present.
822 if (cloneok
|| dst
->sin_addr
.s_addr
== INADDR_BROADCAST
) {
823 ign
&= ~RTF_PRCLONING
;
827 * Loosen the route lookup criteria if the ifscope
828 * corresponds to the loopback interface; this is
829 * needed to support Application Layer Gateways
830 * listening on loopback, in conjunction with packet
831 * filter redirection rules. The final source IP
832 * address will be rewritten by the packet filter
833 * prior to the RFC1122 loopback check below.
835 if (ifscope
== lo_ifp
->if_index
) {
836 rtalloc_ign(ro
, ign
);
838 rtalloc_scoped_ign(ro
, ign
, ifscope
);
842 * If the route points to a cellular/expensive interface
843 * and the caller forbids our using interfaces of such type,
844 * pretend that there is no route.
846 if (ro
->ro_rt
!= NULL
) {
847 RT_LOCK_SPIN(ro
->ro_rt
);
848 if (IP_CHECK_RESTRICTIONS(ro
->ro_rt
->rt_ifp
,
850 RT_UNLOCK(ro
->ro_rt
);
852 if (flags
& IP_OUTARGS
) {
853 ipoa
->ipoa_retflags
|=
857 RT_UNLOCK(ro
->ro_rt
);
862 if (ro
->ro_rt
== NULL
) {
863 OSAddAtomic(1, &ipstat
.ips_noroute
);
864 error
= EHOSTUNREACH
;
873 IFA_REMREF(&ia
->ia_ifa
);
875 RT_LOCK_SPIN(ro
->ro_rt
);
876 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
878 /* Become a regular mutex */
879 RT_CONVERT_LOCK(ro
->ro_rt
);
880 IFA_ADDREF(&ia
->ia_ifa
);
883 * Note: ia_ifp may not be the same as rt_ifp; the latter
884 * is what we use for determining outbound i/f, mtu, etc.
886 ifp
= ro
->ro_rt
->rt_ifp
;
888 if (ro
->ro_rt
->rt_flags
& RTF_GATEWAY
) {
889 dst
= SIN(ro
->ro_rt
->rt_gateway
);
891 if (ro
->ro_rt
->rt_flags
& RTF_HOST
) {
892 /* double negation needed for bool bit field */
894 !!(ro
->ro_rt
->rt_flags
& RTF_BROADCAST
);
896 /* Become a regular mutex */
897 RT_CONVERT_LOCK(ro
->ro_rt
);
898 ipobf
.isbroadcast
= in_broadcast(dst
->sin_addr
, ifp
);
901 * For consistency with IPv6, as well as to ensure that
902 * IP_RECVIF is set correctly for packets that are sent
903 * to one of the local addresses. ia (rt_ifa) would have
904 * been fixed up by rt_setif for local routes. This
905 * would make it appear as if the packet arrives on the
906 * interface which owns the local address. Loopback
907 * multicast case is handled separately by ip_mloopback().
909 if (ia
!= NULL
&& (ifp
->if_flags
& IFF_LOOPBACK
) &&
910 !IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
913 m
->m_pkthdr
.rcvif
= ia
->ia_ifa
.ifa_ifp
;
916 srcidx
= ia0
->ifa_ifp
->if_index
;
917 } else if ((ro
->ro_flags
& ROF_SRCIF_SELECTED
) &&
918 ro
->ro_srcia
!= NULL
) {
919 srcidx
= ro
->ro_srcia
->ifa_ifp
->if_index
;
924 ip_setsrcifaddr_info(m
, srcidx
, NULL
);
925 ip_setdstifaddr_info(m
, 0, ia
);
927 RT_UNLOCK(ro
->ro_rt
);
934 if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
935 struct ifnet
*srcifp
= NULL
;
936 struct in_multi
*inm
;
938 u_int8_t ttl
= IP_DEFAULT_MULTICAST_TTL
;
939 u_int8_t loop
= IP_DEFAULT_MULTICAST_LOOP
;
941 m
->m_flags
|= M_MCAST
;
943 * IP destination address is multicast. Make sure "dst"
944 * still points to the address in "ro". (It may have been
945 * changed to point to a gateway address, above.)
947 dst
= SIN(&ro
->ro_dst
);
949 * See if the caller provided any multicast options
953 vif
= imo
->imo_multicast_vif
;
954 ttl
= imo
->imo_multicast_ttl
;
955 loop
= imo
->imo_multicast_loop
;
956 if (!(flags
& IP_RAWOUTPUT
)) {
959 if (imo
->imo_multicast_ifp
!= NULL
) {
960 ifp
= imo
->imo_multicast_ifp
;
963 } else if (!(flags
& IP_RAWOUTPUT
)) {
968 * Confirm that the outgoing interface supports multicast.
970 if (imo
== NULL
|| vif
== -1) {
971 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
972 OSAddAtomic(1, &ipstat
.ips_noroute
);
978 * If source address not specified yet, use address
979 * of outgoing interface.
981 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
982 struct in_ifaddr
*ia1
;
983 lck_rw_lock_shared(in_ifaddr_rwlock
);
984 TAILQ_FOREACH(ia1
, &in_ifaddrhead
, ia_link
) {
985 IFA_LOCK_SPIN(&ia1
->ia_ifa
);
986 if (ia1
->ia_ifp
== ifp
) {
987 ip
->ip_src
= IA_SIN(ia1
)->sin_addr
;
989 IFA_UNLOCK(&ia1
->ia_ifa
);
992 IFA_UNLOCK(&ia1
->ia_ifa
);
994 lck_rw_done(in_ifaddr_rwlock
);
995 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
1001 in_multihead_lock_shared();
1002 IN_LOOKUP_MULTI(&pkt_dst
, ifp
, inm
);
1003 in_multihead_lock_done();
1004 if (inm
!= NULL
&& (imo
== NULL
|| loop
)) {
1006 * If we belong to the destination multicast group
1007 * on the outgoing interface, and the caller did not
1008 * forbid loopback, loop back a copy.
1010 if (!TAILQ_EMPTY(&ipv4_filters
)) {
1011 struct ipfilter
*filter
;
1012 int seen
= (inject_filter_ref
== NULL
);
1015 ipf_pktopts
.ippo_flags
|=
1017 ipf_pktopts
.ippo_mcast_ifnet
= ifp
;
1018 ipf_pktopts
.ippo_mcast_ttl
= ttl
;
1019 ipf_pktopts
.ippo_mcast_loop
= loop
;
1025 * 4135317 - always pass network byte
1028 #if BYTE_ORDER != BIG_ENDIAN
1032 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1034 if ((struct ipfilter
*)
1035 inject_filter_ref
== filter
) {
1038 } else if (filter
->ipf_filter
.
1039 ipf_output
!= NULL
) {
1041 result
= filter
->ipf_filter
.
1044 (mbuf_t
*)&m
, ippo
);
1045 if (result
== EJUSTRETURN
) {
1058 /* set back to host byte order */
1059 ip
= mtod(m
, struct ip
*);
1060 #if BYTE_ORDER != BIG_ENDIAN
1065 ipobf
.didfilter
= TRUE
;
1067 ip_mloopback(srcifp
, ifp
, m
, dst
, hlen
);
1073 * Multicasts with a time-to-live of zero may be looped-
1074 * back, above, but must not be transmitted on a network.
1075 * Also, multicasts addressed to the loopback interface
1076 * are not sent -- the above call to ip_mloopback() will
1077 * loop back a copy if this host actually belongs to the
1078 * destination group on the loopback interface.
1080 if (ip
->ip_ttl
== 0 || ifp
->if_flags
& IFF_LOOPBACK
) {
1088 * If source address not specified yet, use address
1089 * of outgoing interface.
1091 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
1092 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1093 ip
->ip_src
= IA_SIN(ia
)->sin_addr
;
1094 IFA_UNLOCK(&ia
->ia_ifa
);
1095 #if IPFIREWALL_FORWARD
1097 * Keep note that we did this - if the firewall changes
1098 * the next-hop, our interface may change, changing the
1099 * default source IP. It's a shame so much effort happens
1102 ipobf
.fwd_rewrite_src
= TRUE
;
1103 #endif /* IPFIREWALL_FORWARD */
1107 * Look for broadcast address and
1108 * and verify user is allowed to send
1111 if (ipobf
.isbroadcast
) {
1112 if (!(ifp
->if_flags
& IFF_BROADCAST
)) {
1113 error
= EADDRNOTAVAIL
;
1116 if (!(flags
& IP_ALLOWBROADCAST
)) {
1120 /* don't allow broadcast messages to be fragmented */
1121 if ((u_short
)ip
->ip_len
> ifp
->if_mtu
) {
1125 m
->m_flags
|= M_BCAST
;
1127 m
->m_flags
&= ~M_BCAST
;
1132 /* Invoke outbound packet filter */
1133 if (PF_IS_ENABLED
) {
1136 m0
= m
; /* Save for later */
1139 args
.fwa_next_hop
= dst
;
1143 args
.fwa_oflags
= flags
;
1144 if (flags
& IP_OUTARGS
) {
1145 args
.fwa_ipoa
= ipoa
;
1147 rc
= pf_af_hook(ifp
, mppn
, &m
, AF_INET
, FALSE
, &args
);
1148 #else /* DUMMYNET */
1149 rc
= pf_af_hook(ifp
, mppn
, &m
, AF_INET
, FALSE
, NULL
);
1150 #endif /* DUMMYNET */
1151 if (rc
!= 0 || m
== NULL
) {
1152 /* Move to the next packet */
1155 /* Skip ahead if first packet in list got dropped */
1156 if (packetlist
== m0
) {
1162 /* Next packet in the chain */
1164 } else if (packetlist
!= NULL
) {
1165 /* No more packet; send down the chain */
1168 /* Nothing left; we're done */
1172 ip
= mtod(m
, struct ip
*);
1173 pkt_dst
= ip
->ip_dst
;
1174 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1178 * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt
1180 if (IN_LINKLOCAL(ntohl(ip
->ip_src
.s_addr
)) ||
1181 IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
))) {
1182 ip_linklocal_stat
.iplls_out_total
++;
1183 if (ip
->ip_ttl
!= MAXTTL
) {
1184 ip_linklocal_stat
.iplls_out_badttl
++;
1185 ip
->ip_ttl
= MAXTTL
;
1189 if (!ipobf
.didfilter
&& !TAILQ_EMPTY(&ipv4_filters
)) {
1190 struct ipfilter
*filter
;
1191 int seen
= (inject_filter_ref
== NULL
);
1192 ipf_pktopts
.ippo_flags
&= ~IPPOF_MCAST_OPTS
;
1195 * Check that a TSO frame isn't passed to a filter.
1196 * This could happen if a filter is inserted while
1197 * TCP is sending the TSO packet.
1199 if (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) {
1206 /* 4135317 - always pass network byte order to filter */
1207 #if BYTE_ORDER != BIG_ENDIAN
1211 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1213 if ((struct ipfilter
*)inject_filter_ref
==
1217 } else if (filter
->ipf_filter
.ipf_output
) {
1219 result
= filter
->ipf_filter
.
1220 ipf_output(filter
->ipf_filter
.cookie
,
1221 (mbuf_t
*)&m
, ippo
);
1222 if (result
== EJUSTRETURN
) {
1232 /* set back to host byte order */
1233 ip
= mtod(m
, struct ip
*);
1234 #if BYTE_ORDER != BIG_ENDIAN
1242 /* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */
1243 necp_matched_policy_id
= necp_ip_output_find_policy_match(m
,
1244 flags
, (flags
& IP_OUTARGS
) ? ipoa
: NULL
, &necp_result
, &necp_result_parameter
);
1245 if (necp_matched_policy_id
) {
1246 necp_mark_packet_from_ip(m
, necp_matched_policy_id
);
1247 switch (necp_result
) {
1248 case NECP_KERNEL_POLICY_RESULT_PASS
:
1249 /* Check if the interface is allowed */
1250 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1251 error
= EHOSTUNREACH
;
1252 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1256 case NECP_KERNEL_POLICY_RESULT_DROP
:
1257 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT
:
1258 /* Flow divert packets should be blocked at the IP layer */
1259 error
= EHOSTUNREACH
;
1260 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1262 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
: {
1263 /* Verify that the packet is being routed to the tunnel */
1264 struct ifnet
*policy_ifp
= necp_get_ifnet_from_result_parameter(&necp_result_parameter
);
1265 if (policy_ifp
== ifp
) {
1266 /* Check if the interface is allowed */
1267 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1268 error
= EHOSTUNREACH
;
1269 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1274 if (necp_packet_can_rebind_to_ifnet(m
, policy_ifp
, &necp_route
, AF_INET
)) {
1275 /* Check if the interface is allowed */
1276 if (!necp_packet_is_allowed_over_interface(m
, policy_ifp
)) {
1277 error
= EHOSTUNREACH
;
1278 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1282 /* Set ifp to the tunnel interface, since it is compatible with the packet */
1287 error
= ENETUNREACH
;
1288 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1297 /* Catch-all to check if the interface is allowed */
1298 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1299 error
= EHOSTUNREACH
;
1300 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1306 if (ipsec_bypass
!= 0 || (flags
& IP_NOIPSEC
)) {
1310 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1313 /* get SP for this packet */
1315 sp
= ipsec4_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
,
1318 sp
= ipsec4_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
,
1322 IPSEC_STAT_INCREMENT(ipsecstat
.out_inval
);
1323 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1332 switch (sp
->policy
) {
1333 case IPSEC_POLICY_DISCARD
:
1334 case IPSEC_POLICY_GENERATE
:
1336 * This packet is just discarded.
1338 IPSEC_STAT_INCREMENT(ipsecstat
.out_polvio
);
1339 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1343 case IPSEC_POLICY_BYPASS
:
1344 case IPSEC_POLICY_NONE
:
1345 /* no need to do IPsec. */
1346 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1350 case IPSEC_POLICY_IPSEC
:
1351 if (sp
->req
== NULL
) {
1352 /* acquire a policy */
1353 error
= key_spdacquire(sp
);
1354 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1359 /* Verify the redirect to ipsec interface */
1360 if (sp
->ipsec_if
== ifp
) {
1367 case IPSEC_POLICY_ENTRUST
:
1369 printf("ip_output: Invalid policy found. %d\n", sp
->policy
);
1373 if (flags
& IP_ROUTETOIF
) {
1374 bzero(&ipsec_state
.ro
, sizeof(ipsec_state
.ro
));
1376 route_copyout((struct route
*)&ipsec_state
.ro
, ro
, sizeof(struct route
));
1378 ipsec_state
.dst
= SA(dst
);
1384 * delayed checksums are not currently compatible with IPsec
1386 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) {
1387 in_delayed_cksum(m
);
1390 #if BYTE_ORDER != BIG_ENDIAN
1395 DTRACE_IP6(send
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1396 struct ip
*, ip
, struct ifnet
*, ifp
,
1397 struct ip
*, ip
, struct ip6_hdr
*, NULL
);
1399 error
= ipsec4_output(&ipsec_state
, sp
, flags
);
1400 if (ipsec_state
.tunneled
== 6) {
1406 m0
= m
= ipsec_state
.m
;
1410 * If we're about to use the route in ipsec_state
1411 * and this came from dummynet, cleaup now.
1413 if (ro
== &saved_route
&&
1414 (!(flags
& IP_ROUTETOIF
) || ipsec_state
.tunneled
)) {
1417 #endif /* DUMMYNET */
1419 if (flags
& IP_ROUTETOIF
) {
1421 * if we have tunnel mode SA, we may need to ignore
1424 if (ipsec_state
.tunneled
) {
1425 flags
&= ~IP_ROUTETOIF
;
1426 ro
= (struct route
*)&ipsec_state
.ro
;
1429 ro
= (struct route
*)&ipsec_state
.ro
;
1431 dst
= SIN(ipsec_state
.dst
);
1433 /* mbuf is already reclaimed in ipsec4_output. */
1443 printf("ip4_output (ipsec): error code %d\n", error
);
1446 /* don't show these error codes to the user */
1450 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1456 /* be sure to update variables that are affected by ipsec4_output() */
1457 ip
= mtod(m
, struct ip
*);
1460 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1461 #else /* !_IP_VHL */
1462 hlen
= ip
->ip_hl
<< 2;
1463 #endif /* !_IP_VHL */
1464 /* Check that there wasn't a route change and src is still valid */
1465 if (ROUTE_UNUSABLE(ro
)) {
1467 VERIFY(src_ia
== NULL
);
1468 if (ip
->ip_src
.s_addr
!= INADDR_ANY
&&
1469 !(flags
& (IP_ROUTETOIF
| IP_FORWARDING
)) &&
1470 (src_ia
= ifa_foraddr(ip
->ip_src
.s_addr
)) == NULL
) {
1471 error
= EADDRNOTAVAIL
;
1472 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1476 if (src_ia
!= NULL
) {
1477 IFA_REMREF(&src_ia
->ia_ifa
);
1482 if (ro
->ro_rt
== NULL
) {
1483 if (!(flags
& IP_ROUTETOIF
)) {
1484 printf("%s: can't update route after "
1485 "IPsec processing\n", __func__
);
1486 error
= EHOSTUNREACH
; /* XXX */
1487 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1493 IFA_REMREF(&ia
->ia_ifa
);
1495 RT_LOCK_SPIN(ro
->ro_rt
);
1496 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1498 /* Become a regular mutex */
1499 RT_CONVERT_LOCK(ro
->ro_rt
);
1500 IFA_ADDREF(&ia
->ia_ifa
);
1502 ifp
= ro
->ro_rt
->rt_ifp
;
1503 RT_UNLOCK(ro
->ro_rt
);
1506 /* make it flipped, again. */
1507 #if BYTE_ORDER != BIG_ENDIAN
1511 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1512 7, 0xff, 0xff, 0xff, 0xff);
1514 /* Pass to filters again */
1515 if (!TAILQ_EMPTY(&ipv4_filters
)) {
1516 struct ipfilter
*filter
;
1518 ipf_pktopts
.ippo_flags
&= ~IPPOF_MCAST_OPTS
;
1521 * Check that a TSO frame isn't passed to a filter.
1522 * This could happen if a filter is inserted while
1523 * TCP is sending the TSO packet.
1525 if (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) {
1532 /* 4135317 - always pass network byte order to filter */
1533 #if BYTE_ORDER != BIG_ENDIAN
1537 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1538 if (filter
->ipf_filter
.ipf_output
) {
1540 result
= filter
->ipf_filter
.
1541 ipf_output(filter
->ipf_filter
.cookie
,
1542 (mbuf_t
*)&m
, ippo
);
1543 if (result
== EJUSTRETURN
) {
1553 /* set back to host byte order */
1554 ip
= mtod(m
, struct ip
*);
1555 #if BYTE_ORDER != BIG_ENDIAN
1566 * Check with the firewall...
1567 * but not if we are already being fwd'd from a firewall.
1569 if (fw_enable
&& IPFW_LOADED
&& !args
.fwa_next_hop
) {
1570 struct sockaddr_in
*old
= dst
;
1573 args
.fwa_next_hop
= dst
;
1575 ipfwoff
= ip_fw_chk_ptr(&args
);
1577 dst
= args
.fwa_next_hop
;
1580 * On return we must do the following:
1581 * IP_FW_PORT_DENY_FLAG -> drop the pkt (XXX new)
1582 * 1<=off<= 0xffff -> DIVERT
1583 * (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe
1584 * (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet
1585 * dst != old -> IPFIREWALL_FORWARD
1586 * off==0, dst==old -> accept
1587 * If some of the above modules is not compiled in, then
1588 * we should't have to check the corresponding condition
1589 * (because the ipfw control socket should not accept
1590 * unsupported rules), but better play safe and drop
1591 * packets in case of doubt.
1594 if ((ipfwoff
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) {
1601 ip
= mtod(m
, struct ip
*);
1603 if (ipfwoff
== 0 && dst
== old
) { /* common case */
1607 if (DUMMYNET_LOADED
&& (ipfwoff
& IP_FW_PORT_DYNT_FLAG
) != 0) {
1609 * pass the pkt to dummynet. Need to include
1610 * pipe number, m, ifp, ro, dst because these are
1611 * not recomputed in the next pass.
1612 * All other parameters have been already used and
1613 * so they are not needed anymore.
1614 * XXX note: if the ifp or ro entry are deleted
1615 * while a pkt is in dummynet, we are in trouble!
1619 args
.fwa_oflags
= flags
;
1620 if (flags
& IP_OUTARGS
) {
1621 args
.fwa_ipoa
= ipoa
;
1624 error
= ip_dn_io_ptr(m
, ipfwoff
& 0xffff, DN_TO_IP_OUT
,
1625 &args
, DN_CLIENT_IPFW
);
1628 #endif /* DUMMYNET */
1630 if (ipfwoff
!= 0 && (ipfwoff
& IP_FW_PORT_DYNT_FLAG
) == 0) {
1631 struct mbuf
*clone
= NULL
;
1633 /* Clone packet if we're doing a 'tee' */
1634 if ((ipfwoff
& IP_FW_PORT_TEE_FLAG
) != 0) {
1635 clone
= m_dup(m
, M_DONTWAIT
);
1639 * delayed checksums are not currently compatible
1640 * with divert sockets.
1642 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) {
1643 in_delayed_cksum(m
);
1646 /* Restore packet header fields to original values */
1648 #if BYTE_ORDER != BIG_ENDIAN
1653 /* Deliver packet to divert input routine */
1654 divert_packet(m
, 0, ipfwoff
& 0xffff,
1655 args
.fwa_divert_rule
);
1657 /* If 'tee', continue with original packet */
1658 if (clone
!= NULL
) {
1660 ip
= mtod(m
, struct ip
*);
1665 #endif /* IPDIVERT */
1666 #if IPFIREWALL_FORWARD
1668 * Here we check dst to make sure it's directly reachable on
1669 * the interface we previously thought it was.
1670 * If it isn't (which may be likely in some situations) we have
1671 * to re-route it (ie, find a route for the next-hop and the
1672 * associated interface) and set them here. This is nested
1673 * forwarding which in most cases is undesirable, except where
1674 * such control is nigh impossible. So we do it here.
1677 if (ipfwoff
== 0 && old
!= dst
) {
1678 struct in_ifaddr
*ia_fw
;
1679 struct route
*ro_fwd
= &sro_fwd
;
1681 #if IPFIREWALL_FORWARD_DEBUG
1682 printf("IPFIREWALL_FORWARD: New dst ip: ");
1683 print_ip(dst
->sin_addr
);
1685 #endif /* IPFIREWALL_FORWARD_DEBUG */
1687 * We need to figure out if we have been forwarded
1688 * to a local socket. If so then we should somehow
1689 * "loop back" to ip_input, and get directed to the
1690 * PCB as if we had received this packet. This is
1691 * because it may be dificult to identify the packets
1692 * you want to forward until they are being output
1693 * and have selected an interface. (e.g. locally
1694 * initiated packets) If we used the loopback inteface,
1695 * we would not be able to control what happens
1696 * as the packet runs through ip_input() as
1697 * it is done through a ISR.
1699 lck_rw_lock_shared(in_ifaddr_rwlock
);
1700 TAILQ_FOREACH(ia_fw
, &in_ifaddrhead
, ia_link
) {
1702 * If the addr to forward to is one
1703 * of ours, we pretend to
1704 * be the destination for this packet.
1706 IFA_LOCK_SPIN(&ia_fw
->ia_ifa
);
1707 if (IA_SIN(ia_fw
)->sin_addr
.s_addr
==
1708 dst
->sin_addr
.s_addr
) {
1709 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1712 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1714 lck_rw_done(in_ifaddr_rwlock
);
1716 /* tell ip_input "dont filter" */
1717 struct m_tag
*fwd_tag
;
1718 struct ip_fwd_tag
*ipfwd_tag
;
1720 fwd_tag
= m_tag_create(KERNEL_MODULE_TAG_ID
,
1721 KERNEL_TAG_TYPE_IPFORWARD
,
1722 sizeof(*ipfwd_tag
), M_NOWAIT
, m
);
1723 if (fwd_tag
== NULL
) {
1728 ipfwd_tag
= (struct ip_fwd_tag
*)(fwd_tag
+ 1);
1729 ipfwd_tag
->next_hop
= args
.fwa_next_hop
;
1731 m_tag_prepend(m
, fwd_tag
);
1733 if (m
->m_pkthdr
.rcvif
== NULL
) {
1734 m
->m_pkthdr
.rcvif
= lo_ifp
;
1737 #if BYTE_ORDER != BIG_ENDIAN
1741 mbuf_outbound_finalize(m
, PF_INET
, 0);
1744 * we need to call dlil_output to run filters
1745 * and resync to avoid recursion loops.
1748 dlil_output(lo_ifp
, PF_INET
, m
, NULL
,
1751 printf("%s: no loopback ifp for "
1752 "forwarding!!!\n", __func__
);
1757 * Some of the logic for this was nicked from above.
1759 * This rewrites the cached route in a local PCB.
1760 * Is this what we want to do?
1762 ROUTE_RELEASE(ro_fwd
);
1763 bcopy(dst
, &ro_fwd
->ro_dst
, sizeof(*dst
));
1765 rtalloc_ign(ro_fwd
, RTF_PRCLONING
, false);
1767 if (ro_fwd
->ro_rt
== NULL
) {
1768 OSAddAtomic(1, &ipstat
.ips_noroute
);
1769 error
= EHOSTUNREACH
;
1773 RT_LOCK_SPIN(ro_fwd
->ro_rt
);
1774 ia_fw
= ifatoia(ro_fwd
->ro_rt
->rt_ifa
);
1775 if (ia_fw
!= NULL
) {
1776 /* Become a regular mutex */
1777 RT_CONVERT_LOCK(ro_fwd
->ro_rt
);
1778 IFA_ADDREF(&ia_fw
->ia_ifa
);
1780 ifp
= ro_fwd
->ro_rt
->rt_ifp
;
1781 ro_fwd
->ro_rt
->rt_use
++;
1782 if (ro_fwd
->ro_rt
->rt_flags
& RTF_GATEWAY
) {
1783 dst
= SIN(ro_fwd
->ro_rt
->rt_gateway
);
1785 if (ro_fwd
->ro_rt
->rt_flags
& RTF_HOST
) {
1786 /* double negation needed for bool bit field */
1788 !!(ro_fwd
->ro_rt
->rt_flags
& RTF_BROADCAST
);
1790 /* Become a regular mutex */
1791 RT_CONVERT_LOCK(ro_fwd
->ro_rt
);
1793 in_broadcast(dst
->sin_addr
, ifp
);
1795 RT_UNLOCK(ro_fwd
->ro_rt
);
1797 ro
->ro_rt
= ro_fwd
->ro_rt
;
1798 ro_fwd
->ro_rt
= NULL
;
1799 dst
= SIN(&ro_fwd
->ro_dst
);
1802 * If we added a default src ip earlier,
1803 * which would have been gotten from the-then
1804 * interface, do it again, from the new one.
1806 if (ia_fw
!= NULL
) {
1807 if (ipobf
.fwd_rewrite_src
) {
1808 IFA_LOCK_SPIN(&ia_fw
->ia_ifa
);
1809 ip
->ip_src
= IA_SIN(ia_fw
)->sin_addr
;
1810 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1812 IFA_REMREF(&ia_fw
->ia_ifa
);
1816 #endif /* IPFIREWALL_FORWARD */
1818 * if we get here, none of the above matches, and
1819 * we have to drop the pkt
1822 error
= EACCES
; /* not sure this is the right error msg */
1827 #endif /* IPFIREWALL */
1829 /* 127/8 must not appear on wire - RFC1122 */
1830 if (!(ifp
->if_flags
& IFF_LOOPBACK
) &&
1831 ((ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
1832 (ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
)) {
1833 OSAddAtomic(1, &ipstat
.ips_badaddr
);
1834 error
= EADDRNOTAVAIL
;
1839 u_int8_t dscp
= ip
->ip_tos
>> IPTOS_DSCP_SHIFT
;
1841 error
= set_packet_qos(m
, ifp
,
1842 ipoa
->ipoa_flags
& IPOAF_QOSMARKING_ALLOWED
? TRUE
: FALSE
,
1843 ipoa
->ipoa_sotc
, ipoa
->ipoa_netsvctype
, &dscp
);
1845 ip
->ip_tos
&= IPTOS_ECN_MASK
;
1846 ip
->ip_tos
|= dscp
<< IPTOS_DSCP_SHIFT
;
1848 printf("%s if_dscp_for_mbuf() error %d\n", __func__
, error
);
1854 * Some Wi-Fi AP implementations do not correctly handle multicast IP
1855 * packets with DSCP bits set -- see radr://9331522 -- so as a
1856 * workaround we clear the DSCP bits and set the service class to BE
1858 if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
)) && IFNET_IS_WIFI_INFRA(ifp
)) {
1859 ip
->ip_tos
&= IPTOS_ECN_MASK
;
1860 mbuf_set_service_class(m
, MBUF_SC_BE
);
1863 ip_output_checksum(ifp
, m
, (IP_VHL_HL(ip
->ip_vhl
) << 2),
1864 ip
->ip_len
, &sw_csum
);
1866 interface_mtu
= ifp
->if_mtu
;
1868 if (INTF_ADJUST_MTU_FOR_CLAT46(ifp
)) {
1869 interface_mtu
= IN6_LINKMTU(ifp
);
1870 /* Further adjust the size for CLAT46 expansion */
1871 interface_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
1875 * If small enough for interface, or the interface will take
1876 * care of the fragmentation for us, can just send directly.
1878 if ((u_short
)ip
->ip_len
<= interface_mtu
|| TSO_IPV4_OK(ifp
, m
) ||
1879 (!(ip
->ip_off
& IP_DF
) && (ifp
->if_hwassist
& CSUM_FRAGMENT
))) {
1880 #if BYTE_ORDER != BIG_ENDIAN
1886 if (sw_csum
& CSUM_DELAY_IP
) {
1887 ip
->ip_sum
= ip_cksum_hdr_out(m
, hlen
);
1888 sw_csum
&= ~CSUM_DELAY_IP
;
1889 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
1893 /* clean ipsec history once it goes out of the node */
1894 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
1898 if ((m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) &&
1899 (m
->m_pkthdr
.tso_segsz
> 0)) {
1900 scnt
+= m
->m_pkthdr
.len
/ m
->m_pkthdr
.tso_segsz
;
1905 if (packetchain
== 0) {
1906 if (ro
->ro_rt
!= NULL
&& nstat_collect
) {
1907 nstat_route_tx(ro
->ro_rt
, scnt
,
1908 m
->m_pkthdr
.len
, 0);
1911 error
= dlil_output(ifp
, PF_INET
, m
, ro
->ro_rt
,
1913 if (dlil_verbose
&& error
) {
1914 printf("dlil_output error on interface %s: %d\n",
1915 ifp
->if_xname
, error
);
1921 * packet chaining allows us to reuse the
1922 * route for all packets
1924 bytecnt
+= m
->m_pkthdr
.len
;
1925 mppn
= &m
->m_nextpkt
;
1931 if (pktcnt
> ip_maxchainsent
) {
1932 ip_maxchainsent
= pktcnt
;
1934 if (ro
->ro_rt
!= NULL
&& nstat_collect
) {
1935 nstat_route_tx(ro
->ro_rt
, scnt
,
1939 error
= dlil_output(ifp
, PF_INET
, packetlist
,
1940 ro
->ro_rt
, SA(dst
), 0, adv
);
1941 if (dlil_verbose
&& error
) {
1942 printf("dlil_output error on interface %s: %d\n",
1943 ifp
->if_xname
, error
);
1956 VERIFY(interface_mtu
!= 0);
1958 * Too large for interface; fragment if possible.
1959 * Must be able to put at least 8 bytes per fragment.
1960 * Balk when DF bit is set or the interface didn't support TSO.
1962 if ((ip
->ip_off
& IP_DF
) || pktcnt
> 0 ||
1963 (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
)) {
1966 * This case can happen if the user changed the MTU
1967 * of an interface after enabling IP on it. Because
1968 * most netifs don't keep track of routes pointing to
1969 * them, there is no way for one to update all its
1970 * routes when the MTU is changed.
1973 RT_LOCK_SPIN(ro
->ro_rt
);
1974 if ((ro
->ro_rt
->rt_flags
& (RTF_UP
| RTF_HOST
)) &&
1975 !(ro
->ro_rt
->rt_rmx
.rmx_locks
& RTV_MTU
) &&
1976 (ro
->ro_rt
->rt_rmx
.rmx_mtu
> interface_mtu
)) {
1977 ro
->ro_rt
->rt_rmx
.rmx_mtu
= interface_mtu
;
1979 RT_UNLOCK(ro
->ro_rt
);
1984 OSAddAtomic(1, &ipstat
.ips_cantfrag
);
1989 * XXX Only TCP seems to be passing a list of packets here.
1990 * The following issue is limited to UDP datagrams with 0 checksum.
1991 * For now limit it to the case when single packet is passed down.
1993 if (packetchain
== 0 && IS_INTF_CLAT46(ifp
)) {
1995 * If it is a UDP packet that has checksum set to 0
1996 * and is also not being offloaded, compute a full checksum
1997 * and update the UDP checksum.
1999 if (ip
->ip_p
== IPPROTO_UDP
&&
2000 !(m
->m_pkthdr
.csum_flags
& (CSUM_UDP
| CSUM_PARTIAL
))) {
2001 struct udphdr
*uh
= NULL
;
2003 if (m
->m_len
< hlen
+ sizeof(struct udphdr
)) {
2004 m
= m_pullup(m
, hlen
+ sizeof(struct udphdr
));
2011 ip
= mtod(m
, struct ip
*);
2014 * Get UDP header and if checksum is 0, then compute the full
2017 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ hlen
);
2018 if (uh
->uh_sum
== 0) {
2019 uh
->uh_sum
= inet_cksum(m
, IPPROTO_UDP
, hlen
,
2021 if (uh
->uh_sum
== 0) {
2022 uh
->uh_sum
= 0xffff;
2028 error
= ip_fragment(m
, ifp
, interface_mtu
, sw_csum
);
2034 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
2035 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
2037 for (m
= m0
; m
; m
= m0
) {
2041 /* clean ipsec history once it goes out of the node */
2042 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
2047 if ((packetchain
!= 0) && (pktcnt
> 0)) {
2048 panic("%s: mix of packet in packetlist is "
2049 "wrong=%p", __func__
, packetlist
);
2052 if (ro
->ro_rt
!= NULL
&& nstat_collect
) {
2053 nstat_route_tx(ro
->ro_rt
, 1,
2054 m
->m_pkthdr
.len
, 0);
2056 error
= dlil_output(ifp
, PF_INET
, m
, ro
->ro_rt
,
2058 if (dlil_verbose
&& error
) {
2059 printf("dlil_output error on interface %s: %d\n",
2060 ifp
->if_xname
, error
);
2068 OSAddAtomic(1, &ipstat
.ips_fragmented
);
2073 IFA_REMREF(&ia
->ia_ifa
);
2077 ROUTE_RELEASE(&ipsec_state
.ro
);
2079 KEYDEBUG(KEYDEBUG_IPSEC_STAMP
,
2080 printf("DP ip_output call free SP:%x\n", sp
));
2081 key_freesp(sp
, KEY_SADB_UNLOCKED
);
2085 ROUTE_RELEASE(&necp_route
);
2088 ROUTE_RELEASE(&saved_route
);
2089 #endif /* DUMMYNET */
2090 #if IPFIREWALL_FORWARD
2091 ROUTE_RELEASE(&sro_fwd
);
2092 #endif /* IPFIREWALL_FORWARD */
2094 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT
| DBG_FUNC_END
, error
, 0, 0, 0, 0);
2095 if (ip_output_measure
) {
2096 net_perf_measure_time(&net_perf
, &start_tv
, packets_processed
);
2097 net_perf_histogram(&net_perf
, packets_processed
);
2112 #undef IP_CHECK_RESTRICTIONS
2116 ip_fragment(struct mbuf
*m
, struct ifnet
*ifp
, unsigned long mtu
, int sw_csum
)
2118 struct ip
*ip
, *mhip
;
2119 int len
, hlen
, mhlen
, firstlen
, off
, error
= 0;
2120 struct mbuf
**mnext
= &m
->m_nextpkt
, *m0
;
2123 ip
= mtod(m
, struct ip
*);
2125 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
2126 #else /* !_IP_VHL */
2127 hlen
= ip
->ip_hl
<< 2;
2128 #endif /* !_IP_VHL */
2132 * We need to adjust the fragment sizes to account
2133 * for IPv6 fragment header if it needs to be translated
2134 * from IPv4 to IPv6.
2136 if (IS_INTF_CLAT46(ifp
)) {
2137 mtu
-= sizeof(struct ip6_frag
);
2141 firstlen
= len
= (mtu
- hlen
) & ~7;
2148 * if the interface will not calculate checksums on
2149 * fragmented packets, then do it here.
2151 if ((m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) &&
2152 !(ifp
->if_hwassist
& CSUM_IP_FRAGS
)) {
2153 in_delayed_cksum(m
);
2157 * Loop through length of segment after first fragment,
2158 * make new header and copy data of each part and link onto chain.
2161 mhlen
= sizeof(struct ip
);
2162 for (off
= hlen
+ len
; off
< (u_short
)ip
->ip_len
; off
+= len
) {
2163 MGETHDR(m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
2166 OSAddAtomic(1, &ipstat
.ips_odropped
);
2169 m
->m_flags
|= (m0
->m_flags
& M_MCAST
) | M_FRAG
;
2170 m
->m_data
+= max_linkhdr
;
2171 mhip
= mtod(m
, struct ip
*);
2173 if (hlen
> sizeof(struct ip
)) {
2174 mhlen
= ip_optcopy(ip
, mhip
) + sizeof(struct ip
);
2175 mhip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, mhlen
>> 2);
2178 mhip
->ip_off
= ((off
- hlen
) >> 3) + (ip
->ip_off
& ~IP_MF
);
2179 if (ip
->ip_off
& IP_MF
) {
2180 mhip
->ip_off
|= IP_MF
;
2182 if (off
+ len
>= (u_short
)ip
->ip_len
) {
2183 len
= (u_short
)ip
->ip_len
- off
;
2185 mhip
->ip_off
|= IP_MF
;
2187 mhip
->ip_len
= htons((u_short
)(len
+ mhlen
));
2188 m
->m_next
= m_copy(m0
, off
, len
);
2189 if (m
->m_next
== NULL
) {
2191 error
= ENOBUFS
; /* ??? */
2192 OSAddAtomic(1, &ipstat
.ips_odropped
);
2195 m
->m_pkthdr
.len
= mhlen
+ len
;
2196 m
->m_pkthdr
.rcvif
= NULL
;
2197 m
->m_pkthdr
.csum_flags
= m0
->m_pkthdr
.csum_flags
;
2199 M_COPY_CLASSIFIER(m
, m0
);
2200 M_COPY_PFTAG(m
, m0
);
2203 mac_netinet_fragment(m0
, m
);
2204 #endif /* CONFIG_MACF_NET */
2206 #if BYTE_ORDER != BIG_ENDIAN
2207 HTONS(mhip
->ip_off
);
2211 if (sw_csum
& CSUM_DELAY_IP
) {
2212 mhip
->ip_sum
= ip_cksum_hdr_out(m
, mhlen
);
2213 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2216 mnext
= &m
->m_nextpkt
;
2219 OSAddAtomic(nfrags
, &ipstat
.ips_ofragments
);
2221 /* set first/last markers for fragment chain */
2222 m
->m_flags
|= M_LASTFRAG
;
2223 m0
->m_flags
|= M_FIRSTFRAG
| M_FRAG
;
2224 m0
->m_pkthdr
.csum_data
= nfrags
;
2227 * Update first fragment by trimming what's been copied out
2228 * and updating header, then send each fragment (in order).
2231 m_adj(m
, hlen
+ firstlen
- (u_short
)ip
->ip_len
);
2232 m
->m_pkthdr
.len
= hlen
+ firstlen
;
2233 ip
->ip_len
= htons((u_short
)m
->m_pkthdr
.len
);
2234 ip
->ip_off
|= IP_MF
;
2236 #if BYTE_ORDER != BIG_ENDIAN
2241 if (sw_csum
& CSUM_DELAY_IP
) {
2242 ip
->ip_sum
= ip_cksum_hdr_out(m
, hlen
);
2243 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2254 ip_out_cksum_stats(int proto
, u_int32_t len
)
2258 tcp_out_cksum_stats(len
);
2261 udp_out_cksum_stats(len
);
2264 /* keep only TCP or UDP stats for now */
2270 * Process a delayed payload checksum calculation (outbound path.)
2272 * hoff is the number of bytes beyond the mbuf data pointer which
2273 * points to the IP header.
2275 * Returns a bitmask representing all the work done in software.
2278 in_finalize_cksum(struct mbuf
*m
, uint32_t hoff
, uint32_t csum_flags
)
2280 unsigned char buf
[15 << 2] __attribute__((aligned(8)));
2282 uint32_t offset
, _hlen
, mlen
, hlen
, len
, sw_csum
;
2283 uint16_t csum
, ip_len
;
2285 _CASSERT(sizeof(csum
) == sizeof(uint16_t));
2286 VERIFY(m
->m_flags
& M_PKTHDR
);
2288 sw_csum
= (csum_flags
& m
->m_pkthdr
.csum_flags
);
2290 if ((sw_csum
&= (CSUM_DELAY_IP
| CSUM_DELAY_DATA
)) == 0) {
2294 mlen
= m
->m_pkthdr
.len
; /* total mbuf len */
2296 /* sanity check (need at least simple IP header) */
2297 if (mlen
< (hoff
+ sizeof(*ip
))) {
2298 panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr "
2299 "(%u+%u)\n", __func__
, m
, mlen
, hoff
,
2300 (uint32_t)sizeof(*ip
));
2305 * In case the IP header is not contiguous, or not 32-bit aligned,
2306 * or if we're computing the IP header checksum, copy it to a local
2307 * buffer. Copy only the simple IP header here (IP options case
2308 * is handled below.)
2310 if ((sw_csum
& CSUM_DELAY_IP
) || (hoff
+ sizeof(*ip
)) > m
->m_len
||
2311 !IP_HDR_ALIGNED_P(mtod(m
, caddr_t
) + hoff
)) {
2312 m_copydata(m
, hoff
, sizeof(*ip
), (caddr_t
)buf
);
2313 ip
= (struct ip
*)(void *)buf
;
2314 _hlen
= sizeof(*ip
);
2316 ip
= (struct ip
*)(void *)(m
->m_data
+ hoff
);
2320 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2; /* IP header len */
2323 if (mlen
< (hoff
+ hlen
)) {
2324 panic("%s: mbuf %p pkt too short (%d) for IP header (%u), "
2325 "hoff %u", __func__
, m
, mlen
, hlen
, hoff
);
2330 * We could be in the context of an IP or interface filter; in the
2331 * former case, ip_len would be in host (correct) order while for
2332 * the latter it would be in network order. Because of this, we
2333 * attempt to interpret the length field by comparing it against
2334 * the actual packet length. If the comparison fails, byte swap
2335 * the length and check again. If it still fails, use the actual
2336 * packet length. This also covers the trailing bytes case.
2338 ip_len
= ip
->ip_len
;
2339 if (ip_len
!= (mlen
- hoff
)) {
2340 ip_len
= OSSwapInt16(ip_len
);
2341 if (ip_len
!= (mlen
- hoff
)) {
2342 printf("%s: mbuf 0x%llx proto %d IP len %d (%x) "
2343 "[swapped %d (%x)] doesn't match actual packet "
2344 "length; %d is used instead\n", __func__
,
2345 (uint64_t)VM_KERNEL_ADDRPERM(m
), ip
->ip_p
,
2346 ip
->ip_len
, ip
->ip_len
, ip_len
, ip_len
,
2348 ip_len
= mlen
- hoff
;
2352 len
= ip_len
- hlen
; /* csum span */
2354 if (sw_csum
& CSUM_DELAY_DATA
) {
2358 * offset is added to the lower 16-bit value of csum_data,
2359 * which is expected to contain the ULP offset; therefore
2360 * CSUM_PARTIAL offset adjustment must be undone.
2362 if ((m
->m_pkthdr
.csum_flags
& (CSUM_PARTIAL
| CSUM_DATA_VALID
)) ==
2363 (CSUM_PARTIAL
| CSUM_DATA_VALID
)) {
2365 * Get back the original ULP offset (this will
2366 * undo the CSUM_PARTIAL logic in ip_output.)
2368 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_tx_stuff
-
2369 m
->m_pkthdr
.csum_tx_start
);
2372 ulpoff
= (m
->m_pkthdr
.csum_data
& 0xffff); /* ULP csum offset */
2373 offset
= hoff
+ hlen
; /* ULP header */
2375 if (mlen
< (ulpoff
+ sizeof(csum
))) {
2376 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2377 "cksum offset (%u) cksum flags 0x%x\n", __func__
,
2378 m
, mlen
, ip
->ip_p
, ulpoff
, m
->m_pkthdr
.csum_flags
);
2382 csum
= inet_cksum(m
, 0, offset
, len
);
2385 ip_out_cksum_stats(ip
->ip_p
, len
);
2387 /* RFC1122 4.1.3.4 */
2389 (m
->m_pkthdr
.csum_flags
& (CSUM_UDP
| CSUM_ZERO_INVERT
))) {
2393 /* Insert the checksum in the ULP csum field */
2395 if (offset
+ sizeof(csum
) > m
->m_len
) {
2396 m_copyback(m
, offset
, sizeof(csum
), &csum
);
2397 } else if (IP_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2398 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2400 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof(csum
));
2402 m
->m_pkthdr
.csum_flags
&= ~(CSUM_DELAY_DATA
| CSUM_DATA_VALID
|
2403 CSUM_PARTIAL
| CSUM_ZERO_INVERT
);
2406 if (sw_csum
& CSUM_DELAY_IP
) {
2407 /* IP header must be in the local buffer */
2408 VERIFY(_hlen
== sizeof(*ip
));
2409 if (_hlen
!= hlen
) {
2410 VERIFY(hlen
<= sizeof(buf
));
2411 m_copydata(m
, hoff
, hlen
, (caddr_t
)buf
);
2412 ip
= (struct ip
*)(void *)buf
;
2417 * Compute the IP header checksum as if the IP length
2418 * is the length which we believe is "correct"; see
2419 * how ip_len gets calculated above. Note that this
2420 * is done on the local copy and not on the real one.
2422 ip
->ip_len
= htons(ip_len
);
2424 csum
= in_cksum_hdr_opt(ip
);
2427 ipstat
.ips_snd_swcsum
++;
2428 ipstat
.ips_snd_swcsum_bytes
+= hlen
;
2431 * Insert only the checksum in the existing IP header
2432 * csum field; all other fields are left unchanged.
2434 offset
= hoff
+ offsetof(struct ip
, ip_sum
);
2435 if (offset
+ sizeof(csum
) > m
->m_len
) {
2436 m_copyback(m
, offset
, sizeof(csum
), &csum
);
2437 } else if (IP_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2438 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2440 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof(csum
));
2442 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2450 * Insert IP options into preformed packet.
2451 * Adjust IP destination as required for IP source routing,
2452 * as indicated by a non-zero in_addr at the start of the options.
2454 * XXX This routine assumes that the packet has no options in place.
2456 static struct mbuf
*
2457 ip_insertoptions(struct mbuf
*m
, struct mbuf
*opt
, int *phlen
)
2459 struct ipoption
*p
= mtod(opt
, struct ipoption
*);
2461 struct ip
*ip
= mtod(m
, struct ip
*);
2464 optlen
= opt
->m_len
- sizeof(p
->ipopt_dst
);
2465 if (optlen
+ (u_short
)ip
->ip_len
> IP_MAXPACKET
) {
2466 return m
; /* XXX should fail */
2468 if (p
->ipopt_dst
.s_addr
) {
2469 ip
->ip_dst
= p
->ipopt_dst
;
2471 if (m
->m_flags
& M_EXT
|| m
->m_data
- optlen
< m
->m_pktdat
) {
2472 MGETHDR(n
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
2476 n
->m_pkthdr
.rcvif
= 0;
2478 mac_mbuf_label_copy(m
, n
);
2479 #endif /* CONFIG_MACF_NET */
2480 n
->m_pkthdr
.len
= m
->m_pkthdr
.len
+ optlen
;
2481 m
->m_len
-= sizeof(struct ip
);
2482 m
->m_data
+= sizeof(struct ip
);
2485 m
->m_len
= optlen
+ sizeof(struct ip
);
2486 m
->m_data
+= max_linkhdr
;
2487 (void) memcpy(mtod(m
, void *), ip
, sizeof(struct ip
));
2489 m
->m_data
-= optlen
;
2491 m
->m_pkthdr
.len
+= optlen
;
2492 ovbcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof(struct ip
));
2494 ip
= mtod(m
, struct ip
*);
2495 bcopy(p
->ipopt_list
, ip
+ 1, optlen
);
2496 *phlen
= sizeof(struct ip
) + optlen
;
2497 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, *phlen
>> 2);
2498 ip
->ip_len
+= optlen
;
2503 * Copy options from ip to jp,
2504 * omitting those not copied during fragmentation.
2507 ip_optcopy(struct ip
*ip
, struct ip
*jp
)
2510 int opt
, optlen
, cnt
;
2512 cp
= (u_char
*)(ip
+ 1);
2513 dp
= (u_char
*)(jp
+ 1);
2514 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof(struct ip
);
2515 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2517 if (opt
== IPOPT_EOL
) {
2520 if (opt
== IPOPT_NOP
) {
2521 /* Preserve for IP mcast tunnel's LSRR alignment. */
2527 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
2528 panic("malformed IPv4 option passed to ip_optcopy");
2532 optlen
= cp
[IPOPT_OLEN
];
2534 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
2535 panic("malformed IPv4 option passed to ip_optcopy");
2539 /* bogus lengths should have been caught by ip_dooptions */
2543 if (IPOPT_COPIED(opt
)) {
2544 bcopy(cp
, dp
, optlen
);
2548 for (optlen
= dp
- (u_char
*)(jp
+ 1); optlen
& 0x3; optlen
++) {
2555 * IP socket option processing.
2558 ip_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2560 struct inpcb
*inp
= sotoinpcb(so
);
2564 if (sopt
->sopt_level
!= IPPROTO_IP
) {
2568 switch (sopt
->sopt_dir
) {
2570 switch (sopt
->sopt_name
) {
2577 if (sopt
->sopt_valsize
> MLEN
) {
2581 MGET(m
, sopt
->sopt_p
!= kernproc
? M_WAIT
: M_DONTWAIT
,
2587 m
->m_len
= sopt
->sopt_valsize
;
2588 error
= sooptcopyin(sopt
, mtod(m
, char *),
2589 m
->m_len
, m
->m_len
);
2595 return ip_pcbopts(sopt
->sopt_name
,
2596 &inp
->inp_options
, m
);
2602 case IP_RECVRETOPTS
:
2603 case IP_RECVDSTADDR
:
2606 case IP_RECVPKTINFO
:
2608 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
2614 switch (sopt
->sopt_name
) {
2616 inp
->inp_ip_tos
= optval
;
2620 inp
->inp_ip_ttl
= optval
;
2622 #define OPTSET(bit) \
2624 inp->inp_flags |= bit; \
2626 inp->inp_flags &= ~bit;
2629 OPTSET(INP_RECVOPTS
);
2632 case IP_RECVRETOPTS
:
2633 OPTSET(INP_RECVRETOPTS
);
2636 case IP_RECVDSTADDR
:
2637 OPTSET(INP_RECVDSTADDR
);
2645 OPTSET(INP_RECVTTL
);
2648 case IP_RECVPKTINFO
:
2649 OPTSET(INP_PKTINFO
);
2653 OPTSET(INP_RECVTOS
);
2659 * Multicast socket options are processed by the in_mcast
2662 case IP_MULTICAST_IF
:
2663 case IP_MULTICAST_IFINDEX
:
2664 case IP_MULTICAST_VIF
:
2665 case IP_MULTICAST_TTL
:
2666 case IP_MULTICAST_LOOP
:
2667 case IP_ADD_MEMBERSHIP
:
2668 case IP_DROP_MEMBERSHIP
:
2669 case IP_ADD_SOURCE_MEMBERSHIP
:
2670 case IP_DROP_SOURCE_MEMBERSHIP
:
2671 case IP_BLOCK_SOURCE
:
2672 case IP_UNBLOCK_SOURCE
:
2674 case MCAST_JOIN_GROUP
:
2675 case MCAST_LEAVE_GROUP
:
2676 case MCAST_JOIN_SOURCE_GROUP
:
2677 case MCAST_LEAVE_SOURCE_GROUP
:
2678 case MCAST_BLOCK_SOURCE
:
2679 case MCAST_UNBLOCK_SOURCE
:
2680 error
= inp_setmoptions(inp
, sopt
);
2684 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
2691 case IP_PORTRANGE_DEFAULT
:
2692 inp
->inp_flags
&= ~(INP_LOWPORT
);
2693 inp
->inp_flags
&= ~(INP_HIGHPORT
);
2696 case IP_PORTRANGE_HIGH
:
2697 inp
->inp_flags
&= ~(INP_LOWPORT
);
2698 inp
->inp_flags
|= INP_HIGHPORT
;
2701 case IP_PORTRANGE_LOW
:
2702 inp
->inp_flags
&= ~(INP_HIGHPORT
);
2703 inp
->inp_flags
|= INP_LOWPORT
;
2713 case IP_IPSEC_POLICY
: {
2720 if ((error
= soopt_getm(sopt
, &m
)) != 0) { /* XXX */
2723 if ((error
= soopt_mcopyin(sopt
, m
)) != 0) { /* XXX */
2726 priv
= (proc_suser(sopt
->sopt_p
) == 0);
2728 req
= mtod(m
, caddr_t
);
2731 optname
= sopt
->sopt_name
;
2732 error
= ipsec4_set_policy(inp
, optname
, req
, len
, priv
);
2739 case IP_TRAFFIC_MGT_BACKGROUND
: {
2740 unsigned background
= 0;
2742 error
= sooptcopyin(sopt
, &background
,
2743 sizeof(background
), sizeof(background
));
2749 socket_set_traffic_mgt_flags_locked(so
,
2750 TRAFFIC_MGT_SO_BACKGROUND
);
2752 socket_clear_traffic_mgt_flags_locked(so
,
2753 TRAFFIC_MGT_SO_BACKGROUND
);
2758 #endif /* TRAFFIC_MGT */
2761 * On a multihomed system, scoped routing can be used to
2762 * restrict the source interface used for sending packets.
2763 * The socket option IP_BOUND_IF binds a particular AF_INET
2764 * socket to an interface such that data sent on the socket
2765 * is restricted to that interface. This is unlike the
2766 * SO_DONTROUTE option where the routing table is bypassed;
2767 * therefore it allows for a greater flexibility and control
2768 * over the system behavior, and does not place any restriction
2769 * on the destination address type (e.g. unicast, multicast,
2770 * or broadcast if applicable) or whether or not the host is
2771 * directly reachable. Note that in the multicast transmit
2772 * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over
2773 * IP_BOUND_IF, since the former practically bypasses the
2774 * routing table; in this case, IP_BOUND_IF sets the default
2775 * interface used for sending multicast packets in the absence
2776 * of an explicit multicast transmit interface.
2779 /* This option is settable only for IPv4 */
2780 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2785 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
2792 error
= inp_bindif(inp
, optval
, NULL
);
2795 case IP_NO_IFT_CELLULAR
:
2796 /* This option is settable only for IPv4 */
2797 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2802 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
2809 /* once set, it cannot be unset */
2810 if (!optval
&& INP_NO_CELLULAR(inp
)) {
2815 error
= so_set_restrictions(so
,
2816 SO_RESTRICT_DENY_CELLULAR
);
2820 /* This option is not settable */
2825 error
= ENOPROTOOPT
;
2831 switch (sopt
->sopt_name
) {
2834 if (inp
->inp_options
) {
2835 error
= sooptcopyout(sopt
,
2836 mtod(inp
->inp_options
, char *),
2837 inp
->inp_options
->m_len
);
2839 sopt
->sopt_valsize
= 0;
2846 case IP_RECVRETOPTS
:
2847 case IP_RECVDSTADDR
:
2851 case IP_RECVPKTINFO
:
2853 switch (sopt
->sopt_name
) {
2855 optval
= inp
->inp_ip_tos
;
2859 optval
= inp
->inp_ip_ttl
;
2862 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
2865 optval
= OPTBIT(INP_RECVOPTS
);
2868 case IP_RECVRETOPTS
:
2869 optval
= OPTBIT(INP_RECVRETOPTS
);
2872 case IP_RECVDSTADDR
:
2873 optval
= OPTBIT(INP_RECVDSTADDR
);
2877 optval
= OPTBIT(INP_RECVIF
);
2881 optval
= OPTBIT(INP_RECVTTL
);
2885 if (inp
->inp_flags
& INP_HIGHPORT
) {
2886 optval
= IP_PORTRANGE_HIGH
;
2887 } else if (inp
->inp_flags
& INP_LOWPORT
) {
2888 optval
= IP_PORTRANGE_LOW
;
2894 case IP_RECVPKTINFO
:
2895 optval
= OPTBIT(INP_PKTINFO
);
2899 optval
= OPTBIT(INP_RECVTOS
);
2902 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
2905 case IP_MULTICAST_IF
:
2906 case IP_MULTICAST_IFINDEX
:
2907 case IP_MULTICAST_VIF
:
2908 case IP_MULTICAST_TTL
:
2909 case IP_MULTICAST_LOOP
:
2911 error
= inp_getmoptions(inp
, sopt
);
2915 case IP_IPSEC_POLICY
: {
2916 error
= 0; /* This option is no longer supported */
2922 case IP_TRAFFIC_MGT_BACKGROUND
: {
2923 unsigned background
= (so
->so_flags1
&
2924 SOF1_TRAFFIC_MGT_SO_BACKGROUND
) ? 1 : 0;
2925 return sooptcopyout(sopt
, &background
,
2926 sizeof(background
));
2928 #endif /* TRAFFIC_MGT */
2931 if (inp
->inp_flags
& INP_BOUND_IF
) {
2932 optval
= inp
->inp_boundifp
->if_index
;
2934 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
2937 case IP_NO_IFT_CELLULAR
:
2938 optval
= INP_NO_CELLULAR(inp
) ? 1 : 0;
2939 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
2943 optval
= (inp
->inp_last_outifp
!= NULL
) ?
2944 inp
->inp_last_outifp
->if_index
: 0;
2945 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
2949 error
= ENOPROTOOPT
;
2958 * Set up IP options in pcb for insertion in output packets.
2959 * Store in mbuf with pointer in pcbopt, adding pseudo-option
2960 * with destination address if source routed.
2963 ip_pcbopts(int optname
, struct mbuf
**pcbopt
, struct mbuf
*m
)
2965 #pragma unused(optname)
2970 /* turn off any old options */
2972 (void) m_free(*pcbopt
);
2975 if (m
== (struct mbuf
*)0 || m
->m_len
== 0) {
2977 * Only turning off any previous options.
2985 if (m
->m_len
% sizeof(int32_t)) {
2990 * IP first-hop destination address will be stored before
2991 * actual options; move other options back
2992 * and clear it when none present.
2994 if (m
->m_data
+ m
->m_len
+ sizeof(struct in_addr
) >= &m
->m_dat
[MLEN
]) {
2998 m
->m_len
+= sizeof(struct in_addr
);
2999 cp
= mtod(m
, u_char
*) + sizeof(struct in_addr
);
3000 ovbcopy(mtod(m
, caddr_t
), (caddr_t
)cp
, (unsigned)cnt
);
3001 bzero(mtod(m
, caddr_t
), sizeof(struct in_addr
));
3003 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
3004 opt
= cp
[IPOPT_OPTVAL
];
3005 if (opt
== IPOPT_EOL
) {
3008 if (opt
== IPOPT_NOP
) {
3011 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
3014 optlen
= cp
[IPOPT_OLEN
];
3015 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
3026 * user process specifies route as:
3028 * D must be our final destination (but we can't
3029 * check that since we may not have connected yet).
3030 * A is first hop destination, which doesn't appear in
3031 * actual IP option, but is stored before the options.
3033 if (optlen
< IPOPT_MINOFF
- 1 + sizeof(struct in_addr
)) {
3036 m
->m_len
-= sizeof(struct in_addr
);
3037 cnt
-= sizeof(struct in_addr
);
3038 optlen
-= sizeof(struct in_addr
);
3039 cp
[IPOPT_OLEN
] = optlen
;
3041 * Move first hop before start of options.
3043 bcopy((caddr_t
)&cp
[IPOPT_OFFSET
+ 1], mtod(m
, caddr_t
),
3044 sizeof(struct in_addr
));
3046 * Then copy rest of options back
3047 * to close up the deleted entry.
3049 ovbcopy((caddr_t
)(&cp
[IPOPT_OFFSET
+ 1] +
3050 sizeof(struct in_addr
)),
3051 (caddr_t
)&cp
[IPOPT_OFFSET
+ 1],
3052 (unsigned)cnt
+ sizeof(struct in_addr
));
3056 if (m
->m_len
> MAX_IPOPTLEN
+ sizeof(struct in_addr
)) {
3068 ip_moptions_init(void)
3070 PE_parse_boot_argn("ifa_debug", &imo_debug
, sizeof(imo_debug
));
3072 imo_size
= (imo_debug
== 0) ? sizeof(struct ip_moptions
) :
3073 sizeof(struct ip_moptions_dbg
);
3075 imo_zone
= zinit(imo_size
, IMO_ZONE_MAX
* imo_size
, 0,
3077 if (imo_zone
== NULL
) {
3078 panic("%s: failed allocating %s", __func__
, IMO_ZONE_NAME
);
3081 zone_change(imo_zone
, Z_EXPAND
, TRUE
);
3085 imo_addref(struct ip_moptions
*imo
, int locked
)
3090 IMO_LOCK_ASSERT_HELD(imo
);
3093 if (++imo
->imo_refcnt
== 0) {
3094 panic("%s: imo %p wraparound refcnt\n", __func__
, imo
);
3096 } else if (imo
->imo_trace
!= NULL
) {
3097 (*imo
->imo_trace
)(imo
, TRUE
);
3106 imo_remref(struct ip_moptions
*imo
)
3111 if (imo
->imo_refcnt
== 0) {
3112 panic("%s: imo %p negative refcnt", __func__
, imo
);
3114 } else if (imo
->imo_trace
!= NULL
) {
3115 (*imo
->imo_trace
)(imo
, FALSE
);
3119 if (imo
->imo_refcnt
> 0) {
3124 for (i
= 0; i
< imo
->imo_num_memberships
; ++i
) {
3125 struct in_mfilter
*imf
;
3127 imf
= imo
->imo_mfilters
? &imo
->imo_mfilters
[i
] : NULL
;
3132 (void) in_leavegroup(imo
->imo_membership
[i
], imf
);
3138 INM_REMREF(imo
->imo_membership
[i
]);
3139 imo
->imo_membership
[i
] = NULL
;
3141 imo
->imo_num_memberships
= 0;
3142 if (imo
->imo_mfilters
!= NULL
) {
3143 FREE(imo
->imo_mfilters
, M_INMFILTER
);
3144 imo
->imo_mfilters
= NULL
;
3146 if (imo
->imo_membership
!= NULL
) {
3147 FREE(imo
->imo_membership
, M_IPMOPTS
);
3148 imo
->imo_membership
= NULL
;
3152 lck_mtx_destroy(&imo
->imo_lock
, ifa_mtx_grp
);
3154 if (!(imo
->imo_debug
& IFD_ALLOC
)) {
3155 panic("%s: imo %p cannot be freed", __func__
, imo
);
3158 zfree(imo_zone
, imo
);
3162 imo_trace(struct ip_moptions
*imo
, int refhold
)
3164 struct ip_moptions_dbg
*imo_dbg
= (struct ip_moptions_dbg
*)imo
;
3169 if (!(imo
->imo_debug
& IFD_DEBUG
)) {
3170 panic("%s: imo %p has no debug structure", __func__
, imo
);
3174 cnt
= &imo_dbg
->imo_refhold_cnt
;
3175 tr
= imo_dbg
->imo_refhold
;
3177 cnt
= &imo_dbg
->imo_refrele_cnt
;
3178 tr
= imo_dbg
->imo_refrele
;
3181 idx
= atomic_add_16_ov(cnt
, 1) % IMO_TRACE_HIST_SIZE
;
3182 ctrace_record(&tr
[idx
]);
3185 struct ip_moptions
*
3186 ip_allocmoptions(int how
)
3188 struct ip_moptions
*imo
;
3190 imo
= (how
== M_WAITOK
) ? zalloc(imo_zone
) : zalloc_noblock(imo_zone
);
3192 bzero(imo
, imo_size
);
3193 lck_mtx_init(&imo
->imo_lock
, ifa_mtx_grp
, ifa_mtx_attr
);
3194 imo
->imo_debug
|= IFD_ALLOC
;
3195 if (imo_debug
!= 0) {
3196 imo
->imo_debug
|= IFD_DEBUG
;
3197 imo
->imo_trace
= imo_trace
;
3206 * Routine called from ip_output() to loop back a copy of an IP multicast
3207 * packet to the input queue of a specified interface. Note that this
3208 * calls the output routine of the loopback "driver", but with an interface
3209 * pointer that might NOT be a loopback interface -- evil, but easier than
3210 * replicating that code here.
3213 ip_mloopback(struct ifnet
*srcifp
, struct ifnet
*origifp
, struct mbuf
*m
,
3214 struct sockaddr_in
*dst
, int hlen
)
3219 if (lo_ifp
== NULL
) {
3224 * Copy the packet header as it's needed for the checksum
3225 * Make sure to deep-copy IP header portion in case the data
3226 * is in an mbuf cluster, so that we can safely override the IP
3227 * header portion later.
3229 copym
= m_copym_mode(m
, 0, M_COPYALL
, M_DONTWAIT
, M_COPYM_COPY_HDR
);
3230 if (copym
!= NULL
&& ((copym
->m_flags
& M_EXT
) || copym
->m_len
< hlen
)) {
3231 copym
= m_pullup(copym
, hlen
);
3234 if (copym
== NULL
) {
3239 * We don't bother to fragment if the IP length is greater
3240 * than the interface's MTU. Can this possibly matter?
3242 ip
= mtod(copym
, struct ip
*);
3243 #if BYTE_ORDER != BIG_ENDIAN
3248 ip
->ip_sum
= ip_cksum_hdr_out(copym
, hlen
);
3251 * Mark checksum as valid unless receive checksum offload is
3252 * disabled; if so, compute checksum in software. If the
3253 * interface itself is lo0, this will be overridden by if_loop.
3256 copym
->m_pkthdr
.csum_flags
&= ~(CSUM_PARTIAL
| CSUM_ZERO_INVERT
);
3257 copym
->m_pkthdr
.csum_flags
|=
3258 CSUM_DATA_VALID
| CSUM_PSEUDO_HDR
;
3259 copym
->m_pkthdr
.csum_data
= 0xffff;
3260 } else if (copym
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) {
3261 #if BYTE_ORDER != BIG_ENDIAN
3264 in_delayed_cksum(copym
);
3265 #if BYTE_ORDER != BIG_ENDIAN
3271 * Stuff the 'real' ifp into the pkthdr, to be used in matching
3272 * in ip_input(); we need the loopback ifp/dl_tag passed as args
3273 * to make the loopback driver compliant with the data link
3276 copym
->m_pkthdr
.rcvif
= origifp
;
3279 * Also record the source interface (which owns the source address).
3280 * This is basically a stripped down version of ifa_foraddr().
3282 if (srcifp
== NULL
) {
3283 struct in_ifaddr
*ia
;
3285 lck_rw_lock_shared(in_ifaddr_rwlock
);
3286 TAILQ_FOREACH(ia
, INADDR_HASH(ip
->ip_src
.s_addr
), ia_hash
) {
3287 IFA_LOCK_SPIN(&ia
->ia_ifa
);
3288 if (IA_SIN(ia
)->sin_addr
.s_addr
== ip
->ip_src
.s_addr
) {
3289 srcifp
= ia
->ia_ifp
;
3290 IFA_UNLOCK(&ia
->ia_ifa
);
3293 IFA_UNLOCK(&ia
->ia_ifa
);
3295 lck_rw_done(in_ifaddr_rwlock
);
3297 if (srcifp
!= NULL
) {
3298 ip_setsrcifaddr_info(copym
, srcifp
->if_index
, NULL
);
3300 ip_setdstifaddr_info(copym
, origifp
->if_index
, NULL
);
3302 dlil_output(lo_ifp
, PF_INET
, copym
, NULL
, SA(dst
), 0, NULL
);
3306 * Given a source IP address (and route, if available), determine the best
3307 * interface to send the packet from. Checking for (and updating) the
3308 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
3309 * without any locks based on the assumption that ip_output() is single-
3310 * threaded per-pcb, i.e. for any given pcb there can only be one thread
3311 * performing output at the IP layer.
3313 * This routine is analogous to in6_selectroute() for IPv6.
3315 static struct ifaddr
*
3316 in_selectsrcif(struct ip
*ip
, struct route
*ro
, unsigned int ifscope
)
3318 struct ifaddr
*ifa
= NULL
;
3319 struct in_addr src
= ip
->ip_src
;
3320 struct in_addr dst
= ip
->ip_dst
;
3321 struct ifnet
*rt_ifp
;
3322 char s_src
[MAX_IPv4_STR_LEN
], s_dst
[MAX_IPv4_STR_LEN
];
3324 VERIFY(src
.s_addr
!= INADDR_ANY
);
3326 if (ip_select_srcif_debug
) {
3327 (void) inet_ntop(AF_INET
, &src
.s_addr
, s_src
, sizeof(s_src
));
3328 (void) inet_ntop(AF_INET
, &dst
.s_addr
, s_dst
, sizeof(s_dst
));
3331 if (ro
->ro_rt
!= NULL
) {
3335 rt_ifp
= (ro
->ro_rt
!= NULL
) ? ro
->ro_rt
->rt_ifp
: NULL
;
3338 * Given the source IP address, find a suitable source interface
3339 * to use for transmission; if the caller has specified a scope,
3340 * optimize the search by looking at the addresses only for that
3341 * interface. This is still suboptimal, however, as we need to
3342 * traverse the per-interface list.
3344 if (ifscope
!= IFSCOPE_NONE
|| ro
->ro_rt
!= NULL
) {
3345 unsigned int scope
= ifscope
;
3348 * If no scope is specified and the route is stale (pointing
3349 * to a defunct interface) use the current primary interface;
3350 * this happens when switching between interfaces configured
3351 * with the same IP address. Otherwise pick up the scope
3352 * information from the route; the ULP may have looked up a
3353 * correct route and we just need to verify it here and mark
3354 * it with the ROF_SRCIF_SELECTED flag below.
3356 if (scope
== IFSCOPE_NONE
) {
3357 scope
= rt_ifp
->if_index
;
3358 if (scope
!= get_primary_ifscope(AF_INET
) &&
3359 ROUTE_UNUSABLE(ro
)) {
3360 scope
= get_primary_ifscope(AF_INET
);
3364 ifa
= (struct ifaddr
*)ifa_foraddr_scoped(src
.s_addr
, scope
);
3366 if (ifa
== NULL
&& ip
->ip_p
!= IPPROTO_UDP
&&
3367 ip
->ip_p
!= IPPROTO_TCP
&& ipforwarding
) {
3369 * If forwarding is enabled, and if the packet isn't
3370 * TCP or UDP, check if the source address belongs
3371 * to one of our own interfaces; if so, demote the
3372 * interface scope and do a route lookup right below.
3374 ifa
= (struct ifaddr
*)ifa_foraddr(src
.s_addr
);
3378 ifscope
= IFSCOPE_NONE
;
3382 if (ip_select_srcif_debug
&& ifa
!= NULL
) {
3383 if (ro
->ro_rt
!= NULL
) {
3384 printf("%s->%s ifscope %d->%d ifa_if %s "
3385 "ro_if %s\n", s_src
, s_dst
, ifscope
,
3386 scope
, if_name(ifa
->ifa_ifp
),
3389 printf("%s->%s ifscope %d->%d ifa_if %s\n",
3390 s_src
, s_dst
, ifscope
, scope
,
3391 if_name(ifa
->ifa_ifp
));
3397 * Slow path; search for an interface having the corresponding source
3398 * IP address if the scope was not specified by the caller, and:
3400 * 1) There currently isn't any route, or,
3401 * 2) The interface used by the route does not own that source
3402 * IP address; in this case, the route will get blown away
3403 * and we'll do a more specific scoped search using the newly
3406 if (ifa
== NULL
&& ifscope
== IFSCOPE_NONE
) {
3407 ifa
= (struct ifaddr
*)ifa_foraddr(src
.s_addr
);
3410 * If we have the IP address, but not the route, we don't
3411 * really know whether or not it belongs to the correct
3412 * interface (it could be shared across multiple interfaces.)
3413 * The only way to find out is to do a route lookup.
3415 if (ifa
!= NULL
&& ro
->ro_rt
== NULL
) {
3417 struct sockaddr_in sin
;
3418 struct ifaddr
*oifa
= NULL
;
3420 bzero(&sin
, sizeof(sin
));
3421 sin
.sin_family
= AF_INET
;
3422 sin
.sin_len
= sizeof(sin
);
3425 lck_mtx_lock(rnh_lock
);
3426 if ((rt
= rt_lookup(TRUE
, SA(&sin
), NULL
,
3427 rt_tables
[AF_INET
], IFSCOPE_NONE
)) != NULL
) {
3430 * If the route uses a different interface,
3431 * use that one instead. The IP address of
3432 * the ifaddr that we pick up here is not
3435 if (ifa
->ifa_ifp
!= rt
->rt_ifp
) {
3445 lck_mtx_unlock(rnh_lock
);
3448 struct ifaddr
*iifa
;
3451 * See if the interface pointed to by the
3452 * route is configured with the source IP
3453 * address of the packet.
3455 iifa
= (struct ifaddr
*)ifa_foraddr_scoped(
3456 src
.s_addr
, ifa
->ifa_ifp
->if_index
);
3460 * Found it; drop the original one
3461 * as well as the route interface
3462 * address, and use this instead.
3467 } else if (!ipforwarding
||
3468 (rt
->rt_flags
& RTF_GATEWAY
)) {
3470 * This interface doesn't have that
3471 * source IP address; drop the route
3472 * interface address and just use the
3473 * original one, and let the caller
3474 * do a scoped route lookup.
3480 * Forwarding is enabled and the source
3481 * address belongs to one of our own
3482 * interfaces which isn't the outgoing
3483 * interface, and we have a route, and
3484 * the destination is on a network that
3485 * is directly attached (onlink); drop
3486 * the original one and use the route
3487 * interface address instead.
3492 } else if (ifa
!= NULL
&& ro
->ro_rt
!= NULL
&&
3493 !(ro
->ro_rt
->rt_flags
& RTF_GATEWAY
) &&
3494 ifa
->ifa_ifp
!= ro
->ro_rt
->rt_ifp
&& ipforwarding
) {
3496 * Forwarding is enabled and the source address belongs
3497 * to one of our own interfaces which isn't the same
3498 * as the interface used by the known route; drop the
3499 * original one and use the route interface address.
3502 ifa
= ro
->ro_rt
->rt_ifa
;
3506 if (ip_select_srcif_debug
&& ifa
!= NULL
) {
3507 printf("%s->%s ifscope %d ifa_if %s\n",
3508 s_src
, s_dst
, ifscope
, if_name(ifa
->ifa_ifp
));
3512 if (ro
->ro_rt
!= NULL
) {
3513 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
3516 * If there is a non-loopback route with the wrong interface, or if
3517 * there is no interface configured with such an address, blow it
3518 * away. Except for local/loopback, we look for one with a matching
3519 * interface scope/index.
3521 if (ro
->ro_rt
!= NULL
&&
3522 (ifa
== NULL
|| (ifa
->ifa_ifp
!= rt_ifp
&& rt_ifp
!= lo_ifp
) ||
3523 !(ro
->ro_rt
->rt_flags
& RTF_UP
))) {
3524 if (ip_select_srcif_debug
) {
3526 printf("%s->%s ifscope %d ro_if %s != "
3527 "ifa_if %s (cached route cleared)\n",
3528 s_src
, s_dst
, ifscope
, if_name(rt_ifp
),
3529 if_name(ifa
->ifa_ifp
));
3531 printf("%s->%s ifscope %d ro_if %s "
3532 "(no ifa_if found)\n",
3533 s_src
, s_dst
, ifscope
, if_name(rt_ifp
));
3537 RT_UNLOCK(ro
->ro_rt
);
3541 * If the destination is IPv4 LLA and the route's interface
3542 * doesn't match the source interface, then the source IP
3543 * address is wrong; it most likely belongs to the primary
3544 * interface associated with the IPv4 LL subnet. Drop the
3545 * packet rather than letting it go out and return an error
3546 * to the ULP. This actually applies not only to IPv4 LL
3547 * but other shared subnets; for now we explicitly test only
3548 * for the former case and save the latter for future.
3550 if (IN_LINKLOCAL(ntohl(dst
.s_addr
)) &&
3551 !IN_LINKLOCAL(ntohl(src
.s_addr
)) && ifa
!= NULL
) {
3557 if (ip_select_srcif_debug
&& ifa
== NULL
) {
3558 printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n",
3559 s_src
, s_dst
, ifscope
);
3563 * If there is a route, mark it accordingly. If there isn't one,
3564 * we'll get here again during the next transmit (possibly with a
3565 * route) and the flag will get set at that point. For IPv4 LLA
3566 * destination, mark it only if the route has been fully resolved;
3567 * otherwise we want to come back here again when the route points
3568 * to the interface over which the ARP reply arrives on.
3570 if (ro
->ro_rt
!= NULL
&& (!IN_LINKLOCAL(ntohl(dst
.s_addr
)) ||
3571 (ro
->ro_rt
->rt_gateway
->sa_family
== AF_LINK
&&
3572 SDL(ro
->ro_rt
->rt_gateway
)->sdl_alen
!= 0))) {
3574 IFA_ADDREF(ifa
); /* for route */
3576 if (ro
->ro_srcia
!= NULL
) {
3577 IFA_REMREF(ro
->ro_srcia
);
3580 ro
->ro_flags
|= ROF_SRCIF_SELECTED
;
3581 RT_GENID_SYNC(ro
->ro_rt
);
3584 if (ro
->ro_rt
!= NULL
) {
3585 RT_UNLOCK(ro
->ro_rt
);
3592 * @brief Given outgoing interface it determines what checksum needs
3593 * to be computed in software and what needs to be offloaded to the
3596 * @param ifp Pointer to the outgoing interface
3597 * @param m Pointer to the packet
3598 * @param hlen IP header length
3599 * @param ip_len Total packet size i.e. headers + data payload
3600 * @param sw_csum Pointer to a software checksum flag set
3605 ip_output_checksum(struct ifnet
*ifp
, struct mbuf
*m
, int hlen
, int ip_len
,
3608 int tso
= TSO_IPV4_OK(ifp
, m
);
3609 uint32_t hwcap
= ifp
->if_hwassist
;
3611 m
->m_pkthdr
.csum_flags
|= CSUM_IP
;
3614 /* do all in software; hardware checksum offload is disabled */
3615 *sw_csum
= (CSUM_DELAY_DATA
| CSUM_DELAY_IP
) &
3616 m
->m_pkthdr
.csum_flags
;
3618 /* do in software what the hardware cannot */
3619 *sw_csum
= m
->m_pkthdr
.csum_flags
&
3620 ~IF_HWASSIST_CSUM_FLAGS(hwcap
);
3623 if (hlen
!= sizeof(struct ip
)) {
3624 *sw_csum
|= ((CSUM_DELAY_DATA
| CSUM_DELAY_IP
) &
3625 m
->m_pkthdr
.csum_flags
);
3626 } else if (!(*sw_csum
& CSUM_DELAY_DATA
) && (hwcap
& CSUM_PARTIAL
)) {
3627 int interface_mtu
= ifp
->if_mtu
;
3629 if (INTF_ADJUST_MTU_FOR_CLAT46(ifp
)) {
3630 interface_mtu
= IN6_LINKMTU(ifp
);
3631 /* Further adjust the size for CLAT46 expansion */
3632 interface_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
3636 * Partial checksum offload, if non-IP fragment, and TCP only
3637 * (no UDP support, as the hardware may not be able to convert
3638 * +0 to -0 (0xffff) per RFC1122 4.1.3.4. unless the interface
3639 * supports "invert zero" capability.)
3641 if (hwcksum_tx
&& !tso
&&
3642 ((m
->m_pkthdr
.csum_flags
& CSUM_TCP
) ||
3643 ((hwcap
& CSUM_ZERO_INVERT
) &&
3644 (m
->m_pkthdr
.csum_flags
& CSUM_ZERO_INVERT
))) &&
3645 ip_len
<= interface_mtu
) {
3646 uint16_t start
= sizeof(struct ip
);
3647 uint16_t ulpoff
= m
->m_pkthdr
.csum_data
& 0xffff;
3648 m
->m_pkthdr
.csum_flags
|=
3649 (CSUM_DATA_VALID
| CSUM_PARTIAL
);
3650 m
->m_pkthdr
.csum_tx_stuff
= (ulpoff
+ start
);
3651 m
->m_pkthdr
.csum_tx_start
= start
;
3652 /* do IP hdr chksum in software */
3653 *sw_csum
= CSUM_DELAY_IP
;
3655 *sw_csum
|= (CSUM_DELAY_DATA
& m
->m_pkthdr
.csum_flags
);
3659 if (*sw_csum
& CSUM_DELAY_DATA
) {
3660 in_delayed_cksum(m
);
3661 *sw_csum
&= ~CSUM_DELAY_DATA
;
3666 * Drop off bits that aren't supported by hardware;
3667 * also make sure to preserve non-checksum related bits.
3669 m
->m_pkthdr
.csum_flags
=
3670 ((m
->m_pkthdr
.csum_flags
&
3671 (IF_HWASSIST_CSUM_FLAGS(hwcap
) | CSUM_DATA_VALID
)) |
3672 (m
->m_pkthdr
.csum_flags
& ~IF_HWASSIST_CSUM_MASK
));
3674 /* drop all bits; hardware checksum offload is disabled */
3675 m
->m_pkthdr
.csum_flags
= 0;
3680 * GRE protocol output for PPP/PPTP
3683 ip_gre_output(struct mbuf
*m
)
3688 bzero(&ro
, sizeof(ro
));
3690 error
= ip_output(m
, NULL
, &ro
, 0, NULL
, NULL
);
3698 sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS
3700 #pragma unused(arg1, arg2)
3703 i
= ip_output_measure
;
3704 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
3705 if (error
|| req
->newptr
== USER_ADDR_NULL
) {
3709 if (i
< 0 || i
> 1) {
3713 if (ip_output_measure
!= i
&& i
== 1) {
3714 net_perf_initialize(&net_perf
, ip_output_measure_bins
);
3716 ip_output_measure
= i
;
3722 sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS
3724 #pragma unused(arg1, arg2)
3728 i
= ip_output_measure_bins
;
3729 error
= sysctl_handle_quad(oidp
, &i
, 0, req
);
3730 if (error
|| req
->newptr
== USER_ADDR_NULL
) {
3734 if (!net_perf_validate_bins(i
)) {
3738 ip_output_measure_bins
= i
;
3744 sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS
3746 #pragma unused(oidp, arg1, arg2)
3747 if (req
->oldptr
== USER_ADDR_NULL
) {
3748 req
->oldlen
= (size_t)sizeof(struct ipstat
);
3751 return SYSCTL_OUT(req
, &net_perf
, MIN(sizeof(net_perf
), req
->oldlen
));