]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/processor.h
eb2246cbd5993dbc2a44b785b421cff4b1714a6c
[apple/xnu.git] / osfmk / kern / processor.h
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * processor.h: Processor and processor-related definitions.
61 */
62
63 #ifndef _KERN_PROCESSOR_H_
64 #define _KERN_PROCESSOR_H_
65
66 #include <mach/boolean.h>
67 #include <mach/kern_return.h>
68 #include <kern/kern_types.h>
69
70 #include <sys/cdefs.h>
71
72 #ifdef MACH_KERNEL_PRIVATE
73
74 #include <mach/mach_types.h>
75 #include <kern/ast.h>
76 #include <kern/cpu_number.h>
77 #include <kern/smp.h>
78 #include <kern/simple_lock.h>
79 #include <kern/locks.h>
80 #include <kern/percpu.h>
81 #include <kern/queue.h>
82 #include <kern/sched.h>
83 #include <kern/sched_urgency.h>
84 #include <kern/timer.h>
85 #include <mach/sfi_class.h>
86 #include <kern/sched_clutch.h>
87 #include <kern/timer_call.h>
88 #include <kern/assert.h>
89 #include <machine/limits.h>
90
91 /*
92 * Processor state is accessed by locking the scheduling lock
93 * for the assigned processor set.
94 *
95 * -------------------- SHUTDOWN
96 * / ^ ^
97 * _/ | \
98 * OFF_LINE ---> START ---> RUNNING ---> IDLE ---> DISPATCHING
99 * \_________________^ ^ ^______/ /
100 * \__________________/
101 *
102 * Most of these state transitions are externally driven as a
103 * a directive (for instance telling an IDLE processor to start
104 * coming out of the idle state to run a thread). However these
105 * are typically paired with a handshake by the processor itself
106 * to indicate that it has completed a transition of indeterminate
107 * length (for example, the DISPATCHING->RUNNING or START->RUNNING
108 * transitions must occur on the processor itself).
109 *
110 * The boot processor has some special cases, and skips the START state,
111 * since it has already bootstrapped and is ready to context switch threads.
112 *
113 * When a processor is in DISPATCHING or RUNNING state, the current_pri,
114 * current_thmode, and deadline fields should be set, so that other
115 * processors can evaluate if it is an appropriate candidate for preemption.
116 */
117 #if defined(CONFIG_SCHED_DEFERRED_AST)
118 /*
119 * -------------------- SHUTDOWN
120 * / ^ ^
121 * _/ | \
122 * OFF_LINE ---> START ---> RUNNING ---> IDLE ---> DISPATCHING
123 * \_________________^ ^ ^______/ ^_____ / /
124 * \__________________/
125 *
126 * A DISPATCHING processor may be put back into IDLE, if another
127 * processor determines that the target processor will have nothing to do
128 * upon reaching the RUNNING state. This is racy, but if the target
129 * responds and becomes RUNNING, it will not break the processor state
130 * machine.
131 *
132 * This change allows us to cancel an outstanding signal/AST on a processor
133 * (if such an operation is supported through hardware or software), and
134 * push the processor back into the IDLE state as a power optimization.
135 */
136 #endif
137
138 typedef enum {
139 PROCESSOR_OFF_LINE = 0, /* Not available */
140 PROCESSOR_SHUTDOWN = 1, /* Going off-line */
141 PROCESSOR_START = 2, /* Being started */
142 PROCESSOR_UNUSED = 3, /* Formerly Inactive (unavailable) */
143 PROCESSOR_IDLE = 4, /* Idle (available) */
144 PROCESSOR_DISPATCHING = 5, /* Dispatching (idle -> active) */
145 PROCESSOR_RUNNING = 6, /* Normal execution */
146 PROCESSOR_STATE_LEN = (PROCESSOR_RUNNING + 1)
147 } processor_state_t;
148
149 typedef enum {
150 PSET_SMP,
151 #if __AMP__
152 PSET_AMP_E,
153 PSET_AMP_P,
154 #endif
155 } pset_cluster_type_t;
156
157 #if __AMP__
158
159 typedef enum {
160 SCHED_PERFCTL_POLICY_DEFAULT, /* static policy: set at boot */
161 SCHED_PERFCTL_POLICY_FOLLOW_GROUP, /* dynamic policy: perfctl_class follows thread group across amp clusters */
162 SCHED_PERFCTL_POLICY_RESTRICT_E, /* dynamic policy: limits perfctl_class to amp e cluster */
163 } sched_perfctl_class_policy_t;
164
165 extern _Atomic sched_perfctl_class_policy_t sched_perfctl_policy_util;
166 extern _Atomic sched_perfctl_class_policy_t sched_perfctl_policy_bg;
167
168 #endif /* __AMP__ */
169
170 typedef bitmap_t cpumap_t;
171
172 #if __arm64__
173
174 /*
175 * pset_execution_time_t
176 *
177 * The pset_execution_time_t type is used to maintain the average
178 * execution time of threads on a pset. Since the avg. execution time is
179 * updated from contexts where the pset lock is not held, it uses a
180 * double-wide RMW loop to update these values atomically.
181 */
182 typedef union {
183 struct {
184 uint64_t pset_avg_thread_execution_time;
185 uint64_t pset_execution_time_last_update;
186 };
187 unsigned __int128 pset_execution_time_packed;
188 } pset_execution_time_t;
189
190 #endif /* __arm64__ */
191
192 struct processor_set {
193 int pset_id;
194 int online_processor_count;
195 int cpu_set_low, cpu_set_hi;
196 int cpu_set_count;
197 int last_chosen;
198
199 uint64_t load_average;
200 uint64_t pset_load_average[TH_BUCKET_SCHED_MAX];
201 uint64_t pset_load_last_update;
202 cpumap_t cpu_bitmask;
203 cpumap_t recommended_bitmask;
204 cpumap_t cpu_state_map[PROCESSOR_STATE_LEN];
205 cpumap_t primary_map;
206 cpumap_t realtime_map;
207 cpumap_t cpu_running_foreign;
208 sched_bucket_t cpu_running_buckets[MAX_CPUS];
209
210 #define SCHED_PSET_TLOCK (1)
211 #if defined(SCHED_PSET_TLOCK)
212 /* TODO: reorder struct for temporal cache locality */
213 __attribute__((aligned(128))) lck_ticket_t sched_lock;
214 #else /* SCHED_PSET_TLOCK*/
215 __attribute__((aligned(128))) lck_spin_t sched_lock; /* lock for above */
216 #endif /* SCHED_PSET_TLOCK*/
217
218 #if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_MULTIQ)
219 struct run_queue pset_runq; /* runq for this processor set */
220 #endif
221 struct rt_queue rt_runq; /* realtime runq for this processor set */
222 #if CONFIG_SCHED_CLUTCH
223 struct sched_clutch_root pset_clutch_root; /* clutch hierarchy root */
224 #endif /* CONFIG_SCHED_CLUTCH */
225
226 #if defined(CONFIG_SCHED_TRADITIONAL)
227 int pset_runq_bound_count;
228 /* # of threads in runq bound to any processor in pset */
229 #endif
230
231 /* CPUs that have been sent an unacknowledged remote AST for scheduling purposes */
232 cpumap_t pending_AST_URGENT_cpu_mask;
233 cpumap_t pending_AST_PREEMPT_cpu_mask;
234 #if defined(CONFIG_SCHED_DEFERRED_AST)
235 /*
236 * A separate mask, for ASTs that we may be able to cancel. This is dependent on
237 * some level of support for requesting an AST on a processor, and then quashing
238 * that request later.
239 *
240 * The purpose of this field (and the associated codepaths) is to infer when we
241 * no longer need a processor that is DISPATCHING to come up, and to prevent it
242 * from coming out of IDLE if possible. This should serve to decrease the number
243 * of spurious ASTs in the system, and let processors spend longer periods in
244 * IDLE.
245 */
246 cpumap_t pending_deferred_AST_cpu_mask;
247 #endif
248 cpumap_t pending_spill_cpu_mask;
249
250 struct ipc_port * pset_self; /* port for operations */
251 struct ipc_port * pset_name_self; /* port for information */
252
253 processor_set_t pset_list; /* chain of associated psets */
254 pset_node_t node;
255 uint32_t pset_cluster_id;
256
257 /*
258 * Currently the scheduler uses a mix of pset_cluster_type_t & cluster_type_t
259 * for recommendations etc. It might be useful to unify these as a single type.
260 */
261 pset_cluster_type_t pset_cluster_type;
262 cluster_type_t pset_type;
263
264 #if CONFIG_SCHED_EDGE
265 bitmap_t foreign_psets[BITMAP_LEN(MAX_PSETS)];
266 sched_clutch_edge sched_edges[MAX_PSETS];
267 pset_execution_time_t pset_execution_time[TH_BUCKET_SCHED_MAX];
268 #endif /* CONFIG_SCHED_EDGE */
269 bool is_SMT; /* pset contains SMT processors */
270 };
271
272 extern struct processor_set pset0;
273
274 typedef bitmap_t pset_map_t;
275
276 struct pset_node {
277 processor_set_t psets; /* list of associated psets */
278
279 pset_node_t nodes; /* list of associated subnodes */
280 pset_node_t node_list; /* chain of associated nodes */
281
282 pset_node_t parent;
283
284 pset_map_t pset_map; /* map of associated psets */
285 _Atomic pset_map_t pset_idle_map; /* psets with at least one IDLE CPU */
286 _Atomic pset_map_t pset_idle_primary_map; /* psets with at least one IDLE primary CPU */
287 _Atomic pset_map_t pset_non_rt_map; /* psets with at least one available CPU not running a realtime thread */
288 _Atomic pset_map_t pset_non_rt_primary_map;/* psets with at least one available primary CPU not running a realtime thread */
289 };
290
291 extern struct pset_node pset_node0;
292
293 extern queue_head_t tasks, threads, corpse_tasks;
294 extern int tasks_count, terminated_tasks_count, threads_count;
295 decl_lck_mtx_data(extern, tasks_threads_lock);
296 decl_lck_mtx_data(extern, tasks_corpse_lock);
297
298 /*
299 * The terminated tasks queue should only be inspected elsewhere by stackshot.
300 */
301 extern queue_head_t terminated_tasks;
302
303 struct processor {
304 processor_state_t state; /* See above */
305 bool is_SMT;
306 bool is_recommended;
307 bool current_is_NO_SMT; /* cached TH_SFLAG_NO_SMT of current thread */
308 bool current_is_bound; /* current thread is bound to this processor */
309 bool current_is_eagerpreempt;/* current thread is TH_SFLAG_EAGERPREEMPT */
310 struct thread *active_thread; /* thread running on processor */
311 struct thread *idle_thread; /* this processor's idle thread. */
312 struct thread *startup_thread;
313
314 processor_set_t processor_set; /* assigned set */
315
316 /*
317 * XXX All current_* fields should be grouped together, as they're
318 * updated at the same time.
319 */
320 int current_pri; /* priority of current thread */
321 sfi_class_id_t current_sfi_class; /* SFI class of current thread */
322 perfcontrol_class_t current_perfctl_class; /* Perfcontrol class for current thread */
323 /*
324 * The cluster type recommended for the current thread.
325 */
326 pset_cluster_type_t current_recommended_pset_type;
327 thread_urgency_t current_urgency; /* cached urgency of current thread */
328
329 #if CONFIG_SCHED_TRADITIONAL
330 int runq_bound_count; /* # of threads bound to this processor */
331 #endif /* CONFIG_SCHED_TRADITIONAL */
332
333 #if CONFIG_THREAD_GROUPS
334 struct thread_group *current_thread_group; /* thread_group of current thread */
335 #endif
336 int starting_pri; /* priority of current thread as it was when scheduled */
337 int cpu_id; /* platform numeric id */
338
339 uint64_t quantum_end; /* time when current quantum ends */
340 uint64_t last_dispatch; /* time of last dispatch */
341
342 #if KPERF
343 uint64_t kperf_last_sample_time; /* time of last kperf sample */
344 #endif /* KPERF */
345
346 uint64_t deadline; /* for next realtime thread */
347 bool first_timeslice; /* has the quantum expired since context switch */
348
349 bool processor_offlined; /* has the processor been explicitly processor_offline'ed */
350 bool must_idle; /* Needs to be forced idle as next selected thread is allowed on this processor */
351
352 bool running_timers_active; /* whether the running timers should fire */
353 struct timer_call running_timers[RUNNING_TIMER_MAX];
354
355 #if CONFIG_SCHED_TRADITIONAL || CONFIG_SCHED_MULTIQ
356 struct run_queue runq; /* runq for this processor */
357 #endif /* CONFIG_SCHED_TRADITIONAL || CONFIG_SCHED_MULTIQ */
358
359 #if CONFIG_SCHED_GRRR
360 struct grrr_run_queue grrr_runq; /* Group Ratio Round-Robin runq */
361 #endif /* CONFIG_SCHED_GRRR */
362
363 /*
364 * Pointer to primary processor for secondary SMT processors, or a
365 * pointer to ourselves for primaries or non-SMT.
366 */
367 processor_t processor_primary;
368 processor_t processor_secondary;
369 struct ipc_port *processor_self; /* port for operations */
370
371 processor_t processor_list; /* all existing processors */
372
373 /* Processor state statistics */
374 timer_data_t idle_state;
375 timer_data_t system_state;
376 timer_data_t user_state;
377
378 timer_t current_state; /* points to processor's idle, system, or user state timer */
379
380 /* Thread execution timers */
381 timer_t thread_timer; /* points to current thread's user or system timer */
382 timer_t kernel_timer; /* points to current thread's system_timer */
383
384 uint64_t timer_call_ttd; /* current timer call time-to-deadline */
385 };
386
387 extern processor_t processor_list;
388 decl_simple_lock_data(extern, processor_list_lock);
389
390 /*
391 * Maximum number of CPUs supported by the scheduler. bits.h bitmap macros
392 * need to be used to support greater than 64.
393 */
394 #define MAX_SCHED_CPUS 64
395 extern processor_t processor_array[MAX_SCHED_CPUS]; /* array indexed by cpuid */
396 extern processor_set_t pset_array[MAX_PSETS]; /* array indexed by pset_id */
397
398 extern uint32_t processor_avail_count;
399 extern uint32_t processor_avail_count_user;
400 extern uint32_t primary_processor_avail_count;
401 extern uint32_t primary_processor_avail_count_user;
402
403 #define master_processor PERCPU_GET_MASTER(processor)
404 PERCPU_DECL(struct processor, processor);
405
406 extern processor_t current_processor(void);
407
408 /* Lock macros, always acquired and released with interrupts disabled (splsched()) */
409
410 extern lck_grp_t pset_lck_grp;
411
412 #if defined(SCHED_PSET_TLOCK)
413 #define pset_lock_init(p) lck_ticket_init(&(p)->sched_lock, &pset_lck_grp)
414 #define pset_lock(p) lck_ticket_lock(&(p)->sched_lock, &pset_lck_grp)
415 #define pset_unlock(p) lck_ticket_unlock(&(p)->sched_lock)
416 #define pset_assert_locked(p) lck_ticket_assert_owned(&(p)->sched_lock)
417 #else /* SCHED_PSET_TLOCK*/
418 #define pset_lock_init(p) lck_spin_init(&(p)->sched_lock, &pset_lck_grp, NULL)
419 #define pset_lock(p) lck_spin_lock_grp(&(p)->sched_lock, &pset_lck_grp)
420 #define pset_unlock(p) lck_spin_unlock(&(p)->sched_lock)
421 #define pset_assert_locked(p) LCK_SPIN_ASSERT(&(p)->sched_lock, LCK_ASSERT_OWNED)
422 #endif /*!SCHED_PSET_TLOCK*/
423
424 extern void processor_bootstrap(void);
425
426 extern void processor_init(
427 processor_t processor,
428 int cpu_id,
429 processor_set_t processor_set);
430
431 extern void processor_set_primary(
432 processor_t processor,
433 processor_t primary);
434
435 extern kern_return_t processor_shutdown(
436 processor_t processor);
437
438 extern kern_return_t processor_start_from_user(
439 processor_t processor);
440 extern kern_return_t processor_exit_from_user(
441 processor_t processor);
442
443 extern kern_return_t sched_processor_enable(
444 processor_t processor,
445 boolean_t enable);
446
447 extern void processor_queue_shutdown(
448 processor_t processor);
449
450 extern void processor_queue_shutdown(
451 processor_t processor);
452
453 extern processor_set_t processor_pset(
454 processor_t processor);
455
456 extern pset_node_t pset_node_root(void);
457
458 extern processor_set_t pset_create(
459 pset_node_t node);
460
461 extern void pset_init(
462 processor_set_t pset,
463 pset_node_t node);
464
465 extern processor_set_t pset_find(
466 uint32_t cluster_id,
467 processor_set_t default_pset);
468
469 #if !defined(RC_HIDE_XNU_FIRESTORM) && (MAX_CPU_CLUSTERS > 2)
470
471 /*
472 * Find the first processor_set for the given pset_cluster_type.
473 * Should be removed with rdar://57340304, as it's only
474 * useful for the workaround described in rdar://57306691.
475 */
476
477 extern processor_set_t pset_find_first_by_cluster_type(
478 pset_cluster_type_t pset_cluster_type);
479
480 #endif /* !defined(RC_HIDE_XNU_FIRESTORM) && (MAX_CPU_CLUSTERS > 2) */
481
482 extern kern_return_t processor_info_count(
483 processor_flavor_t flavor,
484 mach_msg_type_number_t *count);
485
486 #define pset_deallocate(x)
487 #define pset_reference(x)
488
489 extern void machine_run_count(
490 uint32_t count);
491
492 extern processor_t machine_choose_processor(
493 processor_set_t pset,
494 processor_t processor);
495
496 #define next_pset(p) (((p)->pset_list != PROCESSOR_SET_NULL)? (p)->pset_list: (p)->node->psets)
497
498 #define PSET_THING_TASK 0
499 #define PSET_THING_THREAD 1
500
501 extern pset_cluster_type_t recommended_pset_type(
502 thread_t thread);
503 #if CONFIG_THREAD_GROUPS
504 extern pset_cluster_type_t thread_group_pset_recommendation(
505 struct thread_group *tg,
506 cluster_type_t recommendation);
507 #endif /* CONFIG_THREAD_GROUPS */
508
509 inline static bool
510 pset_is_recommended(processor_set_t pset)
511 {
512 return (pset->recommended_bitmask & pset->cpu_bitmask) != 0;
513 }
514
515 extern void processor_state_update_idle(
516 processor_t processor);
517
518 extern void processor_state_update_from_thread(
519 processor_t processor,
520 thread_t thread);
521
522 extern void processor_state_update_explicit(
523 processor_t processor,
524 int pri,
525 sfi_class_id_t sfi_class,
526 pset_cluster_type_t pset_type,
527 perfcontrol_class_t perfctl_class,
528 thread_urgency_t urgency,
529 sched_bucket_t bucket);
530
531 #define PSET_LOAD_NUMERATOR_SHIFT 16
532 #define PSET_LOAD_FRACTIONAL_SHIFT 4
533
534 #if CONFIG_SCHED_EDGE
535
536 extern cluster_type_t pset_type_for_id(uint32_t cluster_id);
537
538 /*
539 * The Edge scheduler uses average scheduling latency as the metric for making
540 * thread migration decisions. One component of avg scheduling latency is the load
541 * average on the cluster.
542 *
543 * Load Average Fixed Point Arithmetic
544 *
545 * The load average is maintained as a 24.8 fixed point arithmetic value for precision.
546 * When multiplied by the average execution time, it needs to be rounded up (based on
547 * the most significant bit of the fractional part) for better accuracy. After rounding
548 * up, the whole number part of the value is used as the actual load value for
549 * migrate/steal decisions.
550 */
551 #define SCHED_PSET_LOAD_EWMA_FRACTION_BITS 8
552 #define SCHED_PSET_LOAD_EWMA_ROUND_BIT (1 << (SCHED_PSET_LOAD_EWMA_FRACTION_BITS - 1))
553 #define SCHED_PSET_LOAD_EWMA_FRACTION_MASK ((1 << SCHED_PSET_LOAD_EWMA_FRACTION_BITS) - 1)
554
555 inline static int
556 sched_get_pset_load_average(processor_set_t pset, sched_bucket_t sched_bucket)
557 {
558 return (int)(((pset->pset_load_average[sched_bucket] + SCHED_PSET_LOAD_EWMA_ROUND_BIT) >> SCHED_PSET_LOAD_EWMA_FRACTION_BITS) *
559 pset->pset_execution_time[sched_bucket].pset_avg_thread_execution_time);
560 }
561
562 #else /* CONFIG_SCHED_EDGE */
563 inline static int
564 sched_get_pset_load_average(processor_set_t pset, __unused sched_bucket_t sched_bucket)
565 {
566 return (int)pset->load_average >> (PSET_LOAD_NUMERATOR_SHIFT - PSET_LOAD_FRACTIONAL_SHIFT);
567 }
568 #endif /* CONFIG_SCHED_EDGE */
569
570 extern void sched_update_pset_load_average(processor_set_t pset, uint64_t curtime);
571 extern void sched_update_pset_avg_execution_time(processor_set_t pset, uint64_t delta, uint64_t curtime, sched_bucket_t sched_bucket);
572
573 inline static void
574 pset_update_processor_state(processor_set_t pset, processor_t processor, uint new_state)
575 {
576 pset_assert_locked(pset);
577
578 uint old_state = processor->state;
579 uint cpuid = (uint)processor->cpu_id;
580
581 assert(processor->processor_set == pset);
582 assert(bit_test(pset->cpu_bitmask, cpuid));
583
584 assert(old_state < PROCESSOR_STATE_LEN);
585 assert(new_state < PROCESSOR_STATE_LEN);
586
587 processor->state = new_state;
588
589 bit_clear(pset->cpu_state_map[old_state], cpuid);
590 bit_set(pset->cpu_state_map[new_state], cpuid);
591
592 if ((old_state == PROCESSOR_RUNNING) || (new_state == PROCESSOR_RUNNING)) {
593 sched_update_pset_load_average(pset, 0);
594 if (new_state == PROCESSOR_RUNNING) {
595 assert(processor == current_processor());
596 }
597 }
598 if ((old_state == PROCESSOR_IDLE) || (new_state == PROCESSOR_IDLE)) {
599 if (new_state == PROCESSOR_IDLE) {
600 bit_clear(pset->realtime_map, cpuid);
601 }
602
603 pset_node_t node = pset->node;
604
605 if (bit_count(node->pset_map) == 1) {
606 /* Node has only a single pset, so skip node pset map updates */
607 return;
608 }
609
610 if (new_state == PROCESSOR_IDLE) {
611 if (processor->processor_primary == processor) {
612 if (!bit_test(atomic_load(&node->pset_non_rt_primary_map), pset->pset_id)) {
613 atomic_bit_set(&node->pset_non_rt_primary_map, pset->pset_id, memory_order_relaxed);
614 }
615 if (!bit_test(atomic_load(&node->pset_idle_primary_map), pset->pset_id)) {
616 atomic_bit_set(&node->pset_idle_primary_map, pset->pset_id, memory_order_relaxed);
617 }
618 }
619 if (!bit_test(atomic_load(&node->pset_non_rt_map), pset->pset_id)) {
620 atomic_bit_set(&node->pset_non_rt_map, pset->pset_id, memory_order_relaxed);
621 }
622 if (!bit_test(atomic_load(&node->pset_idle_map), pset->pset_id)) {
623 atomic_bit_set(&node->pset_idle_map, pset->pset_id, memory_order_relaxed);
624 }
625 } else {
626 cpumap_t idle_map = pset->cpu_state_map[PROCESSOR_IDLE];
627 if (idle_map == 0) {
628 /* No more IDLE CPUs */
629 if (bit_test(atomic_load(&node->pset_idle_map), pset->pset_id)) {
630 atomic_bit_clear(&node->pset_idle_map, pset->pset_id, memory_order_relaxed);
631 }
632 }
633 if (processor->processor_primary == processor) {
634 idle_map &= pset->primary_map;
635 if (idle_map == 0) {
636 /* No more IDLE primary CPUs */
637 if (bit_test(atomic_load(&node->pset_idle_primary_map), pset->pset_id)) {
638 atomic_bit_clear(&node->pset_idle_primary_map, pset->pset_id, memory_order_relaxed);
639 }
640 }
641 }
642 }
643 }
644 }
645
646 #else /* MACH_KERNEL_PRIVATE */
647
648 __BEGIN_DECLS
649
650 extern void pset_deallocate(
651 processor_set_t pset);
652
653 extern void pset_reference(
654 processor_set_t pset);
655
656 __END_DECLS
657
658 #endif /* MACH_KERNEL_PRIVATE */
659
660 #ifdef KERNEL_PRIVATE
661 __BEGIN_DECLS
662 extern unsigned int processor_count;
663 extern processor_t cpu_to_processor(int cpu);
664
665 extern kern_return_t enable_smt_processors(bool enable);
666
667 __END_DECLS
668
669 #endif /* KERNEL_PRIVATE */
670
671 #endif /* _KERN_PROCESSOR_H_ */