]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_exec.c
eb042349b23c941e546d1656d0157afdb78bb869
[apple/xnu.git] / bsd / kern / kern_exec.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Mach Operating System
31 * Copyright (c) 1987 Carnegie-Mellon University
32 * All rights reserved. The CMU software License Agreement specifies
33 * the terms and conditions for use and redistribution.
34 */
35
36 /*-
37 * Copyright (c) 1982, 1986, 1991, 1993
38 * The Regents of the University of California. All rights reserved.
39 * (c) UNIX System Laboratories, Inc.
40 * All or some portions of this file are derived from material licensed
41 * to the University of California by American Telephone and Telegraph
42 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
43 * the permission of UNIX System Laboratories, Inc.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by the University of
56 * California, Berkeley and its contributors.
57 * 4. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * from: @(#)kern_exec.c 8.1 (Berkeley) 6/10/93
74 */
75 /*
76 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
77 * support for mandatory and extensible security protections. This notice
78 * is included in support of clause 2.2 (b) of the Apple Public License,
79 * Version 2.0.
80 */
81 #include <machine/reg.h>
82 #include <machine/cpu_capabilities.h>
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/filedesc.h>
87 #include <sys/kernel.h>
88 #include <sys/proc_internal.h>
89 #include <sys/kauth.h>
90 #include <sys/user.h>
91 #include <sys/socketvar.h>
92 #include <sys/malloc.h>
93 #include <sys/namei.h>
94 #include <sys/mount_internal.h>
95 #include <sys/vnode_internal.h>
96 #include <sys/file_internal.h>
97 #include <sys/stat.h>
98 #include <sys/uio_internal.h>
99 #include <sys/acct.h>
100 #include <sys/exec.h>
101 #include <sys/kdebug.h>
102 #include <sys/signal.h>
103 #include <sys/aio_kern.h>
104 #include <sys/sysproto.h>
105 #include <sys/persona.h>
106 #include <sys/reason.h>
107 #if SYSV_SHM
108 #include <sys/shm_internal.h> /* shmexec() */
109 #endif
110 #include <sys/ubc_internal.h> /* ubc_map() */
111 #include <sys/spawn.h>
112 #include <sys/spawn_internal.h>
113 #include <sys/process_policy.h>
114 #include <sys/codesign.h>
115 #include <sys/random.h>
116 #include <crypto/sha1.h>
117
118 #include <libkern/libkern.h>
119
120 #include <security/audit/audit.h>
121
122 #include <ipc/ipc_types.h>
123
124 #include <mach/mach_types.h>
125 #include <mach/port.h>
126 #include <mach/task.h>
127 #include <mach/task_access.h>
128 #include <mach/thread_act.h>
129 #include <mach/vm_map.h>
130 #include <mach/mach_vm.h>
131 #include <mach/vm_param.h>
132
133 #include <kern/sched_prim.h> /* thread_wakeup() */
134 #include <kern/affinity.h>
135 #include <kern/assert.h>
136 #include <kern/task.h>
137 #include <kern/coalition.h>
138 #include <kern/policy_internal.h>
139 #include <kern/kalloc.h>
140
141 #if CONFIG_MACF
142 #include <security/mac.h>
143 #include <security/mac_mach_internal.h>
144 #endif
145
146 #include <vm/vm_map.h>
147 #include <vm/vm_kern.h>
148 #include <vm/vm_protos.h>
149 #include <vm/vm_kern.h>
150 #include <vm/vm_fault.h>
151 #include <vm/vm_pageout.h>
152
153 #include <kdp/kdp_dyld.h>
154
155 #include <machine/pal_routines.h>
156
157 #include <pexpert/pexpert.h>
158
159 #if CONFIG_MEMORYSTATUS
160 #include <sys/kern_memorystatus.h>
161 #endif
162
163 #if CONFIG_DTRACE
164 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
165 extern void dtrace_proc_exec(proc_t);
166 extern void (*dtrace_proc_waitfor_exec_ptr)(proc_t);
167
168 /*
169 * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c,
170 * we will store its value before actually calling it.
171 */
172 static void (*dtrace_proc_waitfor_hook)(proc_t) = NULL;
173
174 #include <sys/dtrace_ptss.h>
175 #endif
176
177 /* support for child creation in exec after vfork */
178 thread_t fork_create_child(task_t parent_task, coalition_t *parent_coalition, proc_t child_proc, int inherit_memory, int is64bit, int in_exec);
179 void vfork_exit(proc_t p, int rv);
180 extern void proc_apply_task_networkbg_internal(proc_t, thread_t);
181 extern void task_set_did_exec_flag(task_t task);
182 extern void task_clear_exec_copy_flag(task_t task);
183 proc_t proc_exec_switch_task(proc_t p, task_t old_task, task_t new_task, thread_t new_thread);
184 boolean_t task_is_active(task_t);
185 boolean_t thread_is_active(thread_t thread);
186 void thread_copy_resource_info(thread_t dst_thread, thread_t src_thread);
187 void *ipc_importance_exec_switch_task(task_t old_task, task_t new_task);
188 extern void ipc_importance_release(void *elem);
189
190 /*
191 * Mach things for which prototypes are unavailable from Mach headers
192 */
193 void ipc_task_reset(
194 task_t task);
195 void ipc_thread_reset(
196 thread_t thread);
197 kern_return_t ipc_object_copyin(
198 ipc_space_t space,
199 mach_port_name_t name,
200 mach_msg_type_name_t msgt_name,
201 ipc_object_t *objectp);
202 void ipc_port_release_send(ipc_port_t);
203
204 #if DEVELOPMENT || DEBUG
205 void task_importance_update_owner_info(task_t);
206 #endif
207
208 extern struct savearea *get_user_regs(thread_t);
209
210 __attribute__((noinline)) int __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(mach_port_t task_access_port, int32_t new_pid);
211
212 #include <kern/thread.h>
213 #include <kern/task.h>
214 #include <kern/ast.h>
215 #include <kern/mach_loader.h>
216 #include <kern/mach_fat.h>
217 #include <mach-o/fat.h>
218 #include <mach-o/loader.h>
219 #include <machine/vmparam.h>
220 #include <sys/imgact.h>
221
222 #include <sys/sdt.h>
223
224
225 /*
226 * EAI_ITERLIMIT The maximum number of times to iterate an image
227 * activator in exec_activate_image() before treating
228 * it as malformed/corrupt.
229 */
230 #define EAI_ITERLIMIT 3
231
232 /*
233 * For #! interpreter parsing
234 */
235 #define IS_WHITESPACE(ch) ((ch == ' ') || (ch == '\t'))
236 #define IS_EOL(ch) ((ch == '#') || (ch == '\n'))
237
238 extern vm_map_t bsd_pageable_map;
239 extern const struct fileops vnops;
240
241 #define USER_ADDR_ALIGN(addr, val) \
242 ( ( (user_addr_t)(addr) + (val) - 1) \
243 & ~((val) - 1) )
244
245 struct image_params; /* Forward */
246 static int exec_activate_image(struct image_params *imgp);
247 static int exec_copyout_strings(struct image_params *imgp, user_addr_t *stackp);
248 static int load_return_to_errno(load_return_t lrtn);
249 static int execargs_alloc(struct image_params *imgp);
250 static int execargs_free(struct image_params *imgp);
251 static int exec_check_permissions(struct image_params *imgp);
252 static int exec_extract_strings(struct image_params *imgp);
253 static int exec_add_apple_strings(struct image_params *imgp, const load_result_t *load_result);
254 static int exec_handle_sugid(struct image_params *imgp);
255 static int sugid_scripts = 0;
256 SYSCTL_INT (_kern, OID_AUTO, sugid_scripts, CTLFLAG_RW | CTLFLAG_LOCKED, &sugid_scripts, 0, "");
257 static kern_return_t create_unix_stack(vm_map_t map, load_result_t* load_result, proc_t p);
258 static int copyoutptr(user_addr_t ua, user_addr_t ptr, int ptr_size);
259 static void exec_resettextvp(proc_t, struct image_params *);
260 static int check_for_signature(proc_t, struct image_params *);
261 static void exec_prefault_data(proc_t, struct image_params *, load_result_t *);
262 static errno_t exec_handle_port_actions(struct image_params *imgp, boolean_t * portwatch_present, ipc_port_t * portwatch_ports);
263 static errno_t exec_handle_spawnattr_policy(proc_t p, int psa_apptype, uint64_t psa_qos_clamp, uint64_t psa_darwin_role,
264 ipc_port_t * portwatch_ports, int portwatch_count);
265
266 /*
267 * exec_add_user_string
268 *
269 * Add the requested string to the string space area.
270 *
271 * Parameters; struct image_params * image parameter block
272 * user_addr_t string to add to strings area
273 * int segment from which string comes
274 * boolean_t TRUE if string contributes to NCARGS
275 *
276 * Returns: 0 Success
277 * !0 Failure errno from copyinstr()
278 *
279 * Implicit returns:
280 * (imgp->ip_strendp) updated location of next add, if any
281 * (imgp->ip_strspace) updated byte count of space remaining
282 * (imgp->ip_argspace) updated byte count of space in NCARGS
283 */
284 static int
285 exec_add_user_string(struct image_params *imgp, user_addr_t str, int seg, boolean_t is_ncargs)
286 {
287 int error = 0;
288
289 do {
290 size_t len = 0;
291 int space;
292
293 if (is_ncargs)
294 space = imgp->ip_argspace; /* by definition smaller than ip_strspace */
295 else
296 space = imgp->ip_strspace;
297
298 if (space <= 0) {
299 error = E2BIG;
300 break;
301 }
302
303 if (!UIO_SEG_IS_USER_SPACE(seg)) {
304 char *kstr = CAST_DOWN(char *,str); /* SAFE */
305 error = copystr(kstr, imgp->ip_strendp, space, &len);
306 } else {
307 error = copyinstr(str, imgp->ip_strendp, space, &len);
308 }
309
310 imgp->ip_strendp += len;
311 imgp->ip_strspace -= len;
312 if (is_ncargs)
313 imgp->ip_argspace -= len;
314
315 } while (error == ENAMETOOLONG);
316
317 return error;
318 }
319
320 /*
321 * dyld is now passed the executable path as a getenv-like variable
322 * in the same fashion as the stack_guard and malloc_entropy keys.
323 */
324 #define EXECUTABLE_KEY "executable_path="
325
326 /*
327 * exec_save_path
328 *
329 * To support new app package launching for Mac OS X, the dyld needs the
330 * first argument to execve() stored on the user stack.
331 *
332 * Save the executable path name at the bottom of the strings area and set
333 * the argument vector pointer to the location following that to indicate
334 * the start of the argument and environment tuples, setting the remaining
335 * string space count to the size of the string area minus the path length.
336 *
337 * Parameters; struct image_params * image parameter block
338 * char * path used to invoke program
339 * int segment from which path comes
340 *
341 * Returns: int 0 Success
342 * EFAULT Bad address
343 * copy[in]str:EFAULT Bad address
344 * copy[in]str:ENAMETOOLONG Filename too long
345 *
346 * Implicit returns:
347 * (imgp->ip_strings) saved path
348 * (imgp->ip_strspace) space remaining in ip_strings
349 * (imgp->ip_strendp) start of remaining copy area
350 * (imgp->ip_argspace) space remaining of NCARGS
351 * (imgp->ip_applec) Initial applev[0]
352 *
353 * Note: We have to do this before the initial namei() since in the
354 * path contains symbolic links, namei() will overwrite the
355 * original path buffer contents. If the last symbolic link
356 * resolved was a relative pathname, we would lose the original
357 * "path", which could be an absolute pathname. This might be
358 * unacceptable for dyld.
359 */
360 static int
361 exec_save_path(struct image_params *imgp, user_addr_t path, int seg, const char **excpath)
362 {
363 int error;
364 size_t len;
365 char *kpath;
366
367 // imgp->ip_strings can come out of a cache, so we need to obliterate the
368 // old path.
369 memset(imgp->ip_strings, '\0', strlen(EXECUTABLE_KEY) + MAXPATHLEN);
370
371 len = MIN(MAXPATHLEN, imgp->ip_strspace);
372
373 switch(seg) {
374 case UIO_USERSPACE32:
375 case UIO_USERSPACE64: /* Same for copyin()... */
376 error = copyinstr(path, imgp->ip_strings + strlen(EXECUTABLE_KEY), len, &len);
377 break;
378 case UIO_SYSSPACE:
379 kpath = CAST_DOWN(char *,path); /* SAFE */
380 error = copystr(kpath, imgp->ip_strings + strlen(EXECUTABLE_KEY), len, &len);
381 break;
382 default:
383 error = EFAULT;
384 break;
385 }
386
387 if (!error) {
388 bcopy(EXECUTABLE_KEY, imgp->ip_strings, strlen(EXECUTABLE_KEY));
389 len += strlen(EXECUTABLE_KEY);
390
391 imgp->ip_strendp += len;
392 imgp->ip_strspace -= len;
393
394 if (excpath) {
395 *excpath = imgp->ip_strings + strlen(EXECUTABLE_KEY);
396 }
397 }
398
399 return(error);
400 }
401
402 /*
403 * exec_reset_save_path
404 *
405 * If we detect a shell script, we need to reset the string area
406 * state so that the interpreter can be saved onto the stack.
407
408 * Parameters; struct image_params * image parameter block
409 *
410 * Returns: int 0 Success
411 *
412 * Implicit returns:
413 * (imgp->ip_strings) saved path
414 * (imgp->ip_strspace) space remaining in ip_strings
415 * (imgp->ip_strendp) start of remaining copy area
416 * (imgp->ip_argspace) space remaining of NCARGS
417 *
418 */
419 static int
420 exec_reset_save_path(struct image_params *imgp)
421 {
422 imgp->ip_strendp = imgp->ip_strings;
423 imgp->ip_argspace = NCARGS;
424 imgp->ip_strspace = ( NCARGS + PAGE_SIZE );
425
426 return (0);
427 }
428
429 /*
430 * exec_shell_imgact
431 *
432 * Image activator for interpreter scripts. If the image begins with
433 * the characters "#!", then it is an interpreter script. Verify the
434 * length of the script line indicating the interpreter is not in
435 * excess of the maximum allowed size. If this is the case, then
436 * break out the arguments, if any, which are separated by white
437 * space, and copy them into the argument save area as if they were
438 * provided on the command line before all other arguments. The line
439 * ends when we encounter a comment character ('#') or newline.
440 *
441 * Parameters; struct image_params * image parameter block
442 *
443 * Returns: -1 not an interpreter (keep looking)
444 * -3 Success: interpreter: relookup
445 * >0 Failure: interpreter: error number
446 *
447 * A return value other than -1 indicates subsequent image activators should
448 * not be given the opportunity to attempt to activate the image.
449 */
450 static int
451 exec_shell_imgact(struct image_params *imgp)
452 {
453 char *vdata = imgp->ip_vdata;
454 char *ihp;
455 char *line_startp, *line_endp;
456 char *interp;
457 proc_t p;
458 struct fileproc *fp;
459 int fd;
460 int error;
461
462 /*
463 * Make sure it's a shell script. If we've already redirected
464 * from an interpreted file once, don't do it again.
465 */
466 if (vdata[0] != '#' ||
467 vdata[1] != '!' ||
468 (imgp->ip_flags & IMGPF_INTERPRET) != 0) {
469 return (-1);
470 }
471
472 if (imgp->ip_origcputype != 0) {
473 /* Fat header previously matched, don't allow shell script inside */
474 return (-1);
475 }
476
477 imgp->ip_flags |= IMGPF_INTERPRET;
478 imgp->ip_interp_sugid_fd = -1;
479 imgp->ip_interp_buffer[0] = '\0';
480
481 /* Check to see if SUGID scripts are permitted. If they aren't then
482 * clear the SUGID bits.
483 * imgp->ip_vattr is known to be valid.
484 */
485 if (sugid_scripts == 0) {
486 imgp->ip_origvattr->va_mode &= ~(VSUID | VSGID);
487 }
488
489 /* Try to find the first non-whitespace character */
490 for( ihp = &vdata[2]; ihp < &vdata[IMG_SHSIZE]; ihp++ ) {
491 if (IS_EOL(*ihp)) {
492 /* Did not find interpreter, "#!\n" */
493 return (ENOEXEC);
494 } else if (IS_WHITESPACE(*ihp)) {
495 /* Whitespace, like "#! /bin/sh\n", keep going. */
496 } else {
497 /* Found start of interpreter */
498 break;
499 }
500 }
501
502 if (ihp == &vdata[IMG_SHSIZE]) {
503 /* All whitespace, like "#! " */
504 return (ENOEXEC);
505 }
506
507 line_startp = ihp;
508
509 /* Try to find the end of the interpreter+args string */
510 for ( ; ihp < &vdata[IMG_SHSIZE]; ihp++ ) {
511 if (IS_EOL(*ihp)) {
512 /* Got it */
513 break;
514 } else {
515 /* Still part of interpreter or args */
516 }
517 }
518
519 if (ihp == &vdata[IMG_SHSIZE]) {
520 /* A long line, like "#! blah blah blah" without end */
521 return (ENOEXEC);
522 }
523
524 /* Backtrack until we find the last non-whitespace */
525 while (IS_EOL(*ihp) || IS_WHITESPACE(*ihp)) {
526 ihp--;
527 }
528
529 /* The character after the last non-whitespace is our logical end of line */
530 line_endp = ihp + 1;
531
532 /*
533 * Now we have pointers to the usable part of:
534 *
535 * "#! /usr/bin/int first second third \n"
536 * ^ line_startp ^ line_endp
537 */
538
539 /* copy the interpreter name */
540 interp = imgp->ip_interp_buffer;
541 for ( ihp = line_startp; (ihp < line_endp) && !IS_WHITESPACE(*ihp); ihp++)
542 *interp++ = *ihp;
543 *interp = '\0';
544
545 exec_reset_save_path(imgp);
546 exec_save_path(imgp, CAST_USER_ADDR_T(imgp->ip_interp_buffer),
547 UIO_SYSSPACE, NULL);
548
549 /* Copy the entire interpreter + args for later processing into argv[] */
550 interp = imgp->ip_interp_buffer;
551 for ( ihp = line_startp; (ihp < line_endp); ihp++)
552 *interp++ = *ihp;
553 *interp = '\0';
554
555 /*
556 * If we have a SUID oder SGID script, create a file descriptor
557 * from the vnode and pass /dev/fd/%d instead of the actual
558 * path name so that the script does not get opened twice
559 */
560 if (imgp->ip_origvattr->va_mode & (VSUID | VSGID)) {
561 p = vfs_context_proc(imgp->ip_vfs_context);
562 error = falloc(p, &fp, &fd, imgp->ip_vfs_context);
563 if (error)
564 return(error);
565
566 fp->f_fglob->fg_flag = FREAD;
567 fp->f_fglob->fg_ops = &vnops;
568 fp->f_fglob->fg_data = (caddr_t)imgp->ip_vp;
569
570 proc_fdlock(p);
571 procfdtbl_releasefd(p, fd, NULL);
572 fp_drop(p, fd, fp, 1);
573 proc_fdunlock(p);
574 vnode_ref(imgp->ip_vp);
575
576 imgp->ip_interp_sugid_fd = fd;
577 }
578
579 return (-3);
580 }
581
582
583
584 /*
585 * exec_fat_imgact
586 *
587 * Image activator for fat 1.0 binaries. If the binary is fat, then we
588 * need to select an image from it internally, and make that the image
589 * we are going to attempt to execute. At present, this consists of
590 * reloading the first page for the image with a first page from the
591 * offset location indicated by the fat header.
592 *
593 * Parameters; struct image_params * image parameter block
594 *
595 * Returns: -1 not a fat binary (keep looking)
596 * -2 Success: encapsulated binary: reread
597 * >0 Failure: error number
598 *
599 * Important: This image activator is byte order neutral.
600 *
601 * Note: A return value other than -1 indicates subsequent image
602 * activators should not be given the opportunity to attempt
603 * to activate the image.
604 *
605 * If we find an encapsulated binary, we make no assertions
606 * about its validity; instead, we leave that up to a rescan
607 * for an activator to claim it, and, if it is claimed by one,
608 * that activator is responsible for determining validity.
609 */
610 static int
611 exec_fat_imgact(struct image_params *imgp)
612 {
613 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
614 kauth_cred_t cred = kauth_cred_proc_ref(p);
615 struct fat_header *fat_header = (struct fat_header *)imgp->ip_vdata;
616 struct _posix_spawnattr *psa = NULL;
617 struct fat_arch fat_arch;
618 int resid, error;
619 load_return_t lret;
620
621 if (imgp->ip_origcputype != 0) {
622 /* Fat header previously matched, don't allow another fat file inside */
623 error = -1; /* not claimed */
624 goto bad;
625 }
626
627 /* Make sure it's a fat binary */
628 if (OSSwapBigToHostInt32(fat_header->magic) != FAT_MAGIC) {
629 error = -1; /* not claimed */
630 goto bad;
631 }
632
633 /* imgp->ip_vdata has PAGE_SIZE, zerofilled if the file is smaller */
634 lret = fatfile_validate_fatarches((vm_offset_t)fat_header, PAGE_SIZE);
635 if (lret != LOAD_SUCCESS) {
636 error = load_return_to_errno(lret);
637 goto bad;
638 }
639
640 /* If posix_spawn binprefs exist, respect those prefs. */
641 psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
642 if (psa != NULL && psa->psa_binprefs[0] != 0) {
643 uint32_t pr = 0;
644
645 /* Check each preference listed against all arches in header */
646 for (pr = 0; pr < NBINPREFS; pr++) {
647 cpu_type_t pref = psa->psa_binprefs[pr];
648 if (pref == 0) {
649 /* No suitable arch in the pref list */
650 error = EBADARCH;
651 goto bad;
652 }
653
654 if (pref == CPU_TYPE_ANY) {
655 /* Fall through to regular grading */
656 goto regular_grading;
657 }
658
659 lret = fatfile_getbestarch_for_cputype(pref,
660 (vm_offset_t)fat_header,
661 PAGE_SIZE,
662 &fat_arch);
663 if (lret == LOAD_SUCCESS) {
664 goto use_arch;
665 }
666 }
667
668 /* Requested binary preference was not honored */
669 error = EBADEXEC;
670 goto bad;
671 }
672
673 regular_grading:
674 /* Look up our preferred architecture in the fat file. */
675 lret = fatfile_getbestarch((vm_offset_t)fat_header,
676 PAGE_SIZE,
677 &fat_arch);
678 if (lret != LOAD_SUCCESS) {
679 error = load_return_to_errno(lret);
680 goto bad;
681 }
682
683 use_arch:
684 /* Read the Mach-O header out of fat_arch */
685 error = vn_rdwr(UIO_READ, imgp->ip_vp, imgp->ip_vdata,
686 PAGE_SIZE, fat_arch.offset,
687 UIO_SYSSPACE, (IO_UNIT|IO_NODELOCKED),
688 cred, &resid, p);
689 if (error) {
690 goto bad;
691 }
692
693 if (resid) {
694 memset(imgp->ip_vdata + (PAGE_SIZE - resid), 0x0, resid);
695 }
696
697 /* Success. Indicate we have identified an encapsulated binary */
698 error = -2;
699 imgp->ip_arch_offset = (user_size_t)fat_arch.offset;
700 imgp->ip_arch_size = (user_size_t)fat_arch.size;
701 imgp->ip_origcputype = fat_arch.cputype;
702 imgp->ip_origcpusubtype = fat_arch.cpusubtype;
703
704 bad:
705 kauth_cred_unref(&cred);
706 return (error);
707 }
708
709 static int
710 activate_exec_state(task_t task, proc_t p, thread_t thread, load_result_t *result)
711 {
712 int ret;
713
714 task_set_dyld_info(task, MACH_VM_MIN_ADDRESS, 0);
715 if (result->is64bit) {
716 task_set_64bit(task, TRUE);
717 OSBitOrAtomic(P_LP64, &p->p_flag);
718 } else {
719 task_set_64bit(task, FALSE);
720 OSBitAndAtomic(~((uint32_t)P_LP64), &p->p_flag);
721 }
722
723 ret = thread_state_initialize(thread);
724 if (ret != KERN_SUCCESS) {
725 return ret;
726 }
727
728 if (result->threadstate) {
729 uint32_t *ts = result->threadstate;
730 uint32_t total_size = result->threadstate_sz;
731
732 while (total_size > 0) {
733 uint32_t flavor = *ts++;
734 uint32_t size = *ts++;
735
736 ret = thread_setstatus(thread, flavor, (thread_state_t)ts, size);
737 if (ret) {
738 return ret;
739 }
740 ts += size;
741 total_size -= (size + 2) * sizeof(uint32_t);
742 }
743 }
744
745 thread_setentrypoint(thread, result->entry_point);
746
747 return KERN_SUCCESS;
748 }
749
750
751 /*
752 * Set p->p_comm and p->p_name to the name passed to exec
753 */
754 static void
755 set_proc_name(struct image_params *imgp, proc_t p)
756 {
757 int p_name_len = sizeof(p->p_name) - 1;
758
759 if (imgp->ip_ndp->ni_cnd.cn_namelen > p_name_len) {
760 imgp->ip_ndp->ni_cnd.cn_namelen = p_name_len;
761 }
762
763 bcopy((caddr_t)imgp->ip_ndp->ni_cnd.cn_nameptr, (caddr_t)p->p_name,
764 (unsigned)imgp->ip_ndp->ni_cnd.cn_namelen);
765 p->p_name[imgp->ip_ndp->ni_cnd.cn_namelen] = '\0';
766
767 if (imgp->ip_ndp->ni_cnd.cn_namelen > MAXCOMLEN) {
768 imgp->ip_ndp->ni_cnd.cn_namelen = MAXCOMLEN;
769 }
770
771 bcopy((caddr_t)imgp->ip_ndp->ni_cnd.cn_nameptr, (caddr_t)p->p_comm,
772 (unsigned)imgp->ip_ndp->ni_cnd.cn_namelen);
773 p->p_comm[imgp->ip_ndp->ni_cnd.cn_namelen] = '\0';
774 }
775
776 /*
777 * exec_mach_imgact
778 *
779 * Image activator for mach-o 1.0 binaries.
780 *
781 * Parameters; struct image_params * image parameter block
782 *
783 * Returns: -1 not a fat binary (keep looking)
784 * -2 Success: encapsulated binary: reread
785 * >0 Failure: error number
786 * EBADARCH Mach-o binary, but with an unrecognized
787 * architecture
788 * ENOMEM No memory for child process after -
789 * can only happen after vfork()
790 *
791 * Important: This image activator is NOT byte order neutral.
792 *
793 * Note: A return value other than -1 indicates subsequent image
794 * activators should not be given the opportunity to attempt
795 * to activate the image.
796 *
797 * TODO: More gracefully handle failures after vfork
798 */
799 static int
800 exec_mach_imgact(struct image_params *imgp)
801 {
802 struct mach_header *mach_header = (struct mach_header *)imgp->ip_vdata;
803 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
804 int error = 0;
805 task_t task;
806 task_t new_task = NULL; /* protected by vfexec */
807 thread_t thread;
808 struct uthread *uthread;
809 vm_map_t old_map = VM_MAP_NULL;
810 vm_map_t map = VM_MAP_NULL;
811 load_return_t lret;
812 load_result_t load_result;
813 struct _posix_spawnattr *psa = NULL;
814 int spawn = (imgp->ip_flags & IMGPF_SPAWN);
815 int vfexec = (imgp->ip_flags & IMGPF_VFORK_EXEC);
816 int exec = (imgp->ip_flags & IMGPF_EXEC);
817 os_reason_t exec_failure_reason = OS_REASON_NULL;
818
819 /*
820 * make sure it's a Mach-O 1.0 or Mach-O 2.0 binary; the difference
821 * is a reserved field on the end, so for the most part, we can
822 * treat them as if they were identical. Reverse-endian Mach-O
823 * binaries are recognized but not compatible.
824 */
825 if ((mach_header->magic == MH_CIGAM) ||
826 (mach_header->magic == MH_CIGAM_64)) {
827 error = EBADARCH;
828 goto bad;
829 }
830
831 if ((mach_header->magic != MH_MAGIC) &&
832 (mach_header->magic != MH_MAGIC_64)) {
833 error = -1;
834 goto bad;
835 }
836
837 if (mach_header->filetype != MH_EXECUTE) {
838 error = -1;
839 goto bad;
840 }
841
842 if (imgp->ip_origcputype != 0) {
843 /* Fat header previously had an idea about this thin file */
844 if (imgp->ip_origcputype != mach_header->cputype ||
845 imgp->ip_origcpusubtype != mach_header->cpusubtype) {
846 error = EBADARCH;
847 goto bad;
848 }
849 } else {
850 imgp->ip_origcputype = mach_header->cputype;
851 imgp->ip_origcpusubtype = mach_header->cpusubtype;
852 }
853
854 task = current_task();
855 thread = current_thread();
856 uthread = get_bsdthread_info(thread);
857
858 if ((mach_header->cputype & CPU_ARCH_ABI64) == CPU_ARCH_ABI64)
859 imgp->ip_flags |= IMGPF_IS_64BIT;
860
861 /* If posix_spawn binprefs exist, respect those prefs. */
862 psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
863 if (psa != NULL && psa->psa_binprefs[0] != 0) {
864 int pr = 0;
865 for (pr = 0; pr < NBINPREFS; pr++) {
866 cpu_type_t pref = psa->psa_binprefs[pr];
867 if (pref == 0) {
868 /* No suitable arch in the pref list */
869 error = EBADARCH;
870 goto bad;
871 }
872
873 if (pref == CPU_TYPE_ANY) {
874 /* Jump to regular grading */
875 goto grade;
876 }
877
878 if (pref == imgp->ip_origcputype) {
879 /* We have a match! */
880 goto grade;
881 }
882 }
883 error = EBADARCH;
884 goto bad;
885 }
886 grade:
887 if (!grade_binary(imgp->ip_origcputype, imgp->ip_origcpusubtype & ~CPU_SUBTYPE_MASK)) {
888 error = EBADARCH;
889 goto bad;
890 }
891
892 /* Copy in arguments/environment from the old process */
893 error = exec_extract_strings(imgp);
894 if (error)
895 goto bad;
896
897 AUDIT_ARG(argv, imgp->ip_startargv, imgp->ip_argc,
898 imgp->ip_endargv - imgp->ip_startargv);
899 AUDIT_ARG(envv, imgp->ip_endargv, imgp->ip_envc,
900 imgp->ip_endenvv - imgp->ip_endargv);
901
902 /*
903 * We are being called to activate an image subsequent to a vfork()
904 * operation; in this case, we know that our task, thread, and
905 * uthread are actually those of our parent, and our proc, which we
906 * obtained indirectly from the image_params vfs_context_t, is the
907 * new child process.
908 */
909 if (vfexec) {
910 imgp->ip_new_thread = fork_create_child(task, NULL, p, FALSE, (imgp->ip_flags & IMGPF_IS_64BIT), FALSE);
911 /* task and thread ref returned, will be released in __mac_execve */
912 if (imgp->ip_new_thread == NULL) {
913 error = ENOMEM;
914 goto bad;
915 }
916 }
917
918
919 /* reset local idea of thread, uthread, task */
920 thread = imgp->ip_new_thread;
921 uthread = get_bsdthread_info(thread);
922 task = new_task = get_threadtask(thread);
923
924 /*
925 * Load the Mach-O file.
926 *
927 * NOTE: An error after this point indicates we have potentially
928 * destroyed or overwritten some process state while attempting an
929 * execve() following a vfork(), which is an unrecoverable condition.
930 * We send the new process an immediate SIGKILL to avoid it executing
931 * any instructions in the mutated address space. For true spawns,
932 * this is not the case, and "too late" is still not too late to
933 * return an error code to the parent process.
934 */
935
936 /*
937 * Actually load the image file we previously decided to load.
938 */
939 lret = load_machfile(imgp, mach_header, thread, &map, &load_result);
940 if (lret != LOAD_SUCCESS) {
941 error = load_return_to_errno(lret);
942
943 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
944 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_BAD_MACHO, 0, 0);
945 if (lret == LOAD_BADMACHO_UPX) {
946 /* set anything that might be useful in the crash report */
947 set_proc_name(imgp, p);
948
949 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_UPX);
950 exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
951 exec_failure_reason->osr_flags |= OS_REASON_FLAG_CONSISTENT_FAILURE;
952 } else {
953 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_BAD_MACHO);
954 }
955
956 goto badtoolate;
957 }
958
959 proc_lock(p);
960 p->p_cputype = imgp->ip_origcputype;
961 p->p_cpusubtype = imgp->ip_origcpusubtype;
962 proc_unlock(p);
963
964 vm_map_set_user_wire_limit(map, p->p_rlimit[RLIMIT_MEMLOCK].rlim_cur);
965
966 /*
967 * Set code-signing flags if this binary is signed, or if parent has
968 * requested them on exec.
969 */
970 if (load_result.csflags & CS_VALID) {
971 imgp->ip_csflags |= load_result.csflags &
972 (CS_VALID|CS_SIGNED|CS_DEV_CODE|
973 CS_HARD|CS_KILL|CS_RESTRICT|CS_ENFORCEMENT|CS_REQUIRE_LV|
974 CS_ENTITLEMENTS_VALIDATED|CS_DYLD_PLATFORM|
975 CS_ENTITLEMENT_FLAGS|
976 CS_EXEC_SET_HARD|CS_EXEC_SET_KILL|CS_EXEC_SET_ENFORCEMENT);
977 } else {
978 imgp->ip_csflags &= ~CS_VALID;
979 }
980
981 if (p->p_csflags & CS_EXEC_SET_HARD)
982 imgp->ip_csflags |= CS_HARD;
983 if (p->p_csflags & CS_EXEC_SET_KILL)
984 imgp->ip_csflags |= CS_KILL;
985 if (p->p_csflags & CS_EXEC_SET_ENFORCEMENT)
986 imgp->ip_csflags |= CS_ENFORCEMENT;
987 if (p->p_csflags & CS_EXEC_SET_INSTALLER)
988 imgp->ip_csflags |= CS_INSTALLER;
989
990 /*
991 * Set up the system reserved areas in the new address space.
992 */
993 vm_map_exec(map, task, load_result.is64bit, (void *)p->p_fd->fd_rdir, cpu_type());
994
995 /*
996 * Close file descriptors which specify close-on-exec.
997 */
998 fdexec(p, psa != NULL ? psa->psa_flags : 0);
999
1000 /*
1001 * deal with set[ug]id.
1002 */
1003 error = exec_handle_sugid(imgp);
1004 if (error) {
1005 vm_map_deallocate(map);
1006
1007 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1008 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_SUGID_FAILURE, 0, 0);
1009 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_SUGID_FAILURE);
1010 goto badtoolate;
1011 }
1012
1013 /*
1014 * Commit to new map.
1015 *
1016 * Swap the new map for the old for target task, which consumes
1017 * our new map reference but each leaves us responsible for the
1018 * old_map reference. That lets us get off the pmap associated
1019 * with it, and then we can release it.
1020 *
1021 * The map needs to be set on the target task which is different
1022 * than current task, thus swap_task_map is used instead of
1023 * vm_map_switch.
1024 */
1025 old_map = swap_task_map(task, thread, map);
1026 vm_map_deallocate(old_map);
1027 old_map = NULL;
1028
1029 lret = activate_exec_state(task, p, thread, &load_result);
1030 if (lret != KERN_SUCCESS) {
1031
1032 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1033 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_ACTV_THREADSTATE, 0, 0);
1034 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_ACTV_THREADSTATE);
1035 goto badtoolate;
1036 }
1037
1038 /*
1039 * deal with voucher on exec-calling thread.
1040 */
1041 if (imgp->ip_new_thread == NULL)
1042 thread_set_mach_voucher(current_thread(), IPC_VOUCHER_NULL);
1043
1044 /* Make sure we won't interrupt ourself signalling a partial process */
1045 if (!vfexec && !spawn && (p->p_lflag & P_LTRACED))
1046 psignal(p, SIGTRAP);
1047
1048 if (load_result.unixproc &&
1049 create_unix_stack(get_task_map(task),
1050 &load_result,
1051 p) != KERN_SUCCESS) {
1052 error = load_return_to_errno(LOAD_NOSPACE);
1053
1054 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1055 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_STACK_ALLOC, 0, 0);
1056 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_STACK_ALLOC);
1057 goto badtoolate;
1058 }
1059
1060 error = exec_add_apple_strings(imgp, &load_result);
1061 if (error) {
1062
1063 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1064 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_APPLE_STRING_INIT, 0, 0);
1065 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_APPLE_STRING_INIT);
1066 goto badtoolate;
1067 }
1068
1069 /* Switch to target task's map to copy out strings */
1070 old_map = vm_map_switch(get_task_map(task));
1071
1072 if (load_result.unixproc) {
1073 user_addr_t ap;
1074
1075 /*
1076 * Copy the strings area out into the new process address
1077 * space.
1078 */
1079 ap = p->user_stack;
1080 error = exec_copyout_strings(imgp, &ap);
1081 if (error) {
1082 vm_map_switch(old_map);
1083
1084 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1085 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_STRINGS, 0, 0);
1086 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_STRINGS);
1087 goto badtoolate;
1088 }
1089 /* Set the stack */
1090 thread_setuserstack(thread, ap);
1091 }
1092
1093 if (load_result.dynlinker) {
1094 uint64_t ap;
1095 int new_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT) ? 8 : 4;
1096
1097 /* Adjust the stack */
1098 ap = thread_adjuserstack(thread, -new_ptr_size);
1099 error = copyoutptr(load_result.mach_header, ap, new_ptr_size);
1100
1101 if (error) {
1102 vm_map_switch(old_map);
1103
1104 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1105 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_DYNLINKER, 0, 0);
1106 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_DYNLINKER);
1107 goto badtoolate;
1108 }
1109 task_set_dyld_info(task, load_result.all_image_info_addr,
1110 load_result.all_image_info_size);
1111 }
1112
1113 /* Avoid immediate VM faults back into kernel */
1114 exec_prefault_data(p, imgp, &load_result);
1115
1116 vm_map_switch(old_map);
1117
1118 /* Stop profiling */
1119 stopprofclock(p);
1120
1121 /*
1122 * Reset signal state.
1123 */
1124 execsigs(p, thread);
1125
1126 /*
1127 * need to cancel async IO requests that can be cancelled and wait for those
1128 * already active. MAY BLOCK!
1129 */
1130 _aio_exec( p );
1131
1132 #if SYSV_SHM
1133 /* FIXME: Till vmspace inherit is fixed: */
1134 if (!vfexec && p->vm_shm)
1135 shmexec(p);
1136 #endif
1137 #if SYSV_SEM
1138 /* Clean up the semaphores */
1139 semexit(p);
1140 #endif
1141
1142 /*
1143 * Remember file name for accounting.
1144 */
1145 p->p_acflag &= ~AFORK;
1146
1147 set_proc_name(imgp, p);
1148
1149 #if CONFIG_SECLUDED_MEMORY
1150 if (secluded_for_apps) {
1151 if (strncmp(p->p_name,
1152 "Camera",
1153 sizeof (p->p_name)) == 0 ||
1154 #if 00
1155 strncmp(p->p_name,
1156 "camerad",
1157 sizeof (p->p_name)) == 0 ||
1158 #endif
1159 strncmp(p->p_name,
1160 "testCamera",
1161 sizeof (p->p_name)) == 0) {
1162 task_set_could_use_secluded_mem(task, TRUE);
1163 } else {
1164 task_set_could_use_secluded_mem(task, FALSE);
1165 }
1166 if (strncmp(p->p_name,
1167 "mediaserverd",
1168 sizeof (p->p_name)) == 0) {
1169 task_set_could_also_use_secluded_mem(task, TRUE);
1170 }
1171 }
1172 #endif /* CONFIG_SECLUDED_MEMORY */
1173
1174 pal_dbg_set_task_name( task );
1175
1176 #if DEVELOPMENT || DEBUG
1177 /*
1178 * Update the pid an proc name for importance base if any
1179 */
1180 task_importance_update_owner_info(task);
1181 #endif
1182
1183 memcpy(&p->p_uuid[0], &load_result.uuid[0], sizeof(p->p_uuid));
1184
1185 #if CONFIG_DTRACE
1186 dtrace_proc_exec(p);
1187 #endif
1188
1189 if (kdebug_enable) {
1190 long dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4;
1191
1192 /*
1193 * Collect the pathname for tracing
1194 */
1195 kdbg_trace_string(p, &dbg_arg1, &dbg_arg2, &dbg_arg3, &dbg_arg4);
1196
1197 KERNEL_DEBUG_CONSTANT1(TRACE_DATA_EXEC | DBG_FUNC_NONE,
1198 p->p_pid ,0,0,0, (uintptr_t)thread_tid(thread));
1199 KERNEL_DEBUG_CONSTANT1(TRACE_STRING_EXEC | DBG_FUNC_NONE,
1200 dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4, (uintptr_t)thread_tid(thread));
1201 }
1202
1203 /*
1204 * If posix_spawned with the START_SUSPENDED flag, stop the
1205 * process before it runs.
1206 */
1207 if (imgp->ip_px_sa != NULL) {
1208 psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
1209 if (psa->psa_flags & POSIX_SPAWN_START_SUSPENDED) {
1210 proc_lock(p);
1211 p->p_stat = SSTOP;
1212 proc_unlock(p);
1213 (void) task_suspend_internal(task);
1214 }
1215 }
1216
1217 /*
1218 * mark as execed, wakeup the process that vforked (if any) and tell
1219 * it that it now has its own resources back
1220 */
1221 OSBitOrAtomic(P_EXEC, &p->p_flag);
1222 proc_resetregister(p);
1223 if (p->p_pptr && (p->p_lflag & P_LPPWAIT)) {
1224 proc_lock(p);
1225 p->p_lflag &= ~P_LPPWAIT;
1226 proc_unlock(p);
1227 wakeup((caddr_t)p->p_pptr);
1228 }
1229
1230 /*
1231 * Pay for our earlier safety; deliver the delayed signals from
1232 * the incomplete vfexec process now that it's complete.
1233 */
1234 if (vfexec && (p->p_lflag & P_LTRACED)) {
1235 psignal_vfork(p, new_task, thread, SIGTRAP);
1236 }
1237
1238 goto done;
1239
1240 badtoolate:
1241 /* Don't allow child process to execute any instructions */
1242 if (!spawn) {
1243 if (vfexec) {
1244 assert(exec_failure_reason != OS_REASON_NULL);
1245 psignal_vfork_with_reason(p, new_task, thread, SIGKILL, exec_failure_reason);
1246 exec_failure_reason = OS_REASON_NULL;
1247 } else {
1248 assert(exec_failure_reason != OS_REASON_NULL);
1249 psignal_with_reason(p, SIGKILL, exec_failure_reason);
1250 exec_failure_reason = OS_REASON_NULL;
1251
1252 if (exec) {
1253 /* Terminate the exec copy task */
1254 task_terminate_internal(task);
1255 }
1256 }
1257
1258 /* We can't stop this system call at this point, so just pretend we succeeded */
1259 error = 0;
1260 } else {
1261 os_reason_free(exec_failure_reason);
1262 exec_failure_reason = OS_REASON_NULL;
1263 }
1264
1265 done:
1266 if (!spawn) {
1267 /* notify only if it has not failed due to FP Key error */
1268 if ((p->p_lflag & P_LTERM_DECRYPTFAIL) == 0)
1269 proc_knote(p, NOTE_EXEC);
1270 }
1271
1272 if (load_result.threadstate) {
1273 kfree(load_result.threadstate, load_result.threadstate_sz);
1274 load_result.threadstate = NULL;
1275 }
1276
1277 bad:
1278 /* If we hit this, we likely would have leaked an exit reason */
1279 assert(exec_failure_reason == OS_REASON_NULL);
1280 return(error);
1281 }
1282
1283
1284
1285
1286 /*
1287 * Our image activator table; this is the table of the image types we are
1288 * capable of loading. We list them in order of preference to ensure the
1289 * fastest image load speed.
1290 *
1291 * XXX hardcoded, for now; should use linker sets
1292 */
1293 struct execsw {
1294 int (*ex_imgact)(struct image_params *);
1295 const char *ex_name;
1296 } execsw[] = {
1297 { exec_mach_imgact, "Mach-o Binary" },
1298 { exec_fat_imgact, "Fat Binary" },
1299 { exec_shell_imgact, "Interpreter Script" },
1300 { NULL, NULL}
1301 };
1302
1303
1304 /*
1305 * exec_activate_image
1306 *
1307 * Description: Iterate through the available image activators, and activate
1308 * the image associated with the imgp structure. We start with
1309 * the
1310 *
1311 * Parameters: struct image_params * Image parameter block
1312 *
1313 * Returns: 0 Success
1314 * EBADEXEC The executable is corrupt/unknown
1315 * execargs_alloc:EINVAL Invalid argument
1316 * execargs_alloc:EACCES Permission denied
1317 * execargs_alloc:EINTR Interrupted function
1318 * execargs_alloc:ENOMEM Not enough space
1319 * exec_save_path:EFAULT Bad address
1320 * exec_save_path:ENAMETOOLONG Filename too long
1321 * exec_check_permissions:EACCES Permission denied
1322 * exec_check_permissions:ENOEXEC Executable file format error
1323 * exec_check_permissions:ETXTBSY Text file busy [misuse of error code]
1324 * exec_check_permissions:???
1325 * namei:???
1326 * vn_rdwr:??? [anything vn_rdwr can return]
1327 * <ex_imgact>:??? [anything an imgact can return]
1328 * EDEADLK Process is being terminated
1329 */
1330 static int
1331 exec_activate_image(struct image_params *imgp)
1332 {
1333 struct nameidata *ndp = NULL;
1334 const char *excpath;
1335 int error;
1336 int resid;
1337 int once = 1; /* save SGUID-ness for interpreted files */
1338 int i;
1339 int itercount = 0;
1340 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
1341
1342 error = execargs_alloc(imgp);
1343 if (error)
1344 goto bad_notrans;
1345
1346 error = exec_save_path(imgp, imgp->ip_user_fname, imgp->ip_seg, &excpath);
1347 if (error) {
1348 goto bad_notrans;
1349 }
1350
1351 /* Use excpath, which contains the copyin-ed exec path */
1352 DTRACE_PROC1(exec, uintptr_t, excpath);
1353
1354 MALLOC(ndp, struct nameidata *, sizeof(*ndp), M_TEMP, M_WAITOK | M_ZERO);
1355 if (ndp == NULL) {
1356 error = ENOMEM;
1357 goto bad_notrans;
1358 }
1359
1360 NDINIT(ndp, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF | AUDITVNPATH1,
1361 UIO_SYSSPACE, CAST_USER_ADDR_T(excpath), imgp->ip_vfs_context);
1362
1363 again:
1364 error = namei(ndp);
1365 if (error)
1366 goto bad_notrans;
1367 imgp->ip_ndp = ndp; /* successful namei(); call nameidone() later */
1368 imgp->ip_vp = ndp->ni_vp; /* if set, need to vnode_put() at some point */
1369
1370 /*
1371 * Before we start the transition from binary A to binary B, make
1372 * sure another thread hasn't started exiting the process. We grab
1373 * the proc lock to check p_lflag initially, and the transition
1374 * mechanism ensures that the value doesn't change after we release
1375 * the lock.
1376 */
1377 proc_lock(p);
1378 if (p->p_lflag & P_LEXIT) {
1379 error = EDEADLK;
1380 proc_unlock(p);
1381 goto bad_notrans;
1382 }
1383 error = proc_transstart(p, 1, 0);
1384 proc_unlock(p);
1385 if (error)
1386 goto bad_notrans;
1387
1388 error = exec_check_permissions(imgp);
1389 if (error)
1390 goto bad;
1391
1392 /* Copy; avoid invocation of an interpreter overwriting the original */
1393 if (once) {
1394 once = 0;
1395 *imgp->ip_origvattr = *imgp->ip_vattr;
1396 }
1397
1398 error = vn_rdwr(UIO_READ, imgp->ip_vp, imgp->ip_vdata, PAGE_SIZE, 0,
1399 UIO_SYSSPACE, IO_NODELOCKED,
1400 vfs_context_ucred(imgp->ip_vfs_context),
1401 &resid, vfs_context_proc(imgp->ip_vfs_context));
1402 if (error)
1403 goto bad;
1404
1405 if (resid) {
1406 memset(imgp->ip_vdata + (PAGE_SIZE - resid), 0x0, resid);
1407 }
1408
1409 encapsulated_binary:
1410 /* Limit the number of iterations we will attempt on each binary */
1411 if (++itercount > EAI_ITERLIMIT) {
1412 error = EBADEXEC;
1413 goto bad;
1414 }
1415 error = -1;
1416 for(i = 0; error == -1 && execsw[i].ex_imgact != NULL; i++) {
1417
1418 error = (*execsw[i].ex_imgact)(imgp);
1419
1420 switch (error) {
1421 /* case -1: not claimed: continue */
1422 case -2: /* Encapsulated binary, imgp->ip_XXX set for next iteration */
1423 goto encapsulated_binary;
1424
1425 case -3: /* Interpreter */
1426 #if CONFIG_MACF
1427 /*
1428 * Copy the script label for later use. Note that
1429 * the label can be different when the script is
1430 * actually read by the interpreter.
1431 */
1432 if (imgp->ip_scriptlabelp)
1433 mac_vnode_label_free(imgp->ip_scriptlabelp);
1434 imgp->ip_scriptlabelp = mac_vnode_label_alloc();
1435 if (imgp->ip_scriptlabelp == NULL) {
1436 error = ENOMEM;
1437 break;
1438 }
1439 mac_vnode_label_copy(imgp->ip_vp->v_label,
1440 imgp->ip_scriptlabelp);
1441
1442 /*
1443 * Take a ref of the script vnode for later use.
1444 */
1445 if (imgp->ip_scriptvp)
1446 vnode_put(imgp->ip_scriptvp);
1447 if (vnode_getwithref(imgp->ip_vp) == 0)
1448 imgp->ip_scriptvp = imgp->ip_vp;
1449 #endif
1450
1451 nameidone(ndp);
1452
1453 vnode_put(imgp->ip_vp);
1454 imgp->ip_vp = NULL; /* already put */
1455 imgp->ip_ndp = NULL; /* already nameidone */
1456
1457 /* Use excpath, which exec_shell_imgact reset to the interpreter */
1458 NDINIT(ndp, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF,
1459 UIO_SYSSPACE, CAST_USER_ADDR_T(excpath), imgp->ip_vfs_context);
1460
1461 proc_transend(p, 0);
1462 goto again;
1463
1464 default:
1465 break;
1466 }
1467 }
1468
1469 /*
1470 * Call out to allow 3rd party notification of exec.
1471 * Ignore result of kauth_authorize_fileop call.
1472 */
1473 if (error == 0 && kauth_authorize_fileop_has_listeners()) {
1474 kauth_authorize_fileop(vfs_context_ucred(imgp->ip_vfs_context),
1475 KAUTH_FILEOP_EXEC,
1476 (uintptr_t)ndp->ni_vp, 0);
1477 }
1478 bad:
1479 proc_transend(p, 0);
1480
1481 bad_notrans:
1482 if (imgp->ip_strings)
1483 execargs_free(imgp);
1484 if (imgp->ip_ndp)
1485 nameidone(imgp->ip_ndp);
1486 if (ndp)
1487 FREE(ndp, M_TEMP);
1488
1489 return (error);
1490 }
1491
1492
1493 /*
1494 * exec_handle_spawnattr_policy
1495 *
1496 * Description: Decode and apply the posix_spawn apptype, qos clamp, and watchport ports to the task.
1497 *
1498 * Parameters: proc_t p process to apply attributes to
1499 * int psa_apptype posix spawn attribute apptype
1500 *
1501 * Returns: 0 Success
1502 */
1503 static errno_t
1504 exec_handle_spawnattr_policy(proc_t p, int psa_apptype, uint64_t psa_qos_clamp, uint64_t psa_darwin_role,
1505 ipc_port_t * portwatch_ports, int portwatch_count)
1506 {
1507 int apptype = TASK_APPTYPE_NONE;
1508 int qos_clamp = THREAD_QOS_UNSPECIFIED;
1509 int role = TASK_UNSPECIFIED;
1510
1511 if ((psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK) != 0) {
1512 int proctype = psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK;
1513
1514 switch(proctype) {
1515 case POSIX_SPAWN_PROC_TYPE_DAEMON_INTERACTIVE:
1516 apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
1517 break;
1518 case POSIX_SPAWN_PROC_TYPE_DAEMON_STANDARD:
1519 apptype = TASK_APPTYPE_DAEMON_STANDARD;
1520 break;
1521 case POSIX_SPAWN_PROC_TYPE_DAEMON_ADAPTIVE:
1522 apptype = TASK_APPTYPE_DAEMON_ADAPTIVE;
1523 break;
1524 case POSIX_SPAWN_PROC_TYPE_DAEMON_BACKGROUND:
1525 apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
1526 break;
1527 case POSIX_SPAWN_PROC_TYPE_APP_DEFAULT:
1528 apptype = TASK_APPTYPE_APP_DEFAULT;
1529 break;
1530 case POSIX_SPAWN_PROC_TYPE_APP_TAL:
1531 apptype = TASK_APPTYPE_APP_TAL;
1532 break;
1533 default:
1534 apptype = TASK_APPTYPE_NONE;
1535 /* TODO: Should an invalid value here fail the spawn? */
1536 break;
1537 }
1538 }
1539
1540 if (psa_qos_clamp != POSIX_SPAWN_PROC_CLAMP_NONE) {
1541 switch (psa_qos_clamp) {
1542 case POSIX_SPAWN_PROC_CLAMP_UTILITY:
1543 qos_clamp = THREAD_QOS_UTILITY;
1544 break;
1545 case POSIX_SPAWN_PROC_CLAMP_BACKGROUND:
1546 qos_clamp = THREAD_QOS_BACKGROUND;
1547 break;
1548 case POSIX_SPAWN_PROC_CLAMP_MAINTENANCE:
1549 qos_clamp = THREAD_QOS_MAINTENANCE;
1550 break;
1551 default:
1552 qos_clamp = THREAD_QOS_UNSPECIFIED;
1553 /* TODO: Should an invalid value here fail the spawn? */
1554 break;
1555 }
1556 }
1557
1558 if (psa_darwin_role != PRIO_DARWIN_ROLE_DEFAULT) {
1559 proc_darwin_role_to_task_role(psa_darwin_role, &role);
1560 }
1561
1562 if (apptype != TASK_APPTYPE_NONE ||
1563 qos_clamp != THREAD_QOS_UNSPECIFIED ||
1564 role != TASK_UNSPECIFIED) {
1565 proc_set_task_spawnpolicy(p->task, apptype, qos_clamp, role,
1566 portwatch_ports, portwatch_count);
1567 }
1568
1569 return (0);
1570 }
1571
1572
1573 /*
1574 * exec_handle_port_actions
1575 *
1576 * Description: Go through the _posix_port_actions_t contents,
1577 * calling task_set_special_port, task_set_exception_ports
1578 * and/or audit_session_spawnjoin for the current task.
1579 *
1580 * Parameters: struct image_params * Image parameter block
1581 *
1582 * Returns: 0 Success
1583 * EINVAL Failure
1584 * ENOTSUP Illegal posix_spawn attr flag was set
1585 */
1586 static errno_t
1587 exec_handle_port_actions(struct image_params *imgp, boolean_t * portwatch_present,
1588 ipc_port_t * portwatch_ports)
1589 {
1590 _posix_spawn_port_actions_t pacts = imgp->ip_px_spa;
1591 #if CONFIG_AUDIT
1592 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
1593 #endif
1594 _ps_port_action_t *act = NULL;
1595 task_t task = get_threadtask(imgp->ip_new_thread);
1596 ipc_port_t port = NULL;
1597 errno_t ret = 0;
1598 int i;
1599 kern_return_t kr;
1600
1601 *portwatch_present = FALSE;
1602
1603 for (i = 0; i < pacts->pspa_count; i++) {
1604 act = &pacts->pspa_actions[i];
1605
1606 if (MACH_PORT_VALID(act->new_port)) {
1607 kr = ipc_object_copyin(get_task_ipcspace(current_task()),
1608 act->new_port, MACH_MSG_TYPE_COPY_SEND,
1609 (ipc_object_t *) &port);
1610
1611 if (kr != KERN_SUCCESS) {
1612 ret = EINVAL;
1613 goto done;
1614 }
1615 } else {
1616 /* it's NULL or DEAD */
1617 port = CAST_MACH_NAME_TO_PORT(act->new_port);
1618 }
1619
1620 switch (act->port_type) {
1621 case PSPA_SPECIAL:
1622 kr = task_set_special_port(task, act->which, port);
1623
1624 if (kr != KERN_SUCCESS)
1625 ret = EINVAL;
1626 break;
1627
1628 case PSPA_EXCEPTION:
1629 kr = task_set_exception_ports(task, act->mask, port,
1630 act->behavior, act->flavor);
1631 if (kr != KERN_SUCCESS)
1632 ret = EINVAL;
1633 break;
1634 #if CONFIG_AUDIT
1635 case PSPA_AU_SESSION:
1636 ret = audit_session_spawnjoin(p, task, port);
1637 break;
1638 #endif
1639 case PSPA_IMP_WATCHPORTS:
1640 if (portwatch_ports != NULL && IPC_PORT_VALID(port)) {
1641 *portwatch_present = TRUE;
1642 /* hold on to this till end of spawn */
1643 portwatch_ports[i] = port;
1644 } else {
1645 ipc_port_release_send(port);
1646 }
1647
1648 break;
1649 default:
1650 ret = EINVAL;
1651 break;
1652 }
1653
1654 if (ret) {
1655 /* action failed, so release port resources */
1656 ipc_port_release_send(port);
1657 break;
1658 }
1659 }
1660
1661 done:
1662 if (0 != ret)
1663 DTRACE_PROC1(spawn__port__failure, mach_port_name_t, act->new_port);
1664 return (ret);
1665 }
1666
1667 /*
1668 * exec_handle_file_actions
1669 *
1670 * Description: Go through the _posix_file_actions_t contents applying the
1671 * open, close, and dup2 operations to the open file table for
1672 * the current process.
1673 *
1674 * Parameters: struct image_params * Image parameter block
1675 *
1676 * Returns: 0 Success
1677 * ???
1678 *
1679 * Note: Actions are applied in the order specified, with the credential
1680 * of the parent process. This is done to permit the parent
1681 * process to utilize POSIX_SPAWN_RESETIDS to drop privilege in
1682 * the child following operations the child may in fact not be
1683 * normally permitted to perform.
1684 */
1685 static int
1686 exec_handle_file_actions(struct image_params *imgp, short psa_flags)
1687 {
1688 int error = 0;
1689 int action;
1690 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
1691 _posix_spawn_file_actions_t px_sfap = imgp->ip_px_sfa;
1692 int ival[2]; /* dummy retval for system calls) */
1693
1694 for (action = 0; action < px_sfap->psfa_act_count; action++) {
1695 _psfa_action_t *psfa = &px_sfap->psfa_act_acts[ action];
1696
1697 switch(psfa->psfaa_type) {
1698 case PSFA_OPEN: {
1699 /*
1700 * Open is different, in that it requires the use of
1701 * a path argument, which is normally copied in from
1702 * user space; because of this, we have to support an
1703 * open from kernel space that passes an address space
1704 * context of UIO_SYSSPACE, and casts the address
1705 * argument to a user_addr_t.
1706 */
1707 char *bufp = NULL;
1708 struct vnode_attr *vap;
1709 struct nameidata *ndp;
1710 int mode = psfa->psfaa_openargs.psfao_mode;
1711 struct dup2_args dup2a;
1712 struct close_nocancel_args ca;
1713 int origfd;
1714
1715 MALLOC(bufp, char *, sizeof(*vap) + sizeof(*ndp), M_TEMP, M_WAITOK | M_ZERO);
1716 if (bufp == NULL) {
1717 error = ENOMEM;
1718 break;
1719 }
1720
1721 vap = (struct vnode_attr *) bufp;
1722 ndp = (struct nameidata *) (bufp + sizeof(*vap));
1723
1724 VATTR_INIT(vap);
1725 /* Mask off all but regular access permissions */
1726 mode = ((mode &~ p->p_fd->fd_cmask) & ALLPERMS) & ~S_ISTXT;
1727 VATTR_SET(vap, va_mode, mode & ACCESSPERMS);
1728
1729 NDINIT(ndp, LOOKUP, OP_OPEN, FOLLOW | AUDITVNPATH1, UIO_SYSSPACE,
1730 CAST_USER_ADDR_T(psfa->psfaa_openargs.psfao_path),
1731 imgp->ip_vfs_context);
1732
1733 error = open1(imgp->ip_vfs_context,
1734 ndp,
1735 psfa->psfaa_openargs.psfao_oflag,
1736 vap,
1737 fileproc_alloc_init, NULL,
1738 ival);
1739
1740 FREE(bufp, M_TEMP);
1741
1742 /*
1743 * If there's an error, or we get the right fd by
1744 * accident, then drop out here. This is easier than
1745 * reworking all the open code to preallocate fd
1746 * slots, and internally taking one as an argument.
1747 */
1748 if (error || ival[0] == psfa->psfaa_filedes)
1749 break;
1750
1751 origfd = ival[0];
1752 /*
1753 * If we didn't fall out from an error, we ended up
1754 * with the wrong fd; so now we've got to try to dup2
1755 * it to the right one.
1756 */
1757 dup2a.from = origfd;
1758 dup2a.to = psfa->psfaa_filedes;
1759
1760 /*
1761 * The dup2() system call implementation sets
1762 * ival to newfd in the success case, but we
1763 * can ignore that, since if we didn't get the
1764 * fd we wanted, the error will stop us.
1765 */
1766 error = dup2(p, &dup2a, ival);
1767 if (error)
1768 break;
1769
1770 /*
1771 * Finally, close the original fd.
1772 */
1773 ca.fd = origfd;
1774
1775 error = close_nocancel(p, &ca, ival);
1776 }
1777 break;
1778
1779 case PSFA_DUP2: {
1780 struct dup2_args dup2a;
1781
1782 dup2a.from = psfa->psfaa_filedes;
1783 dup2a.to = psfa->psfaa_openargs.psfao_oflag;
1784
1785 /*
1786 * The dup2() system call implementation sets
1787 * ival to newfd in the success case, but we
1788 * can ignore that, since if we didn't get the
1789 * fd we wanted, the error will stop us.
1790 */
1791 error = dup2(p, &dup2a, ival);
1792 }
1793 break;
1794
1795 case PSFA_CLOSE: {
1796 struct close_nocancel_args ca;
1797
1798 ca.fd = psfa->psfaa_filedes;
1799
1800 error = close_nocancel(p, &ca, ival);
1801 }
1802 break;
1803
1804 case PSFA_INHERIT: {
1805 struct fcntl_nocancel_args fcntla;
1806
1807 /*
1808 * Check to see if the descriptor exists, and
1809 * ensure it's -not- marked as close-on-exec.
1810 *
1811 * Attempting to "inherit" a guarded fd will
1812 * result in a error.
1813 */
1814 fcntla.fd = psfa->psfaa_filedes;
1815 fcntla.cmd = F_GETFD;
1816 if ((error = fcntl_nocancel(p, &fcntla, ival)) != 0)
1817 break;
1818
1819 if ((ival[0] & FD_CLOEXEC) == FD_CLOEXEC) {
1820 fcntla.fd = psfa->psfaa_filedes;
1821 fcntla.cmd = F_SETFD;
1822 fcntla.arg = ival[0] & ~FD_CLOEXEC;
1823 error = fcntl_nocancel(p, &fcntla, ival);
1824 }
1825
1826 }
1827 break;
1828
1829 default:
1830 error = EINVAL;
1831 break;
1832 }
1833
1834 /* All file actions failures are considered fatal, per POSIX */
1835
1836 if (error) {
1837 if (PSFA_OPEN == psfa->psfaa_type) {
1838 DTRACE_PROC1(spawn__open__failure, uintptr_t,
1839 psfa->psfaa_openargs.psfao_path);
1840 } else {
1841 DTRACE_PROC1(spawn__fd__failure, int, psfa->psfaa_filedes);
1842 }
1843 break;
1844 }
1845 }
1846
1847 if (error != 0 || (psa_flags & POSIX_SPAWN_CLOEXEC_DEFAULT) == 0)
1848 return (error);
1849
1850 /*
1851 * If POSIX_SPAWN_CLOEXEC_DEFAULT is set, behave (during
1852 * this spawn only) as if "close on exec" is the default
1853 * disposition of all pre-existing file descriptors. In this case,
1854 * the list of file descriptors mentioned in the file actions
1855 * are the only ones that can be inherited, so mark them now.
1856 *
1857 * The actual closing part comes later, in fdexec().
1858 */
1859 proc_fdlock(p);
1860 for (action = 0; action < px_sfap->psfa_act_count; action++) {
1861 _psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];
1862 int fd = psfa->psfaa_filedes;
1863
1864 switch (psfa->psfaa_type) {
1865 case PSFA_DUP2:
1866 fd = psfa->psfaa_openargs.psfao_oflag;
1867 /*FALLTHROUGH*/
1868 case PSFA_OPEN:
1869 case PSFA_INHERIT:
1870 *fdflags(p, fd) |= UF_INHERIT;
1871 break;
1872
1873 case PSFA_CLOSE:
1874 break;
1875 }
1876 }
1877 proc_fdunlock(p);
1878
1879 return (0);
1880 }
1881
1882 #if CONFIG_MACF
1883 /*
1884 * exec_spawnattr_getmacpolicyinfo
1885 */
1886 void *
1887 exec_spawnattr_getmacpolicyinfo(const void *macextensions, const char *policyname, size_t *lenp)
1888 {
1889 const struct _posix_spawn_mac_policy_extensions *psmx = macextensions;
1890 int i;
1891
1892 if (psmx == NULL)
1893 return NULL;
1894
1895 for (i = 0; i < psmx->psmx_count; i++) {
1896 const _ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[i];
1897 if (strncmp(extension->policyname, policyname, sizeof(extension->policyname)) == 0) {
1898 if (lenp != NULL)
1899 *lenp = extension->datalen;
1900 return extension->datap;
1901 }
1902 }
1903
1904 if (lenp != NULL)
1905 *lenp = 0;
1906 return NULL;
1907 }
1908
1909 static int
1910 spawn_copyin_macpolicyinfo(const struct user__posix_spawn_args_desc *px_args, _posix_spawn_mac_policy_extensions_t *psmxp)
1911 {
1912 _posix_spawn_mac_policy_extensions_t psmx = NULL;
1913 int error = 0;
1914 int copycnt = 0;
1915 int i = 0;
1916
1917 *psmxp = NULL;
1918
1919 if (px_args->mac_extensions_size < PS_MAC_EXTENSIONS_SIZE(1) ||
1920 px_args->mac_extensions_size > PAGE_SIZE) {
1921 error = EINVAL;
1922 goto bad;
1923 }
1924
1925 MALLOC(psmx, _posix_spawn_mac_policy_extensions_t, px_args->mac_extensions_size, M_TEMP, M_WAITOK);
1926 if ((error = copyin(px_args->mac_extensions, psmx, px_args->mac_extensions_size)) != 0)
1927 goto bad;
1928
1929 if (PS_MAC_EXTENSIONS_SIZE(psmx->psmx_count) > px_args->mac_extensions_size) {
1930 error = EINVAL;
1931 goto bad;
1932 }
1933
1934 for (i = 0; i < psmx->psmx_count; i++) {
1935 _ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[i];
1936 if (extension->datalen == 0 || extension->datalen > PAGE_SIZE) {
1937 error = EINVAL;
1938 goto bad;
1939 }
1940 }
1941
1942 for (copycnt = 0; copycnt < psmx->psmx_count; copycnt++) {
1943 _ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[copycnt];
1944 void *data = NULL;
1945
1946 MALLOC(data, void *, extension->datalen, M_TEMP, M_WAITOK);
1947 if ((error = copyin(extension->data, data, extension->datalen)) != 0) {
1948 FREE(data, M_TEMP);
1949 goto bad;
1950 }
1951 extension->datap = data;
1952 }
1953
1954 *psmxp = psmx;
1955 return 0;
1956
1957 bad:
1958 if (psmx != NULL) {
1959 for (i = 0; i < copycnt; i++)
1960 FREE(psmx->psmx_extensions[i].datap, M_TEMP);
1961 FREE(psmx, M_TEMP);
1962 }
1963 return error;
1964 }
1965
1966 static void
1967 spawn_free_macpolicyinfo(_posix_spawn_mac_policy_extensions_t psmx)
1968 {
1969 int i;
1970
1971 if (psmx == NULL)
1972 return;
1973 for (i = 0; i < psmx->psmx_count; i++)
1974 FREE(psmx->psmx_extensions[i].datap, M_TEMP);
1975 FREE(psmx, M_TEMP);
1976 }
1977 #endif /* CONFIG_MACF */
1978
1979 #if CONFIG_COALITIONS
1980 static inline void spawn_coalitions_release_all(coalition_t coal[COALITION_NUM_TYPES])
1981 {
1982 for (int c = 0; c < COALITION_NUM_TYPES; c++) {
1983 if (coal[c]) {
1984 coalition_remove_active(coal[c]);
1985 coalition_release(coal[c]);
1986 }
1987 }
1988 }
1989 #endif
1990
1991 #if CONFIG_PERSONAS
1992 static int spawn_validate_persona(struct _posix_spawn_persona_info *px_persona)
1993 {
1994 int error = 0;
1995 struct persona *persona = NULL;
1996 int verify = px_persona->pspi_flags & POSIX_SPAWN_PERSONA_FLAGS_VERIFY;
1997
1998 /*
1999 * TODO: rdar://problem/19981151
2000 * Add entitlement check!
2001 */
2002 if (!kauth_cred_issuser(kauth_cred_get()))
2003 return EPERM;
2004
2005 persona = persona_lookup(px_persona->pspi_id);
2006 if (!persona) {
2007 error = ESRCH;
2008 goto out;
2009 }
2010
2011 if (verify) {
2012 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_UID) {
2013 if (px_persona->pspi_uid != persona_get_uid(persona)) {
2014 error = EINVAL;
2015 goto out;
2016 }
2017 }
2018 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GID) {
2019 if (px_persona->pspi_gid != persona_get_gid(persona)) {
2020 error = EINVAL;
2021 goto out;
2022 }
2023 }
2024 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GROUPS) {
2025 int ngroups = 0;
2026 gid_t groups[NGROUPS_MAX];
2027
2028 if (persona_get_groups(persona, &ngroups, groups,
2029 px_persona->pspi_ngroups) != 0) {
2030 error = EINVAL;
2031 goto out;
2032 }
2033 if (ngroups != (int)px_persona->pspi_ngroups) {
2034 error = EINVAL;
2035 goto out;
2036 }
2037 while (ngroups--) {
2038 if (px_persona->pspi_groups[ngroups] != groups[ngroups]) {
2039 error = EINVAL;
2040 goto out;
2041 }
2042 }
2043 if (px_persona->pspi_gmuid != persona_get_gmuid(persona)) {
2044 error = EINVAL;
2045 goto out;
2046 }
2047 }
2048 }
2049
2050 out:
2051 if (persona)
2052 persona_put(persona);
2053
2054 return error;
2055 }
2056
2057 static int spawn_persona_adopt(proc_t p, struct _posix_spawn_persona_info *px_persona)
2058 {
2059 int ret;
2060 kauth_cred_t cred;
2061 struct persona *persona = NULL;
2062 int override = !!(px_persona->pspi_flags & POSIX_SPAWN_PERSONA_FLAGS_OVERRIDE);
2063
2064 if (!override)
2065 return persona_proc_adopt_id(p, px_persona->pspi_id, NULL);
2066
2067 /*
2068 * we want to spawn into the given persona, but we want to override
2069 * the kauth with a different UID/GID combo
2070 */
2071 persona = persona_lookup(px_persona->pspi_id);
2072 if (!persona)
2073 return ESRCH;
2074
2075 cred = persona_get_cred(persona);
2076 if (!cred) {
2077 ret = EINVAL;
2078 goto out;
2079 }
2080
2081 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_UID) {
2082 cred = kauth_cred_setresuid(cred,
2083 px_persona->pspi_uid,
2084 px_persona->pspi_uid,
2085 px_persona->pspi_uid,
2086 KAUTH_UID_NONE);
2087 }
2088
2089 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GID) {
2090 cred = kauth_cred_setresgid(cred,
2091 px_persona->pspi_gid,
2092 px_persona->pspi_gid,
2093 px_persona->pspi_gid);
2094 }
2095
2096 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GROUPS) {
2097 cred = kauth_cred_setgroups(cred,
2098 px_persona->pspi_groups,
2099 px_persona->pspi_ngroups,
2100 px_persona->pspi_gmuid);
2101 }
2102
2103 ret = persona_proc_adopt(p, persona, cred);
2104
2105 out:
2106 persona_put(persona);
2107 return ret;
2108 }
2109 #endif
2110
2111 /*
2112 * posix_spawn
2113 *
2114 * Parameters: uap->pid Pointer to pid return area
2115 * uap->fname File name to exec
2116 * uap->argp Argument list
2117 * uap->envp Environment list
2118 *
2119 * Returns: 0 Success
2120 * EINVAL Invalid argument
2121 * ENOTSUP Not supported
2122 * ENOEXEC Executable file format error
2123 * exec_activate_image:EINVAL Invalid argument
2124 * exec_activate_image:EACCES Permission denied
2125 * exec_activate_image:EINTR Interrupted function
2126 * exec_activate_image:ENOMEM Not enough space
2127 * exec_activate_image:EFAULT Bad address
2128 * exec_activate_image:ENAMETOOLONG Filename too long
2129 * exec_activate_image:ENOEXEC Executable file format error
2130 * exec_activate_image:ETXTBSY Text file busy [misuse of error code]
2131 * exec_activate_image:EBADEXEC The executable is corrupt/unknown
2132 * exec_activate_image:???
2133 * mac_execve_enter:???
2134 *
2135 * TODO: Expect to need __mac_posix_spawn() at some point...
2136 * Handle posix_spawnattr_t
2137 * Handle posix_spawn_file_actions_t
2138 */
2139 int
2140 posix_spawn(proc_t ap, struct posix_spawn_args *uap, int32_t *retval)
2141 {
2142 proc_t p = ap; /* quiet bogus GCC vfork() warning */
2143 user_addr_t pid = uap->pid;
2144 int ival[2]; /* dummy retval for setpgid() */
2145 char *bufp = NULL;
2146 struct image_params *imgp;
2147 struct vnode_attr *vap;
2148 struct vnode_attr *origvap;
2149 struct uthread *uthread = 0; /* compiler complains if not set to 0*/
2150 int error, sig;
2151 int is_64 = IS_64BIT_PROCESS(p);
2152 struct vfs_context context;
2153 struct user__posix_spawn_args_desc px_args;
2154 struct _posix_spawnattr px_sa;
2155 _posix_spawn_file_actions_t px_sfap = NULL;
2156 _posix_spawn_port_actions_t px_spap = NULL;
2157 struct __kern_sigaction vec;
2158 boolean_t spawn_no_exec = FALSE;
2159 boolean_t proc_transit_set = TRUE;
2160 boolean_t exec_done = FALSE;
2161 int portwatch_count = 0;
2162 ipc_port_t * portwatch_ports = NULL;
2163 vm_size_t px_sa_offset = offsetof(struct _posix_spawnattr, psa_ports);
2164 task_t new_task = NULL;
2165 boolean_t should_release_proc_ref = FALSE;
2166 void *inherit = NULL;
2167 #if CONFIG_PERSONAS
2168 struct _posix_spawn_persona_info *px_persona = NULL;
2169 #endif
2170
2171 /*
2172 * Allocate a big chunk for locals instead of using stack since these
2173 * structures are pretty big.
2174 */
2175 MALLOC(bufp, char *, (sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap)), M_TEMP, M_WAITOK | M_ZERO);
2176 imgp = (struct image_params *) bufp;
2177 if (bufp == NULL) {
2178 error = ENOMEM;
2179 goto bad;
2180 }
2181 vap = (struct vnode_attr *) (bufp + sizeof(*imgp));
2182 origvap = (struct vnode_attr *) (bufp + sizeof(*imgp) + sizeof(*vap));
2183
2184 /* Initialize the common data in the image_params structure */
2185 imgp->ip_user_fname = uap->path;
2186 imgp->ip_user_argv = uap->argv;
2187 imgp->ip_user_envv = uap->envp;
2188 imgp->ip_vattr = vap;
2189 imgp->ip_origvattr = origvap;
2190 imgp->ip_vfs_context = &context;
2191 imgp->ip_flags = (is_64 ? IMGPF_WAS_64BIT : IMGPF_NONE);
2192 imgp->ip_seg = (is_64 ? UIO_USERSPACE64 : UIO_USERSPACE32);
2193 imgp->ip_mac_return = 0;
2194 imgp->ip_px_persona = NULL;
2195 imgp->ip_cs_error = OS_REASON_NULL;
2196
2197 if (uap->adesc != USER_ADDR_NULL) {
2198 if(is_64) {
2199 error = copyin(uap->adesc, &px_args, sizeof(px_args));
2200 } else {
2201 struct user32__posix_spawn_args_desc px_args32;
2202
2203 error = copyin(uap->adesc, &px_args32, sizeof(px_args32));
2204
2205 /*
2206 * Convert arguments descriptor from external 32 bit
2207 * representation to internal 64 bit representation
2208 */
2209 px_args.attr_size = px_args32.attr_size;
2210 px_args.attrp = CAST_USER_ADDR_T(px_args32.attrp);
2211 px_args.file_actions_size = px_args32.file_actions_size;
2212 px_args.file_actions = CAST_USER_ADDR_T(px_args32.file_actions);
2213 px_args.port_actions_size = px_args32.port_actions_size;
2214 px_args.port_actions = CAST_USER_ADDR_T(px_args32.port_actions);
2215 px_args.mac_extensions_size = px_args32.mac_extensions_size;
2216 px_args.mac_extensions = CAST_USER_ADDR_T(px_args32.mac_extensions);
2217 px_args.coal_info_size = px_args32.coal_info_size;
2218 px_args.coal_info = CAST_USER_ADDR_T(px_args32.coal_info);
2219 px_args.persona_info_size = px_args32.persona_info_size;
2220 px_args.persona_info = CAST_USER_ADDR_T(px_args32.persona_info);
2221 }
2222 if (error)
2223 goto bad;
2224
2225 if (px_args.attr_size != 0) {
2226 /*
2227 * We are not copying the port_actions pointer,
2228 * because we already have it from px_args.
2229 * This is a bit fragile: <rdar://problem/16427422>
2230 */
2231
2232 if ((error = copyin(px_args.attrp, &px_sa, px_sa_offset) != 0))
2233 goto bad;
2234
2235 bzero( (void *)( (unsigned long) &px_sa + px_sa_offset), sizeof(px_sa) - px_sa_offset );
2236
2237 imgp->ip_px_sa = &px_sa;
2238 }
2239 if (px_args.file_actions_size != 0) {
2240 /* Limit file_actions to allowed number of open files */
2241 int maxfa = (p->p_limit ? p->p_rlimit[RLIMIT_NOFILE].rlim_cur : NOFILE);
2242 if (px_args.file_actions_size < PSF_ACTIONS_SIZE(1) ||
2243 px_args.file_actions_size > PSF_ACTIONS_SIZE(maxfa)) {
2244 error = EINVAL;
2245 goto bad;
2246 }
2247 MALLOC(px_sfap, _posix_spawn_file_actions_t, px_args.file_actions_size, M_TEMP, M_WAITOK);
2248 if (px_sfap == NULL) {
2249 error = ENOMEM;
2250 goto bad;
2251 }
2252 imgp->ip_px_sfa = px_sfap;
2253
2254 if ((error = copyin(px_args.file_actions, px_sfap,
2255 px_args.file_actions_size)) != 0)
2256 goto bad;
2257
2258 /* Verify that the action count matches the struct size */
2259 if (PSF_ACTIONS_SIZE(px_sfap->psfa_act_count) != px_args.file_actions_size) {
2260 error = EINVAL;
2261 goto bad;
2262 }
2263 }
2264 if (px_args.port_actions_size != 0) {
2265 /* Limit port_actions to one page of data */
2266 if (px_args.port_actions_size < PS_PORT_ACTIONS_SIZE(1) ||
2267 px_args.port_actions_size > PAGE_SIZE) {
2268 error = EINVAL;
2269 goto bad;
2270 }
2271
2272 MALLOC(px_spap, _posix_spawn_port_actions_t,
2273 px_args.port_actions_size, M_TEMP, M_WAITOK);
2274 if (px_spap == NULL) {
2275 error = ENOMEM;
2276 goto bad;
2277 }
2278 imgp->ip_px_spa = px_spap;
2279
2280 if ((error = copyin(px_args.port_actions, px_spap,
2281 px_args.port_actions_size)) != 0)
2282 goto bad;
2283
2284 /* Verify that the action count matches the struct size */
2285 if (PS_PORT_ACTIONS_SIZE(px_spap->pspa_count) != px_args.port_actions_size) {
2286 error = EINVAL;
2287 goto bad;
2288 }
2289 }
2290 #if CONFIG_PERSONAS
2291 /* copy in the persona info */
2292 if (px_args.persona_info_size != 0 && px_args.persona_info != 0) {
2293 /* for now, we need the exact same struct in user space */
2294 if (px_args.persona_info_size != sizeof(*px_persona)) {
2295 error = ERANGE;
2296 goto bad;
2297 }
2298
2299 MALLOC(px_persona, struct _posix_spawn_persona_info *, px_args.persona_info_size, M_TEMP, M_WAITOK|M_ZERO);
2300 if (px_persona == NULL) {
2301 error = ENOMEM;
2302 goto bad;
2303 }
2304 imgp->ip_px_persona = px_persona;
2305
2306 if ((error = copyin(px_args.persona_info, px_persona,
2307 px_args.persona_info_size)) != 0)
2308 goto bad;
2309 if ((error = spawn_validate_persona(px_persona)) != 0)
2310 goto bad;
2311 }
2312 #endif
2313 #if CONFIG_MACF
2314 if (px_args.mac_extensions_size != 0) {
2315 if ((error = spawn_copyin_macpolicyinfo(&px_args, (_posix_spawn_mac_policy_extensions_t *)&imgp->ip_px_smpx)) != 0)
2316 goto bad;
2317 }
2318 #endif /* CONFIG_MACF */
2319 }
2320
2321 /* set uthread to parent */
2322 uthread = get_bsdthread_info(current_thread());
2323
2324 /*
2325 * <rdar://6640530>; this does not result in a behaviour change
2326 * relative to Leopard, so there should not be any existing code
2327 * which depends on it.
2328 */
2329 if (uthread->uu_flag & UT_VFORK) {
2330 error = EINVAL;
2331 goto bad;
2332 }
2333
2334 /*
2335 * If we don't have the extension flag that turns "posix_spawn()"
2336 * into "execve() with options", then we will be creating a new
2337 * process which does not inherit memory from the parent process,
2338 * which is one of the most expensive things about using fork()
2339 * and execve().
2340 */
2341 if (imgp->ip_px_sa == NULL || !(px_sa.psa_flags & POSIX_SPAWN_SETEXEC)){
2342
2343 /* Set the new task's coalition, if it is requested. */
2344 coalition_t coal[COALITION_NUM_TYPES] = { COALITION_NULL };
2345 #if CONFIG_COALITIONS
2346 int i, ncoals;
2347 kern_return_t kr = KERN_SUCCESS;
2348 struct _posix_spawn_coalition_info coal_info;
2349 int coal_role[COALITION_NUM_TYPES];
2350
2351 if (imgp->ip_px_sa == NULL || !px_args.coal_info)
2352 goto do_fork1;
2353
2354 memset(&coal_info, 0, sizeof(coal_info));
2355
2356 if (px_args.coal_info_size > sizeof(coal_info))
2357 px_args.coal_info_size = sizeof(coal_info);
2358 error = copyin(px_args.coal_info,
2359 &coal_info, px_args.coal_info_size);
2360 if (error != 0)
2361 goto bad;
2362
2363 ncoals = 0;
2364 for (i = 0; i < COALITION_NUM_TYPES; i++) {
2365 uint64_t cid = coal_info.psci_info[i].psci_id;
2366 if (cid != 0) {
2367 /*
2368 * don't allow tasks which are not in a
2369 * privileged coalition to spawn processes
2370 * into coalitions other than their own
2371 */
2372 if (!task_is_in_privileged_coalition(p->task, i)) {
2373 coal_dbg("ERROR: %d not in privilegd "
2374 "coalition of type %d",
2375 p->p_pid, i);
2376 spawn_coalitions_release_all(coal);
2377 error = EPERM;
2378 goto bad;
2379 }
2380
2381 coal_dbg("searching for coalition id:%llu", cid);
2382 /*
2383 * take a reference and activation on the
2384 * coalition to guard against free-while-spawn
2385 * races
2386 */
2387 coal[i] = coalition_find_and_activate_by_id(cid);
2388 if (coal[i] == COALITION_NULL) {
2389 coal_dbg("could not find coalition id:%llu "
2390 "(perhaps it has been terminated or reaped)", cid);
2391 /*
2392 * release any other coalition's we
2393 * may have a reference to
2394 */
2395 spawn_coalitions_release_all(coal);
2396 error = ESRCH;
2397 goto bad;
2398 }
2399 if (coalition_type(coal[i]) != i) {
2400 coal_dbg("coalition with id:%lld is not of type:%d"
2401 " (it's type:%d)", cid, i, coalition_type(coal[i]));
2402 error = ESRCH;
2403 goto bad;
2404 }
2405 coal_role[i] = coal_info.psci_info[i].psci_role;
2406 ncoals++;
2407 }
2408 }
2409 if (ncoals < COALITION_NUM_TYPES) {
2410 /*
2411 * If the user is attempting to spawn into a subset of
2412 * the known coalition types, then make sure they have
2413 * _at_least_ specified a resource coalition. If not,
2414 * the following fork1() call will implicitly force an
2415 * inheritance from 'p' and won't actually spawn the
2416 * new task into the coalitions the user specified.
2417 * (also the call to coalitions_set_roles will panic)
2418 */
2419 if (coal[COALITION_TYPE_RESOURCE] == COALITION_NULL) {
2420 spawn_coalitions_release_all(coal);
2421 error = EINVAL;
2422 goto bad;
2423 }
2424 }
2425 do_fork1:
2426 #endif /* CONFIG_COALITIONS */
2427
2428 /*
2429 * note that this will implicitly inherit the
2430 * caller's persona (if it exists)
2431 */
2432 error = fork1(p, &imgp->ip_new_thread, PROC_CREATE_SPAWN, coal);
2433 /* returns a thread and task reference */
2434
2435 if (error == 0) {
2436 new_task = get_threadtask(imgp->ip_new_thread);
2437 }
2438 #if CONFIG_COALITIONS
2439 /* set the roles of this task within each given coalition */
2440 if (error == 0) {
2441 kr = coalitions_set_roles(coal, get_threadtask(imgp->ip_new_thread), coal_role);
2442 if (kr != KERN_SUCCESS)
2443 error = EINVAL;
2444 }
2445
2446 /* drop our references and activations - fork1() now holds them */
2447 spawn_coalitions_release_all(coal);
2448 #endif /* CONFIG_COALITIONS */
2449 if (error != 0) {
2450 goto bad;
2451 }
2452 imgp->ip_flags |= IMGPF_SPAWN; /* spawn w/o exec */
2453 spawn_no_exec = TRUE; /* used in later tests */
2454
2455 #if CONFIG_PERSONAS
2456 /*
2457 * If the parent isn't in a persona (launchd), and
2458 * hasn't specified a new persona for the process,
2459 * then we'll put the process into the system persona
2460 *
2461 * TODO: this will have to be re-worked because as of
2462 * now, without any launchd adoption, the resulting
2463 * xpcproxy process will not have sufficient
2464 * privileges to setuid/gid.
2465 */
2466 #if 0
2467 if (!proc_has_persona(p) && imgp->ip_px_persona == NULL) {
2468 MALLOC(px_persona, struct _posix_spawn_persona_info *,
2469 sizeof(*px_persona), M_TEMP, M_WAITOK|M_ZERO);
2470 if (px_persona == NULL) {
2471 error = ENOMEM;
2472 goto bad;
2473 }
2474 px_persona->pspi_id = persona_get_id(g_system_persona);
2475 imgp->ip_px_persona = px_persona;
2476 }
2477 #endif /* 0 */
2478 #endif /* CONFIG_PERSONAS */
2479 } else {
2480 /*
2481 * For execve case, create a new task and thread
2482 * which points to current_proc. The current_proc will point
2483 * to the new task after image activation and proc ref drain.
2484 *
2485 * proc (current_proc) <----- old_task (current_task)
2486 * ^ | ^
2487 * | | |
2488 * | ----------------------------------
2489 * |
2490 * --------- new_task (task marked as TF_EXEC_COPY)
2491 *
2492 * After image activation, the proc will point to the new task
2493 * and would look like following.
2494 *
2495 * proc (current_proc) <----- old_task (current_task, marked as TPF_DID_EXEC)
2496 * ^ |
2497 * | |
2498 * | ----------> new_task
2499 * | |
2500 * -----------------
2501 *
2502 * During exec any transition from new_task -> proc is fine, but don't allow
2503 * transition from proc->task, since it will modify old_task.
2504 */
2505 imgp->ip_new_thread = fork_create_child(current_task(),
2506 NULL, p, FALSE, p->p_flag & P_LP64, TRUE);
2507 /* task and thread ref returned by fork_create_child */
2508 if (imgp->ip_new_thread == NULL) {
2509 error = ENOMEM;
2510 goto bad;
2511 }
2512
2513 new_task = get_threadtask(imgp->ip_new_thread);
2514 imgp->ip_flags |= IMGPF_EXEC;
2515 }
2516
2517 if (spawn_no_exec) {
2518 p = (proc_t)get_bsdthreadtask_info(imgp->ip_new_thread);
2519
2520 /*
2521 * We had to wait until this point before firing the
2522 * proc:::create probe, otherwise p would not point to the
2523 * child process.
2524 */
2525 DTRACE_PROC1(create, proc_t, p);
2526 }
2527 assert(p != NULL);
2528
2529 context.vc_thread = imgp->ip_new_thread;
2530 context.vc_ucred = p->p_ucred; /* XXX must NOT be kauth_cred_get() */
2531
2532 /*
2533 * Post fdcopy(), pre exec_handle_sugid() - this is where we want
2534 * to handle the file_actions. Since vfork() also ends up setting
2535 * us into the parent process group, and saved off the signal flags,
2536 * this is also where we want to handle the spawn flags.
2537 */
2538
2539 /* Has spawn file actions? */
2540 if (imgp->ip_px_sfa != NULL) {
2541 /*
2542 * The POSIX_SPAWN_CLOEXEC_DEFAULT flag
2543 * is handled in exec_handle_file_actions().
2544 */
2545 if ((error = exec_handle_file_actions(imgp,
2546 imgp->ip_px_sa != NULL ? px_sa.psa_flags : 0)) != 0)
2547 goto bad;
2548 }
2549
2550 /* Has spawn port actions? */
2551 if (imgp->ip_px_spa != NULL) {
2552 boolean_t is_adaptive = FALSE;
2553 boolean_t portwatch_present = FALSE;
2554
2555 /* Will this process become adaptive? The apptype isn't ready yet, so we can't look there. */
2556 if (imgp->ip_px_sa != NULL && px_sa.psa_apptype == POSIX_SPAWN_PROC_TYPE_DAEMON_ADAPTIVE)
2557 is_adaptive = TRUE;
2558
2559 /*
2560 * portwatch only:
2561 * Allocate a place to store the ports we want to bind to the new task
2562 * We can't bind them until after the apptype is set.
2563 */
2564 if (px_spap->pspa_count != 0 && is_adaptive) {
2565 portwatch_count = px_spap->pspa_count;
2566 MALLOC(portwatch_ports, ipc_port_t *, (sizeof(ipc_port_t) * portwatch_count), M_TEMP, M_WAITOK | M_ZERO);
2567 } else {
2568 portwatch_ports = NULL;
2569 }
2570
2571 if ((error = exec_handle_port_actions(imgp, &portwatch_present, portwatch_ports)) != 0)
2572 goto bad;
2573
2574 if (portwatch_present == FALSE && portwatch_ports != NULL) {
2575 FREE(portwatch_ports, M_TEMP);
2576 portwatch_ports = NULL;
2577 portwatch_count = 0;
2578 }
2579 }
2580
2581 /* Has spawn attr? */
2582 if (imgp->ip_px_sa != NULL) {
2583 /*
2584 * Set the process group ID of the child process; this has
2585 * to happen before the image activation.
2586 */
2587 if (px_sa.psa_flags & POSIX_SPAWN_SETPGROUP) {
2588 struct setpgid_args spga;
2589 spga.pid = p->p_pid;
2590 spga.pgid = px_sa.psa_pgroup;
2591 /*
2592 * Effectively, call setpgid() system call; works
2593 * because there are no pointer arguments.
2594 */
2595 if((error = setpgid(p, &spga, ival)) != 0)
2596 goto bad;
2597 }
2598
2599 /*
2600 * Reset UID/GID to parent's RUID/RGID; This works only
2601 * because the operation occurs *after* the vfork() and
2602 * before the call to exec_handle_sugid() by the image
2603 * activator called from exec_activate_image(). POSIX
2604 * requires that any setuid/setgid bits on the process
2605 * image will take precedence over the spawn attributes
2606 * (re)setting them.
2607 *
2608 * Modifications to p_ucred must be guarded using the
2609 * proc's ucred lock. This prevents others from accessing
2610 * a garbage credential.
2611 */
2612 while (px_sa.psa_flags & POSIX_SPAWN_RESETIDS) {
2613 kauth_cred_t my_cred = kauth_cred_proc_ref(p);
2614 kauth_cred_t my_new_cred = kauth_cred_setuidgid(my_cred, kauth_cred_getruid(my_cred), kauth_cred_getrgid(my_cred));
2615
2616 if (my_cred == my_new_cred) {
2617 kauth_cred_unref(&my_cred);
2618 break;
2619 }
2620
2621 /* update cred on proc */
2622 proc_ucred_lock(p);
2623
2624 if (p->p_ucred != my_cred) {
2625 proc_ucred_unlock(p);
2626 kauth_cred_unref(&my_new_cred);
2627 continue;
2628 }
2629
2630 /* donate cred reference on my_new_cred to p->p_ucred */
2631 p->p_ucred = my_new_cred;
2632 PROC_UPDATE_CREDS_ONPROC(p);
2633 proc_ucred_unlock(p);
2634
2635 /* drop additional reference that was taken on the previous cred */
2636 kauth_cred_unref(&my_cred);
2637 }
2638
2639 #if CONFIG_PERSONAS
2640 if (spawn_no_exec && imgp->ip_px_persona != NULL) {
2641 /*
2642 * If we were asked to spawn a process into a new persona,
2643 * do the credential switch now (which may override the UID/GID
2644 * inherit done just above). It's important to do this switch
2645 * before image activation both for reasons stated above, and
2646 * to ensure that the new persona has access to the image/file
2647 * being executed.
2648 */
2649 error = spawn_persona_adopt(p, imgp->ip_px_persona);
2650 if (error != 0)
2651 goto bad;
2652 }
2653 #endif /* CONFIG_PERSONAS */
2654 #if !SECURE_KERNEL
2655 /*
2656 * Disable ASLR for the spawned process.
2657 *
2658 * But only do so if we are not embedded + RELEASE.
2659 * While embedded allows for a boot-arg (-disable_aslr)
2660 * to deal with this (which itself is only honored on
2661 * DEVELOPMENT or DEBUG builds of xnu), it is often
2662 * useful or necessary to disable ASLR on a per-process
2663 * basis for unit testing and debugging.
2664 */
2665 if (px_sa.psa_flags & _POSIX_SPAWN_DISABLE_ASLR)
2666 OSBitOrAtomic(P_DISABLE_ASLR, &p->p_flag);
2667 #endif /* !SECURE_KERNEL */
2668
2669 /*
2670 * Forcibly disallow execution from data pages for the spawned process
2671 * even if it would otherwise be permitted by the architecture default.
2672 */
2673 if (px_sa.psa_flags & _POSIX_SPAWN_ALLOW_DATA_EXEC)
2674 imgp->ip_flags |= IMGPF_ALLOW_DATA_EXEC;
2675 }
2676
2677 /*
2678 * Disable ASLR during image activation. This occurs either if the
2679 * _POSIX_SPAWN_DISABLE_ASLR attribute was found above or if
2680 * P_DISABLE_ASLR was inherited from the parent process.
2681 */
2682 if (p->p_flag & P_DISABLE_ASLR)
2683 imgp->ip_flags |= IMGPF_DISABLE_ASLR;
2684
2685 /*
2686 * Clear transition flag so we won't hang if exec_activate_image() causes
2687 * an automount (and launchd does a proc sysctl to service it).
2688 *
2689 * <rdar://problem/6848672>, <rdar://problem/5959568>.
2690 */
2691 if (spawn_no_exec) {
2692 proc_transend(p, 0);
2693 proc_transit_set = 0;
2694 }
2695
2696 #if MAC_SPAWN /* XXX */
2697 if (uap->mac_p != USER_ADDR_NULL) {
2698 error = mac_execve_enter(uap->mac_p, imgp);
2699 if (error)
2700 goto bad;
2701 }
2702 #endif
2703
2704 /*
2705 * Activate the image
2706 */
2707 error = exec_activate_image(imgp);
2708
2709 if (error == 0 && !spawn_no_exec) {
2710 p = proc_exec_switch_task(p, current_task(), new_task, imgp->ip_new_thread);
2711 /* proc ref returned */
2712 should_release_proc_ref = TRUE;
2713 }
2714
2715 if (error == 0) {
2716 /* process completed the exec */
2717 exec_done = TRUE;
2718 } else if (error == -1) {
2719 /* Image not claimed by any activator? */
2720 error = ENOEXEC;
2721 }
2722
2723 /*
2724 * If we have a spawn attr, and it contains signal related flags,
2725 * the we need to process them in the "context" of the new child
2726 * process, so we have to process it following image activation,
2727 * prior to making the thread runnable in user space. This is
2728 * necessitated by some signal information being per-thread rather
2729 * than per-process, and we don't have the new allocation in hand
2730 * until after the image is activated.
2731 */
2732 if (!error && imgp->ip_px_sa != NULL) {
2733 thread_t child_thread = imgp->ip_new_thread;
2734 uthread_t child_uthread = get_bsdthread_info(child_thread);
2735
2736 /*
2737 * Mask a list of signals, instead of them being unmasked, if
2738 * they were unmasked in the parent; note that some signals
2739 * are not maskable.
2740 */
2741 if (px_sa.psa_flags & POSIX_SPAWN_SETSIGMASK)
2742 child_uthread->uu_sigmask = (px_sa.psa_sigmask & ~sigcantmask);
2743 /*
2744 * Default a list of signals instead of ignoring them, if
2745 * they were ignored in the parent. Note that we pass
2746 * spawn_no_exec to setsigvec() to indicate that we called
2747 * fork1() and therefore do not need to call proc_signalstart()
2748 * internally.
2749 */
2750 if (px_sa.psa_flags & POSIX_SPAWN_SETSIGDEF) {
2751 vec.sa_handler = SIG_DFL;
2752 vec.sa_tramp = 0;
2753 vec.sa_mask = 0;
2754 vec.sa_flags = 0;
2755 for (sig = 1; sig < NSIG; sig++)
2756 if (px_sa.psa_sigdefault & (1 << (sig-1))) {
2757 error = setsigvec(p, child_thread, sig, &vec, spawn_no_exec);
2758 }
2759 }
2760
2761 /*
2762 * Activate the CPU usage monitor, if requested. This is done via a task-wide, per-thread CPU
2763 * usage limit, which will generate a resource exceeded exception if any one thread exceeds the
2764 * limit.
2765 *
2766 * Userland gives us interval in seconds, and the kernel SPI expects nanoseconds.
2767 */
2768 if (px_sa.psa_cpumonitor_percent != 0) {
2769 /*
2770 * Always treat a CPU monitor activation coming from spawn as entitled. Requiring
2771 * an entitlement to configure the monitor a certain way seems silly, since
2772 * whomever is turning it on could just as easily choose not to do so.
2773 */
2774 error = proc_set_task_ruse_cpu(p->task,
2775 TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC,
2776 px_sa.psa_cpumonitor_percent,
2777 px_sa.psa_cpumonitor_interval * NSEC_PER_SEC,
2778 0, TRUE);
2779 }
2780 }
2781
2782 bad:
2783
2784 if (error == 0) {
2785 /* reset delay idle sleep status if set */
2786 if ((p->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP)
2787 OSBitAndAtomic(~((uint32_t)P_DELAYIDLESLEEP), &p->p_flag);
2788 /* upon successful spawn, re/set the proc control state */
2789 if (imgp->ip_px_sa != NULL) {
2790 switch (px_sa.psa_pcontrol) {
2791 case POSIX_SPAWN_PCONTROL_THROTTLE:
2792 p->p_pcaction = P_PCTHROTTLE;
2793 break;
2794 case POSIX_SPAWN_PCONTROL_SUSPEND:
2795 p->p_pcaction = P_PCSUSP;
2796 break;
2797 case POSIX_SPAWN_PCONTROL_KILL:
2798 p->p_pcaction = P_PCKILL;
2799 break;
2800 case POSIX_SPAWN_PCONTROL_NONE:
2801 default:
2802 p->p_pcaction = 0;
2803 break;
2804 };
2805 }
2806 exec_resettextvp(p, imgp);
2807
2808 #if CONFIG_MEMORYSTATUS
2809 /* Has jetsam attributes? */
2810 if (imgp->ip_px_sa != NULL && (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_SET)) {
2811 /*
2812 * With 2-level high-water-mark support, POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND is no
2813 * longer relevant, as background limits are described via the inactive limit slots.
2814 * At the kernel layer, the flag is ignored.
2815 *
2816 * That said, however, if the POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND is passed in,
2817 * we attempt to mimic previous behavior by forcing the BG limit data into the
2818 * inactive/non-fatal mode and force the active slots to hold system_wide/fatal mode.
2819 * The kernel layer will flag this mapping.
2820 */
2821 if (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND) {
2822 memorystatus_update(p, px_sa.psa_priority, 0,
2823 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_USE_EFFECTIVE_PRIORITY),
2824 TRUE,
2825 -1, TRUE,
2826 px_sa.psa_memlimit_inactive, FALSE,
2827 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND));
2828 } else {
2829 memorystatus_update(p, px_sa.psa_priority, 0,
2830 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_USE_EFFECTIVE_PRIORITY),
2831 TRUE,
2832 px_sa.psa_memlimit_active,
2833 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_MEMLIMIT_ACTIVE_FATAL),
2834 px_sa.psa_memlimit_inactive,
2835 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_MEMLIMIT_INACTIVE_FATAL),
2836 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND));
2837 }
2838
2839 }
2840 #endif /* CONFIG_MEMORYSTATUS */
2841 }
2842
2843 /*
2844 * If we successfully called fork1(), we always need to do this;
2845 * we identify this case by noting the IMGPF_SPAWN flag. This is
2846 * because we come back from that call with signals blocked in the
2847 * child, and we have to unblock them, but we want to wait until
2848 * after we've performed any spawn actions. This has to happen
2849 * before check_for_signature(), which uses psignal.
2850 */
2851 if (spawn_no_exec) {
2852 if (proc_transit_set)
2853 proc_transend(p, 0);
2854
2855 /*
2856 * Drop the signal lock on the child which was taken on our
2857 * behalf by forkproc()/cloneproc() to prevent signals being
2858 * received by the child in a partially constructed state.
2859 */
2860 proc_signalend(p, 0);
2861
2862 /* flag the 'fork' has occurred */
2863 proc_knote(p->p_pptr, NOTE_FORK | p->p_pid);
2864 /* then flag exec has occurred */
2865 /* notify only if it has not failed due to FP Key error */
2866 if ((p->p_lflag & P_LTERM_DECRYPTFAIL) == 0)
2867 proc_knote(p, NOTE_EXEC);
2868 }
2869
2870 if (error == 0) {
2871 /*
2872 * We need to initialize the bank context behind the protection of
2873 * the proc_trans lock to prevent a race with exit. We can't do this during
2874 * exec_activate_image because task_bank_init checks entitlements that
2875 * aren't loaded until subsequent calls (including exec_resettextvp).
2876 */
2877 error = proc_transstart(p, 0, 0);
2878
2879 if (error == 0) {
2880 task_bank_init(get_threadtask(imgp->ip_new_thread));
2881 proc_transend(p, 0);
2882 }
2883 }
2884
2885 /* Inherit task role from old task to new task for exec */
2886 if (error == 0 && !spawn_no_exec) {
2887 proc_inherit_task_role(get_threadtask(imgp->ip_new_thread), current_task());
2888 }
2889
2890 /*
2891 * Apply the spawnattr policy, apptype (which primes the task for importance donation),
2892 * and bind any portwatch ports to the new task.
2893 * This must be done after the exec so that the child's thread is ready,
2894 * and after the in transit state has been released, because priority is
2895 * dropped here so we need to be prepared for a potentially long preemption interval
2896 *
2897 * TODO: Consider splitting this up into separate phases
2898 */
2899 if (error == 0 && imgp->ip_px_sa != NULL) {
2900 struct _posix_spawnattr *psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
2901
2902 exec_handle_spawnattr_policy(p, psa->psa_apptype, psa->psa_qos_clamp, psa->psa_darwin_role,
2903 portwatch_ports, portwatch_count);
2904 }
2905
2906 /*
2907 * Need to transfer pending watch port boosts to the new task while still making
2908 * sure that the old task remains in the importance linkage. Create an importance
2909 * linkage from old task to new task, then switch the task importance base
2910 * of old task and new task. After the switch the port watch boost will be
2911 * boosting the new task and new task will be donating importance to old task.
2912 */
2913 if (error == 0 && task_did_exec(current_task())) {
2914 inherit = ipc_importance_exec_switch_task(current_task(), get_threadtask(imgp->ip_new_thread));
2915 }
2916
2917 /* Apply the main thread qos */
2918 if (error == 0) {
2919 thread_t main_thread = imgp->ip_new_thread;
2920
2921 task_set_main_thread_qos(get_threadtask(imgp->ip_new_thread), main_thread);
2922 }
2923
2924 /*
2925 * Release any ports we kept around for binding to the new task
2926 * We need to release the rights even if the posix_spawn has failed.
2927 */
2928 if (portwatch_ports != NULL) {
2929 for (int i = 0; i < portwatch_count; i++) {
2930 ipc_port_t port = NULL;
2931 if ((port = portwatch_ports[i]) != NULL) {
2932 ipc_port_release_send(port);
2933 }
2934 }
2935 FREE(portwatch_ports, M_TEMP);
2936 portwatch_ports = NULL;
2937 portwatch_count = 0;
2938 }
2939
2940 /*
2941 * We have to delay operations which might throw a signal until after
2942 * the signals have been unblocked; however, we want that to happen
2943 * after exec_resettextvp() so that the textvp is correct when they
2944 * fire.
2945 */
2946 if (error == 0) {
2947 error = check_for_signature(p, imgp);
2948
2949 /*
2950 * Pay for our earlier safety; deliver the delayed signals from
2951 * the incomplete spawn process now that it's complete.
2952 */
2953 if (imgp != NULL && spawn_no_exec && (p->p_lflag & P_LTRACED)) {
2954 psignal_vfork(p, p->task, imgp->ip_new_thread, SIGTRAP);
2955 }
2956
2957 if (error == 0 && !spawn_no_exec)
2958 KDBG(BSDDBG_CODE(DBG_BSD_PROC,BSD_PROC_EXEC),
2959 p->p_pid);
2960 }
2961
2962
2963 if (imgp != NULL) {
2964 if (imgp->ip_vp)
2965 vnode_put(imgp->ip_vp);
2966 if (imgp->ip_scriptvp)
2967 vnode_put(imgp->ip_scriptvp);
2968 if (imgp->ip_strings)
2969 execargs_free(imgp);
2970 if (imgp->ip_px_sfa != NULL)
2971 FREE(imgp->ip_px_sfa, M_TEMP);
2972 if (imgp->ip_px_spa != NULL)
2973 FREE(imgp->ip_px_spa, M_TEMP);
2974 #if CONFIG_PERSONAS
2975 if (imgp->ip_px_persona != NULL)
2976 FREE(imgp->ip_px_persona, M_TEMP);
2977 #endif
2978 #if CONFIG_MACF
2979 if (imgp->ip_px_smpx != NULL)
2980 spawn_free_macpolicyinfo(imgp->ip_px_smpx);
2981 if (imgp->ip_execlabelp)
2982 mac_cred_label_free(imgp->ip_execlabelp);
2983 if (imgp->ip_scriptlabelp)
2984 mac_vnode_label_free(imgp->ip_scriptlabelp);
2985 if (imgp->ip_cs_error != OS_REASON_NULL) {
2986 os_reason_free(imgp->ip_cs_error);
2987 imgp->ip_cs_error = OS_REASON_NULL;
2988 }
2989 #endif
2990 }
2991
2992 #if CONFIG_DTRACE
2993 if (spawn_no_exec) {
2994 /*
2995 * In the original DTrace reference implementation,
2996 * posix_spawn() was a libc routine that just
2997 * did vfork(2) then exec(2). Thus the proc::: probes
2998 * are very fork/exec oriented. The details of this
2999 * in-kernel implementation of posix_spawn() is different
3000 * (while producing the same process-observable effects)
3001 * particularly w.r.t. errors, and which thread/process
3002 * is constructing what on behalf of whom.
3003 */
3004 if (error) {
3005 DTRACE_PROC1(spawn__failure, int, error);
3006 } else {
3007 DTRACE_PROC(spawn__success);
3008 /*
3009 * Some DTrace scripts, e.g. newproc.d in
3010 * /usr/bin, rely on the the 'exec-success'
3011 * probe being fired in the child after the
3012 * new process image has been constructed
3013 * in order to determine the associated pid.
3014 *
3015 * So, even though the parent built the image
3016 * here, for compatibility, mark the new thread
3017 * so 'exec-success' fires on it as it leaves
3018 * the kernel.
3019 */
3020 dtrace_thread_didexec(imgp->ip_new_thread);
3021 }
3022 } else {
3023 if (error) {
3024 DTRACE_PROC1(exec__failure, int, error);
3025 } else {
3026 DTRACE_PROC(exec__success);
3027 }
3028 }
3029
3030 if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL) {
3031 (*dtrace_proc_waitfor_hook)(p);
3032 }
3033 #endif
3034 /*
3035 * exec-success dtrace probe fired, clear bsd_info from
3036 * old task if it did exec.
3037 */
3038 if (task_did_exec(current_task())) {
3039 set_bsdtask_info(current_task(), NULL);
3040 }
3041
3042 /* clear bsd_info from new task and terminate it if exec failed */
3043 if (new_task != NULL && task_is_exec_copy(new_task)) {
3044 set_bsdtask_info(new_task, NULL);
3045 task_terminate_internal(new_task);
3046 }
3047
3048 /* Return to both the parent and the child? */
3049 if (imgp != NULL && spawn_no_exec) {
3050 /*
3051 * If the parent wants the pid, copy it out
3052 */
3053 if (pid != USER_ADDR_NULL)
3054 (void)suword(pid, p->p_pid);
3055 retval[0] = error;
3056
3057 /*
3058 * If we had an error, perform an internal reap ; this is
3059 * entirely safe, as we have a real process backing us.
3060 */
3061 if (error) {
3062 proc_list_lock();
3063 p->p_listflag |= P_LIST_DEADPARENT;
3064 proc_list_unlock();
3065 proc_lock(p);
3066 /* make sure no one else has killed it off... */
3067 if (p->p_stat != SZOMB && p->exit_thread == NULL) {
3068 p->exit_thread = current_thread();
3069 proc_unlock(p);
3070 exit1(p, 1, (int *)NULL);
3071 } else {
3072 /* someone is doing it for us; just skip it */
3073 proc_unlock(p);
3074 }
3075 }
3076 }
3077
3078 /*
3079 * Do not terminate the current task, if proc_exec_switch_task did not
3080 * switch the tasks, terminating the current task without the switch would
3081 * result in loosing the SIGKILL status.
3082 */
3083 if (task_did_exec(current_task())) {
3084 /* Terminate the current task, since exec will start in new task */
3085 task_terminate_internal(current_task());
3086 }
3087
3088 /* Release the thread ref returned by fork_create_child/fork1 */
3089 if (imgp != NULL && imgp->ip_new_thread) {
3090 /* wake up the new thread */
3091 task_clear_return_wait(get_threadtask(imgp->ip_new_thread));
3092 thread_deallocate(imgp->ip_new_thread);
3093 imgp->ip_new_thread = NULL;
3094 }
3095
3096 /* Release the ref returned by fork_create_child/fork1 */
3097 if (new_task) {
3098 task_deallocate(new_task);
3099 new_task = NULL;
3100 }
3101
3102 if (should_release_proc_ref) {
3103 proc_rele(p);
3104 }
3105
3106 if (bufp != NULL) {
3107 FREE(bufp, M_TEMP);
3108 }
3109
3110 if (inherit != NULL) {
3111 ipc_importance_release(inherit);
3112 }
3113
3114 return(error);
3115 }
3116
3117 /*
3118 * proc_exec_switch_task
3119 *
3120 * Parameters: p proc
3121 * old_task task before exec
3122 * new_task task after exec
3123 * new_thread thread in new task
3124 *
3125 * Returns: proc.
3126 *
3127 * Note: The function will switch the task pointer of proc
3128 * from old task to new task. The switch needs to happen
3129 * after draining all proc refs and inside a proc translock.
3130 * In the case of failure to switch the task, which might happen
3131 * if the process received a SIGKILL or jetsam killed it, it will make
3132 * sure that the new tasks terminates. User proc ref returned
3133 * to caller.
3134 *
3135 * This function is called after point of no return, in the case
3136 * failure to switch, it will terminate the new task and swallow the
3137 * error and let the terminated process complete exec and die.
3138 */
3139 proc_t
3140 proc_exec_switch_task(proc_t p, task_t old_task, task_t new_task, thread_t new_thread)
3141 {
3142 int error = 0;
3143 boolean_t task_active;
3144 boolean_t proc_active;
3145 boolean_t thread_active;
3146 thread_t old_thread = current_thread();
3147
3148 /*
3149 * Switch the task pointer of proc to new task.
3150 * Before switching the task, wait for proc_refdrain.
3151 * After the switch happens, the proc can disappear,
3152 * take a ref before it disappears.
3153 */
3154 p = proc_refdrain_with_refwait(p, TRUE);
3155 /* extra proc ref returned to the caller */
3156
3157 assert(get_threadtask(new_thread) == new_task);
3158 task_active = task_is_active(new_task);
3159
3160 /* Take the proc_translock to change the task ptr */
3161 proc_lock(p);
3162 proc_active = !(p->p_lflag & P_LEXIT);
3163
3164 /* Check if the current thread is not aborted due to SIGKILL */
3165 thread_active = thread_is_active(old_thread);
3166
3167 /*
3168 * Do not switch the task if the new task or proc is already terminated
3169 * as a result of error in exec past point of no return
3170 */
3171 if (proc_active && task_active && thread_active) {
3172 error = proc_transstart(p, 1, 0);
3173 if (error == 0) {
3174 uthread_t new_uthread = get_bsdthread_info(new_thread);
3175 uthread_t old_uthread = get_bsdthread_info(current_thread());
3176
3177 /*
3178 * bsd_info of old_task will get cleared in execve and posix_spawn
3179 * after firing exec-success/error dtrace probe.
3180 */
3181 p->task = new_task;
3182
3183 /* Copy the signal state, dtrace state and set bsd ast on new thread */
3184 act_set_astbsd(new_thread);
3185 new_uthread->uu_siglist = old_uthread->uu_siglist;
3186 new_uthread->uu_sigwait = old_uthread->uu_sigwait;
3187 new_uthread->uu_sigmask = old_uthread->uu_sigmask;
3188 new_uthread->uu_oldmask = old_uthread->uu_oldmask;
3189 new_uthread->uu_vforkmask = old_uthread->uu_vforkmask;
3190 new_uthread->uu_exit_reason = old_uthread->uu_exit_reason;
3191 #if CONFIG_DTRACE
3192 new_uthread->t_dtrace_sig = old_uthread->t_dtrace_sig;
3193 new_uthread->t_dtrace_stop = old_uthread->t_dtrace_stop;
3194 new_uthread->t_dtrace_resumepid = old_uthread->t_dtrace_resumepid;
3195 assert(new_uthread->t_dtrace_scratch == NULL);
3196 new_uthread->t_dtrace_scratch = old_uthread->t_dtrace_scratch;
3197
3198 old_uthread->t_dtrace_sig = 0;
3199 old_uthread->t_dtrace_stop = 0;
3200 old_uthread->t_dtrace_resumepid = 0;
3201 old_uthread->t_dtrace_scratch = NULL;
3202 #endif
3203 /* Copy the resource accounting info */
3204 thread_copy_resource_info(new_thread, current_thread());
3205
3206 /* Clear the exit reason and signal state on old thread */
3207 old_uthread->uu_exit_reason = NULL;
3208 old_uthread->uu_siglist = 0;
3209
3210 /* Add the new uthread to proc uthlist and remove the old one */
3211 TAILQ_INSERT_TAIL(&p->p_uthlist, new_uthread, uu_list);
3212 TAILQ_REMOVE(&p->p_uthlist, old_uthread, uu_list);
3213
3214 task_set_did_exec_flag(old_task);
3215 task_clear_exec_copy_flag(new_task);
3216
3217 proc_transend(p, 1);
3218 }
3219 }
3220
3221 proc_unlock(p);
3222 proc_refwake(p);
3223
3224 if (error != 0 || !task_active || !proc_active || !thread_active) {
3225 task_terminate_internal(new_task);
3226 }
3227
3228 return p;
3229 }
3230
3231 /*
3232 * execve
3233 *
3234 * Parameters: uap->fname File name to exec
3235 * uap->argp Argument list
3236 * uap->envp Environment list
3237 *
3238 * Returns: 0 Success
3239 * __mac_execve:EINVAL Invalid argument
3240 * __mac_execve:ENOTSUP Invalid argument
3241 * __mac_execve:EACCES Permission denied
3242 * __mac_execve:EINTR Interrupted function
3243 * __mac_execve:ENOMEM Not enough space
3244 * __mac_execve:EFAULT Bad address
3245 * __mac_execve:ENAMETOOLONG Filename too long
3246 * __mac_execve:ENOEXEC Executable file format error
3247 * __mac_execve:ETXTBSY Text file busy [misuse of error code]
3248 * __mac_execve:???
3249 *
3250 * TODO: Dynamic linker header address on stack is copied via suword()
3251 */
3252 /* ARGSUSED */
3253 int
3254 execve(proc_t p, struct execve_args *uap, int32_t *retval)
3255 {
3256 struct __mac_execve_args muap;
3257 int err;
3258
3259 memoryshot(VM_EXECVE, DBG_FUNC_NONE);
3260
3261 muap.fname = uap->fname;
3262 muap.argp = uap->argp;
3263 muap.envp = uap->envp;
3264 muap.mac_p = USER_ADDR_NULL;
3265 err = __mac_execve(p, &muap, retval);
3266
3267 return(err);
3268 }
3269
3270 /*
3271 * __mac_execve
3272 *
3273 * Parameters: uap->fname File name to exec
3274 * uap->argp Argument list
3275 * uap->envp Environment list
3276 * uap->mac_p MAC label supplied by caller
3277 *
3278 * Returns: 0 Success
3279 * EINVAL Invalid argument
3280 * ENOTSUP Not supported
3281 * ENOEXEC Executable file format error
3282 * exec_activate_image:EINVAL Invalid argument
3283 * exec_activate_image:EACCES Permission denied
3284 * exec_activate_image:EINTR Interrupted function
3285 * exec_activate_image:ENOMEM Not enough space
3286 * exec_activate_image:EFAULT Bad address
3287 * exec_activate_image:ENAMETOOLONG Filename too long
3288 * exec_activate_image:ENOEXEC Executable file format error
3289 * exec_activate_image:ETXTBSY Text file busy [misuse of error code]
3290 * exec_activate_image:EBADEXEC The executable is corrupt/unknown
3291 * exec_activate_image:???
3292 * mac_execve_enter:???
3293 *
3294 * TODO: Dynamic linker header address on stack is copied via suword()
3295 */
3296 int
3297 __mac_execve(proc_t p, struct __mac_execve_args *uap, int32_t *retval)
3298 {
3299 char *bufp = NULL;
3300 struct image_params *imgp;
3301 struct vnode_attr *vap;
3302 struct vnode_attr *origvap;
3303 int error;
3304 int is_64 = IS_64BIT_PROCESS(p);
3305 struct vfs_context context;
3306 struct uthread *uthread;
3307 task_t new_task = NULL;
3308 boolean_t should_release_proc_ref = FALSE;
3309 boolean_t exec_done = FALSE;
3310 boolean_t in_vfexec = FALSE;
3311 void *inherit = NULL;
3312
3313 context.vc_thread = current_thread();
3314 context.vc_ucred = kauth_cred_proc_ref(p); /* XXX must NOT be kauth_cred_get() */
3315
3316 /* Allocate a big chunk for locals instead of using stack since these
3317 * structures a pretty big.
3318 */
3319 MALLOC(bufp, char *, (sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap)), M_TEMP, M_WAITOK | M_ZERO);
3320 imgp = (struct image_params *) bufp;
3321 if (bufp == NULL) {
3322 error = ENOMEM;
3323 goto exit_with_error;
3324 }
3325 vap = (struct vnode_attr *) (bufp + sizeof(*imgp));
3326 origvap = (struct vnode_attr *) (bufp + sizeof(*imgp) + sizeof(*vap));
3327
3328 /* Initialize the common data in the image_params structure */
3329 imgp->ip_user_fname = uap->fname;
3330 imgp->ip_user_argv = uap->argp;
3331 imgp->ip_user_envv = uap->envp;
3332 imgp->ip_vattr = vap;
3333 imgp->ip_origvattr = origvap;
3334 imgp->ip_vfs_context = &context;
3335 imgp->ip_flags = (is_64 ? IMGPF_WAS_64BIT : IMGPF_NONE) | ((p->p_flag & P_DISABLE_ASLR) ? IMGPF_DISABLE_ASLR : IMGPF_NONE);
3336 imgp->ip_seg = (is_64 ? UIO_USERSPACE64 : UIO_USERSPACE32);
3337 imgp->ip_mac_return = 0;
3338 imgp->ip_cs_error = OS_REASON_NULL;
3339
3340 uthread = get_bsdthread_info(current_thread());
3341 if (uthread->uu_flag & UT_VFORK) {
3342 imgp->ip_flags |= IMGPF_VFORK_EXEC;
3343 in_vfexec = TRUE;
3344 } else {
3345 imgp->ip_flags |= IMGPF_EXEC;
3346
3347 /*
3348 * For execve case, create a new task and thread
3349 * which points to current_proc. The current_proc will point
3350 * to the new task after image activation and proc ref drain.
3351 *
3352 * proc (current_proc) <----- old_task (current_task)
3353 * ^ | ^
3354 * | | |
3355 * | ----------------------------------
3356 * |
3357 * --------- new_task (task marked as TF_EXEC_COPY)
3358 *
3359 * After image activation, the proc will point to the new task
3360 * and would look like following.
3361 *
3362 * proc (current_proc) <----- old_task (current_task, marked as TPF_DID_EXEC)
3363 * ^ |
3364 * | |
3365 * | ----------> new_task
3366 * | |
3367 * -----------------
3368 *
3369 * During exec any transition from new_task -> proc is fine, but don't allow
3370 * transition from proc->task, since it will modify old_task.
3371 */
3372 imgp->ip_new_thread = fork_create_child(current_task(),
3373 NULL, p, FALSE, p->p_flag & P_LP64, TRUE);
3374 /* task and thread ref returned by fork_create_child */
3375 if (imgp->ip_new_thread == NULL) {
3376 error = ENOMEM;
3377 goto exit_with_error;
3378 }
3379
3380 new_task = get_threadtask(imgp->ip_new_thread);
3381 context.vc_thread = imgp->ip_new_thread;
3382 }
3383
3384 #if CONFIG_MACF
3385 if (uap->mac_p != USER_ADDR_NULL) {
3386 error = mac_execve_enter(uap->mac_p, imgp);
3387 if (error) {
3388 kauth_cred_unref(&context.vc_ucred);
3389 goto exit_with_error;
3390 }
3391 }
3392 #endif
3393
3394 error = exec_activate_image(imgp);
3395 /* thread and task ref returned for vfexec case */
3396
3397 if (imgp->ip_new_thread != NULL) {
3398 /*
3399 * task reference might be returned by exec_activate_image
3400 * for vfexec.
3401 */
3402 new_task = get_threadtask(imgp->ip_new_thread);
3403 }
3404
3405 if (!error && !in_vfexec) {
3406 p = proc_exec_switch_task(p, current_task(), new_task, imgp->ip_new_thread);
3407 /* proc ref returned */
3408 should_release_proc_ref = TRUE;
3409 }
3410
3411 kauth_cred_unref(&context.vc_ucred);
3412
3413 /* Image not claimed by any activator? */
3414 if (error == -1)
3415 error = ENOEXEC;
3416
3417 if (!error) {
3418 exec_done = TRUE;
3419 assert(imgp->ip_new_thread != NULL);
3420
3421 exec_resettextvp(p, imgp);
3422 error = check_for_signature(p, imgp);
3423 }
3424 if (imgp->ip_vp != NULLVP)
3425 vnode_put(imgp->ip_vp);
3426 if (imgp->ip_scriptvp != NULLVP)
3427 vnode_put(imgp->ip_scriptvp);
3428 if (imgp->ip_strings)
3429 execargs_free(imgp);
3430 #if CONFIG_MACF
3431 if (imgp->ip_execlabelp)
3432 mac_cred_label_free(imgp->ip_execlabelp);
3433 if (imgp->ip_scriptlabelp)
3434 mac_vnode_label_free(imgp->ip_scriptlabelp);
3435 #endif
3436 if (imgp->ip_cs_error != OS_REASON_NULL) {
3437 os_reason_free(imgp->ip_cs_error);
3438 imgp->ip_cs_error = OS_REASON_NULL;
3439 }
3440
3441 if (!error) {
3442 /*
3443 * We need to initialize the bank context behind the protection of
3444 * the proc_trans lock to prevent a race with exit. We can't do this during
3445 * exec_activate_image because task_bank_init checks entitlements that
3446 * aren't loaded until subsequent calls (including exec_resettextvp).
3447 */
3448 error = proc_transstart(p, 0, 0);
3449 }
3450
3451 if (!error) {
3452 task_bank_init(get_threadtask(imgp->ip_new_thread));
3453 proc_transend(p, 0);
3454
3455 /* Sever any extant thread affinity */
3456 thread_affinity_exec(current_thread());
3457
3458 /* Inherit task role from old task to new task for exec */
3459 if (!in_vfexec) {
3460 proc_inherit_task_role(get_threadtask(imgp->ip_new_thread), current_task());
3461 }
3462
3463 thread_t main_thread = imgp->ip_new_thread;
3464
3465 task_set_main_thread_qos(new_task, main_thread);
3466
3467 DTRACE_PROC(exec__success);
3468
3469 #if CONFIG_DTRACE
3470 if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL)
3471 (*dtrace_proc_waitfor_hook)(p);
3472 #endif
3473
3474 if (in_vfexec) {
3475 vfork_return(p, retval, p->p_pid);
3476 }
3477 } else {
3478 DTRACE_PROC1(exec__failure, int, error);
3479 }
3480
3481 exit_with_error:
3482
3483 /*
3484 * exec-success dtrace probe fired, clear bsd_info from
3485 * old task if it did exec.
3486 */
3487 if (task_did_exec(current_task())) {
3488 set_bsdtask_info(current_task(), NULL);
3489 }
3490
3491 /* clear bsd_info from new task and terminate it if exec failed */
3492 if (new_task != NULL && task_is_exec_copy(new_task)) {
3493 set_bsdtask_info(new_task, NULL);
3494 task_terminate_internal(new_task);
3495 }
3496
3497 /*
3498 * Need to transfer pending watch port boosts to the new task while still making
3499 * sure that the old task remains in the importance linkage. Create an importance
3500 * linkage from old task to new task, then switch the task importance base
3501 * of old task and new task. After the switch the port watch boost will be
3502 * boosting the new task and new task will be donating importance to old task.
3503 */
3504 if (error == 0 && task_did_exec(current_task())) {
3505 inherit = ipc_importance_exec_switch_task(current_task(), get_threadtask(imgp->ip_new_thread));
3506 }
3507
3508 if (imgp != NULL) {
3509 /*
3510 * Do not terminate the current task, if proc_exec_switch_task did not
3511 * switch the tasks, terminating the current task without the switch would
3512 * result in loosing the SIGKILL status.
3513 */
3514 if (task_did_exec(current_task())) {
3515 /* Terminate the current task, since exec will start in new task */
3516 task_terminate_internal(current_task());
3517 }
3518
3519 /* Release the thread ref returned by fork_create_child */
3520 if (imgp->ip_new_thread) {
3521 /* wake up the new exec thread */
3522 task_clear_return_wait(get_threadtask(imgp->ip_new_thread));
3523 thread_deallocate(imgp->ip_new_thread);
3524 imgp->ip_new_thread = NULL;
3525 }
3526 }
3527
3528 /* Release the ref returned by fork_create_child */
3529 if (new_task) {
3530 task_deallocate(new_task);
3531 new_task = NULL;
3532 }
3533
3534 if (should_release_proc_ref) {
3535 proc_rele(p);
3536 }
3537
3538 if (bufp != NULL) {
3539 FREE(bufp, M_TEMP);
3540 }
3541
3542 if (inherit != NULL) {
3543 ipc_importance_release(inherit);
3544 }
3545
3546 return(error);
3547 }
3548
3549
3550 /*
3551 * copyinptr
3552 *
3553 * Description: Copy a pointer in from user space to a user_addr_t in kernel
3554 * space, based on 32/64 bitness of the user space
3555 *
3556 * Parameters: froma User space address
3557 * toptr Address of kernel space user_addr_t
3558 * ptr_size 4/8, based on 'froma' address space
3559 *
3560 * Returns: 0 Success
3561 * EFAULT Bad 'froma'
3562 *
3563 * Implicit returns:
3564 * *ptr_size Modified
3565 */
3566 static int
3567 copyinptr(user_addr_t froma, user_addr_t *toptr, int ptr_size)
3568 {
3569 int error;
3570
3571 if (ptr_size == 4) {
3572 /* 64 bit value containing 32 bit address */
3573 unsigned int i;
3574
3575 error = copyin(froma, &i, 4);
3576 *toptr = CAST_USER_ADDR_T(i); /* SAFE */
3577 } else {
3578 error = copyin(froma, toptr, 8);
3579 }
3580 return (error);
3581 }
3582
3583
3584 /*
3585 * copyoutptr
3586 *
3587 * Description: Copy a pointer out from a user_addr_t in kernel space to
3588 * user space, based on 32/64 bitness of the user space
3589 *
3590 * Parameters: ua User space address to copy to
3591 * ptr Address of kernel space user_addr_t
3592 * ptr_size 4/8, based on 'ua' address space
3593 *
3594 * Returns: 0 Success
3595 * EFAULT Bad 'ua'
3596 *
3597 */
3598 static int
3599 copyoutptr(user_addr_t ua, user_addr_t ptr, int ptr_size)
3600 {
3601 int error;
3602
3603 if (ptr_size == 4) {
3604 /* 64 bit value containing 32 bit address */
3605 unsigned int i = CAST_DOWN_EXPLICIT(unsigned int,ua); /* SAFE */
3606
3607 error = copyout(&i, ptr, 4);
3608 } else {
3609 error = copyout(&ua, ptr, 8);
3610 }
3611 return (error);
3612 }
3613
3614
3615 /*
3616 * exec_copyout_strings
3617 *
3618 * Copy out the strings segment to user space. The strings segment is put
3619 * on a preinitialized stack frame.
3620 *
3621 * Parameters: struct image_params * the image parameter block
3622 * int * a pointer to the stack offset variable
3623 *
3624 * Returns: 0 Success
3625 * !0 Faiure: errno
3626 *
3627 * Implicit returns:
3628 * (*stackp) The stack offset, modified
3629 *
3630 * Note: The strings segment layout is backward, from the beginning
3631 * of the top of the stack to consume the minimal amount of
3632 * space possible; the returned stack pointer points to the
3633 * end of the area consumed (stacks grow downward).
3634 *
3635 * argc is an int; arg[i] are pointers; env[i] are pointers;
3636 * the 0's are (void *)NULL's
3637 *
3638 * The stack frame layout is:
3639 *
3640 * +-------------+ <- p->user_stack
3641 * | 16b |
3642 * +-------------+
3643 * | STRING AREA |
3644 * | : |
3645 * | : |
3646 * | : |
3647 * +- -- -- -- --+
3648 * | PATH AREA |
3649 * +-------------+
3650 * | 0 |
3651 * +-------------+
3652 * | applev[n] |
3653 * +-------------+
3654 * :
3655 * :
3656 * +-------------+
3657 * | applev[1] |
3658 * +-------------+
3659 * | exec_path / |
3660 * | applev[0] |
3661 * +-------------+
3662 * | 0 |
3663 * +-------------+
3664 * | env[n] |
3665 * +-------------+
3666 * :
3667 * :
3668 * +-------------+
3669 * | env[0] |
3670 * +-------------+
3671 * | 0 |
3672 * +-------------+
3673 * | arg[argc-1] |
3674 * +-------------+
3675 * :
3676 * :
3677 * +-------------+
3678 * | arg[0] |
3679 * +-------------+
3680 * | argc |
3681 * sp-> +-------------+
3682 *
3683 * Although technically a part of the STRING AREA, we treat the PATH AREA as
3684 * a separate entity. This allows us to align the beginning of the PATH AREA
3685 * to a pointer boundary so that the exec_path, env[i], and argv[i] pointers
3686 * which preceed it on the stack are properly aligned.
3687 */
3688
3689 static int
3690 exec_copyout_strings(struct image_params *imgp, user_addr_t *stackp)
3691 {
3692 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
3693 int ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT) ? 8 : 4;
3694 int ptr_area_size;
3695 void *ptr_buffer_start, *ptr_buffer;
3696 int string_size;
3697
3698 user_addr_t string_area; /* *argv[], *env[] */
3699 user_addr_t ptr_area; /* argv[], env[], applev[] */
3700 user_addr_t argc_area; /* argc */
3701 user_addr_t stack;
3702 int error;
3703
3704 unsigned i;
3705 struct copyout_desc {
3706 char *start_string;
3707 int count;
3708 #if CONFIG_DTRACE
3709 user_addr_t *dtrace_cookie;
3710 #endif
3711 boolean_t null_term;
3712 } descriptors[] = {
3713 {
3714 .start_string = imgp->ip_startargv,
3715 .count = imgp->ip_argc,
3716 #if CONFIG_DTRACE
3717 .dtrace_cookie = &p->p_dtrace_argv,
3718 #endif
3719 .null_term = TRUE
3720 },
3721 {
3722 .start_string = imgp->ip_endargv,
3723 .count = imgp->ip_envc,
3724 #if CONFIG_DTRACE
3725 .dtrace_cookie = &p->p_dtrace_envp,
3726 #endif
3727 .null_term = TRUE
3728 },
3729 {
3730 .start_string = imgp->ip_strings,
3731 .count = 1,
3732 #if CONFIG_DTRACE
3733 .dtrace_cookie = NULL,
3734 #endif
3735 .null_term = FALSE
3736 },
3737 {
3738 .start_string = imgp->ip_endenvv,
3739 .count = imgp->ip_applec - 1, /* exec_path handled above */
3740 #if CONFIG_DTRACE
3741 .dtrace_cookie = NULL,
3742 #endif
3743 .null_term = TRUE
3744 }
3745 };
3746
3747 stack = *stackp;
3748
3749 /*
3750 * All previous contributors to the string area
3751 * should have aligned their sub-area
3752 */
3753 if (imgp->ip_strspace % ptr_size != 0) {
3754 error = EINVAL;
3755 goto bad;
3756 }
3757
3758 /* Grow the stack down for the strings we've been building up */
3759 string_size = imgp->ip_strendp - imgp->ip_strings;
3760 stack -= string_size;
3761 string_area = stack;
3762
3763 /*
3764 * Need room for one pointer for each string, plus
3765 * one for the NULLs terminating the argv, envv, and apple areas.
3766 */
3767 ptr_area_size = (imgp->ip_argc + imgp->ip_envc + imgp->ip_applec + 3) *
3768 ptr_size;
3769 stack -= ptr_area_size;
3770 ptr_area = stack;
3771
3772 /* We'll construct all the pointer arrays in our string buffer,
3773 * which we already know is aligned properly, and ip_argspace
3774 * was used to verify we have enough space.
3775 */
3776 ptr_buffer_start = ptr_buffer = (void *)imgp->ip_strendp;
3777
3778 /*
3779 * Need room for pointer-aligned argc slot.
3780 */
3781 stack -= ptr_size;
3782 argc_area = stack;
3783
3784 /*
3785 * Record the size of the arguments area so that sysctl_procargs()
3786 * can return the argument area without having to parse the arguments.
3787 */
3788 proc_lock(p);
3789 p->p_argc = imgp->ip_argc;
3790 p->p_argslen = (int)(*stackp - string_area);
3791 proc_unlock(p);
3792
3793 /* Return the initial stack address: the location of argc */
3794 *stackp = stack;
3795
3796 /*
3797 * Copy out the entire strings area.
3798 */
3799 error = copyout(imgp->ip_strings, string_area,
3800 string_size);
3801 if (error)
3802 goto bad;
3803
3804 for (i = 0; i < sizeof(descriptors)/sizeof(descriptors[0]); i++) {
3805 char *cur_string = descriptors[i].start_string;
3806 int j;
3807
3808 #if CONFIG_DTRACE
3809 if (descriptors[i].dtrace_cookie) {
3810 proc_lock(p);
3811 *descriptors[i].dtrace_cookie = ptr_area + ((uintptr_t)ptr_buffer - (uintptr_t)ptr_buffer_start); /* dtrace convenience */
3812 proc_unlock(p);
3813 }
3814 #endif /* CONFIG_DTRACE */
3815
3816 /*
3817 * For each segment (argv, envv, applev), copy as many pointers as requested
3818 * to our pointer buffer.
3819 */
3820 for (j = 0; j < descriptors[i].count; j++) {
3821 user_addr_t cur_address = string_area + (cur_string - imgp->ip_strings);
3822
3823 /* Copy out the pointer to the current string. Alignment has been verified */
3824 if (ptr_size == 8) {
3825 *(uint64_t *)ptr_buffer = (uint64_t)cur_address;
3826 } else {
3827 *(uint32_t *)ptr_buffer = (uint32_t)cur_address;
3828 }
3829
3830 ptr_buffer = (void *)((uintptr_t)ptr_buffer + ptr_size);
3831 cur_string += strlen(cur_string) + 1; /* Only a NUL between strings in the same area */
3832 }
3833
3834 if (descriptors[i].null_term) {
3835 if (ptr_size == 8) {
3836 *(uint64_t *)ptr_buffer = 0ULL;
3837 } else {
3838 *(uint32_t *)ptr_buffer = 0;
3839 }
3840
3841 ptr_buffer = (void *)((uintptr_t)ptr_buffer + ptr_size);
3842 }
3843 }
3844
3845 /*
3846 * Copy out all our pointer arrays in bulk.
3847 */
3848 error = copyout(ptr_buffer_start, ptr_area,
3849 ptr_area_size);
3850 if (error)
3851 goto bad;
3852
3853 /* argc (int32, stored in a ptr_size area) */
3854 error = copyoutptr((user_addr_t)imgp->ip_argc, argc_area, ptr_size);
3855 if (error)
3856 goto bad;
3857
3858 bad:
3859 return(error);
3860 }
3861
3862
3863 /*
3864 * exec_extract_strings
3865 *
3866 * Copy arguments and environment from user space into work area; we may
3867 * have already copied some early arguments into the work area, and if
3868 * so, any arguments opied in are appended to those already there.
3869 * This function is the primary manipulator of ip_argspace, since
3870 * these are the arguments the client of execve(2) knows about. After
3871 * each argv[]/envv[] string is copied, we charge the string length
3872 * and argv[]/envv[] pointer slot to ip_argspace, so that we can
3873 * full preflight the arg list size.
3874 *
3875 * Parameters: struct image_params * the image parameter block
3876 *
3877 * Returns: 0 Success
3878 * !0 Failure: errno
3879 *
3880 * Implicit returns;
3881 * (imgp->ip_argc) Count of arguments, updated
3882 * (imgp->ip_envc) Count of environment strings, updated
3883 * (imgp->ip_argspace) Count of remaining of NCARGS
3884 * (imgp->ip_interp_buffer) Interpreter and args (mutated in place)
3885 *
3886 *
3887 * Note: The argument and environment vectors are user space pointers
3888 * to arrays of user space pointers.
3889 */
3890 static int
3891 exec_extract_strings(struct image_params *imgp)
3892 {
3893 int error = 0;
3894 int ptr_size = (imgp->ip_flags & IMGPF_WAS_64BIT) ? 8 : 4;
3895 int new_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT) ? 8 : 4;
3896 user_addr_t argv = imgp->ip_user_argv;
3897 user_addr_t envv = imgp->ip_user_envv;
3898
3899 /*
3900 * Adjust space reserved for the path name by however much padding it
3901 * needs. Doing this here since we didn't know if this would be a 32-
3902 * or 64-bit process back in exec_save_path.
3903 */
3904 while (imgp->ip_strspace % new_ptr_size != 0) {
3905 *imgp->ip_strendp++ = '\0';
3906 imgp->ip_strspace--;
3907 /* imgp->ip_argspace--; not counted towards exec args total */
3908 }
3909
3910 /*
3911 * From now on, we start attributing string space to ip_argspace
3912 */
3913 imgp->ip_startargv = imgp->ip_strendp;
3914 imgp->ip_argc = 0;
3915
3916 if((imgp->ip_flags & IMGPF_INTERPRET) != 0) {
3917 user_addr_t arg;
3918 char *argstart, *ch;
3919
3920 /* First, the arguments in the "#!" string are tokenized and extracted. */
3921 argstart = imgp->ip_interp_buffer;
3922 while (argstart) {
3923 ch = argstart;
3924 while (*ch && !IS_WHITESPACE(*ch)) {
3925 ch++;
3926 }
3927
3928 if (*ch == '\0') {
3929 /* last argument, no need to NUL-terminate */
3930 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(argstart), UIO_SYSSPACE, TRUE);
3931 argstart = NULL;
3932 } else {
3933 /* NUL-terminate */
3934 *ch = '\0';
3935 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(argstart), UIO_SYSSPACE, TRUE);
3936
3937 /*
3938 * Find the next string. We know spaces at the end of the string have already
3939 * been stripped.
3940 */
3941 argstart = ch + 1;
3942 while (IS_WHITESPACE(*argstart)) {
3943 argstart++;
3944 }
3945 }
3946
3947 /* Error-check, regardless of whether this is the last interpreter arg or not */
3948 if (error)
3949 goto bad;
3950 if (imgp->ip_argspace < new_ptr_size) {
3951 error = E2BIG;
3952 goto bad;
3953 }
3954 imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
3955 imgp->ip_argc++;
3956 }
3957
3958 if (argv != 0LL) {
3959 /*
3960 * If we are running an interpreter, replace the av[0] that was
3961 * passed to execve() with the path name that was
3962 * passed to execve() for interpreters which do not use the PATH
3963 * to locate their script arguments.
3964 */
3965 error = copyinptr(argv, &arg, ptr_size);
3966 if (error)
3967 goto bad;
3968 if (arg != 0LL) {
3969 argv += ptr_size; /* consume without using */
3970 }
3971 }
3972
3973 if (imgp->ip_interp_sugid_fd != -1) {
3974 char temp[19]; /* "/dev/fd/" + 10 digits + NUL */
3975 snprintf(temp, sizeof(temp), "/dev/fd/%d", imgp->ip_interp_sugid_fd);
3976 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(temp), UIO_SYSSPACE, TRUE);
3977 } else {
3978 error = exec_add_user_string(imgp, imgp->ip_user_fname, imgp->ip_seg, TRUE);
3979 }
3980
3981 if (error)
3982 goto bad;
3983 if (imgp->ip_argspace < new_ptr_size) {
3984 error = E2BIG;
3985 goto bad;
3986 }
3987 imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
3988 imgp->ip_argc++;
3989 }
3990
3991 while (argv != 0LL) {
3992 user_addr_t arg;
3993
3994 error = copyinptr(argv, &arg, ptr_size);
3995 if (error)
3996 goto bad;
3997
3998 if (arg == 0LL) {
3999 break;
4000 }
4001
4002 argv += ptr_size;
4003
4004 /*
4005 * av[n...] = arg[n]
4006 */
4007 error = exec_add_user_string(imgp, arg, imgp->ip_seg, TRUE);
4008 if (error)
4009 goto bad;
4010 if (imgp->ip_argspace < new_ptr_size) {
4011 error = E2BIG;
4012 goto bad;
4013 }
4014 imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
4015 imgp->ip_argc++;
4016 }
4017
4018 /* Save space for argv[] NULL terminator */
4019 if (imgp->ip_argspace < new_ptr_size) {
4020 error = E2BIG;
4021 goto bad;
4022 }
4023 imgp->ip_argspace -= new_ptr_size;
4024
4025 /* Note where the args ends and env begins. */
4026 imgp->ip_endargv = imgp->ip_strendp;
4027 imgp->ip_envc = 0;
4028
4029 /* Now, get the environment */
4030 while (envv != 0LL) {
4031 user_addr_t env;
4032
4033 error = copyinptr(envv, &env, ptr_size);
4034 if (error)
4035 goto bad;
4036
4037 envv += ptr_size;
4038 if (env == 0LL) {
4039 break;
4040 }
4041 /*
4042 * av[n...] = env[n]
4043 */
4044 error = exec_add_user_string(imgp, env, imgp->ip_seg, TRUE);
4045 if (error)
4046 goto bad;
4047 if (imgp->ip_argspace < new_ptr_size) {
4048 error = E2BIG;
4049 goto bad;
4050 }
4051 imgp->ip_argspace -= new_ptr_size; /* to hold envv[] entry */
4052 imgp->ip_envc++;
4053 }
4054
4055 /* Save space for envv[] NULL terminator */
4056 if (imgp->ip_argspace < new_ptr_size) {
4057 error = E2BIG;
4058 goto bad;
4059 }
4060 imgp->ip_argspace -= new_ptr_size;
4061
4062 /* Align the tail of the combined argv+envv area */
4063 while (imgp->ip_strspace % new_ptr_size != 0) {
4064 if (imgp->ip_argspace < 1) {
4065 error = E2BIG;
4066 goto bad;
4067 }
4068 *imgp->ip_strendp++ = '\0';
4069 imgp->ip_strspace--;
4070 imgp->ip_argspace--;
4071 }
4072
4073 /* Note where the envv ends and applev begins. */
4074 imgp->ip_endenvv = imgp->ip_strendp;
4075
4076 /*
4077 * From now on, we are no longer charging argument
4078 * space to ip_argspace.
4079 */
4080
4081 bad:
4082 return error;
4083 }
4084
4085 /*
4086 * Libc has an 8-element array set up for stack guard values. It only fills
4087 * in one of those entries, and both gcc and llvm seem to use only a single
4088 * 8-byte guard. Until somebody needs more than an 8-byte guard value, don't
4089 * do the work to construct them.
4090 */
4091 #define GUARD_VALUES 1
4092 #define GUARD_KEY "stack_guard="
4093
4094 /*
4095 * System malloc needs some entropy when it is initialized.
4096 */
4097 #define ENTROPY_VALUES 2
4098 #define ENTROPY_KEY "malloc_entropy="
4099
4100 /*
4101 * System malloc engages nanozone for UIAPP.
4102 */
4103 #define NANO_ENGAGE_KEY "MallocNanoZone=1"
4104
4105 #define PFZ_KEY "pfz="
4106 extern user32_addr_t commpage_text32_location;
4107 extern user64_addr_t commpage_text64_location;
4108
4109 #define MAIN_STACK_VALUES 4
4110 #define MAIN_STACK_KEY "main_stack="
4111
4112 #define HEX_STR_LEN 18 // 64-bit hex value "0x0123456701234567"
4113
4114 static int
4115 exec_add_entropy_key(struct image_params *imgp,
4116 const char *key,
4117 int values,
4118 boolean_t embedNUL)
4119 {
4120 const int limit = 8;
4121 uint64_t entropy[limit];
4122 char str[strlen(key) + (HEX_STR_LEN + 1) * limit + 1];
4123 if (values > limit) {
4124 values = limit;
4125 }
4126
4127 read_random(entropy, sizeof(entropy[0]) * values);
4128
4129 if (embedNUL) {
4130 entropy[0] &= ~(0xffull << 8);
4131 }
4132
4133 int len = snprintf(str, sizeof(str), "%s0x%llx", key, entropy[0]);
4134 int remaining = sizeof(str) - len;
4135 for (int i = 1; i < values && remaining > 0; ++i) {
4136 int start = sizeof(str) - remaining;
4137 len = snprintf(&str[start], remaining, ",0x%llx", entropy[i]);
4138 remaining -= len;
4139 }
4140
4141 return exec_add_user_string(imgp, CAST_USER_ADDR_T(str), UIO_SYSSPACE, FALSE);
4142 }
4143
4144 /*
4145 * Build up the contents of the apple[] string vector
4146 */
4147 static int
4148 exec_add_apple_strings(struct image_params *imgp,
4149 const load_result_t *load_result)
4150 {
4151 int error;
4152 int img_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT) ? 8 : 4;
4153
4154 /* exec_save_path stored the first string */
4155 imgp->ip_applec = 1;
4156
4157 /* adding the pfz string */
4158 {
4159 char pfz_string[strlen(PFZ_KEY) + HEX_STR_LEN + 1];
4160
4161 if (img_ptr_size == 8) {
4162 snprintf(pfz_string, sizeof(pfz_string), PFZ_KEY "0x%llx", commpage_text64_location);
4163 } else {
4164 snprintf(pfz_string, sizeof(pfz_string), PFZ_KEY "0x%x", commpage_text32_location);
4165 }
4166 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(pfz_string), UIO_SYSSPACE, FALSE);
4167 if (error) {
4168 goto bad;
4169 }
4170 imgp->ip_applec++;
4171 }
4172
4173 /* adding the NANO_ENGAGE_KEY key */
4174 if (imgp->ip_px_sa) {
4175 int proc_flags = (((struct _posix_spawnattr *) imgp->ip_px_sa)->psa_flags);
4176
4177 if ((proc_flags & _POSIX_SPAWN_NANO_ALLOCATOR) == _POSIX_SPAWN_NANO_ALLOCATOR) {
4178 const char *nano_string = NANO_ENGAGE_KEY;
4179 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(nano_string), UIO_SYSSPACE, FALSE);
4180 if (error){
4181 goto bad;
4182 }
4183 imgp->ip_applec++;
4184 }
4185 }
4186
4187 /*
4188 * Supply libc with a collection of random values to use when
4189 * implementing -fstack-protector.
4190 *
4191 * (The first random string always contains an embedded NUL so that
4192 * __stack_chk_guard also protects against C string vulnerabilities)
4193 */
4194 error = exec_add_entropy_key(imgp, GUARD_KEY, GUARD_VALUES, TRUE);
4195 if (error) {
4196 goto bad;
4197 }
4198 imgp->ip_applec++;
4199
4200 /*
4201 * Supply libc with entropy for system malloc.
4202 */
4203 error = exec_add_entropy_key(imgp, ENTROPY_KEY, ENTROPY_VALUES, FALSE);
4204 if (error) {
4205 goto bad;
4206 }
4207 imgp->ip_applec++;
4208
4209 /*
4210 * Add MAIN_STACK_KEY: Supplies the address and size of the main thread's
4211 * stack if it was allocated by the kernel.
4212 *
4213 * The guard page is not included in this stack size as libpthread
4214 * expects to add it back in after receiving this value.
4215 */
4216 if (load_result->unixproc) {
4217 char stack_string[strlen(MAIN_STACK_KEY) + (HEX_STR_LEN + 1) * MAIN_STACK_VALUES + 1];
4218 snprintf(stack_string, sizeof(stack_string),
4219 MAIN_STACK_KEY "0x%llx,0x%llx,0x%llx,0x%llx",
4220 (uint64_t)load_result->user_stack,
4221 (uint64_t)load_result->user_stack_size,
4222 (uint64_t)load_result->user_stack_alloc,
4223 (uint64_t)load_result->user_stack_alloc_size);
4224 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(stack_string), UIO_SYSSPACE, FALSE);
4225 if (error) {
4226 goto bad;
4227 }
4228 imgp->ip_applec++;
4229 }
4230
4231 /* Align the tail of the combined applev area */
4232 while (imgp->ip_strspace % img_ptr_size != 0) {
4233 *imgp->ip_strendp++ = '\0';
4234 imgp->ip_strspace--;
4235 }
4236
4237 bad:
4238 return error;
4239 }
4240
4241 #define unix_stack_size(p) (p->p_rlimit[RLIMIT_STACK].rlim_cur)
4242
4243 /*
4244 * exec_check_permissions
4245 *
4246 * Description: Verify that the file that is being attempted to be executed
4247 * is in fact allowed to be executed based on it POSIX file
4248 * permissions and other access control criteria
4249 *
4250 * Parameters: struct image_params * the image parameter block
4251 *
4252 * Returns: 0 Success
4253 * EACCES Permission denied
4254 * ENOEXEC Executable file format error
4255 * ETXTBSY Text file busy [misuse of error code]
4256 * vnode_getattr:???
4257 * vnode_authorize:???
4258 */
4259 static int
4260 exec_check_permissions(struct image_params *imgp)
4261 {
4262 struct vnode *vp = imgp->ip_vp;
4263 struct vnode_attr *vap = imgp->ip_vattr;
4264 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
4265 int error;
4266 kauth_action_t action;
4267
4268 /* Only allow execution of regular files */
4269 if (!vnode_isreg(vp))
4270 return (EACCES);
4271
4272 /* Get the file attributes that we will be using here and elsewhere */
4273 VATTR_INIT(vap);
4274 VATTR_WANTED(vap, va_uid);
4275 VATTR_WANTED(vap, va_gid);
4276 VATTR_WANTED(vap, va_mode);
4277 VATTR_WANTED(vap, va_fsid);
4278 VATTR_WANTED(vap, va_fileid);
4279 VATTR_WANTED(vap, va_data_size);
4280 if ((error = vnode_getattr(vp, vap, imgp->ip_vfs_context)) != 0)
4281 return (error);
4282
4283 /*
4284 * Ensure that at least one execute bit is on - otherwise root
4285 * will always succeed, and we don't want to happen unless the
4286 * file really is executable.
4287 */
4288 if (!vfs_authopaque(vnode_mount(vp)) && ((vap->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0))
4289 return (EACCES);
4290
4291 /* Disallow zero length files */
4292 if (vap->va_data_size == 0)
4293 return (ENOEXEC);
4294
4295 imgp->ip_arch_offset = (user_size_t)0;
4296 imgp->ip_arch_size = vap->va_data_size;
4297
4298 /* Disable setuid-ness for traced programs or if MNT_NOSUID */
4299 if ((vp->v_mount->mnt_flag & MNT_NOSUID) || (p->p_lflag & P_LTRACED))
4300 vap->va_mode &= ~(VSUID | VSGID);
4301
4302 /*
4303 * Disable _POSIX_SPAWN_ALLOW_DATA_EXEC and _POSIX_SPAWN_DISABLE_ASLR
4304 * flags for setuid/setgid binaries.
4305 */
4306 if (vap->va_mode & (VSUID | VSGID))
4307 imgp->ip_flags &= ~(IMGPF_ALLOW_DATA_EXEC | IMGPF_DISABLE_ASLR);
4308
4309 #if CONFIG_MACF
4310 error = mac_vnode_check_exec(imgp->ip_vfs_context, vp, imgp);
4311 if (error)
4312 return (error);
4313 #endif
4314
4315 /* Check for execute permission */
4316 action = KAUTH_VNODE_EXECUTE;
4317 /* Traced images must also be readable */
4318 if (p->p_lflag & P_LTRACED)
4319 action |= KAUTH_VNODE_READ_DATA;
4320 if ((error = vnode_authorize(vp, NULL, action, imgp->ip_vfs_context)) != 0)
4321 return (error);
4322
4323 #if 0
4324 /* Don't let it run if anyone had it open for writing */
4325 vnode_lock(vp);
4326 if (vp->v_writecount) {
4327 panic("going to return ETXTBSY %x", vp);
4328 vnode_unlock(vp);
4329 return (ETXTBSY);
4330 }
4331 vnode_unlock(vp);
4332 #endif
4333
4334
4335 /* XXX May want to indicate to underlying FS that vnode is open */
4336
4337 return (error);
4338 }
4339
4340
4341 /*
4342 * exec_handle_sugid
4343 *
4344 * Initially clear the P_SUGID in the process flags; if an SUGID process is
4345 * exec'ing a non-SUGID image, then this is the point of no return.
4346 *
4347 * If the image being activated is SUGID, then replace the credential with a
4348 * copy, disable tracing (unless the tracing process is root), reset the
4349 * mach task port to revoke it, set the P_SUGID bit,
4350 *
4351 * If the saved user and group ID will be changing, then make sure it happens
4352 * to a new credential, rather than a shared one.
4353 *
4354 * Set the security token (this is probably obsolete, given that the token
4355 * should not technically be separate from the credential itself).
4356 *
4357 * Parameters: struct image_params * the image parameter block
4358 *
4359 * Returns: void No failure indication
4360 *
4361 * Implicit returns:
4362 * <process credential> Potentially modified/replaced
4363 * <task port> Potentially revoked
4364 * <process flags> P_SUGID bit potentially modified
4365 * <security token> Potentially modified
4366 */
4367 static int
4368 exec_handle_sugid(struct image_params *imgp)
4369 {
4370 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
4371 kauth_cred_t cred = vfs_context_ucred(imgp->ip_vfs_context);
4372 kauth_cred_t my_cred, my_new_cred;
4373 int i;
4374 int leave_sugid_clear = 0;
4375 int mac_reset_ipc = 0;
4376 int error = 0;
4377 task_t task = NULL;
4378 #if CONFIG_MACF
4379 int mac_transition, disjoint_cred = 0;
4380 int label_update_return = 0;
4381
4382 /*
4383 * Determine whether a call to update the MAC label will result in the
4384 * credential changing.
4385 *
4386 * Note: MAC policies which do not actually end up modifying
4387 * the label subsequently are strongly encouraged to
4388 * return 0 for this check, since a non-zero answer will
4389 * slow down the exec fast path for normal binaries.
4390 */
4391 mac_transition = mac_cred_check_label_update_execve(
4392 imgp->ip_vfs_context,
4393 imgp->ip_vp,
4394 imgp->ip_arch_offset,
4395 imgp->ip_scriptvp,
4396 imgp->ip_scriptlabelp,
4397 imgp->ip_execlabelp,
4398 p,
4399 imgp->ip_px_smpx);
4400 #endif
4401
4402 OSBitAndAtomic(~((uint32_t)P_SUGID), &p->p_flag);
4403
4404 /*
4405 * Order of the following is important; group checks must go last,
4406 * as we use the success of the 'ismember' check combined with the
4407 * failure of the explicit match to indicate that we will be setting
4408 * the egid of the process even though the new process did not
4409 * require VSUID/VSGID bits in order for it to set the new group as
4410 * its egid.
4411 *
4412 * Note: Technically, by this we are implying a call to
4413 * setegid() in the new process, rather than implying
4414 * it used its VSGID bit to set the effective group,
4415 * even though there is no code in that process to make
4416 * such a call.
4417 */
4418 if (((imgp->ip_origvattr->va_mode & VSUID) != 0 &&
4419 kauth_cred_getuid(cred) != imgp->ip_origvattr->va_uid) ||
4420 ((imgp->ip_origvattr->va_mode & VSGID) != 0 &&
4421 ((kauth_cred_ismember_gid(cred, imgp->ip_origvattr->va_gid, &leave_sugid_clear) || !leave_sugid_clear) ||
4422 (kauth_cred_getgid(cred) != imgp->ip_origvattr->va_gid)))) {
4423
4424 #if CONFIG_MACF
4425 /* label for MAC transition and neither VSUID nor VSGID */
4426 handle_mac_transition:
4427 #endif
4428
4429 /*
4430 * Replace the credential with a copy of itself if euid or
4431 * egid change.
4432 *
4433 * Note: setuid binaries will automatically opt out of
4434 * group resolver participation as a side effect
4435 * of this operation. This is an intentional
4436 * part of the security model, which requires a
4437 * participating credential be established by
4438 * escalating privilege, setting up all other
4439 * aspects of the credential including whether
4440 * or not to participate in external group
4441 * membership resolution, then dropping their
4442 * effective privilege to that of the desired
4443 * final credential state.
4444 *
4445 * Modifications to p_ucred must be guarded using the
4446 * proc's ucred lock. This prevents others from accessing
4447 * a garbage credential.
4448 */
4449 while (imgp->ip_origvattr->va_mode & VSUID) {
4450 my_cred = kauth_cred_proc_ref(p);
4451 my_new_cred = kauth_cred_setresuid(my_cred, KAUTH_UID_NONE, imgp->ip_origvattr->va_uid, imgp->ip_origvattr->va_uid, KAUTH_UID_NONE);
4452
4453 if (my_new_cred == my_cred) {
4454 kauth_cred_unref(&my_cred);
4455 break;
4456 }
4457
4458 /* update cred on proc */
4459 proc_ucred_lock(p);
4460
4461 if (p->p_ucred != my_cred) {
4462 proc_ucred_unlock(p);
4463 kauth_cred_unref(&my_new_cred);
4464 continue;
4465 }
4466
4467 /* donate cred reference on my_new_cred to p->p_ucred */
4468 p->p_ucred = my_new_cred;
4469 PROC_UPDATE_CREDS_ONPROC(p);
4470 proc_ucred_unlock(p);
4471
4472 /* drop additional reference that was taken on the previous cred */
4473 kauth_cred_unref(&my_cred);
4474
4475 break;
4476 }
4477
4478 while (imgp->ip_origvattr->va_mode & VSGID) {
4479 my_cred = kauth_cred_proc_ref(p);
4480 my_new_cred = kauth_cred_setresgid(my_cred, KAUTH_GID_NONE, imgp->ip_origvattr->va_gid, imgp->ip_origvattr->va_gid);
4481
4482 if (my_new_cred == my_cred) {
4483 kauth_cred_unref(&my_cred);
4484 break;
4485 }
4486
4487 /* update cred on proc */
4488 proc_ucred_lock(p);
4489
4490 if (p->p_ucred != my_cred) {
4491 proc_ucred_unlock(p);
4492 kauth_cred_unref(&my_new_cred);
4493 continue;
4494 }
4495
4496 /* donate cred reference on my_new_cred to p->p_ucred */
4497 p->p_ucred = my_new_cred;
4498 PROC_UPDATE_CREDS_ONPROC(p);
4499 proc_ucred_unlock(p);
4500
4501 /* drop additional reference that was taken on the previous cred */
4502 kauth_cred_unref(&my_cred);
4503
4504 break;
4505 }
4506
4507 #if CONFIG_MACF
4508 /*
4509 * If a policy has indicated that it will transition the label,
4510 * before making the call into the MAC policies, get a new
4511 * duplicate credential, so they can modify it without
4512 * modifying any others sharing it.
4513 */
4514 if (mac_transition) {
4515 /*
4516 * This hook may generate upcalls that require
4517 * importance donation from the kernel.
4518 * (23925818)
4519 */
4520 thread_t thread = current_thread();
4521 thread_enable_send_importance(thread, TRUE);
4522 kauth_proc_label_update_execve(p,
4523 imgp->ip_vfs_context,
4524 imgp->ip_vp,
4525 imgp->ip_arch_offset,
4526 imgp->ip_scriptvp,
4527 imgp->ip_scriptlabelp,
4528 imgp->ip_execlabelp,
4529 &imgp->ip_csflags,
4530 imgp->ip_px_smpx,
4531 &disjoint_cred, /* will be non zero if disjoint */
4532 &label_update_return);
4533 thread_enable_send_importance(thread, FALSE);
4534
4535 if (disjoint_cred) {
4536 /*
4537 * If updating the MAC label resulted in a
4538 * disjoint credential, flag that we need to
4539 * set the P_SUGID bit. This protects
4540 * against debuggers being attached by an
4541 * insufficiently privileged process onto the
4542 * result of a transition to a more privileged
4543 * credential.
4544 */
4545 leave_sugid_clear = 0;
4546 }
4547
4548 imgp->ip_mac_return = label_update_return;
4549 }
4550
4551 mac_reset_ipc = mac_proc_check_inherit_ipc_ports(p, p->p_textvp, p->p_textoff, imgp->ip_vp, imgp->ip_arch_offset, imgp->ip_scriptvp);
4552
4553 #endif /* CONFIG_MACF */
4554
4555 /*
4556 * If 'leave_sugid_clear' is non-zero, then we passed the
4557 * VSUID and MACF checks, and successfully determined that
4558 * the previous cred was a member of the VSGID group, but
4559 * that it was not the default at the time of the execve,
4560 * and that the post-labelling credential was not disjoint.
4561 * So we don't set the P_SUGID or reset mach ports and fds
4562 * on the basis of simply running this code.
4563 */
4564 if (mac_reset_ipc || !leave_sugid_clear) {
4565 /*
4566 * Have mach reset the task and thread ports.
4567 * We don't want anyone who had the ports before
4568 * a setuid exec to be able to access/control the
4569 * task/thread after.
4570 */
4571 ipc_task_reset((imgp->ip_new_thread != NULL) ?
4572 get_threadtask(imgp->ip_new_thread) : p->task);
4573 ipc_thread_reset((imgp->ip_new_thread != NULL) ?
4574 imgp->ip_new_thread : current_thread());
4575 }
4576
4577 if (!leave_sugid_clear) {
4578 /*
4579 * Flag the process as setuid.
4580 */
4581 OSBitOrAtomic(P_SUGID, &p->p_flag);
4582
4583 /*
4584 * Radar 2261856; setuid security hole fix
4585 * XXX For setuid processes, attempt to ensure that
4586 * stdin, stdout, and stderr are already allocated.
4587 * We do not want userland to accidentally allocate
4588 * descriptors in this range which has implied meaning
4589 * to libc.
4590 */
4591 for (i = 0; i < 3; i++) {
4592
4593 if (p->p_fd->fd_ofiles[i] != NULL)
4594 continue;
4595
4596 /*
4597 * Do the kernel equivalent of
4598 *
4599 * if i == 0
4600 * (void) open("/dev/null", O_RDONLY);
4601 * else
4602 * (void) open("/dev/null", O_WRONLY);
4603 */
4604
4605 struct fileproc *fp;
4606 int indx;
4607 int flag;
4608 struct nameidata *ndp = NULL;
4609
4610 if (i == 0)
4611 flag = FREAD;
4612 else
4613 flag = FWRITE;
4614
4615 if ((error = falloc(p,
4616 &fp, &indx, imgp->ip_vfs_context)) != 0)
4617 continue;
4618
4619 MALLOC(ndp, struct nameidata *, sizeof(*ndp), M_TEMP, M_WAITOK | M_ZERO);
4620 if (ndp == NULL) {
4621 fp_free(p, indx, fp);
4622 error = ENOMEM;
4623 break;
4624 }
4625
4626 NDINIT(ndp, LOOKUP, OP_OPEN, FOLLOW, UIO_SYSSPACE,
4627 CAST_USER_ADDR_T("/dev/null"),
4628 imgp->ip_vfs_context);
4629
4630 if ((error = vn_open(ndp, flag, 0)) != 0) {
4631 fp_free(p, indx, fp);
4632 FREE(ndp, M_TEMP);
4633 break;
4634 }
4635
4636 struct fileglob *fg = fp->f_fglob;
4637
4638 fg->fg_flag = flag;
4639 fg->fg_ops = &vnops;
4640 fg->fg_data = ndp->ni_vp;
4641
4642 vnode_put(ndp->ni_vp);
4643
4644 proc_fdlock(p);
4645 procfdtbl_releasefd(p, indx, NULL);
4646 fp_drop(p, indx, fp, 1);
4647 proc_fdunlock(p);
4648
4649 FREE(ndp, M_TEMP);
4650 }
4651 }
4652 }
4653 #if CONFIG_MACF
4654 else {
4655 /*
4656 * We are here because we were told that the MAC label will
4657 * be transitioned, and the binary is not VSUID or VSGID; to
4658 * deal with this case, we could either duplicate a lot of
4659 * code, or we can indicate we want to default the P_SUGID
4660 * bit clear and jump back up.
4661 */
4662 if (mac_transition) {
4663 leave_sugid_clear = 1;
4664 goto handle_mac_transition;
4665 }
4666 }
4667
4668 #endif /* CONFIG_MACF */
4669
4670 /*
4671 * Implement the semantic where the effective user and group become
4672 * the saved user and group in exec'ed programs.
4673 *
4674 * Modifications to p_ucred must be guarded using the
4675 * proc's ucred lock. This prevents others from accessing
4676 * a garbage credential.
4677 */
4678 for (;;) {
4679 my_cred = kauth_cred_proc_ref(p);
4680 my_new_cred = kauth_cred_setsvuidgid(my_cred, kauth_cred_getuid(my_cred), kauth_cred_getgid(my_cred));
4681
4682 if (my_new_cred == my_cred) {
4683 kauth_cred_unref(&my_cred);
4684 break;
4685 }
4686
4687 /* update cred on proc */
4688 proc_ucred_lock(p);
4689
4690 if (p->p_ucred != my_cred) {
4691 proc_ucred_unlock(p);
4692 kauth_cred_unref(&my_new_cred);
4693 continue;
4694 }
4695
4696 /* donate cred reference on my_new_cred to p->p_ucred */
4697 p->p_ucred = my_new_cred;
4698 PROC_UPDATE_CREDS_ONPROC(p);
4699 proc_ucred_unlock(p);
4700
4701 /* drop additional reference that was taken on the previous cred */
4702 kauth_cred_unref(&my_cred);
4703
4704 break;
4705 }
4706
4707
4708 /* Update the process' identity version and set the security token */
4709 p->p_idversion++;
4710
4711 if (imgp->ip_new_thread != NULL) {
4712 task = get_threadtask(imgp->ip_new_thread);
4713 } else {
4714 task = p->task;
4715 }
4716 set_security_token_task_internal(p, task);
4717
4718 return(error);
4719 }
4720
4721
4722 /*
4723 * create_unix_stack
4724 *
4725 * Description: Set the user stack address for the process to the provided
4726 * address. If a custom stack was not set as a result of the
4727 * load process (i.e. as specified by the image file for the
4728 * executable), then allocate the stack in the provided map and
4729 * set up appropriate guard pages for enforcing administrative
4730 * limits on stack growth, if they end up being needed.
4731 *
4732 * Parameters: p Process to set stack on
4733 * load_result Information from mach-o load commands
4734 * map Address map in which to allocate the new stack
4735 *
4736 * Returns: KERN_SUCCESS Stack successfully created
4737 * !KERN_SUCCESS Mach failure code
4738 */
4739 static kern_return_t
4740 create_unix_stack(vm_map_t map, load_result_t* load_result,
4741 proc_t p)
4742 {
4743 mach_vm_size_t size, prot_size;
4744 mach_vm_offset_t addr, prot_addr;
4745 kern_return_t kr;
4746
4747 mach_vm_address_t user_stack = load_result->user_stack;
4748
4749 proc_lock(p);
4750 p->user_stack = user_stack;
4751 proc_unlock(p);
4752
4753 if (load_result->user_stack_alloc_size > 0) {
4754 /*
4755 * Allocate enough space for the maximum stack size we
4756 * will ever authorize and an extra page to act as
4757 * a guard page for stack overflows. For default stacks,
4758 * vm_initial_limit_stack takes care of the extra guard page.
4759 * Otherwise we must allocate it ourselves.
4760 */
4761 if (mach_vm_round_page_overflow(load_result->user_stack_alloc_size, &size)) {
4762 return KERN_INVALID_ARGUMENT;
4763 }
4764 addr = mach_vm_trunc_page(load_result->user_stack - size);
4765 kr = mach_vm_allocate(map, &addr, size,
4766 VM_MAKE_TAG(VM_MEMORY_STACK) |
4767 VM_FLAGS_FIXED);
4768 if (kr != KERN_SUCCESS) {
4769 // Can't allocate at default location, try anywhere
4770 addr = 0;
4771 kr = mach_vm_allocate(map, &addr, size,
4772 VM_MAKE_TAG(VM_MEMORY_STACK) |
4773 VM_FLAGS_ANYWHERE);
4774 if (kr != KERN_SUCCESS) {
4775 return kr;
4776 }
4777
4778 user_stack = addr + size;
4779 load_result->user_stack = user_stack;
4780
4781 proc_lock(p);
4782 p->user_stack = user_stack;
4783 proc_unlock(p);
4784 }
4785
4786 load_result->user_stack_alloc = addr;
4787
4788 /*
4789 * And prevent access to what's above the current stack
4790 * size limit for this process.
4791 */
4792 if (load_result->user_stack_size == 0) {
4793 load_result->user_stack_size = unix_stack_size(p);
4794 prot_size = mach_vm_trunc_page(size - load_result->user_stack_size);
4795 } else {
4796 prot_size = PAGE_SIZE;
4797 }
4798
4799 prot_addr = addr;
4800 kr = mach_vm_protect(map,
4801 prot_addr,
4802 prot_size,
4803 FALSE,
4804 VM_PROT_NONE);
4805 if (kr != KERN_SUCCESS) {
4806 (void)mach_vm_deallocate(map, addr, size);
4807 return kr;
4808 }
4809 }
4810
4811 return KERN_SUCCESS;
4812 }
4813
4814 #include <sys/reboot.h>
4815
4816 /*
4817 * load_init_program_at_path
4818 *
4819 * Description: Load the "init" program; in most cases, this will be "launchd"
4820 *
4821 * Parameters: p Process to call execve() to create
4822 * the "init" program
4823 * scratch_addr Page in p, scratch space
4824 * path NULL terminated path
4825 *
4826 * Returns: KERN_SUCCESS Success
4827 * !KERN_SUCCESS See execve/mac_execve for error codes
4828 *
4829 * Notes: The process that is passed in is the first manufactured
4830 * process on the system, and gets here via bsd_ast() firing
4831 * for the first time. This is done to ensure that bsd_init()
4832 * has run to completion.
4833 *
4834 * The address map of the first manufactured process matches the
4835 * word width of the kernel. Once the self-exec completes, the
4836 * initproc might be different.
4837 */
4838 static int
4839 load_init_program_at_path(proc_t p, user_addr_t scratch_addr, const char* path)
4840 {
4841 int retval[2];
4842 int error;
4843 struct execve_args init_exec_args;
4844 user_addr_t argv0 = USER_ADDR_NULL, argv1 = USER_ADDR_NULL;
4845
4846 /*
4847 * Validate inputs and pre-conditions
4848 */
4849 assert(p);
4850 assert(scratch_addr);
4851 assert(path);
4852
4853 /*
4854 * Copy out program name.
4855 */
4856 size_t path_length = strlen(path) + 1;
4857 argv0 = scratch_addr;
4858 error = copyout(path, argv0, path_length);
4859 if (error)
4860 return error;
4861
4862 scratch_addr = USER_ADDR_ALIGN(scratch_addr + path_length, sizeof(user_addr_t));
4863
4864 /*
4865 * Put out first (and only) argument, similarly.
4866 * Assumes everything fits in a page as allocated above.
4867 */
4868 if (boothowto & RB_SINGLE) {
4869 const char *init_args = "-s";
4870 size_t init_args_length = strlen(init_args)+1;
4871
4872 argv1 = scratch_addr;
4873 error = copyout(init_args, argv1, init_args_length);
4874 if (error)
4875 return error;
4876
4877 scratch_addr = USER_ADDR_ALIGN(scratch_addr + init_args_length, sizeof(user_addr_t));
4878 }
4879
4880 if (proc_is64bit(p)) {
4881 user64_addr_t argv64bit[3];
4882
4883 argv64bit[0] = argv0;
4884 argv64bit[1] = argv1;
4885 argv64bit[2] = USER_ADDR_NULL;
4886
4887 error = copyout(argv64bit, scratch_addr, sizeof(argv64bit));
4888 if (error)
4889 return error;
4890 } else {
4891 user32_addr_t argv32bit[3];
4892
4893 argv32bit[0] = (user32_addr_t)argv0;
4894 argv32bit[1] = (user32_addr_t)argv1;
4895 argv32bit[2] = USER_ADDR_NULL;
4896
4897 error = copyout(argv32bit, scratch_addr, sizeof(argv32bit));
4898 if (error)
4899 return error;
4900 }
4901
4902 /*
4903 * Set up argument block for fake call to execve.
4904 */
4905 init_exec_args.fname = argv0;
4906 init_exec_args.argp = scratch_addr;
4907 init_exec_args.envp = USER_ADDR_NULL;
4908
4909 /*
4910 * So that init task is set with uid,gid 0 token
4911 */
4912 set_security_token(p);
4913
4914 return execve(p, &init_exec_args, retval);
4915 }
4916
4917 static const char * init_programs[] = {
4918 #if DEBUG
4919 "/usr/local/sbin/launchd.debug",
4920 #endif
4921 #if DEVELOPMENT || DEBUG
4922 "/usr/local/sbin/launchd.development",
4923 #endif
4924 "/sbin/launchd",
4925 };
4926
4927 /*
4928 * load_init_program
4929 *
4930 * Description: Load the "init" program; in most cases, this will be "launchd"
4931 *
4932 * Parameters: p Process to call execve() to create
4933 * the "init" program
4934 *
4935 * Returns: (void)
4936 *
4937 * Notes: The process that is passed in is the first manufactured
4938 * process on the system, and gets here via bsd_ast() firing
4939 * for the first time. This is done to ensure that bsd_init()
4940 * has run to completion.
4941 *
4942 * In DEBUG & DEVELOPMENT builds, the launchdsuffix boot-arg
4943 * may be used to select a specific launchd executable. As with
4944 * the kcsuffix boot-arg, setting launchdsuffix to "" or "release"
4945 * will force /sbin/launchd to be selected.
4946 *
4947 * Search order by build:
4948 *
4949 * DEBUG DEVELOPMENT RELEASE PATH
4950 * ----------------------------------------------------------------------------------
4951 * 1 1 NA /usr/local/sbin/launchd.$LAUNCHDSUFFIX
4952 * 2 NA NA /usr/local/sbin/launchd.debug
4953 * 3 2 NA /usr/local/sbin/launchd.development
4954 * 4 3 1 /sbin/launchd
4955 */
4956 void
4957 load_init_program(proc_t p)
4958 {
4959 uint32_t i;
4960 int error;
4961 vm_map_t map = current_map();
4962 mach_vm_offset_t scratch_addr = 0;
4963 mach_vm_size_t map_page_size = vm_map_page_size(map);
4964
4965 (void) mach_vm_allocate(map, &scratch_addr, map_page_size, VM_FLAGS_ANYWHERE);
4966 #if CONFIG_MEMORYSTATUS && CONFIG_JETSAM
4967 (void) memorystatus_init_at_boot_snapshot();
4968 #endif /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */
4969
4970 #if DEBUG || DEVELOPMENT
4971 /* Check for boot-arg suffix first */
4972 char launchd_suffix[64];
4973 if (PE_parse_boot_argn("launchdsuffix", launchd_suffix, sizeof(launchd_suffix))) {
4974 char launchd_path[128];
4975 boolean_t is_release_suffix = ((launchd_suffix[0] == 0) ||
4976 (strcmp(launchd_suffix, "release") == 0));
4977
4978 if (is_release_suffix) {
4979 error = load_init_program_at_path(p, (user_addr_t)scratch_addr, "/sbin/launchd");
4980 if (!error)
4981 return;
4982
4983 panic("Process 1 exec of launchd.release failed, errno %d", error);
4984 } else {
4985 strlcpy(launchd_path, "/usr/local/sbin/launchd.", sizeof(launchd_path));
4986 strlcat(launchd_path, launchd_suffix, sizeof(launchd_path));
4987
4988 /* All the error data is lost in the loop below, don't
4989 * attempt to save it. */
4990 if (!load_init_program_at_path(p, (user_addr_t)scratch_addr, launchd_path)) {
4991 return;
4992 }
4993 }
4994 }
4995 #endif
4996
4997 error = ENOENT;
4998 for (i = 0; i < sizeof(init_programs)/sizeof(init_programs[0]); i++) {
4999 error = load_init_program_at_path(p, (user_addr_t)scratch_addr, init_programs[i]);
5000 if (!error)
5001 return;
5002 }
5003
5004 panic("Process 1 exec of %s failed, errno %d", ((i == 0) ? "<null>" : init_programs[i-1]), error);
5005 }
5006
5007 /*
5008 * load_return_to_errno
5009 *
5010 * Description: Convert a load_return_t (Mach error) to an errno (BSD error)
5011 *
5012 * Parameters: lrtn Mach error number
5013 *
5014 * Returns: (int) BSD error number
5015 * 0 Success
5016 * EBADARCH Bad architecture
5017 * EBADMACHO Bad Mach object file
5018 * ESHLIBVERS Bad shared library version
5019 * ENOMEM Out of memory/resource shortage
5020 * EACCES Access denied
5021 * ENOENT Entry not found (usually "file does
5022 * does not exist")
5023 * EIO An I/O error occurred
5024 * EBADEXEC The executable is corrupt/unknown
5025 */
5026 static int
5027 load_return_to_errno(load_return_t lrtn)
5028 {
5029 switch (lrtn) {
5030 case LOAD_SUCCESS:
5031 return 0;
5032 case LOAD_BADARCH:
5033 return EBADARCH;
5034 case LOAD_BADMACHO:
5035 case LOAD_BADMACHO_UPX:
5036 return EBADMACHO;
5037 case LOAD_SHLIB:
5038 return ESHLIBVERS;
5039 case LOAD_NOSPACE:
5040 case LOAD_RESOURCE:
5041 return ENOMEM;
5042 case LOAD_PROTECT:
5043 return EACCES;
5044 case LOAD_ENOENT:
5045 return ENOENT;
5046 case LOAD_IOERROR:
5047 return EIO;
5048 case LOAD_FAILURE:
5049 case LOAD_DECRYPTFAIL:
5050 default:
5051 return EBADEXEC;
5052 }
5053 }
5054
5055 #include <mach/mach_types.h>
5056 #include <mach/vm_prot.h>
5057 #include <mach/semaphore.h>
5058 #include <mach/sync_policy.h>
5059 #include <kern/clock.h>
5060 #include <mach/kern_return.h>
5061
5062 /*
5063 * execargs_alloc
5064 *
5065 * Description: Allocate the block of memory used by the execve arguments.
5066 * At the same time, we allocate a page so that we can read in
5067 * the first page of the image.
5068 *
5069 * Parameters: struct image_params * the image parameter block
5070 *
5071 * Returns: 0 Success
5072 * EINVAL Invalid argument
5073 * EACCES Permission denied
5074 * EINTR Interrupted function
5075 * ENOMEM Not enough space
5076 *
5077 * Notes: This is a temporary allocation into the kernel address space
5078 * to enable us to copy arguments in from user space. This is
5079 * necessitated by not mapping the process calling execve() into
5080 * the kernel address space during the execve() system call.
5081 *
5082 * We assemble the argument and environment, etc., into this
5083 * region before copying it as a single block into the child
5084 * process address space (at the top or bottom of the stack,
5085 * depending on which way the stack grows; see the function
5086 * exec_copyout_strings() for details).
5087 *
5088 * This ends up with a second (possibly unnecessary) copy compared
5089 * with assembing the data directly into the child address space,
5090 * instead, but since we cannot be guaranteed that the parent has
5091 * not modified its environment, we can't really know that it's
5092 * really a block there as well.
5093 */
5094
5095
5096 static int execargs_waiters = 0;
5097 lck_mtx_t *execargs_cache_lock;
5098
5099 static void
5100 execargs_lock_lock(void) {
5101 lck_mtx_lock_spin(execargs_cache_lock);
5102 }
5103
5104 static void
5105 execargs_lock_unlock(void) {
5106 lck_mtx_unlock(execargs_cache_lock);
5107 }
5108
5109 static wait_result_t
5110 execargs_lock_sleep(void) {
5111 return(lck_mtx_sleep(execargs_cache_lock, LCK_SLEEP_DEFAULT, &execargs_free_count, THREAD_INTERRUPTIBLE));
5112 }
5113
5114 static kern_return_t
5115 execargs_purgeable_allocate(char **execarg_address) {
5116 kern_return_t kr = vm_allocate(bsd_pageable_map, (vm_offset_t *)execarg_address, BSD_PAGEABLE_SIZE_PER_EXEC, VM_FLAGS_ANYWHERE | VM_FLAGS_PURGABLE);
5117 assert(kr == KERN_SUCCESS);
5118 return kr;
5119 }
5120
5121 static kern_return_t
5122 execargs_purgeable_reference(void *execarg_address) {
5123 int state = VM_PURGABLE_NONVOLATILE;
5124 kern_return_t kr = vm_purgable_control(bsd_pageable_map, (vm_offset_t) execarg_address, VM_PURGABLE_SET_STATE, &state);
5125
5126 assert(kr == KERN_SUCCESS);
5127 return kr;
5128 }
5129
5130 static kern_return_t
5131 execargs_purgeable_volatilize(void *execarg_address) {
5132 int state = VM_PURGABLE_VOLATILE | VM_PURGABLE_ORDERING_OBSOLETE;
5133 kern_return_t kr;
5134 kr = vm_purgable_control(bsd_pageable_map, (vm_offset_t) execarg_address, VM_PURGABLE_SET_STATE, &state);
5135
5136 assert(kr == KERN_SUCCESS);
5137
5138 return kr;
5139 }
5140
5141 static void
5142 execargs_wakeup_waiters(void) {
5143 thread_wakeup(&execargs_free_count);
5144 }
5145
5146 static int
5147 execargs_alloc(struct image_params *imgp)
5148 {
5149 kern_return_t kret;
5150 wait_result_t res;
5151 int i, cache_index = -1;
5152
5153 execargs_lock_lock();
5154
5155 while (execargs_free_count == 0) {
5156 execargs_waiters++;
5157 res = execargs_lock_sleep();
5158 execargs_waiters--;
5159 if (res != THREAD_AWAKENED) {
5160 execargs_lock_unlock();
5161 return (EINTR);
5162 }
5163 }
5164
5165 execargs_free_count--;
5166
5167 for (i = 0; i < execargs_cache_size; i++) {
5168 vm_offset_t element = execargs_cache[i];
5169 if (element) {
5170 cache_index = i;
5171 imgp->ip_strings = (char *)(execargs_cache[i]);
5172 execargs_cache[i] = 0;
5173 break;
5174 }
5175 }
5176
5177 assert(execargs_free_count >= 0);
5178
5179 execargs_lock_unlock();
5180
5181 if (cache_index == -1) {
5182 kret = execargs_purgeable_allocate(&imgp->ip_strings);
5183 }
5184 else
5185 kret = execargs_purgeable_reference(imgp->ip_strings);
5186
5187 assert(kret == KERN_SUCCESS);
5188 if (kret != KERN_SUCCESS) {
5189 return (ENOMEM);
5190 }
5191
5192 /* last page used to read in file headers */
5193 imgp->ip_vdata = imgp->ip_strings + ( NCARGS + PAGE_SIZE );
5194 imgp->ip_strendp = imgp->ip_strings;
5195 imgp->ip_argspace = NCARGS;
5196 imgp->ip_strspace = ( NCARGS + PAGE_SIZE );
5197
5198 return (0);
5199 }
5200
5201 /*
5202 * execargs_free
5203 *
5204 * Description: Free the block of memory used by the execve arguments and the
5205 * first page of the executable by a previous call to the function
5206 * execargs_alloc().
5207 *
5208 * Parameters: struct image_params * the image parameter block
5209 *
5210 * Returns: 0 Success
5211 * EINVAL Invalid argument
5212 * EINTR Oeration interrupted
5213 */
5214 static int
5215 execargs_free(struct image_params *imgp)
5216 {
5217 kern_return_t kret;
5218 int i;
5219 boolean_t needs_wakeup = FALSE;
5220
5221 kret = execargs_purgeable_volatilize(imgp->ip_strings);
5222
5223 execargs_lock_lock();
5224 execargs_free_count++;
5225
5226 for (i = 0; i < execargs_cache_size; i++) {
5227 vm_offset_t element = execargs_cache[i];
5228 if (element == 0) {
5229 execargs_cache[i] = (vm_offset_t) imgp->ip_strings;
5230 imgp->ip_strings = NULL;
5231 break;
5232 }
5233 }
5234
5235 assert(imgp->ip_strings == NULL);
5236
5237 if (execargs_waiters > 0)
5238 needs_wakeup = TRUE;
5239
5240 execargs_lock_unlock();
5241
5242 if (needs_wakeup == TRUE)
5243 execargs_wakeup_waiters();
5244
5245 return ((kret == KERN_SUCCESS ? 0 : EINVAL));
5246 }
5247
5248 static void
5249 exec_resettextvp(proc_t p, struct image_params *imgp)
5250 {
5251 vnode_t vp;
5252 off_t offset;
5253 vnode_t tvp = p->p_textvp;
5254 int ret;
5255
5256 vp = imgp->ip_vp;
5257 offset = imgp->ip_arch_offset;
5258
5259 if (vp == NULLVP)
5260 panic("exec_resettextvp: expected valid vp");
5261
5262 ret = vnode_ref(vp);
5263 proc_lock(p);
5264 if (ret == 0) {
5265 p->p_textvp = vp;
5266 p->p_textoff = offset;
5267 } else {
5268 p->p_textvp = NULLVP; /* this is paranoia */
5269 p->p_textoff = 0;
5270 }
5271 proc_unlock(p);
5272
5273 if ( tvp != NULLVP) {
5274 if (vnode_getwithref(tvp) == 0) {
5275 vnode_rele(tvp);
5276 vnode_put(tvp);
5277 }
5278 }
5279
5280 }
5281
5282 /*
5283 * If the process is not signed or if it contains entitlements, we
5284 * need to communicate through the task_access_port to taskgated.
5285 *
5286 * taskgated will provide a detached code signature if present, and
5287 * will enforce any restrictions on entitlements.
5288 */
5289
5290 static boolean_t
5291 taskgated_required(proc_t p, boolean_t *require_success)
5292 {
5293 size_t length;
5294 void *blob;
5295 int error;
5296
5297 if (cs_debug > 2)
5298 csvnode_print_debug(p->p_textvp);
5299
5300 const int can_skip_taskgated = csproc_get_platform_binary(p) && !csproc_get_platform_path(p);
5301 if (can_skip_taskgated) {
5302 if (cs_debug) printf("taskgated not required for: %s\n", p->p_name);
5303 *require_success = FALSE;
5304 return FALSE;
5305 }
5306
5307 if ((p->p_csflags & CS_VALID) == 0) {
5308 *require_success = FALSE;
5309 return TRUE;
5310 }
5311
5312 error = cs_entitlements_blob_get(p, &blob, &length);
5313 if (error == 0 && blob != NULL) {
5314 /*
5315 * fatal on the desktop when entitlements are present,
5316 * unless we started in single-user mode
5317 */
5318 if ((boothowto & RB_SINGLE) == 0)
5319 *require_success = TRUE;
5320 /*
5321 * Allow initproc to run without causing taskgated to launch
5322 */
5323 if (p == initproc) {
5324 *require_success = FALSE;
5325 return FALSE;
5326 }
5327
5328 if (cs_debug) printf("taskgated required for: %s\n", p->p_name);
5329
5330 return TRUE;
5331 }
5332
5333 *require_success = FALSE;
5334 return FALSE;
5335 }
5336
5337 /*
5338 * __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__
5339 *
5340 * Description: Waits for the userspace daemon to respond to the request
5341 * we made. Function declared non inline to be visible in
5342 * stackshots and spindumps as well as debugging.
5343 */
5344 __attribute__((noinline)) int
5345 __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(mach_port_t task_access_port, int32_t new_pid)
5346 {
5347 return find_code_signature(task_access_port, new_pid);
5348 }
5349
5350 static int
5351 check_for_signature(proc_t p, struct image_params *imgp)
5352 {
5353 mach_port_t port = NULL;
5354 kern_return_t kr = KERN_FAILURE;
5355 int error = EACCES;
5356 boolean_t unexpected_failure = FALSE;
5357 unsigned char hash[SHA1_RESULTLEN];
5358 boolean_t require_success = FALSE;
5359 int spawn = (imgp->ip_flags & IMGPF_SPAWN);
5360 int vfexec = (imgp->ip_flags & IMGPF_VFORK_EXEC);
5361 os_reason_t signature_failure_reason = OS_REASON_NULL;
5362
5363 /*
5364 * Override inherited code signing flags with the
5365 * ones for the process that is being successfully
5366 * loaded
5367 */
5368 proc_lock(p);
5369 p->p_csflags = imgp->ip_csflags;
5370 proc_unlock(p);
5371
5372 /* Set the switch_protect flag on the map */
5373 if(p->p_csflags & (CS_HARD|CS_KILL)) {
5374 vm_map_switch_protect(get_task_map(p->task), TRUE);
5375 }
5376
5377 /*
5378 * image activation may be failed due to policy
5379 * which is unexpected but security framework does not
5380 * approve of exec, kill and return immediately.
5381 */
5382 if (imgp->ip_mac_return != 0) {
5383
5384 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
5385 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_SECURITY_POLICY, 0, 0);
5386 signature_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_SECURITY_POLICY);
5387 error = imgp->ip_mac_return;
5388 unexpected_failure = TRUE;
5389 goto done;
5390 }
5391
5392 if (imgp->ip_cs_error != OS_REASON_NULL) {
5393 signature_failure_reason = imgp->ip_cs_error;
5394 imgp->ip_cs_error = OS_REASON_NULL;
5395 error = EACCES;
5396 goto done;
5397 }
5398
5399 /* check if callout to taskgated is needed */
5400 if (!taskgated_required(p, &require_success)) {
5401 error = 0;
5402 goto done;
5403 }
5404
5405 kr = task_get_task_access_port(p->task, &port);
5406 if (KERN_SUCCESS != kr || !IPC_PORT_VALID(port)) {
5407 error = 0;
5408 if (require_success) {
5409 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
5410 p->p_pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASK_ACCESS_PORT, 0, 0);
5411 signature_failure_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASK_ACCESS_PORT);
5412 error = EACCES;
5413 }
5414 goto done;
5415 }
5416
5417 /*
5418 * taskgated returns KERN_SUCCESS if it has completed its work
5419 * and the exec should continue, KERN_FAILURE if the exec should
5420 * fail, or it may error out with different error code in an
5421 * event of mig failure (e.g. process was signalled during the
5422 * rpc call, taskgated died, mig server died etc.).
5423 */
5424
5425 kr = __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(port, p->p_pid);
5426 switch (kr) {
5427 case KERN_SUCCESS:
5428 error = 0;
5429 break;
5430 case KERN_FAILURE:
5431 error = EACCES;
5432
5433 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
5434 p->p_pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASKGATED_INVALID_SIG, 0, 0);
5435 signature_failure_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASKGATED_INVALID_SIG);
5436 goto done;
5437 default:
5438 error = EACCES;
5439
5440 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
5441 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_TASKGATED_OTHER, 0, 0);
5442 signature_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_TASKGATED_OTHER);
5443 unexpected_failure = TRUE;
5444 goto done;
5445 }
5446
5447 /* Only do this if exec_resettextvp() did not fail */
5448 if (p->p_textvp != NULLVP) {
5449 /*
5450 * If there's a new code directory, mark this process
5451 * as signed.
5452 */
5453 if (0 == ubc_cs_getcdhash(p->p_textvp, p->p_textoff, hash)) {
5454 proc_lock(p);
5455 p->p_csflags |= CS_VALID;
5456 proc_unlock(p);
5457 }
5458 }
5459
5460 done:
5461 if (0 != error) {
5462 if (!unexpected_failure)
5463 p->p_csflags |= CS_KILLED;
5464 /* make very sure execution fails */
5465 if (vfexec || spawn) {
5466 assert(signature_failure_reason != OS_REASON_NULL);
5467 psignal_vfork_with_reason(p, p->task, imgp->ip_new_thread,
5468 SIGKILL, signature_failure_reason);
5469 signature_failure_reason = OS_REASON_NULL;
5470 error = 0;
5471 } else {
5472 assert(signature_failure_reason != OS_REASON_NULL);
5473 psignal_with_reason(p, SIGKILL, signature_failure_reason);
5474 signature_failure_reason = OS_REASON_NULL;
5475 }
5476 }
5477
5478 /* If we hit this, we likely would have leaked an exit reason */
5479 assert(signature_failure_reason == OS_REASON_NULL);
5480 return error;
5481 }
5482
5483 /*
5484 * Typically as soon as we start executing this process, the
5485 * first instruction will trigger a VM fault to bring the text
5486 * pages (as executable) into the address space, followed soon
5487 * thereafter by dyld data structures (for dynamic executable).
5488 * To optimize this, as well as improve support for hardware
5489 * debuggers that can only access resident pages present
5490 * in the process' page tables, we prefault some pages if
5491 * possible. Errors are non-fatal.
5492 */
5493 static void exec_prefault_data(proc_t p __unused, struct image_params *imgp, load_result_t *load_result)
5494 {
5495 int ret;
5496 size_t expected_all_image_infos_size;
5497
5498 /*
5499 * Prefault executable or dyld entry point.
5500 */
5501 vm_fault(current_map(),
5502 vm_map_trunc_page(load_result->entry_point,
5503 vm_map_page_mask(current_map())),
5504 VM_PROT_READ | VM_PROT_EXECUTE,
5505 FALSE,
5506 THREAD_UNINT, NULL, 0);
5507
5508 if (imgp->ip_flags & IMGPF_IS_64BIT) {
5509 expected_all_image_infos_size = sizeof(struct user64_dyld_all_image_infos);
5510 } else {
5511 expected_all_image_infos_size = sizeof(struct user32_dyld_all_image_infos);
5512 }
5513
5514 /* Decode dyld anchor structure from <mach-o/dyld_images.h> */
5515 if (load_result->dynlinker &&
5516 load_result->all_image_info_addr &&
5517 load_result->all_image_info_size >= expected_all_image_infos_size) {
5518 union {
5519 struct user64_dyld_all_image_infos infos64;
5520 struct user32_dyld_all_image_infos infos32;
5521 } all_image_infos;
5522
5523 /*
5524 * Pre-fault to avoid copyin() going through the trap handler
5525 * and recovery path.
5526 */
5527 vm_fault(current_map(),
5528 vm_map_trunc_page(load_result->all_image_info_addr,
5529 vm_map_page_mask(current_map())),
5530 VM_PROT_READ | VM_PROT_WRITE,
5531 FALSE,
5532 THREAD_UNINT, NULL, 0);
5533 if ((load_result->all_image_info_addr & PAGE_MASK) + expected_all_image_infos_size > PAGE_SIZE) {
5534 /* all_image_infos straddles a page */
5535 vm_fault(current_map(),
5536 vm_map_trunc_page(load_result->all_image_info_addr + expected_all_image_infos_size - 1,
5537 vm_map_page_mask(current_map())),
5538 VM_PROT_READ | VM_PROT_WRITE,
5539 FALSE,
5540 THREAD_UNINT, NULL, 0);
5541 }
5542
5543 ret = copyin(load_result->all_image_info_addr,
5544 &all_image_infos,
5545 expected_all_image_infos_size);
5546 if (ret == 0 && all_image_infos.infos32.version >= 9) {
5547
5548 user_addr_t notification_address;
5549 user_addr_t dyld_image_address;
5550 user_addr_t dyld_version_address;
5551 user_addr_t dyld_all_image_infos_address;
5552 user_addr_t dyld_slide_amount;
5553
5554 if (imgp->ip_flags & IMGPF_IS_64BIT) {
5555 notification_address = all_image_infos.infos64.notification;
5556 dyld_image_address = all_image_infos.infos64.dyldImageLoadAddress;
5557 dyld_version_address = all_image_infos.infos64.dyldVersion;
5558 dyld_all_image_infos_address = all_image_infos.infos64.dyldAllImageInfosAddress;
5559 } else {
5560 notification_address = all_image_infos.infos32.notification;
5561 dyld_image_address = all_image_infos.infos32.dyldImageLoadAddress;
5562 dyld_version_address = all_image_infos.infos32.dyldVersion;
5563 dyld_all_image_infos_address = all_image_infos.infos32.dyldAllImageInfosAddress;
5564 }
5565
5566 /*
5567 * dyld statically sets up the all_image_infos in its Mach-O
5568 * binary at static link time, with pointers relative to its default
5569 * load address. Since ASLR might slide dyld before its first
5570 * instruction is executed, "dyld_slide_amount" tells us how far
5571 * dyld was loaded compared to its default expected load address.
5572 * All other pointers into dyld's image should be adjusted by this
5573 * amount. At some point later, dyld will fix up pointers to take
5574 * into account the slide, at which point the all_image_infos_address
5575 * field in the structure will match the runtime load address, and
5576 * "dyld_slide_amount" will be 0, if we were to consult it again.
5577 */
5578
5579 dyld_slide_amount = load_result->all_image_info_addr - dyld_all_image_infos_address;
5580
5581 #if 0
5582 kprintf("exec_prefault: 0x%016llx 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%016llx\n",
5583 (uint64_t)load_result->all_image_info_addr,
5584 all_image_infos.infos32.version,
5585 (uint64_t)notification_address,
5586 (uint64_t)dyld_image_address,
5587 (uint64_t)dyld_version_address,
5588 (uint64_t)dyld_all_image_infos_address);
5589 #endif
5590
5591 vm_fault(current_map(),
5592 vm_map_trunc_page(notification_address + dyld_slide_amount,
5593 vm_map_page_mask(current_map())),
5594 VM_PROT_READ | VM_PROT_EXECUTE,
5595 FALSE,
5596 THREAD_UNINT, NULL, 0);
5597 vm_fault(current_map(),
5598 vm_map_trunc_page(dyld_image_address + dyld_slide_amount,
5599 vm_map_page_mask(current_map())),
5600 VM_PROT_READ | VM_PROT_EXECUTE,
5601 FALSE,
5602 THREAD_UNINT, NULL, 0);
5603 vm_fault(current_map(),
5604 vm_map_trunc_page(dyld_version_address + dyld_slide_amount,
5605 vm_map_page_mask(current_map())),
5606 VM_PROT_READ,
5607 FALSE,
5608 THREAD_UNINT, NULL, 0);
5609 vm_fault(current_map(),
5610 vm_map_trunc_page(dyld_all_image_infos_address + dyld_slide_amount,
5611 vm_map_page_mask(current_map())),
5612 VM_PROT_READ | VM_PROT_WRITE,
5613 FALSE,
5614 THREAD_UNINT, NULL, 0);
5615 }
5616 }
5617 }