2 * Copyright (c) 1999-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Kernel Control domain - allows control connections to
31 * and to read/write data.
33 * Vincent Lubet, 040506
34 * Christophe Allie, 010928
35 * Justin C. Walker, 990319
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/syslog.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/protosw.h>
45 #include <sys/domain.h>
46 #include <sys/malloc.h>
48 #include <sys/sys_domain.h>
49 #include <sys/kern_event.h>
50 #include <sys/kern_control.h>
51 #include <sys/kauth.h>
52 #include <sys/sysctl.h>
53 #include <sys/proc_info.h>
54 #include <net/if_var.h>
56 #include <mach/vm_types.h>
58 #include <kern/thread.h>
61 TAILQ_ENTRY(kctl
) next
; /* controller chain */
64 /* controller information provided when registering */
65 char name
[MAX_KCTL_NAME
]; /* unique identifier */
69 /* misc communication information */
70 u_int32_t flags
; /* support flags */
71 u_int32_t recvbufsize
; /* request more than the default buffer size */
72 u_int32_t sendbufsize
; /* request more than the default buffer size */
74 /* Dispatch functions */
75 ctl_connect_func connect
; /* Make contact */
76 ctl_disconnect_func disconnect
; /* Break contact */
77 ctl_send_func send
; /* Send data to nke */
78 ctl_send_list_func send_list
; /* Send list of packets */
79 ctl_setopt_func setopt
; /* set kctl configuration */
80 ctl_getopt_func getopt
; /* get kctl configuration */
81 ctl_rcvd_func rcvd
; /* Notify nke when client reads data */
83 TAILQ_HEAD(, ctl_cb
) kcb_head
;
88 TAILQ_ENTRY(ctl_cb
) next
; /* controller chain */
90 struct socket
*so
; /* controlling socket */
91 struct kctl
*kctl
; /* back pointer to controller */
98 #define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t))
102 #define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n))
106 * Definitions and vars for we support
109 #define CTL_SENDSIZE (2 * 1024) /* default buffer size */
110 #define CTL_RECVSIZE (8 * 1024) /* default buffer size */
113 * Definitions and vars for we support
116 static u_int32_t ctl_maxunit
= 65536;
117 static lck_grp_attr_t
*ctl_lck_grp_attr
= 0;
118 static lck_attr_t
*ctl_lck_attr
= 0;
119 static lck_grp_t
*ctl_lck_grp
= 0;
120 static lck_mtx_t
*ctl_mtx
;
122 /* all the controllers are chained */
123 TAILQ_HEAD(kctl_list
, kctl
) ctl_head
;
125 static int ctl_attach(struct socket
*, int, struct proc
*);
126 static int ctl_detach(struct socket
*);
127 static int ctl_sofreelastref(struct socket
*so
);
128 static int ctl_connect(struct socket
*, struct sockaddr
*, struct proc
*);
129 static int ctl_disconnect(struct socket
*);
130 static int ctl_ioctl(struct socket
*so
, u_long cmd
, caddr_t data
,
131 struct ifnet
*ifp
, struct proc
*p
);
132 static int ctl_send(struct socket
*, int, struct mbuf
*,
133 struct sockaddr
*, struct mbuf
*, struct proc
*);
134 static int ctl_send_list(struct socket
*, int, struct mbuf
*,
135 struct sockaddr
*, struct mbuf
*, struct proc
*);
136 static int ctl_ctloutput(struct socket
*, struct sockopt
*);
137 static int ctl_peeraddr(struct socket
*so
, struct sockaddr
**nam
);
138 static int ctl_usr_rcvd(struct socket
*so
, int flags
);
140 static struct kctl
*ctl_find_by_name(const char *);
141 static struct kctl
*ctl_find_by_id_unit(u_int32_t id
, u_int32_t unit
);
143 static struct socket
*kcb_find_socket(kern_ctl_ref kctlref
, u_int32_t unit
,
145 static struct ctl_cb
*kcb_find(struct kctl
*, u_int32_t unit
);
146 static void ctl_post_msg(u_int32_t event_code
, u_int32_t id
);
148 static int ctl_lock(struct socket
*, int, void *);
149 static int ctl_unlock(struct socket
*, int, void *);
150 static lck_mtx_t
* ctl_getlock(struct socket
*, int);
152 static struct pr_usrreqs ctl_usrreqs
= {
153 .pru_attach
= ctl_attach
,
154 .pru_connect
= ctl_connect
,
155 .pru_control
= ctl_ioctl
,
156 .pru_detach
= ctl_detach
,
157 .pru_disconnect
= ctl_disconnect
,
158 .pru_peeraddr
= ctl_peeraddr
,
159 .pru_rcvd
= ctl_usr_rcvd
,
160 .pru_send
= ctl_send
,
161 .pru_send_list
= ctl_send_list
,
162 .pru_sosend
= sosend
,
163 .pru_sosend_list
= sosend_list
,
164 .pru_soreceive
= soreceive
,
165 .pru_soreceive_list
= soreceive_list
,
168 static struct protosw kctlsw
[] = {
170 .pr_type
= SOCK_DGRAM
,
171 .pr_protocol
= SYSPROTO_CONTROL
,
172 .pr_flags
= PR_ATOMIC
|PR_CONNREQUIRED
|PR_PCBLOCK
|PR_WANTRCVD
,
173 .pr_ctloutput
= ctl_ctloutput
,
174 .pr_usrreqs
= &ctl_usrreqs
,
176 .pr_unlock
= ctl_unlock
,
177 .pr_getlock
= ctl_getlock
,
180 .pr_type
= SOCK_STREAM
,
181 .pr_protocol
= SYSPROTO_CONTROL
,
182 .pr_flags
= PR_CONNREQUIRED
|PR_PCBLOCK
|PR_WANTRCVD
,
183 .pr_ctloutput
= ctl_ctloutput
,
184 .pr_usrreqs
= &ctl_usrreqs
,
186 .pr_unlock
= ctl_unlock
,
187 .pr_getlock
= ctl_getlock
,
191 __private_extern__
int kctl_reg_list SYSCTL_HANDLER_ARGS
;
192 __private_extern__
int kctl_pcblist SYSCTL_HANDLER_ARGS
;
193 __private_extern__
int kctl_getstat SYSCTL_HANDLER_ARGS
;
196 SYSCTL_NODE(_net_systm
, OID_AUTO
, kctl
,
197 CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "Kernel control family");
199 struct kctlstat kctlstat
;
200 SYSCTL_PROC(_net_systm_kctl
, OID_AUTO
, stats
,
201 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
202 kctl_getstat
, "S,kctlstat", "");
204 SYSCTL_PROC(_net_systm_kctl
, OID_AUTO
, reg_list
,
205 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
206 kctl_reg_list
, "S,xkctl_reg", "");
208 SYSCTL_PROC(_net_systm_kctl
, OID_AUTO
, pcblist
,
209 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
210 kctl_pcblist
, "S,xkctlpcb", "");
212 u_int32_t ctl_autorcvbuf_max
= 256 * 1024;
213 SYSCTL_INT(_net_systm_kctl
, OID_AUTO
, autorcvbufmax
,
214 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ctl_autorcvbuf_max
, 0, "");
216 u_int32_t ctl_autorcvbuf_high
= 0;
217 SYSCTL_INT(_net_systm_kctl
, OID_AUTO
, autorcvbufhigh
,
218 CTLFLAG_RD
| CTLFLAG_LOCKED
, &ctl_autorcvbuf_high
, 0, "");
220 u_int32_t ctl_debug
= 0;
221 SYSCTL_INT(_net_systm_kctl
, OID_AUTO
, debug
,
222 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ctl_debug
, 0, "");
224 #define KCTL_TBL_INC 16
226 static uintptr_t kctl_tbl_size
= 0;
227 static u_int32_t kctl_tbl_growing
= 0;
228 static uintptr_t kctl_tbl_count
= 0;
229 static struct kctl
**kctl_table
= NULL
;
230 static uintptr_t kctl_ref_gencnt
= 0;
232 static void kctl_tbl_grow(void);
233 static kern_ctl_ref
kctl_make_ref(struct kctl
*kctl
);
234 static void kctl_delete_ref(kern_ctl_ref
);
235 static struct kctl
*kctl_from_ref(kern_ctl_ref
);
238 * Install the protosw's for the Kernel Control manager.
240 __private_extern__
void
241 kern_control_init(struct domain
*dp
)
245 int kctl_proto_count
= (sizeof (kctlsw
) / sizeof (struct protosw
));
247 VERIFY(!(dp
->dom_flags
& DOM_INITIALIZED
));
248 VERIFY(dp
== systemdomain
);
250 ctl_lck_grp_attr
= lck_grp_attr_alloc_init();
251 if (ctl_lck_grp_attr
== NULL
) {
252 panic("%s: lck_grp_attr_alloc_init failed\n", __func__
);
256 ctl_lck_grp
= lck_grp_alloc_init("Kernel Control Protocol",
258 if (ctl_lck_grp
== NULL
) {
259 panic("%s: lck_grp_alloc_init failed\n", __func__
);
263 ctl_lck_attr
= lck_attr_alloc_init();
264 if (ctl_lck_attr
== NULL
) {
265 panic("%s: lck_attr_alloc_init failed\n", __func__
);
269 ctl_mtx
= lck_mtx_alloc_init(ctl_lck_grp
, ctl_lck_attr
);
270 if (ctl_mtx
== NULL
) {
271 panic("%s: lck_mtx_alloc_init failed\n", __func__
);
274 TAILQ_INIT(&ctl_head
);
276 for (i
= 0, pr
= &kctlsw
[0]; i
< kctl_proto_count
; i
++, pr
++)
277 net_add_proto(pr
, dp
, 1);
281 kcb_delete(struct ctl_cb
*kcb
)
285 lck_mtx_free(kcb
->mtx
, ctl_lck_grp
);
291 * Kernel Controller user-request functions
292 * attach function must exist and succeed
293 * detach not necessary
294 * we need a pcb for the per socket mutex
297 ctl_attach(struct socket
*so
, int proto
, struct proc
*p
)
299 #pragma unused(proto, p)
301 struct ctl_cb
*kcb
= 0;
303 MALLOC(kcb
, struct ctl_cb
*, sizeof(struct ctl_cb
), M_TEMP
, M_WAITOK
);
308 bzero(kcb
, sizeof(struct ctl_cb
));
310 kcb
->mtx
= lck_mtx_alloc_init(ctl_lck_grp
, ctl_lck_attr
);
311 if (kcb
->mtx
== NULL
) {
316 so
->so_pcb
= (caddr_t
)kcb
;
327 ctl_sofreelastref(struct socket
*so
)
329 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
335 if ((kctl
= kcb
->kctl
) != 0) {
336 lck_mtx_lock(ctl_mtx
);
337 TAILQ_REMOVE(&kctl
->kcb_head
, kcb
, next
);
338 kctlstat
.kcs_pcbcount
--;
339 kctlstat
.kcs_gencnt
++;
340 lck_mtx_unlock(ctl_mtx
);
344 sofreelastref(so
, 1);
349 ctl_detach(struct socket
*so
)
351 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
356 soisdisconnected(so
);
357 so
->so_flags
|= SOF_PCBCLEARING
;
362 ctl_connect(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
367 struct sockaddr_ctl sa
;
368 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
369 struct ctl_cb
*kcb_next
= NULL
;
371 u_int32_t recvbufsize
, sendbufsize
;
374 panic("ctl_connect so_pcb null\n");
376 if (nam
->sa_len
!= sizeof(struct sockaddr_ctl
))
379 bcopy(nam
, &sa
, sizeof(struct sockaddr_ctl
));
381 lck_mtx_lock(ctl_mtx
);
382 kctl
= ctl_find_by_id_unit(sa
.sc_id
, sa
.sc_unit
);
384 lck_mtx_unlock(ctl_mtx
);
388 if (((kctl
->flags
& CTL_FLAG_REG_SOCK_STREAM
) &&
389 (so
->so_type
!= SOCK_STREAM
)) ||
390 (!(kctl
->flags
& CTL_FLAG_REG_SOCK_STREAM
) &&
391 (so
->so_type
!= SOCK_DGRAM
))) {
392 lck_mtx_unlock(ctl_mtx
);
396 if (kctl
->flags
& CTL_FLAG_PRIVILEGED
) {
398 lck_mtx_unlock(ctl_mtx
);
401 if (kauth_cred_issuser(kauth_cred_get()) == 0) {
402 lck_mtx_unlock(ctl_mtx
);
407 if ((kctl
->flags
& CTL_FLAG_REG_ID_UNIT
) || sa
.sc_unit
!= 0) {
408 if (kcb_find(kctl
, sa
.sc_unit
) != NULL
) {
409 lck_mtx_unlock(ctl_mtx
);
413 /* Find an unused ID, assumes control IDs are in order */
416 TAILQ_FOREACH(kcb_next
, &kctl
->kcb_head
, next
) {
417 if (kcb_next
->unit
> unit
) {
418 /* Found a gap, lets fill it in */
421 unit
= kcb_next
->unit
+ 1;
422 if (unit
== ctl_maxunit
)
426 if (unit
== ctl_maxunit
) {
427 lck_mtx_unlock(ctl_mtx
);
434 kcb
->unit
= sa
.sc_unit
;
436 if (kcb_next
!= NULL
) {
437 TAILQ_INSERT_BEFORE(kcb_next
, kcb
, next
);
439 TAILQ_INSERT_TAIL(&kctl
->kcb_head
, kcb
, next
);
441 kctlstat
.kcs_pcbcount
++;
442 kctlstat
.kcs_gencnt
++;
443 kctlstat
.kcs_connections
++;
444 lck_mtx_unlock(ctl_mtx
);
447 * rdar://15526688: Limit the send and receive sizes to sb_max
448 * by using the same scaling as sbreserve()
450 sbmaxsize
= (u_quad_t
)sb_max
* MCLBYTES
/ (MSIZE
+ MCLBYTES
);
452 if (kctl
->sendbufsize
> sbmaxsize
)
453 sendbufsize
= sbmaxsize
;
455 sendbufsize
= kctl
->sendbufsize
;
457 if (kctl
->recvbufsize
> sbmaxsize
)
458 recvbufsize
= sbmaxsize
;
460 recvbufsize
= kctl
->recvbufsize
;
462 error
= soreserve(so
, sendbufsize
, recvbufsize
);
464 printf("%s - soreserve(%llx, %u, %u) error %d\n", __func__
,
465 (uint64_t)VM_KERNEL_ADDRPERM(so
),
466 sendbufsize
, recvbufsize
, error
);
471 socket_unlock(so
, 0);
472 error
= (*kctl
->connect
)(kctl
->kctlref
, &sa
, &kcb
->userdata
);
480 if (error
&& kctl
->disconnect
) {
481 socket_unlock(so
, 0);
482 (*kctl
->disconnect
)(kctl
->kctlref
, kcb
->unit
, kcb
->userdata
);
487 soisdisconnected(so
);
488 lck_mtx_lock(ctl_mtx
);
491 TAILQ_REMOVE(&kctl
->kcb_head
, kcb
, next
);
492 kctlstat
.kcs_pcbcount
--;
493 kctlstat
.kcs_gencnt
++;
494 kctlstat
.kcs_conn_fail
++;
495 lck_mtx_unlock(ctl_mtx
);
501 ctl_disconnect(struct socket
*so
)
503 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
505 if ((kcb
= (struct ctl_cb
*)so
->so_pcb
)) {
506 struct kctl
*kctl
= kcb
->kctl
;
508 if (kctl
&& kctl
->disconnect
) {
509 socket_unlock(so
, 0);
510 (*kctl
->disconnect
)(kctl
->kctlref
, kcb
->unit
,
515 soisdisconnected(so
);
517 socket_unlock(so
, 0);
518 lck_mtx_lock(ctl_mtx
);
521 while (kcb
->usecount
!= 0) {
522 msleep(&kcb
->usecount
, ctl_mtx
, 0, "kcb->usecount", 0);
524 TAILQ_REMOVE(&kctl
->kcb_head
, kcb
, next
);
525 kctlstat
.kcs_pcbcount
--;
526 kctlstat
.kcs_gencnt
++;
527 lck_mtx_unlock(ctl_mtx
);
534 ctl_peeraddr(struct socket
*so
, struct sockaddr
**nam
)
536 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
538 struct sockaddr_ctl sc
;
540 if (kcb
== NULL
) /* sanity check */
543 if ((kctl
= kcb
->kctl
) == NULL
)
546 bzero(&sc
, sizeof(struct sockaddr_ctl
));
547 sc
.sc_len
= sizeof(struct sockaddr_ctl
);
548 sc
.sc_family
= AF_SYSTEM
;
549 sc
.ss_sysaddr
= AF_SYS_CONTROL
;
551 sc
.sc_unit
= kcb
->unit
;
553 *nam
= dup_sockaddr((struct sockaddr
*)&sc
, 1);
559 ctl_sbrcv_trim(struct socket
*so
)
561 struct sockbuf
*sb
= &so
->so_rcv
;
563 if (sb
->sb_hiwat
> sb
->sb_idealsize
) {
568 * The difference between the ideal size and the
569 * current size is the upper bound of the trimage
571 diff
= sb
->sb_hiwat
- sb
->sb_idealsize
;
573 * We cannot trim below the outstanding data
575 trim
= sb
->sb_hiwat
- sb
->sb_cc
;
577 trim
= imin(trim
, (int32_t)diff
);
580 sbreserve(sb
, (sb
->sb_hiwat
- trim
));
583 printf("%s - shrunk to %d\n",
584 __func__
, sb
->sb_hiwat
);
590 ctl_usr_rcvd(struct socket
*so
, int flags
)
592 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
595 if ((kctl
= kcb
->kctl
) == NULL
) {
600 socket_unlock(so
, 0);
601 (*kctl
->rcvd
)(kctl
->kctlref
, kcb
->unit
, kcb
->userdata
, flags
);
611 ctl_send(struct socket
*so
, int flags
, struct mbuf
*m
,
612 struct sockaddr
*addr
, struct mbuf
*control
,
615 #pragma unused(addr, p)
617 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
623 if (kcb
== NULL
) /* sanity check */
626 if (error
== 0 && (kctl
= kcb
->kctl
) == NULL
)
629 if (error
== 0 && kctl
->send
) {
630 so_tc_update_stats(m
, so
, m_get_service_class(m
));
631 socket_unlock(so
, 0);
632 error
= (*kctl
->send
)(kctl
->kctlref
, kcb
->unit
, kcb
->userdata
,
641 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_send_fail
);
646 ctl_send_list(struct socket
*so
, int flags
, struct mbuf
*m
,
647 __unused
struct sockaddr
*addr
, struct mbuf
*control
,
648 __unused
struct proc
*p
)
651 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
655 m_freem_list(control
);
657 if (kcb
== NULL
) /* sanity check */
660 if (error
== 0 && (kctl
= kcb
->kctl
) == NULL
)
663 if (error
== 0 && kctl
->send_list
) {
666 for (nxt
= m
; nxt
!= NULL
; nxt
= nxt
->m_nextpkt
)
667 so_tc_update_stats(nxt
, so
, m_get_service_class(nxt
));
669 socket_unlock(so
, 0);
670 error
= (*kctl
->send_list
)(kctl
->kctlref
, kcb
->unit
,
671 kcb
->userdata
, m
, flags
);
673 } else if (error
== 0 && kctl
->send
) {
674 while (m
!= NULL
&& error
== 0) {
675 struct mbuf
*nextpkt
= m
->m_nextpkt
;
678 so_tc_update_stats(m
, so
, m_get_service_class(m
));
679 socket_unlock(so
, 0);
680 error
= (*kctl
->send
)(kctl
->kctlref
, kcb
->unit
,
681 kcb
->userdata
, m
, flags
);
693 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_send_list_fail
);
698 ctl_rcvbspace(struct socket
*so
, u_int32_t datasize
,
699 u_int32_t kctlflags
, u_int32_t flags
)
701 struct sockbuf
*sb
= &so
->so_rcv
;
702 u_int32_t space
= sbspace(sb
);
705 if ((kctlflags
& CTL_FLAG_REG_CRIT
) == 0) {
706 if ((u_int32_t
) space
>= datasize
)
710 } else if ((flags
& CTL_DATA_CRIT
) == 0) {
712 * Reserve 25% for critical messages
714 if (space
< (sb
->sb_hiwat
>> 2) ||
720 u_int32_t autorcvbuf_max
;
723 * Allow overcommit of 25%
725 autorcvbuf_max
= min(sb
->sb_idealsize
+ (sb
->sb_idealsize
>> 2),
728 if ((u_int32_t
) space
>= datasize
) {
730 } else if (tcp_cansbgrow(sb
) &&
731 sb
->sb_hiwat
< autorcvbuf_max
) {
733 * Grow with a little bit of leeway
735 u_int32_t grow
= datasize
- space
+ MSIZE
;
738 min((sb
->sb_hiwat
+ grow
), autorcvbuf_max
)) == 1) {
740 if (sb
->sb_hiwat
> ctl_autorcvbuf_high
)
741 ctl_autorcvbuf_high
= sb
->sb_hiwat
;
746 if ((u_int32_t
) sbspace(sb
) >= datasize
) {
753 printf("%s - grown to %d error %d\n",
754 __func__
, sb
->sb_hiwat
, error
);
766 ctl_enqueuembuf(kern_ctl_ref kctlref
, u_int32_t unit
, struct mbuf
*m
,
771 int len
= m
->m_pkthdr
.len
;
774 so
= kcb_find_socket(kctlref
, unit
, &kctlflags
);
779 if (ctl_rcvbspace(so
, len
, kctlflags
, flags
) != 0) {
781 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
784 if ((flags
& CTL_DATA_EOR
))
787 so_recv_data_stat(so
, m
, 0);
788 if (sbappend(&so
->so_rcv
, m
) != 0) {
789 if ((flags
& CTL_DATA_NOWAKEUP
) == 0)
793 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
796 if (ctl_debug
&& error
!= 0 && (flags
& CTL_DATA_CRIT
))
797 printf("%s - crit data err %d len %d hiwat %d cc: %d\n",
798 __func__
, error
, len
,
799 so
->so_rcv
.sb_hiwat
, so
->so_rcv
.sb_cc
);
801 socket_unlock(so
, 1);
803 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fail
);
809 * Compute space occupied by mbuf like sbappendrecord
812 m_space(struct mbuf
*m
)
817 for (nxt
= m
; nxt
!= NULL
; nxt
= nxt
->m_next
)
824 ctl_enqueuembuf_list(void *kctlref
, u_int32_t unit
, struct mbuf
*m_list
,
825 u_int32_t flags
, struct mbuf
**m_remain
)
827 struct socket
*so
= NULL
;
829 struct mbuf
*m
, *nextpkt
;
835 * Need to point the beginning of the list in case of early exit
840 * kcb_find_socket takes the socket lock with a reference
842 so
= kcb_find_socket(kctlref
, unit
, &kctlflags
);
848 if (kctlflags
& CTL_FLAG_REG_SOCK_STREAM
) {
852 if (flags
& CTL_DATA_EOR
) {
857 for (m
= m_list
; m
!= NULL
; m
= nextpkt
) {
858 nextpkt
= m
->m_nextpkt
;
860 if (m
->m_pkthdr
.len
== 0)
861 printf("%s: %llx m_pkthdr.len is 0",
862 __func__
, (uint64_t)VM_KERNEL_ADDRPERM(m
));
865 * The mbuf is either appended or freed by sbappendrecord()
866 * so it's not reliable from a data standpoint
869 if (ctl_rcvbspace(so
, len
, kctlflags
, flags
) != 0) {
872 (SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
876 * Unlink from the list, m is on its own
879 so_recv_data_stat(so
, m
, 0);
880 if (sbappendrecord(&so
->so_rcv
, m
) != 0) {
884 * We free or return the remaining
890 (SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
895 if (needwakeup
&& (flags
& CTL_DATA_NOWAKEUP
) == 0)
900 if (ctl_debug
&& error
!= 0 && (flags
& CTL_DATA_CRIT
))
901 printf("%s - crit data err %d len %d hiwat %d cc: %d\n",
902 __func__
, error
, len
,
903 so
->so_rcv
.sb_hiwat
, so
->so_rcv
.sb_cc
);
905 socket_unlock(so
, 1);
910 if (m
!= NULL
&& socket_debug
&& so
!= NULL
&&
911 (so
->so_options
& SO_DEBUG
)) {
914 printf("%s m_list %llx\n", __func__
,
915 (uint64_t) VM_KERNEL_ADDRPERM(m_list
));
916 for (n
= m
; n
!= NULL
; n
= n
->m_nextpkt
)
917 printf(" remain %llx m_next %llx\n",
918 (uint64_t) VM_KERNEL_ADDRPERM(n
),
919 (uint64_t) VM_KERNEL_ADDRPERM(n
->m_next
));
926 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fail
);
931 ctl_enqueuedata(void *kctlref
, u_int32_t unit
, void *data
, size_t len
,
937 unsigned int num_needed
;
942 so
= kcb_find_socket(kctlref
, unit
, &kctlflags
);
947 if (ctl_rcvbspace(so
, len
, kctlflags
, flags
) != 0) {
949 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
954 m
= m_allocpacket_internal(&num_needed
, len
, NULL
, M_NOWAIT
, 1, 0);
956 printf("ctl_enqueuedata: m_allocpacket_internal(%lu) failed\n",
962 for (n
= m
; n
!= NULL
; n
= n
->m_next
) {
963 size_t mlen
= mbuf_maxlen(n
);
965 if (mlen
+ curlen
> len
)
968 bcopy((char *)data
+ curlen
, n
->m_data
, mlen
);
971 mbuf_pkthdr_setlen(m
, curlen
);
973 if ((flags
& CTL_DATA_EOR
))
975 so_recv_data_stat(so
, m
, 0);
976 if (sbappend(&so
->so_rcv
, m
) != 0) {
977 if ((flags
& CTL_DATA_NOWAKEUP
) == 0)
981 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fullsock
);
985 if (ctl_debug
&& error
!= 0 && (flags
& CTL_DATA_CRIT
))
986 printf("%s - crit data err %d len %d hiwat %d cc: %d\n",
987 __func__
, error
, (int)len
,
988 so
->so_rcv
.sb_hiwat
, so
->so_rcv
.sb_cc
);
990 socket_unlock(so
, 1);
992 OSIncrementAtomic64((SInt64
*)&kctlstat
.kcs_enqueue_fail
);
997 ctl_getenqueuepacketcount(kern_ctl_ref kctlref
, u_int32_t unit
, u_int32_t
*pcnt
)
1006 so
= kcb_find_socket(kctlref
, unit
, NULL
);
1012 m1
= so
->so_rcv
.sb_mb
;
1013 while (m1
!= NULL
) {
1014 if (m1
->m_type
== MT_DATA
||
1015 m1
->m_type
== MT_HEADER
||
1016 m1
->m_type
== MT_OOBDATA
)
1022 socket_unlock(so
, 1);
1028 ctl_getenqueuespace(kern_ctl_ref kctlref
, u_int32_t unit
, size_t *space
)
1036 so
= kcb_find_socket(kctlref
, unit
, NULL
);
1041 avail
= sbspace(&so
->so_rcv
);
1042 *space
= (avail
< 0) ? 0 : avail
;
1043 socket_unlock(so
, 1);
1049 ctl_getenqueuereadable(kern_ctl_ref kctlref
, u_int32_t unit
,
1050 u_int32_t
*difference
)
1054 if (difference
== NULL
)
1057 so
= kcb_find_socket(kctlref
, unit
, NULL
);
1062 if (so
->so_rcv
.sb_cc
>= so
->so_rcv
.sb_lowat
) {
1065 *difference
= (so
->so_rcv
.sb_lowat
- so
->so_rcv
.sb_cc
);
1067 socket_unlock(so
, 1);
1073 ctl_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
1075 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
1081 if (sopt
->sopt_level
!= SYSPROTO_CONTROL
) {
1085 if (kcb
== NULL
) /* sanity check */
1088 if ((kctl
= kcb
->kctl
) == NULL
)
1091 switch (sopt
->sopt_dir
) {
1093 if (kctl
->setopt
== NULL
)
1095 if (sopt
->sopt_valsize
== 0) {
1098 MALLOC(data
, void *, sopt
->sopt_valsize
, M_TEMP
,
1102 error
= sooptcopyin(sopt
, data
,
1103 sopt
->sopt_valsize
, sopt
->sopt_valsize
);
1106 socket_unlock(so
, 0);
1107 error
= (*kctl
->setopt
)(kctl
->kctlref
,
1108 kcb
->unit
, kcb
->userdata
, sopt
->sopt_name
,
1109 data
, sopt
->sopt_valsize
);
1116 if (kctl
->getopt
== NULL
)
1119 if (sopt
->sopt_valsize
&& sopt
->sopt_val
) {
1120 MALLOC(data
, void *, sopt
->sopt_valsize
, M_TEMP
,
1125 * 4108337 - copy user data in case the
1126 * kernel control needs it
1128 error
= sooptcopyin(sopt
, data
,
1129 sopt
->sopt_valsize
, sopt
->sopt_valsize
);
1131 len
= sopt
->sopt_valsize
;
1132 socket_unlock(so
, 0);
1133 error
= (*kctl
->getopt
)(kctl
->kctlref
, kcb
->unit
,
1134 kcb
->userdata
, sopt
->sopt_name
,
1136 if (data
!= NULL
&& len
> sopt
->sopt_valsize
)
1137 panic_plain("ctl_ctloutput: ctl %s returned "
1138 "len (%lu) > sopt_valsize (%lu)\n",
1139 kcb
->kctl
->name
, len
,
1140 sopt
->sopt_valsize
);
1144 error
= sooptcopyout(sopt
, data
, len
);
1146 sopt
->sopt_valsize
= len
;
1156 ctl_ioctl(struct socket
*so
, u_long cmd
, caddr_t data
,
1157 struct ifnet
*ifp
, struct proc
*p
)
1159 #pragma unused(so, ifp, p)
1160 int error
= ENOTSUP
;
1163 /* get the number of controllers */
1164 case CTLIOCGCOUNT
: {
1168 lck_mtx_lock(ctl_mtx
);
1169 TAILQ_FOREACH(kctl
, &ctl_head
, next
)
1171 lck_mtx_unlock(ctl_mtx
);
1173 bcopy(&n
, data
, sizeof (n
));
1178 struct ctl_info ctl_info
;
1179 struct kctl
*kctl
= 0;
1182 bcopy(data
, &ctl_info
, sizeof (ctl_info
));
1183 name_len
= strnlen(ctl_info
.ctl_name
, MAX_KCTL_NAME
);
1185 if (name_len
== 0 || name_len
+ 1 > MAX_KCTL_NAME
) {
1189 lck_mtx_lock(ctl_mtx
);
1190 kctl
= ctl_find_by_name(ctl_info
.ctl_name
);
1191 lck_mtx_unlock(ctl_mtx
);
1196 ctl_info
.ctl_id
= kctl
->id
;
1197 bcopy(&ctl_info
, data
, sizeof (ctl_info
));
1202 /* add controls to get list of NKEs */
1212 struct kctl
**new_table
;
1215 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1217 while (kctl_tbl_growing
) {
1218 /* Another thread is allocating */
1219 (void) msleep((caddr_t
) &kctl_tbl_growing
, ctl_mtx
,
1220 PSOCK
| PCATCH
, "kctl_tbl_growing", 0);
1222 /* Another thread grew the table */
1223 if (kctl_table
!= NULL
&& kctl_tbl_count
< kctl_tbl_size
)
1226 /* Verify we have a sane size */
1227 if (kctl_tbl_size
+ KCTL_TBL_INC
>= UINT16_MAX
) {
1228 printf("%s kctl_tbl_size %lu too big\n",
1229 __func__
, kctl_tbl_size
);
1232 kctl_tbl_growing
= 1;
1234 new_size
= kctl_tbl_size
+ KCTL_TBL_INC
;
1236 lck_mtx_unlock(ctl_mtx
);
1237 new_table
= _MALLOC(sizeof(struct kctl
*) * new_size
,
1238 M_TEMP
, M_WAIT
| M_ZERO
);
1239 lck_mtx_lock(ctl_mtx
);
1241 if (new_table
!= NULL
) {
1242 if (kctl_table
!= NULL
) {
1243 bcopy(kctl_table
, new_table
,
1244 kctl_tbl_size
* sizeof(struct kctl
*));
1246 _FREE(kctl_table
, M_TEMP
);
1248 kctl_table
= new_table
;
1249 kctl_tbl_size
= new_size
;
1252 kctl_tbl_growing
= 0;
1255 #define KCTLREF_INDEX_MASK 0x0000FFFF
1256 #define KCTLREF_GENCNT_MASK 0xFFFF0000
1257 #define KCTLREF_GENCNT_SHIFT 16
1260 kctl_make_ref(struct kctl
*kctl
)
1264 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1266 if (kctl_tbl_count
>= kctl_tbl_size
)
1269 kctl
->kctlref
= NULL
;
1270 for (i
= 0; i
< kctl_tbl_size
; i
++) {
1271 if (kctl_table
[i
] == NULL
) {
1275 * Reference is index plus one
1277 kctl_ref_gencnt
+= 1;
1280 * Add generation count as salt to reference to prevent
1281 * use after deregister
1283 ref
= ((kctl_ref_gencnt
<< KCTLREF_GENCNT_SHIFT
) &
1284 KCTLREF_GENCNT_MASK
) +
1285 ((i
+ 1) & KCTLREF_INDEX_MASK
);
1287 kctl
->kctlref
= (void *)(ref
);
1288 kctl_table
[i
] = kctl
;
1294 if (kctl
->kctlref
== NULL
)
1295 panic("%s no space in table", __func__
);
1298 printf("%s %p for %p\n",
1299 __func__
, kctl
->kctlref
, kctl
);
1301 return (kctl
->kctlref
);
1305 kctl_delete_ref(kern_ctl_ref kctlref
)
1308 * Reference is index plus one
1310 uintptr_t i
= (((uintptr_t)kctlref
) & KCTLREF_INDEX_MASK
) - 1;
1312 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1314 if (i
< kctl_tbl_size
) {
1315 struct kctl
*kctl
= kctl_table
[i
];
1317 if (kctl
->kctlref
== kctlref
) {
1318 kctl_table
[i
] = NULL
;
1321 kctlstat
.kcs_bad_kctlref
++;
1324 kctlstat
.kcs_bad_kctlref
++;
1328 static struct kctl
*
1329 kctl_from_ref(kern_ctl_ref kctlref
)
1332 * Reference is index plus one
1334 uintptr_t i
= (((uintptr_t)kctlref
) & KCTLREF_INDEX_MASK
) - 1;
1335 struct kctl
*kctl
= NULL
;
1337 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1339 if (i
>= kctl_tbl_size
) {
1340 kctlstat
.kcs_bad_kctlref
++;
1343 kctl
= kctl_table
[i
];
1344 if (kctl
->kctlref
!= kctlref
) {
1345 kctlstat
.kcs_bad_kctlref
++;
1352 * Register/unregister a NKE
1355 ctl_register(struct kern_ctl_reg
*userkctl
, kern_ctl_ref
*kctlref
)
1357 struct kctl
*kctl
= NULL
;
1358 struct kctl
*kctl_next
= NULL
;
1361 int is_extended
= 0;
1363 if (userkctl
== NULL
) /* sanity check */
1365 if (userkctl
->ctl_connect
== NULL
)
1367 name_len
= strlen(userkctl
->ctl_name
);
1368 if (name_len
== 0 || name_len
+ 1 > MAX_KCTL_NAME
)
1371 MALLOC(kctl
, struct kctl
*, sizeof(*kctl
), M_TEMP
, M_WAITOK
);
1374 bzero((char *)kctl
, sizeof(*kctl
));
1376 lck_mtx_lock(ctl_mtx
);
1378 if (kctl_make_ref(kctl
) == NULL
) {
1379 lck_mtx_unlock(ctl_mtx
);
1385 * Kernel Control IDs
1387 * CTL_FLAG_REG_ID_UNIT indicates the control ID and unit number are
1388 * static. If they do not exist, add them to the list in order. If the
1389 * flag is not set, we must find a new unique value. We assume the
1390 * list is in order. We find the last item in the list and add one. If
1391 * this leads to wrapping the id around, we start at the front of the
1392 * list and look for a gap.
1395 if ((userkctl
->ctl_flags
& CTL_FLAG_REG_ID_UNIT
) == 0) {
1396 /* Must dynamically assign an unused ID */
1398 /* Verify the same name isn't already registered */
1399 if (ctl_find_by_name(userkctl
->ctl_name
) != NULL
) {
1400 kctl_delete_ref(kctl
->kctlref
);
1401 lck_mtx_unlock(ctl_mtx
);
1406 /* Start with 1 in case the list is empty */
1408 kctl_next
= TAILQ_LAST(&ctl_head
, kctl_list
);
1410 if (kctl_next
!= NULL
) {
1411 /* List was not empty, add one to the last item */
1412 id
= kctl_next
->id
+ 1;
1416 * If this wrapped the id number, start looking at
1417 * the front of the list for an unused id.
1420 /* Find the next unused ID */
1423 TAILQ_FOREACH(kctl_next
, &ctl_head
, next
) {
1424 if (kctl_next
->id
> id
) {
1425 /* We found a gap */
1429 id
= kctl_next
->id
+ 1;
1434 userkctl
->ctl_id
= id
;
1436 kctl
->reg_unit
= -1;
1438 TAILQ_FOREACH(kctl_next
, &ctl_head
, next
) {
1439 if (kctl_next
->id
> userkctl
->ctl_id
)
1443 if (ctl_find_by_id_unit(userkctl
->ctl_id
, userkctl
->ctl_unit
)) {
1444 kctl_delete_ref(kctl
->kctlref
);
1445 lck_mtx_unlock(ctl_mtx
);
1449 kctl
->id
= userkctl
->ctl_id
;
1450 kctl
->reg_unit
= userkctl
->ctl_unit
;
1453 is_extended
= (userkctl
->ctl_flags
& CTL_FLAG_REG_EXTENDED
);
1455 strlcpy(kctl
->name
, userkctl
->ctl_name
, MAX_KCTL_NAME
);
1456 kctl
->flags
= userkctl
->ctl_flags
;
1459 * Let the caller know the default send and receive sizes
1461 if (userkctl
->ctl_sendsize
== 0) {
1462 kctl
->sendbufsize
= CTL_SENDSIZE
;
1463 userkctl
->ctl_sendsize
= kctl
->sendbufsize
;
1465 kctl
->sendbufsize
= userkctl
->ctl_sendsize
;
1467 if (userkctl
->ctl_recvsize
== 0) {
1468 kctl
->recvbufsize
= CTL_RECVSIZE
;
1469 userkctl
->ctl_recvsize
= kctl
->recvbufsize
;
1471 kctl
->recvbufsize
= userkctl
->ctl_recvsize
;
1474 kctl
->connect
= userkctl
->ctl_connect
;
1475 kctl
->disconnect
= userkctl
->ctl_disconnect
;
1476 kctl
->send
= userkctl
->ctl_send
;
1477 kctl
->setopt
= userkctl
->ctl_setopt
;
1478 kctl
->getopt
= userkctl
->ctl_getopt
;
1480 kctl
->rcvd
= userkctl
->ctl_rcvd
;
1481 kctl
->send_list
= userkctl
->ctl_send_list
;
1484 TAILQ_INIT(&kctl
->kcb_head
);
1487 TAILQ_INSERT_BEFORE(kctl_next
, kctl
, next
);
1489 TAILQ_INSERT_TAIL(&ctl_head
, kctl
, next
);
1491 kctlstat
.kcs_reg_count
++;
1492 kctlstat
.kcs_gencnt
++;
1494 lck_mtx_unlock(ctl_mtx
);
1496 *kctlref
= kctl
->kctlref
;
1498 ctl_post_msg(KEV_CTL_REGISTERED
, kctl
->id
);
1503 ctl_deregister(void *kctlref
)
1507 lck_mtx_lock(ctl_mtx
);
1508 if ((kctl
= kctl_from_ref(kctlref
)) == NULL
) {
1509 kctlstat
.kcs_bad_kctlref
++;
1510 lck_mtx_unlock(ctl_mtx
);
1512 printf("%s invalid kctlref %p\n",
1517 if (!TAILQ_EMPTY(&kctl
->kcb_head
)) {
1518 lck_mtx_unlock(ctl_mtx
);
1522 TAILQ_REMOVE(&ctl_head
, kctl
, next
);
1524 kctlstat
.kcs_reg_count
--;
1525 kctlstat
.kcs_gencnt
++;
1527 kctl_delete_ref(kctl
->kctlref
);
1528 lck_mtx_unlock(ctl_mtx
);
1530 ctl_post_msg(KEV_CTL_DEREGISTERED
, kctl
->id
);
1536 * Must be called with global ctl_mtx lock taked
1538 static struct kctl
*
1539 ctl_find_by_name(const char *name
)
1543 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1545 TAILQ_FOREACH(kctl
, &ctl_head
, next
)
1546 if (strncmp(kctl
->name
, name
, sizeof(kctl
->name
)) == 0)
1553 ctl_id_by_name(const char *name
)
1555 u_int32_t ctl_id
= 0;
1558 lck_mtx_lock(ctl_mtx
);
1559 kctl
= ctl_find_by_name(name
);
1562 lck_mtx_unlock(ctl_mtx
);
1568 ctl_name_by_id(u_int32_t id
, char *out_name
, size_t maxsize
)
1573 lck_mtx_lock(ctl_mtx
);
1574 TAILQ_FOREACH(kctl
, &ctl_head
, next
) {
1580 if (maxsize
> MAX_KCTL_NAME
)
1581 maxsize
= MAX_KCTL_NAME
;
1582 strlcpy(out_name
, kctl
->name
, maxsize
);
1585 lck_mtx_unlock(ctl_mtx
);
1587 return (found
? 0 : ENOENT
);
1591 * Must be called with global ctl_mtx lock taked
1594 static struct kctl
*
1595 ctl_find_by_id_unit(u_int32_t id
, u_int32_t unit
)
1599 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1601 TAILQ_FOREACH(kctl
, &ctl_head
, next
) {
1602 if (kctl
->id
== id
&& (kctl
->flags
& CTL_FLAG_REG_ID_UNIT
) == 0)
1604 else if (kctl
->id
== id
&& kctl
->reg_unit
== unit
)
1611 * Must be called with kernel controller lock taken
1613 static struct ctl_cb
*
1614 kcb_find(struct kctl
*kctl
, u_int32_t unit
)
1618 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_OWNED
);
1620 TAILQ_FOREACH(kcb
, &kctl
->kcb_head
, next
)
1621 if (kcb
->unit
== unit
)
1627 static struct socket
*
1628 kcb_find_socket(kern_ctl_ref kctlref
, u_int32_t unit
, u_int32_t
*kctlflags
)
1630 struct socket
*so
= NULL
;
1636 lr_saved
= __builtin_return_address(0);
1638 lck_mtx_lock(ctl_mtx
);
1640 * First validate the kctlref
1642 if ((kctl
= kctl_from_ref(kctlref
)) == NULL
) {
1643 kctlstat
.kcs_bad_kctlref
++;
1644 lck_mtx_unlock(ctl_mtx
);
1646 printf("%s invalid kctlref %p\n",
1651 kcb
= kcb_find(kctl
, unit
);
1652 if (kcb
== NULL
|| kcb
->kctl
!= kctl
|| (so
= kcb
->so
) == NULL
) {
1653 lck_mtx_unlock(ctl_mtx
);
1657 * This prevents the socket from being closed
1661 * Respect lock ordering: socket before ctl_mtx
1663 lck_mtx_unlock(ctl_mtx
);
1667 * The socket lock history is more useful if we store
1668 * the address of the caller.
1670 i
= (so
->next_lock_lr
+ SO_LCKDBG_MAX
- 1) % SO_LCKDBG_MAX
;
1671 so
->lock_lr
[i
] = lr_saved
;
1673 lck_mtx_lock(ctl_mtx
);
1675 if ((kctl
= kctl_from_ref(kctlref
)) == NULL
|| kcb
->kctl
== NULL
) {
1676 lck_mtx_unlock(ctl_mtx
);
1677 socket_unlock(so
, 1);
1679 lck_mtx_lock(ctl_mtx
);
1680 } else if (kctlflags
!= NULL
) {
1681 *kctlflags
= kctl
->flags
;
1685 if (kcb
->usecount
== 0)
1686 wakeup((event_t
)&kcb
->usecount
);
1688 lck_mtx_unlock(ctl_mtx
);
1694 ctl_post_msg(u_int32_t event_code
, u_int32_t id
)
1696 struct ctl_event_data ctl_ev_data
;
1697 struct kev_msg ev_msg
;
1699 lck_mtx_assert(ctl_mtx
, LCK_MTX_ASSERT_NOTOWNED
);
1701 bzero(&ev_msg
, sizeof(struct kev_msg
));
1702 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
1704 ev_msg
.kev_class
= KEV_SYSTEM_CLASS
;
1705 ev_msg
.kev_subclass
= KEV_CTL_SUBCLASS
;
1706 ev_msg
.event_code
= event_code
;
1708 /* common nke subclass data */
1709 bzero(&ctl_ev_data
, sizeof(ctl_ev_data
));
1710 ctl_ev_data
.ctl_id
= id
;
1711 ev_msg
.dv
[0].data_ptr
= &ctl_ev_data
;
1712 ev_msg
.dv
[0].data_length
= sizeof(ctl_ev_data
);
1714 ev_msg
.dv
[1].data_length
= 0;
1716 kev_post_msg(&ev_msg
);
1720 ctl_lock(struct socket
*so
, int refcount
, void *lr
)
1725 lr_saved
= __builtin_return_address(0);
1729 if (so
->so_pcb
!= NULL
) {
1730 lck_mtx_lock(((struct ctl_cb
*)so
->so_pcb
)->mtx
);
1732 panic("ctl_lock: so=%p NO PCB! lr=%p lrh= %s\n",
1733 so
, lr_saved
, solockhistory_nr(so
));
1737 if (so
->so_usecount
< 0) {
1738 panic("ctl_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
1739 so
, so
->so_pcb
, lr_saved
, so
->so_usecount
,
1740 solockhistory_nr(so
));
1747 so
->lock_lr
[so
->next_lock_lr
] = lr_saved
;
1748 so
->next_lock_lr
= (so
->next_lock_lr
+1) % SO_LCKDBG_MAX
;
1753 ctl_unlock(struct socket
*so
, int refcount
, void *lr
)
1756 lck_mtx_t
*mutex_held
;
1759 lr_saved
= __builtin_return_address(0);
1763 #ifdef MORE_KCTLLOCK_DEBUG
1764 printf("ctl_unlock: so=%llx sopcb=%x lock=%llx ref=%u lr=%llx\n",
1765 (uint64_t)VM_KERNEL_ADDRPERM(so
),
1766 (uint64_t)VM_KERNEL_ADDRPERM(so
->so_pcb
,
1767 (uint64_t)VM_KERNEL_ADDRPERM(((struct ctl_cb
*)so
->so_pcb
)->mtx
),
1768 so
->so_usecount
, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved
));
1773 if (so
->so_usecount
< 0) {
1774 panic("ctl_unlock: so=%p usecount=%x lrh= %s\n",
1775 so
, so
->so_usecount
, solockhistory_nr(so
));
1778 if (so
->so_pcb
== NULL
) {
1779 panic("ctl_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
1780 so
, so
->so_usecount
, (void *)lr_saved
,
1781 solockhistory_nr(so
));
1784 mutex_held
= ((struct ctl_cb
*)so
->so_pcb
)->mtx
;
1786 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
1787 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
1788 so
->next_unlock_lr
= (so
->next_unlock_lr
+1) % SO_LCKDBG_MAX
;
1789 lck_mtx_unlock(mutex_held
);
1791 if (so
->so_usecount
== 0)
1792 ctl_sofreelastref(so
);
1798 ctl_getlock(struct socket
*so
, int locktype
)
1800 #pragma unused(locktype)
1801 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
1804 if (so
->so_usecount
< 0)
1805 panic("ctl_getlock: so=%p usecount=%x lrh= %s\n",
1806 so
, so
->so_usecount
, solockhistory_nr(so
));
1809 panic("ctl_getlock: so=%p NULL NO so_pcb %s\n",
1810 so
, solockhistory_nr(so
));
1811 return (so
->so_proto
->pr_domain
->dom_mtx
);
1815 __private_extern__
int
1816 kctl_reg_list SYSCTL_HANDLER_ARGS
1818 #pragma unused(oidp, arg1, arg2)
1821 struct xsystmgen xsg
;
1824 size_t item_size
= ROUNDUP64(sizeof (struct xkctl_reg
));
1826 buf
= _MALLOC(item_size
, M_TEMP
, M_WAITOK
| M_ZERO
);
1830 lck_mtx_lock(ctl_mtx
);
1832 n
= kctlstat
.kcs_reg_count
;
1834 if (req
->oldptr
== USER_ADDR_NULL
) {
1835 req
->oldidx
= (n
+ n
/8) * sizeof(struct xkctl_reg
);
1838 if (req
->newptr
!= USER_ADDR_NULL
) {
1842 bzero(&xsg
, sizeof (xsg
));
1843 xsg
.xg_len
= sizeof (xsg
);
1845 xsg
.xg_gen
= kctlstat
.kcs_gencnt
;
1846 xsg
.xg_sogen
= so_gencnt
;
1847 error
= SYSCTL_OUT(req
, &xsg
, sizeof (xsg
));
1852 * We are done if there is no pcb
1859 for (i
= 0, kctl
= TAILQ_FIRST(&ctl_head
);
1860 i
< n
&& kctl
!= NULL
;
1861 i
++, kctl
= TAILQ_NEXT(kctl
, next
)) {
1862 struct xkctl_reg
*xkr
= (struct xkctl_reg
*)buf
;
1864 u_int32_t pcbcount
= 0;
1866 TAILQ_FOREACH(kcb
, &kctl
->kcb_head
, next
)
1869 bzero(buf
, item_size
);
1871 xkr
->xkr_len
= sizeof(struct xkctl_reg
);
1872 xkr
->xkr_kind
= XSO_KCREG
;
1873 xkr
->xkr_id
= kctl
->id
;
1874 xkr
->xkr_reg_unit
= kctl
->reg_unit
;
1875 xkr
->xkr_flags
= kctl
->flags
;
1876 xkr
->xkr_kctlref
= (uint64_t)(kctl
->kctlref
);
1877 xkr
->xkr_recvbufsize
= kctl
->recvbufsize
;
1878 xkr
->xkr_sendbufsize
= kctl
->sendbufsize
;
1879 xkr
->xkr_lastunit
= kctl
->lastunit
;
1880 xkr
->xkr_pcbcount
= pcbcount
;
1881 xkr
->xkr_connect
= (uint64_t)VM_KERNEL_ADDRPERM(kctl
->connect
);
1882 xkr
->xkr_disconnect
=
1883 (uint64_t)VM_KERNEL_ADDRPERM(kctl
->disconnect
);
1884 xkr
->xkr_send
= (uint64_t)VM_KERNEL_ADDRPERM(kctl
->send
);
1885 xkr
->xkr_send_list
=
1886 (uint64_t)VM_KERNEL_ADDRPERM(kctl
->send_list
);
1887 xkr
->xkr_setopt
= (uint64_t)VM_KERNEL_ADDRPERM(kctl
->setopt
);
1888 xkr
->xkr_getopt
= (uint64_t)VM_KERNEL_ADDRPERM(kctl
->getopt
);
1889 xkr
->xkr_rcvd
= (uint64_t)VM_KERNEL_ADDRPERM(kctl
->rcvd
);
1890 strlcpy(xkr
->xkr_name
, kctl
->name
, sizeof(xkr
->xkr_name
));
1892 error
= SYSCTL_OUT(req
, buf
, item_size
);
1897 * Give the user an updated idea of our state.
1898 * If the generation differs from what we told
1899 * her before, she knows that something happened
1900 * while we were processing this request, and it
1901 * might be necessary to retry.
1903 bzero(&xsg
, sizeof (xsg
));
1904 xsg
.xg_len
= sizeof (xsg
);
1906 xsg
.xg_gen
= kctlstat
.kcs_gencnt
;
1907 xsg
.xg_sogen
= so_gencnt
;
1908 error
= SYSCTL_OUT(req
, &xsg
, sizeof (xsg
));
1915 lck_mtx_unlock(ctl_mtx
);
1923 __private_extern__
int
1924 kctl_pcblist SYSCTL_HANDLER_ARGS
1926 #pragma unused(oidp, arg1, arg2)
1929 struct xsystmgen xsg
;
1932 size_t item_size
= ROUNDUP64(sizeof (struct xkctlpcb
)) +
1933 ROUNDUP64(sizeof (struct xsocket_n
)) +
1934 2 * ROUNDUP64(sizeof (struct xsockbuf_n
)) +
1935 ROUNDUP64(sizeof (struct xsockstat_n
));
1937 buf
= _MALLOC(item_size
, M_TEMP
, M_WAITOK
| M_ZERO
);
1941 lck_mtx_lock(ctl_mtx
);
1943 n
= kctlstat
.kcs_pcbcount
;
1945 if (req
->oldptr
== USER_ADDR_NULL
) {
1946 req
->oldidx
= (n
+ n
/8) * item_size
;
1949 if (req
->newptr
!= USER_ADDR_NULL
) {
1953 bzero(&xsg
, sizeof (xsg
));
1954 xsg
.xg_len
= sizeof (xsg
);
1956 xsg
.xg_gen
= kctlstat
.kcs_gencnt
;
1957 xsg
.xg_sogen
= so_gencnt
;
1958 error
= SYSCTL_OUT(req
, &xsg
, sizeof (xsg
));
1963 * We are done if there is no pcb
1970 for (i
= 0, kctl
= TAILQ_FIRST(&ctl_head
);
1971 i
< n
&& kctl
!= NULL
;
1972 kctl
= TAILQ_NEXT(kctl
, next
)) {
1975 for (kcb
= TAILQ_FIRST(&kctl
->kcb_head
);
1976 i
< n
&& kcb
!= NULL
;
1977 i
++, kcb
= TAILQ_NEXT(kcb
, next
)) {
1978 struct xkctlpcb
*xk
= (struct xkctlpcb
*)buf
;
1979 struct xsocket_n
*xso
= (struct xsocket_n
*)
1980 ADVANCE64(xk
, sizeof (*xk
));
1981 struct xsockbuf_n
*xsbrcv
= (struct xsockbuf_n
*)
1982 ADVANCE64(xso
, sizeof (*xso
));
1983 struct xsockbuf_n
*xsbsnd
= (struct xsockbuf_n
*)
1984 ADVANCE64(xsbrcv
, sizeof (*xsbrcv
));
1985 struct xsockstat_n
*xsostats
= (struct xsockstat_n
*)
1986 ADVANCE64(xsbsnd
, sizeof (*xsbsnd
));
1988 bzero(buf
, item_size
);
1990 xk
->xkp_len
= sizeof(struct xkctlpcb
);
1991 xk
->xkp_kind
= XSO_KCB
;
1992 xk
->xkp_unit
= kcb
->unit
;
1993 xk
->xkp_kctpcb
= (uint64_t)VM_KERNEL_ADDRPERM(kcb
);
1994 xk
->xkp_kctlref
= (uint64_t)VM_KERNEL_ADDRPERM(kctl
);
1995 xk
->xkp_kctlid
= kctl
->id
;
1996 strlcpy(xk
->xkp_kctlname
, kctl
->name
,
1997 sizeof(xk
->xkp_kctlname
));
1999 sotoxsocket_n(kcb
->so
, xso
);
2000 sbtoxsockbuf_n(kcb
->so
?
2001 &kcb
->so
->so_rcv
: NULL
, xsbrcv
);
2002 sbtoxsockbuf_n(kcb
->so
?
2003 &kcb
->so
->so_snd
: NULL
, xsbsnd
);
2004 sbtoxsockstat_n(kcb
->so
, xsostats
);
2006 error
= SYSCTL_OUT(req
, buf
, item_size
);
2012 * Give the user an updated idea of our state.
2013 * If the generation differs from what we told
2014 * her before, she knows that something happened
2015 * while we were processing this request, and it
2016 * might be necessary to retry.
2018 bzero(&xsg
, sizeof (xsg
));
2019 xsg
.xg_len
= sizeof (xsg
);
2021 xsg
.xg_gen
= kctlstat
.kcs_gencnt
;
2022 xsg
.xg_sogen
= so_gencnt
;
2023 error
= SYSCTL_OUT(req
, &xsg
, sizeof (xsg
));
2030 lck_mtx_unlock(ctl_mtx
);
2036 kctl_getstat SYSCTL_HANDLER_ARGS
2038 #pragma unused(oidp, arg1, arg2)
2041 lck_mtx_lock(ctl_mtx
);
2043 if (req
->newptr
!= USER_ADDR_NULL
) {
2047 if (req
->oldptr
== USER_ADDR_NULL
) {
2048 req
->oldidx
= sizeof(struct kctlstat
);
2052 error
= SYSCTL_OUT(req
, &kctlstat
,
2053 MIN(sizeof(struct kctlstat
), req
->oldlen
));
2055 lck_mtx_unlock(ctl_mtx
);
2060 kctl_fill_socketinfo(struct socket
*so
, struct socket_info
*si
)
2062 struct ctl_cb
*kcb
= (struct ctl_cb
*)so
->so_pcb
;
2063 struct kern_ctl_info
*kcsi
=
2064 &si
->soi_proto
.pri_kern_ctl
;
2065 struct kctl
*kctl
= kcb
->kctl
;
2067 si
->soi_kind
= SOCKINFO_KERN_CTL
;
2072 kcsi
->kcsi_id
= kctl
->id
;
2073 kcsi
->kcsi_reg_unit
= kctl
->reg_unit
;
2074 kcsi
->kcsi_flags
= kctl
->flags
;
2075 kcsi
->kcsi_recvbufsize
= kctl
->recvbufsize
;
2076 kcsi
->kcsi_sendbufsize
= kctl
->sendbufsize
;
2077 kcsi
->kcsi_unit
= kcb
->unit
;
2078 strlcpy(kcsi
->kcsi_name
, kctl
->name
, MAX_KCTL_NAME
);