2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
61 * Author: Avadis Tevanian, Jr., Michael Wayne Young
62 * (These guys wrote the Vax version)
64 * Physical Map management code for Intel i386, i486, and i860.
66 * Manages physical address maps.
68 * In addition to hardware address maps, this
69 * module is called upon to provide software-use-only
70 * maps which may or may not be stored in the same
71 * form as hardware maps. These pseudo-maps are
72 * used to store intermediate results from copy
73 * operations to and from address spaces.
75 * Since the information managed by this module is
76 * also stored by the logical address mapping module,
77 * this module may throw away valid virtual-to-physical
78 * mappings at almost any time. However, invalidations
79 * of virtual-to-physical mappings must be done as
82 * In order to cope with hardware architectures which
83 * make virtual-to-physical map invalidates expensive,
84 * this module may delay invalidate or reduced protection
85 * operations until such time as they are actually
86 * necessary. This module is given full information as
87 * to which processors are currently using which maps,
88 * and to when physical maps must be made correct.
92 #include <mach_ldebug.h>
94 #include <libkern/OSAtomic.h>
96 #include <mach/machine/vm_types.h>
98 #include <mach/boolean.h>
99 #include <kern/thread.h>
100 #include <kern/zalloc.h>
101 #include <kern/queue.h>
102 #include <kern/ledger.h>
103 #include <kern/mach_param.h>
105 #include <kern/lock.h>
106 #include <kern/kalloc.h>
107 #include <kern/spl.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_kern.h>
112 #include <mach/vm_param.h>
113 #include <mach/vm_prot.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
117 #include <mach/machine/vm_param.h>
118 #include <machine/thread.h>
120 #include <kern/misc_protos.h> /* prototyping */
121 #include <i386/misc_protos.h>
122 #include <i386/i386_lowmem.h>
123 #include <x86_64/lowglobals.h>
125 #include <i386/cpuid.h>
126 #include <i386/cpu_data.h>
127 #include <i386/cpu_number.h>
128 #include <i386/machine_cpu.h>
129 #include <i386/seg.h>
130 #include <i386/serial_io.h>
131 #include <i386/cpu_capabilities.h>
132 #include <i386/machine_routines.h>
133 #include <i386/proc_reg.h>
134 #include <i386/tsc.h>
135 #include <i386/pmap_internal.h>
136 #include <i386/pmap_pcid.h>
138 #include <vm/vm_protos.h>
141 #include <i386/mp_desc.h>
142 #include <libkern/kernel_mach_header.h>
144 #include <pexpert/i386/efi.h>
150 #define POSTCODE_DELAY 1
151 #include <i386/postcode.h>
152 #endif /* IWANTTODEBUG */
155 #define DBG(x...) kprintf("DBG: " x)
159 /* Compile time assert to ensure adjacency/alignment of per-CPU data fields used
160 * in the trampolines for kernel/user boundary TLB coherency.
162 char pmap_cpu_data_assert
[(((offsetof(cpu_data_t
, cpu_tlb_invalid
) - offsetof(cpu_data_t
, cpu_active_cr3
)) == 8) && (offsetof(cpu_data_t
, cpu_active_cr3
) % 64 == 0)) ? 1 : -1];
163 boolean_t pmap_trace
= FALSE
;
165 boolean_t no_shared_cr3
= DEBUG
; /* TRUE for DEBUG by default */
167 int nx_enabled
= 1; /* enable no-execute protection */
168 int allow_data_exec
= VM_ABI_32
; /* 32-bit apps may execute data by default, 64-bit apps may not */
169 int allow_stack_exec
= 0; /* No apps may execute from the stack by default */
171 const boolean_t cpu_64bit
= TRUE
; /* Mais oui! */
173 uint64_t max_preemption_latency_tsc
= 0;
175 pv_hashed_entry_t
*pv_hash_table
; /* hash lists */
177 uint32_t npvhash
= 0;
179 pv_hashed_entry_t pv_hashed_free_list
= PV_HASHED_ENTRY_NULL
;
180 pv_hashed_entry_t pv_hashed_kern_free_list
= PV_HASHED_ENTRY_NULL
;
181 decl_simple_lock_data(,pv_hashed_free_list_lock
)
182 decl_simple_lock_data(,pv_hashed_kern_free_list_lock
)
183 decl_simple_lock_data(,pv_hash_table_lock
)
185 zone_t pv_hashed_list_zone
; /* zone of pv_hashed_entry structures */
188 * First and last physical addresses that we maintain any information
189 * for. Initialized to zero so that pmap operations done before
190 * pmap_init won't touch any non-existent structures.
192 boolean_t pmap_initialized
= FALSE
;/* Has pmap_init completed? */
194 static struct vm_object kptobj_object_store
;
195 static struct vm_object kpml4obj_object_store
;
196 static struct vm_object kpdptobj_object_store
;
199 * Array of physical page attribites for managed pages.
200 * One byte per physical page.
202 char *pmap_phys_attributes
;
203 ppnum_t last_managed_page
= 0;
206 * Amount of virtual memory mapped by one
207 * page-directory entry.
210 uint64_t pde_mapped_size
= PDE_MAPPED_SIZE
;
212 unsigned pmap_memory_region_count
;
213 unsigned pmap_memory_region_current
;
215 pmap_memory_region_t pmap_memory_regions
[PMAP_MEMORY_REGIONS_SIZE
];
218 * Other useful macros.
220 #define current_pmap() (vm_map_pmap(current_thread()->map))
222 struct pmap kernel_pmap_store
;
225 struct zone
*pmap_zone
; /* zone of pmap structures */
227 struct zone
*pmap_anchor_zone
;
228 int pmap_debug
= 0; /* flag for debugging prints */
230 unsigned int inuse_ptepages_count
= 0;
231 long long alloc_ptepages_count
__attribute__((aligned(8))) = 0; /* aligned for atomic access */
232 unsigned int bootstrap_wired_pages
= 0;
233 int pt_fake_zone_index
= -1;
235 extern long NMIPI_acks
;
237 boolean_t kernel_text_ps_4K
= TRUE
;
238 boolean_t wpkernel
= TRUE
;
244 pt_entry_t
*DMAP1
, *DMAP2
;
248 const boolean_t pmap_disable_kheap_nx
= FALSE
;
249 const boolean_t pmap_disable_kstack_nx
= FALSE
;
250 extern boolean_t doconstro_override
;
252 extern long __stack_chk_guard
[];
255 * Map memory at initialization. The physical addresses being
256 * mapped are not managed and are never unmapped.
258 * For now, VM is already on, we only need to map the
264 vm_map_offset_t start_addr
,
265 vm_map_offset_t end_addr
,
272 while (start_addr
< end_addr
) {
273 pmap_enter(kernel_pmap
, (vm_map_offset_t
)virt
,
274 (ppnum_t
) i386_btop(start_addr
), prot
, VM_PROT_NONE
, flags
, TRUE
);
281 extern char *first_avail
;
282 extern vm_offset_t virtual_avail
, virtual_end
;
283 extern pmap_paddr_t avail_start
, avail_end
;
284 extern vm_offset_t sHIB
;
285 extern vm_offset_t eHIB
;
286 extern vm_offset_t stext
;
287 extern vm_offset_t etext
;
288 extern vm_offset_t sdata
, edata
;
289 extern vm_offset_t sconstdata
, econstdata
;
291 extern void *KPTphys
;
293 boolean_t pmap_smep_enabled
= FALSE
;
298 cpu_data_t
*cdp
= current_cpu_datap();
300 * Here early in the life of a processor (from cpu_mode_init()).
301 * Ensure global page feature is disabled at this point.
304 set_cr4(get_cr4() &~ CR4_PGE
);
307 * Initialize the per-cpu, TLB-related fields.
309 cdp
->cpu_kernel_cr3
= kernel_pmap
->pm_cr3
;
310 cdp
->cpu_active_cr3
= kernel_pmap
->pm_cr3
;
311 cdp
->cpu_tlb_invalid
= FALSE
;
312 cdp
->cpu_task_map
= TASK_MAP_64BIT
;
313 pmap_pcid_configure();
314 if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMEP
) {
316 if (!PE_parse_boot_argn("-pmap_smep_disable", &nsmep
, sizeof(nsmep
))) {
317 set_cr4(get_cr4() | CR4_SMEP
);
318 pmap_smep_enabled
= TRUE
;
322 if (cdp
->cpu_fixed_pmcs_enabled
) {
323 boolean_t enable
= TRUE
;
324 cpu_pmc_control(&enable
);
331 * Bootstrap the system enough to run with virtual memory.
332 * Map the kernel's code and data, and allocate the system page table.
333 * Called with mapping OFF. Page_size must already be set.
338 __unused vm_offset_t load_start
,
339 __unused boolean_t IA32e
)
341 #if NCOPY_WINDOWS > 0
347 vm_last_addr
= VM_MAX_KERNEL_ADDRESS
; /* Set the highest address
350 * The kernel's pmap is statically allocated so we don't
351 * have to use pmap_create, which is unlikely to work
352 * correctly at this part of the boot sequence.
355 kernel_pmap
= &kernel_pmap_store
;
356 kernel_pmap
->ref_count
= 1;
357 kernel_pmap
->nx_enabled
= TRUE
;
358 kernel_pmap
->pm_task_map
= TASK_MAP_64BIT
;
359 kernel_pmap
->pm_obj
= (vm_object_t
) NULL
;
360 kernel_pmap
->dirbase
= (pd_entry_t
*)((uintptr_t)IdlePTD
);
361 kernel_pmap
->pm_pdpt
= (pd_entry_t
*) ((uintptr_t)IdlePDPT
);
362 kernel_pmap
->pm_pml4
= IdlePML4
;
363 kernel_pmap
->pm_cr3
= (uintptr_t)ID_MAP_VTOP(IdlePML4
);
364 pmap_pcid_initialize_kernel(kernel_pmap
);
368 current_cpu_datap()->cpu_kernel_cr3
= (addr64_t
) kernel_pmap
->pm_cr3
;
371 OSAddAtomic(NKPT
, &inuse_ptepages_count
);
372 OSAddAtomic64(NKPT
, &alloc_ptepages_count
);
373 bootstrap_wired_pages
= NKPT
;
375 virtual_avail
= (vm_offset_t
)(VM_MIN_KERNEL_ADDRESS
) + (vm_offset_t
)first_avail
;
376 virtual_end
= (vm_offset_t
)(VM_MAX_KERNEL_ADDRESS
);
378 #if NCOPY_WINDOWS > 0
380 * Reserve some special page table entries/VA space for temporary
383 #define SYSMAP(c, p, v, n) \
384 v = (c)va; va += ((n)*INTEL_PGBYTES);
388 for (i
=0; i
<PMAP_NWINDOWS
; i
++) {
390 kprintf("trying to do SYSMAP idx %d %p\n", i
,
391 current_cpu_datap());
392 kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap
);
393 kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap
->mapwindow
);
394 kprintf("two stuff %p %p\n",
395 (void *)(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
),
396 (void *)(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CADDR
));
399 (current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
),
400 (current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CADDR
),
402 current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
=
403 &(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP_store
);
404 *current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
= 0;
407 /* DMAP user for debugger */
408 SYSMAP(caddr_t
, DMAP1
, DADDR1
, 1);
409 SYSMAP(caddr_t
, DMAP2
, DADDR2
, 1); /* XXX temporary - can remove */
414 if (PE_parse_boot_argn("npvhash", &npvhash
, sizeof (npvhash
))) {
415 if (0 != ((npvhash
+ 1) & npvhash
)) {
416 kprintf("invalid hash %d, must be ((2^N)-1), "
417 "using default %d\n", npvhash
, NPVHASH
);
424 simple_lock_init(&kernel_pmap
->lock
, 0);
425 simple_lock_init(&pv_hashed_free_list_lock
, 0);
426 simple_lock_init(&pv_hashed_kern_free_list_lock
, 0);
427 simple_lock_init(&pv_hash_table_lock
,0);
432 printf("PMAP: PCID enabled\n");
434 if (pmap_smep_enabled
)
435 printf("PMAP: Supervisor Mode Execute Protection enabled\n");
438 printf("Stack canary: 0x%lx\n", __stack_chk_guard
[0]);
439 printf("ml_early_random(): 0x%qx\n", ml_early_random());
442 /* Check if the user has requested disabling stack or heap no-execute
443 * enforcement. These are "const" variables; that qualifier is cast away
444 * when altering them. The TEXT/DATA const sections are marked
445 * write protected later in the kernel startup sequence, so altering
446 * them is possible at this point, in pmap_bootstrap().
448 if (PE_parse_boot_argn("-pmap_disable_kheap_nx", &ptmp
, sizeof(ptmp
))) {
449 boolean_t
*pdknxp
= (boolean_t
*) &pmap_disable_kheap_nx
;
453 if (PE_parse_boot_argn("-pmap_disable_kstack_nx", &ptmp
, sizeof(ptmp
))) {
454 boolean_t
*pdknhp
= (boolean_t
*) &pmap_disable_kstack_nx
;
458 boot_args
*args
= (boot_args
*)PE_state
.bootArgs
;
459 if (args
->efiMode
== kBootArgsEfiMode32
) {
460 printf("EFI32: kernel virtual space limited to 4GB\n");
461 virtual_end
= VM_MAX_KERNEL_ADDRESS_EFI32
;
463 kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n",
464 (long)KERNEL_BASE
, (long)virtual_end
);
465 kprintf("Available physical space from 0x%llx to 0x%llx\n",
466 avail_start
, avail_end
);
469 * The -no_shared_cr3 boot-arg is a debugging feature (set by default
470 * in the DEBUG kernel) to force the kernel to switch to its own map
471 * (and cr3) when control is in kernelspace. The kernel's map does not
472 * include (i.e. share) userspace so wild references will cause
473 * a panic. Only copyin and copyout are exempt from this.
475 (void) PE_parse_boot_argn("-no_shared_cr3",
476 &no_shared_cr3
, sizeof (no_shared_cr3
));
478 kprintf("Kernel not sharing user map\n");
481 if (PE_parse_boot_argn("-pmap_trace", &pmap_trace
, sizeof (pmap_trace
))) {
482 kprintf("Kernel traces for pmap operations enabled\n");
484 #endif /* PMAP_TRACES */
492 *startp
= virtual_avail
;
501 #include <IOKit/IOHibernatePrivate.h>
504 int32_t pmap_teardown_last_valid_compact_indx
= -1;
507 void hibernate_rebuild_pmap_structs(void);
508 void hibernate_teardown_pmap_structs(addr64_t
*, addr64_t
*);
509 void pmap_pack_index(uint32_t);
510 int32_t pmap_unpack_index(pv_rooted_entry_t
);
514 pmap_unpack_index(pv_rooted_entry_t pv_h
)
518 indx
= (int32_t)(*((uint64_t *)(&pv_h
->qlink
.next
)) >> 48);
520 indx
|= (int32_t)(*((uint64_t *)(&pv_h
->qlink
.prev
)) >> 48);
522 *((uint64_t *)(&pv_h
->qlink
.next
)) |= ((uint64_t)0xffff << 48);
523 *((uint64_t *)(&pv_h
->qlink
.prev
)) |= ((uint64_t)0xffff << 48);
530 pmap_pack_index(uint32_t indx
)
532 pv_rooted_entry_t pv_h
;
534 pv_h
= &pv_head_table
[indx
];
536 *((uint64_t *)(&pv_h
->qlink
.next
)) &= ~((uint64_t)0xffff << 48);
537 *((uint64_t *)(&pv_h
->qlink
.prev
)) &= ~((uint64_t)0xffff << 48);
539 *((uint64_t *)(&pv_h
->qlink
.next
)) |= ((uint64_t)(indx
>> 16)) << 48;
540 *((uint64_t *)(&pv_h
->qlink
.prev
)) |= ((uint64_t)(indx
& 0xffff)) << 48;
545 hibernate_teardown_pmap_structs(addr64_t
*unneeded_start
, addr64_t
*unneeded_end
)
548 int32_t compact_target_indx
;
550 compact_target_indx
= 0;
552 for (i
= 0; i
< pmap_npages
; i
++) {
553 if (pv_head_table
[i
].pmap
== PMAP_NULL
) {
555 if (pv_head_table
[compact_target_indx
].pmap
!= PMAP_NULL
)
556 compact_target_indx
= i
;
558 pmap_pack_index((uint32_t)i
);
560 if (pv_head_table
[compact_target_indx
].pmap
== PMAP_NULL
) {
562 * we've got a hole to fill, so
563 * move this pv_rooted_entry_t to it's new home
565 pv_head_table
[compact_target_indx
] = pv_head_table
[i
];
566 pv_head_table
[i
].pmap
= PMAP_NULL
;
568 pmap_teardown_last_valid_compact_indx
= compact_target_indx
;
569 compact_target_indx
++;
571 pmap_teardown_last_valid_compact_indx
= i
;
574 *unneeded_start
= (addr64_t
)&pv_head_table
[pmap_teardown_last_valid_compact_indx
+1];
575 *unneeded_end
= (addr64_t
)&pv_head_table
[pmap_npages
-1];
577 HIBLOG("hibernate_teardown_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx
);
582 hibernate_rebuild_pmap_structs(void)
584 int32_t cindx
, eindx
, rindx
;
585 pv_rooted_entry_t pv_h
;
587 eindx
= (int32_t)pmap_npages
;
589 for (cindx
= pmap_teardown_last_valid_compact_indx
; cindx
>= 0; cindx
--) {
591 pv_h
= &pv_head_table
[cindx
];
593 rindx
= pmap_unpack_index(pv_h
);
594 assert(rindx
< pmap_npages
);
596 if (rindx
!= cindx
) {
598 * this pv_rooted_entry_t was moved by hibernate_teardown_pmap_structs,
599 * so move it back to its real location
601 pv_head_table
[rindx
] = pv_head_table
[cindx
];
603 if (rindx
+1 != eindx
) {
605 * the 'hole' between this vm_rooted_entry_t and the previous
606 * vm_rooted_entry_t we moved needs to be initialized as
607 * a range of zero'd vm_rooted_entry_t's
609 bzero((char *)&pv_head_table
[rindx
+1], (eindx
- rindx
- 1) * sizeof (struct pv_rooted_entry
));
614 bzero ((char *)&pv_head_table
[0], rindx
* sizeof (struct pv_rooted_entry
));
616 HIBLOG("hibernate_rebuild_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx
);
622 * Initialize the pmap module.
623 * Called by vm_init, to initialize any structures that the pmap
624 * system needs to map virtual memory.
632 vm_map_offset_t vaddr
;
636 kernel_pmap
->pm_obj_pml4
= &kpml4obj_object_store
;
637 _vm_object_allocate((vm_object_size_t
)NPML4PGS
* PAGE_SIZE
, &kpml4obj_object_store
);
639 kernel_pmap
->pm_obj_pdpt
= &kpdptobj_object_store
;
640 _vm_object_allocate((vm_object_size_t
)NPDPTPGS
* PAGE_SIZE
, &kpdptobj_object_store
);
642 kernel_pmap
->pm_obj
= &kptobj_object_store
;
643 _vm_object_allocate((vm_object_size_t
)NPDEPGS
* PAGE_SIZE
, &kptobj_object_store
);
646 * Allocate memory for the pv_head_table and its lock bits,
647 * the modify bit array, and the pte_page table.
651 * zero bias all these arrays now instead of off avail_start
652 * so we cover all memory
655 npages
= i386_btop(avail_end
);
657 pmap_npages
= (uint32_t)npages
;
659 s
= (vm_size_t
) (sizeof(struct pv_rooted_entry
) * npages
660 + (sizeof (struct pv_hashed_entry_t
*) * (npvhash
+1))
661 + pv_lock_table_size(npages
)
662 + pv_hash_lock_table_size((npvhash
+1))
666 if (kernel_memory_allocate(kernel_map
, &addr
, s
, 0,
667 KMA_KOBJECT
| KMA_PERMANENT
)
671 memset((char *)addr
, 0, s
);
677 if (0 == npvhash
) panic("npvhash not initialized");
681 * Allocate the structures first to preserve word-alignment.
683 pv_head_table
= (pv_rooted_entry_t
) addr
;
684 addr
= (vm_offset_t
) (pv_head_table
+ npages
);
686 pv_hash_table
= (pv_hashed_entry_t
*)addr
;
687 addr
= (vm_offset_t
) (pv_hash_table
+ (npvhash
+ 1));
689 pv_lock_table
= (char *) addr
;
690 addr
= (vm_offset_t
) (pv_lock_table
+ pv_lock_table_size(npages
));
692 pv_hash_lock_table
= (char *) addr
;
693 addr
= (vm_offset_t
) (pv_hash_lock_table
+ pv_hash_lock_table_size((npvhash
+1)));
695 pmap_phys_attributes
= (char *) addr
;
697 ppnum_t last_pn
= i386_btop(avail_end
);
699 pmap_memory_region_t
*pmptr
= pmap_memory_regions
;
700 for (i
= 0; i
< pmap_memory_region_count
; i
++, pmptr
++) {
701 if (pmptr
->type
!= kEfiConventionalMemory
)
704 for (pn
= pmptr
->base
; pn
<= pmptr
->end
; pn
++) {
706 pmap_phys_attributes
[pn
] |= PHYS_MANAGED
;
708 if (pn
> last_managed_page
)
709 last_managed_page
= pn
;
711 if (pn
>= lowest_hi
&& pn
<= highest_hi
)
712 pmap_phys_attributes
[pn
] |= PHYS_NOENCRYPT
;
717 ppn
= pmap_find_phys(kernel_pmap
, vaddr
);
719 pmap_phys_attributes
[ppn
] |= PHYS_NOENCRYPT
;
725 * Create the zone of physical maps,
726 * and of the physical-to-virtual entries.
728 s
= (vm_size_t
) sizeof(struct pmap
);
729 pmap_zone
= zinit(s
, 400*s
, 4096, "pmap"); /* XXX */
730 zone_change(pmap_zone
, Z_NOENCRYPT
, TRUE
);
732 pmap_anchor_zone
= zinit(PAGE_SIZE
, task_max
, PAGE_SIZE
, "pagetable anchors");
733 zone_change(pmap_anchor_zone
, Z_NOENCRYPT
, TRUE
);
735 /* The anchor is required to be page aligned. Zone debugging adds
736 * padding which may violate that requirement. Tell the zone
737 * subsystem that alignment is required.
740 zone_change(pmap_anchor_zone
, Z_ALIGNMENT_REQUIRED
, TRUE
);
742 s
= (vm_size_t
) sizeof(struct pv_hashed_entry
);
743 pv_hashed_list_zone
= zinit(s
, 10000*s
/* Expandable zone */,
744 4096 * 3 /* LCM x86_64*/, "pv_list");
745 zone_change(pv_hashed_list_zone
, Z_NOENCRYPT
, TRUE
);
747 /* create pv entries for kernel pages mapped by low level
748 startup code. these have to exist so we can pmap_remove()
749 e.g. kext pages from the middle of our addr space */
751 vaddr
= (vm_map_offset_t
) VM_MIN_KERNEL_ADDRESS
;
752 for (ppn
= VM_MIN_KERNEL_PAGE
; ppn
< i386_btop(avail_start
); ppn
++) {
753 pv_rooted_entry_t pv_e
;
755 pv_e
= pai_to_pvh(ppn
);
758 pv_e
->pmap
= kernel_pmap
;
759 queue_init(&pv_e
->qlink
);
761 pmap_initialized
= TRUE
;
763 max_preemption_latency_tsc
= tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS
, tscFCvtn2t
);
766 * Ensure the kernel's PML4 entry exists for the basement
767 * before this is shared with any user.
769 pmap_expand_pml4(kernel_pmap
, KERNEL_BASEMENT
, PMAP_EXPAND_OPTIONS_NONE
);
773 void pmap_mark_range(pmap_t npmap
, uint64_t sv
, uint64_t nxrosz
, boolean_t NX
, boolean_t ro
) {
774 uint64_t ev
= sv
+ nxrosz
, cv
= sv
;
776 pt_entry_t
*ptep
= NULL
;
778 assert(((sv
& 0xFFFULL
) | (nxrosz
& 0xFFFULL
)) == 0);
780 for (pdep
= pmap_pde(npmap
, cv
); pdep
!= NULL
&& (cv
< ev
);) {
781 uint64_t pdev
= (cv
& ~((uint64_t)PDEMASK
));
783 if (*pdep
& INTEL_PTE_PS
) {
785 *pdep
|= INTEL_PTE_NX
;
787 *pdep
&= ~INTEL_PTE_WRITE
;
789 cv
&= ~((uint64_t) PDEMASK
);
790 pdep
= pmap_pde(npmap
, cv
);
794 for (ptep
= pmap_pte(npmap
, cv
); ptep
!= NULL
&& (cv
< (pdev
+ NBPD
)) && (cv
< ev
);) {
796 *ptep
|= INTEL_PTE_NX
;
798 *ptep
&= ~INTEL_PTE_WRITE
;
800 ptep
= pmap_pte(npmap
, cv
);
803 DPRINTF("%s(0x%llx, 0x%llx, %u, %u): 0x%llx, 0x%llx\n", __FUNCTION__
, sv
, nxrosz
, NX
, ro
, cv
, ptep
? *ptep
: 0);
807 * Called once VM is fully initialized so that we can release unused
808 * sections of low memory to the general pool.
809 * Also complete the set-up of identity-mapped sections of the kernel:
810 * 1) write-protect kernel text
811 * 2) map kernel text using large pages if possible
812 * 3) read and write-protect page zero (for K32)
813 * 4) map the global page at the appropriate virtual address.
817 * To effectively map and write-protect all kernel text pages, the text
818 * must be 2M-aligned at the base, and the data section above must also be
819 * 2M-aligned. That is, there's padding below and above. This is achieved
820 * through linker directives. Large pages are used only if this alignment
821 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
826 * sdata: ================== 2Meg
830 * etext: ------------------
838 * stext: ================== 2Meg
842 * eHIB: ------------------
846 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
847 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
848 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
849 * The now unused level-1 PTE pages are also freed.
851 extern ppnum_t vm_kernel_base_page
;
853 pmap_lowmem_finalize(void)
859 * Update wired memory statistics for early boot pages
861 PMAP_ZINFO_PALLOC(kernel_pmap
, bootstrap_wired_pages
* PAGE_SIZE
);
864 * Free pages in pmap regions below the base:
866 * We can't free all the pages to VM that EFI reports available.
867 * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
868 * There's also a size miscalculation here: pend is one page less
869 * than it should be but this is not fixed to be backwards
871 * This is important for KASLR because up to 256*2MB = 512MB of space
872 * needs has to be released to VM.
875 pmap_memory_regions
[i
].end
< vm_kernel_base_page
;
877 vm_offset_t pbase
= i386_ptob(pmap_memory_regions
[i
].base
);
878 vm_offset_t pend
= i386_ptob(pmap_memory_regions
[i
].end
+1);
880 DBG("pmap region %d [%p..[%p\n",
881 i
, (void *) pbase
, (void *) pend
);
883 if (pmap_memory_regions
[i
].attribute
& EFI_MEMORY_KERN_RESERVED
)
887 * Adjust limits not to free pages in range 0xc0000-0xff000.
889 if (pbase
>= 0xc0000 && pend
<= 0x100000)
891 if (pbase
< 0xc0000 && pend
> 0x100000) {
892 /* page range entirely within region, free lower part */
893 DBG("- ml_static_mfree(%p,%p)\n",
894 (void *) ml_static_ptovirt(pbase
),
895 (void *) (0xc0000-pbase
));
896 ml_static_mfree(ml_static_ptovirt(pbase
),0xc0000-pbase
);
900 pend
= MIN(pend
, 0xc0000);
902 pbase
= MAX(pbase
, 0x100000);
903 DBG("- ml_static_mfree(%p,%p)\n",
904 (void *) ml_static_ptovirt(pbase
),
905 (void *) (pend
- pbase
));
906 ml_static_mfree(ml_static_ptovirt(pbase
), pend
- pbase
);
909 /* A final pass to get rid of all initial identity mappings to
912 DPRINTF("%s: Removing mappings from 0->0x%lx\n", __FUNCTION__
, vm_kernel_base
);
915 * Remove all mappings past the boot-cpu descriptor aliases and low globals.
916 * Non-boot-cpu GDT aliases will be remapped later as needed.
918 pmap_remove(kernel_pmap
, LOWGLOBAL_ALIAS
+ PAGE_SIZE
, vm_kernel_base
);
921 * If text and data are both 2MB-aligned,
922 * we can map text with large-pages,
923 * unless the -kernel_text_ps_4K boot-arg overrides.
925 if ((stext
& I386_LPGMASK
) == 0 && (sdata
& I386_LPGMASK
) == 0) {
926 kprintf("Kernel text is 2MB aligned");
927 kernel_text_ps_4K
= FALSE
;
928 if (PE_parse_boot_argn("-kernel_text_ps_4K",
930 sizeof (kernel_text_ps_4K
)))
931 kprintf(" but will be mapped with 4K pages\n");
933 kprintf(" and will be mapped with 2M pages\n");
936 (void) PE_parse_boot_argn("wpkernel", &wpkernel
, sizeof (wpkernel
));
938 kprintf("Kernel text %p-%p to be write-protected\n",
939 (void *) stext
, (void *) etext
);
944 * Scan over text if mappings are to be changed:
945 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
946 * - Change to large-pages if possible and not overriden.
948 if (kernel_text_ps_4K
&& wpkernel
) {
950 for (myva
= stext
; myva
< etext
; myva
+= PAGE_SIZE
) {
953 ptep
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)myva
);
955 pmap_store_pte(ptep
, *ptep
& ~INTEL_PTE_WRITE
);
959 if (!kernel_text_ps_4K
) {
963 * Release zero-filled page padding used for 2M-alignment.
965 DBG("ml_static_mfree(%p,%p) for padding below text\n",
966 (void *) eHIB
, (void *) (stext
- eHIB
));
967 ml_static_mfree(eHIB
, stext
- eHIB
);
968 DBG("ml_static_mfree(%p,%p) for padding above text\n",
969 (void *) etext
, (void *) (sdata
- etext
));
970 ml_static_mfree(etext
, sdata
- etext
);
973 * Coalesce text pages into large pages.
975 for (myva
= stext
; myva
< sdata
; myva
+= I386_LPGBYTES
) {
977 vm_offset_t pte_phys
;
981 pdep
= pmap_pde(kernel_pmap
, (vm_map_offset_t
)myva
);
982 ptep
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)myva
);
983 DBG("myva: %p pdep: %p ptep: %p\n",
984 (void *) myva
, (void *) pdep
, (void *) ptep
);
985 if ((*ptep
& INTEL_PTE_VALID
) == 0)
987 pte_phys
= (vm_offset_t
)(*ptep
& PG_FRAME
);
988 pde
= *pdep
& PTMASK
; /* page attributes from pde */
989 pde
|= INTEL_PTE_PS
; /* make it a 2M entry */
990 pde
|= pte_phys
; /* take page frame from pte */
993 pde
&= ~INTEL_PTE_WRITE
;
994 DBG("pmap_store_pte(%p,0x%llx)\n",
996 pmap_store_pte(pdep
, pde
);
999 * Free the now-unused level-1 pte.
1000 * Note: ptep is a virtual address to the pte in the
1001 * recursive map. We can't use this address to free
1002 * the page. Instead we need to compute its address
1003 * in the Idle PTEs in "low memory".
1005 vm_offset_t vm_ptep
= (vm_offset_t
) KPTphys
1006 + (pte_phys
>> PTPGSHIFT
);
1007 DBG("ml_static_mfree(%p,0x%x) for pte\n",
1008 (void *) vm_ptep
, PAGE_SIZE
);
1009 ml_static_mfree(vm_ptep
, PAGE_SIZE
);
1012 /* Change variable read by sysctl machdep.pmap */
1013 pmap_kernel_text_ps
= I386_LPGBYTES
;
1016 boolean_t doconstro
= TRUE
;
1018 (void) PE_parse_boot_argn("dataconstro", &doconstro
, sizeof(doconstro
));
1020 if ((sconstdata
| econstdata
) & PAGE_MASK
) {
1021 kprintf("Const DATA misaligned 0x%lx 0x%lx\n", sconstdata
, econstdata
);
1022 if ((sconstdata
& PAGE_MASK
) || (doconstro_override
== FALSE
))
1026 if ((sconstdata
> edata
) || (sconstdata
< sdata
) || ((econstdata
- sconstdata
) >= (edata
- sdata
))) {
1027 kprintf("Const DATA incorrect size 0x%lx 0x%lx 0x%lx 0x%lx\n", sconstdata
, econstdata
, sdata
, edata
);
1032 kprintf("Marking const DATA read-only\n");
1036 for (dva
= sdata
; dva
< edata
; dva
+= I386_PGBYTES
) {
1037 assert(((sdata
| edata
) & PAGE_MASK
) == 0);
1038 if ( (sdata
| edata
) & PAGE_MASK
) {
1039 kprintf("DATA misaligned, 0x%lx, 0x%lx\n", sdata
, edata
);
1043 pt_entry_t dpte
, *dptep
= pmap_pte(kernel_pmap
, dva
);
1047 assert((dpte
& INTEL_PTE_VALID
));
1048 if ((dpte
& INTEL_PTE_VALID
) == 0) {
1049 kprintf("Missing data mapping 0x%lx 0x%lx 0x%lx\n", dva
, sdata
, edata
);
1053 dpte
|= INTEL_PTE_NX
;
1054 if (doconstro
&& (dva
>= sconstdata
) && (dva
< econstdata
)) {
1055 dpte
&= ~INTEL_PTE_WRITE
;
1057 pmap_store_pte(dptep
, dpte
);
1059 kernel_segment_command_t
* seg
;
1060 kernel_section_t
* sec
;
1062 for (seg
= firstseg(); seg
!= NULL
; seg
= nextsegfromheader(&_mh_execute_header
, seg
)) {
1063 if (!strcmp(seg
->segname
, "__TEXT") ||
1064 !strcmp(seg
->segname
, "__DATA")) {
1068 if (!strcmp(seg
->segname
, "__KLD")) {
1071 if (!strcmp(seg
->segname
, "__HIB")) {
1072 for (sec
= firstsect(seg
); sec
!= NULL
; sec
= nextsect(seg
, sec
)) {
1073 if (sec
->addr
& PAGE_MASK
)
1074 panic("__HIB segment's sections misaligned");
1075 if (!strcmp(sec
->sectname
, "__text")) {
1076 pmap_mark_range(kernel_pmap
, sec
->addr
, round_page(sec
->size
), FALSE
, TRUE
);
1078 pmap_mark_range(kernel_pmap
, sec
->addr
, round_page(sec
->size
), TRUE
, FALSE
);
1082 pmap_mark_range(kernel_pmap
, seg
->vmaddr
, round_page_64(seg
->vmsize
), TRUE
, FALSE
);
1087 * If we're debugging, map the low global vector page at the fixed
1088 * virtual address. Otherwise, remove the mapping for this.
1090 if (debug_boot_arg
) {
1091 pt_entry_t
*pte
= NULL
;
1092 if (0 == (pte
= pmap_pte(kernel_pmap
, LOWGLOBAL_ALIAS
)))
1093 panic("lowmem pte");
1094 /* make sure it is defined on page boundary */
1095 assert(0 == ((vm_offset_t
) &lowGlo
& PAGE_MASK
));
1096 pmap_store_pte(pte
, kvtophys((vm_offset_t
)&lowGlo
)
1104 pmap_remove(kernel_pmap
,
1105 LOWGLOBAL_ALIAS
, LOWGLOBAL_ALIAS
+ PAGE_SIZE
);
1109 if (pmap_pcid_ncpus
)
1116 * this function is only used for debugging fron the vm layer
1122 pv_rooted_entry_t pv_h
;
1126 assert(pn
!= vm_page_fictitious_addr
);
1128 if (!pmap_initialized
)
1131 if (pn
== vm_page_guard_addr
)
1134 pai
= ppn_to_pai(pn
);
1135 if (!IS_MANAGED_PAGE(pai
))
1137 pv_h
= pai_to_pvh(pn
);
1138 result
= (pv_h
->pmap
== PMAP_NULL
);
1145 vm_map_offset_t va_start
,
1146 vm_map_offset_t va_end
)
1148 vm_map_offset_t offset
;
1151 if (pmap
== PMAP_NULL
) {
1156 * Check the resident page count
1157 * - if it's zero, the pmap is completely empty.
1158 * This short-circuit test prevents a virtual address scan which is
1159 * painfully slow for 64-bit spaces.
1160 * This assumes the count is correct
1161 * .. the debug kernel ought to be checking perhaps by page table walk.
1163 if (pmap
->stats
.resident_count
== 0)
1166 for (offset
= va_start
;
1168 offset
+= PAGE_SIZE_64
) {
1169 phys_page
= pmap_find_phys(pmap
, offset
);
1171 kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
1172 "page %d at 0x%llx\n",
1173 pmap
, va_start
, va_end
, phys_page
, offset
);
1183 * Create and return a physical map.
1185 * If the size specified for the map
1186 * is zero, the map is an actual physical
1187 * map, and may be referenced by the
1190 * If the size specified is non-zero,
1191 * the map will be used in software only, and
1192 * is bounded by that size.
1203 pml4_entry_t
*kpml4
;
1205 PMAP_TRACE(PMAP_CODE(PMAP__CREATE
) | DBG_FUNC_START
,
1206 (uint32_t) (sz
>>32), (uint32_t) sz
, is_64bit
, 0, 0);
1208 size
= (vm_size_t
) sz
;
1211 * A software use-only map doesn't even need a map.
1218 p
= (pmap_t
) zalloc(pmap_zone
);
1220 panic("pmap_create zalloc");
1221 /* Zero all fields */
1222 bzero(p
, sizeof(*p
));
1223 /* init counts now since we'll be bumping some */
1224 simple_lock_init(&p
->lock
, 0);
1226 p
->stats
.resident_count
= 0;
1227 p
->stats
.resident_max
= 0;
1228 p
->stats
.wired_count
= 0;
1230 bzero(&p
->stats
, sizeof (p
->stats
));
1234 p
->pm_shared
= FALSE
;
1235 ledger_reference(ledger
);
1238 p
->pm_task_map
= is_64bit
? TASK_MAP_64BIT
: TASK_MAP_32BIT
;;
1239 if (pmap_pcid_ncpus
)
1240 pmap_pcid_initialize(p
);
1242 p
->pm_pml4
= zalloc(pmap_anchor_zone
);
1244 pmap_assert((((uintptr_t)p
->pm_pml4
) & PAGE_MASK
) == 0);
1246 memset((char *)p
->pm_pml4
, 0, PAGE_SIZE
);
1248 p
->pm_cr3
= (pmap_paddr_t
)kvtophys((vm_offset_t
)p
->pm_pml4
);
1250 /* allocate the vm_objs to hold the pdpt, pde and pte pages */
1252 p
->pm_obj_pml4
= vm_object_allocate((vm_object_size_t
)(NPML4PGS
) * PAGE_SIZE
);
1253 if (NULL
== p
->pm_obj_pml4
)
1254 panic("pmap_create pdpt obj");
1256 p
->pm_obj_pdpt
= vm_object_allocate((vm_object_size_t
)(NPDPTPGS
) * PAGE_SIZE
);
1257 if (NULL
== p
->pm_obj_pdpt
)
1258 panic("pmap_create pdpt obj");
1260 p
->pm_obj
= vm_object_allocate((vm_object_size_t
)(NPDEPGS
) * PAGE_SIZE
);
1261 if (NULL
== p
->pm_obj
)
1262 panic("pmap_create pte obj");
1264 /* All pmaps share the kernel's pml4 */
1265 pml4
= pmap64_pml4(p
, 0ULL);
1266 kpml4
= kernel_pmap
->pm_pml4
;
1267 pml4
[KERNEL_PML4_INDEX
] = kpml4
[KERNEL_PML4_INDEX
];
1268 pml4
[KERNEL_KEXTS_INDEX
] = kpml4
[KERNEL_KEXTS_INDEX
];
1269 pml4
[KERNEL_PHYSMAP_PML4_INDEX
] = kpml4
[KERNEL_PHYSMAP_PML4_INDEX
];
1271 PMAP_TRACE(PMAP_CODE(PMAP__CREATE
) | DBG_FUNC_START
,
1272 p
, is_64bit
, 0, 0, 0);
1278 * Retire the given physical map from service.
1279 * Should only be called if the map contains
1280 * no valid mappings.
1284 pmap_destroy(pmap_t p
)
1291 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_START
,
1298 pmap_assert((current_thread() && (current_thread()->map
)) ? (current_thread()->map
->pmap
!= p
) : TRUE
);
1302 * If some cpu is not using the physical pmap pointer that it
1303 * is supposed to be (see set_dirbase), we might be using the
1304 * pmap that is being destroyed! Make sure we are
1305 * physically on the right pmap:
1307 PMAP_UPDATE_TLBS(p
, 0x0ULL
, 0xFFFFFFFFFFFFF000ULL
);
1308 if (pmap_pcid_ncpus
)
1309 pmap_destroy_pcid_sync(p
);
1315 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_END
,
1317 pmap_assert(p
== kernel_pmap
);
1318 return; /* still in use */
1322 * Free the memory maps, then the
1325 int inuse_ptepages
= 0;
1327 zfree(pmap_anchor_zone
, p
->pm_pml4
);
1329 inuse_ptepages
+= p
->pm_obj_pml4
->resident_page_count
;
1330 vm_object_deallocate(p
->pm_obj_pml4
);
1332 inuse_ptepages
+= p
->pm_obj_pdpt
->resident_page_count
;
1333 vm_object_deallocate(p
->pm_obj_pdpt
);
1335 inuse_ptepages
+= p
->pm_obj
->resident_page_count
;
1336 vm_object_deallocate(p
->pm_obj
);
1338 OSAddAtomic(-inuse_ptepages
, &inuse_ptepages_count
);
1339 PMAP_ZINFO_PFREE(p
, inuse_ptepages
* PAGE_SIZE
);
1340 ledger_dereference(p
->ledger
);
1341 zfree(pmap_zone
, p
);
1343 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_END
,
1348 * Add a reference to the specified pmap.
1352 pmap_reference(pmap_t p
)
1354 if (p
!= PMAP_NULL
) {
1362 * Remove phys addr if mapped in specified map
1366 pmap_remove_some_phys(
1367 __unused pmap_t map
,
1368 __unused ppnum_t pn
)
1371 /* Implement to support working set code */
1379 vm_map_offset_t sva
,
1380 vm_map_offset_t eva
,
1383 pmap_protect_options(map
, sva
, eva
, prot
, 0, NULL
);
1388 * Set the physical protection on the
1389 * specified range of this map as requested.
1390 * Will not increase permissions.
1393 pmap_protect_options(
1395 vm_map_offset_t sva
,
1396 vm_map_offset_t eva
,
1398 unsigned int options
,
1402 pt_entry_t
*spte
, *epte
;
1403 vm_map_offset_t lva
;
1404 vm_map_offset_t orig_sva
;
1410 if (map
== PMAP_NULL
)
1413 if (prot
== VM_PROT_NONE
) {
1414 pmap_remove_options(map
, sva
, eva
, options
);
1417 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT
) | DBG_FUNC_START
,
1419 (uint32_t) (sva
>> 32), (uint32_t) sva
,
1420 (uint32_t) (eva
>> 32), (uint32_t) eva
);
1422 if ((prot
& VM_PROT_EXECUTE
) || !nx_enabled
|| !map
->nx_enabled
)
1431 lva
= (sva
+ pde_mapped_size
) & ~(pde_mapped_size
- 1);
1434 pde
= pmap_pde(map
, sva
);
1435 if (pde
&& (*pde
& INTEL_PTE_VALID
)) {
1436 if (*pde
& INTEL_PTE_PS
) {
1439 epte
= spte
+1; /* excluded */
1441 spte
= pmap_pte(map
, (sva
& ~(pde_mapped_size
- 1)));
1442 spte
= &spte
[ptenum(sva
)];
1443 epte
= &spte
[intel_btop(lva
- sva
)];
1446 for (; spte
< epte
; spte
++) {
1447 if (!(*spte
& INTEL_PTE_VALID
))
1450 if (prot
& VM_PROT_WRITE
)
1451 pmap_update_pte(spte
, 0, INTEL_PTE_WRITE
);
1453 pmap_update_pte(spte
, INTEL_PTE_WRITE
, 0);
1456 pmap_update_pte(spte
, 0, INTEL_PTE_NX
);
1458 pmap_update_pte(spte
, INTEL_PTE_NX
, 0);
1465 if (options
& PMAP_OPTIONS_NOFLUSH
)
1466 PMAP_UPDATE_TLBS_DELAYED(map
, orig_sva
, eva
, (pmap_flush_context
*)arg
);
1468 PMAP_UPDATE_TLBS(map
, orig_sva
, eva
);
1472 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT
) | DBG_FUNC_END
,
1477 /* Map a (possibly) autogenned block */
1486 __unused
unsigned int flags
)
1491 if (attr
& VM_MEM_SUPERPAGE
)
1492 cur_page_size
= SUPERPAGE_SIZE
;
1494 cur_page_size
= PAGE_SIZE
;
1496 for (page
= 0; page
< size
; page
+=cur_page_size
/PAGE_SIZE
) {
1497 pmap_enter(pmap
, va
, pa
, prot
, VM_PROT_NONE
, attr
, TRUE
);
1498 va
+= cur_page_size
;
1499 pa
+=cur_page_size
/PAGE_SIZE
;
1506 vm_map_offset_t vaddr
,
1507 unsigned int options
)
1513 pml4_entry_t
*pml4p
;
1515 DBG("pmap_expand_pml4(%p,%p)\n", map
, (void *)vaddr
);
1518 * Allocate a VM page for the pml4 page
1520 while ((m
= vm_page_grab()) == VM_PAGE_NULL
) {
1521 if (options
& PMAP_EXPAND_OPTIONS_NOWAIT
)
1522 return KERN_RESOURCE_SHORTAGE
;
1526 * put the page into the pmap's obj list so it
1527 * can be found later.
1531 i
= pml4idx(map
, vaddr
);
1538 vm_page_lockspin_queues();
1540 vm_page_unlock_queues();
1542 OSAddAtomic(1, &inuse_ptepages_count
);
1543 OSAddAtomic64(1, &alloc_ptepages_count
);
1544 PMAP_ZINFO_PALLOC(map
, PAGE_SIZE
);
1546 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1547 vm_object_lock(map
->pm_obj_pml4
);
1551 * See if someone else expanded us first
1553 if (pmap64_pdpt(map
, vaddr
) != PDPT_ENTRY_NULL
) {
1555 vm_object_unlock(map
->pm_obj_pml4
);
1559 OSAddAtomic(-1, &inuse_ptepages_count
);
1560 PMAP_ZINFO_PFREE(map
, PAGE_SIZE
);
1561 return KERN_SUCCESS
;
1565 if (0 != vm_page_lookup(map
->pm_obj_pml4
, (vm_object_offset_t
)i
* PAGE_SIZE
)) {
1566 panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1567 map
, map
->pm_obj_pml4
, vaddr
, i
);
1570 vm_page_insert(m
, map
->pm_obj_pml4
, (vm_object_offset_t
)i
* PAGE_SIZE
);
1571 vm_object_unlock(map
->pm_obj_pml4
);
1574 * Set the page directory entry for this page table.
1576 pml4p
= pmap64_pml4(map
, vaddr
); /* refetch under lock */
1578 pmap_store_pte(pml4p
, pa_to_pte(pa
)
1585 return KERN_SUCCESS
;
1589 pmap_expand_pdpt(pmap_t map
, vm_map_offset_t vaddr
, unsigned int options
)
1595 pdpt_entry_t
*pdptp
;
1597 DBG("pmap_expand_pdpt(%p,%p)\n", map
, (void *)vaddr
);
1599 while ((pdptp
= pmap64_pdpt(map
, vaddr
)) == PDPT_ENTRY_NULL
) {
1600 kern_return_t pep4kr
= pmap_expand_pml4(map
, vaddr
, options
);
1601 if (pep4kr
!= KERN_SUCCESS
)
1606 * Allocate a VM page for the pdpt page
1608 while ((m
= vm_page_grab()) == VM_PAGE_NULL
) {
1609 if (options
& PMAP_EXPAND_OPTIONS_NOWAIT
)
1610 return KERN_RESOURCE_SHORTAGE
;
1615 * put the page into the pmap's obj list so it
1616 * can be found later.
1620 i
= pdptidx(map
, vaddr
);
1627 vm_page_lockspin_queues();
1629 vm_page_unlock_queues();
1631 OSAddAtomic(1, &inuse_ptepages_count
);
1632 OSAddAtomic64(1, &alloc_ptepages_count
);
1633 PMAP_ZINFO_PALLOC(map
, PAGE_SIZE
);
1635 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1636 vm_object_lock(map
->pm_obj_pdpt
);
1640 * See if someone else expanded us first
1642 if (pmap64_pde(map
, vaddr
) != PD_ENTRY_NULL
) {
1644 vm_object_unlock(map
->pm_obj_pdpt
);
1648 OSAddAtomic(-1, &inuse_ptepages_count
);
1649 PMAP_ZINFO_PFREE(map
, PAGE_SIZE
);
1650 return KERN_SUCCESS
;
1654 if (0 != vm_page_lookup(map
->pm_obj_pdpt
, (vm_object_offset_t
)i
* PAGE_SIZE
)) {
1655 panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1656 map
, map
->pm_obj_pdpt
, vaddr
, i
);
1659 vm_page_insert(m
, map
->pm_obj_pdpt
, (vm_object_offset_t
)i
* PAGE_SIZE
);
1660 vm_object_unlock(map
->pm_obj_pdpt
);
1663 * Set the page directory entry for this page table.
1665 pdptp
= pmap64_pdpt(map
, vaddr
); /* refetch under lock */
1667 pmap_store_pte(pdptp
, pa_to_pte(pa
)
1674 return KERN_SUCCESS
;
1681 * Routine: pmap_expand
1683 * Expands a pmap to be able to map the specified virtual address.
1685 * Allocates new virtual memory for the P0 or P1 portion of the
1686 * pmap, then re-maps the physical pages that were in the old
1687 * pmap to be in the new pmap.
1689 * Must be called with the pmap system and the pmap unlocked,
1690 * since these must be unlocked to use vm_allocate or vm_deallocate.
1691 * Thus it must be called in a loop that checks whether the map
1692 * has been expanded enough.
1693 * (We won't loop forever, since page tables aren't shrunk.)
1698 vm_map_offset_t vaddr
,
1699 unsigned int options
)
1702 register vm_page_t m
;
1703 register pmap_paddr_t pa
;
1709 * For the kernel, the virtual address must be in or above the basement
1710 * which is for kexts and is in the 512GB immediately below the kernel..
1711 * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT
1713 if (map
== kernel_pmap
&&
1714 !(vaddr
>= KERNEL_BASEMENT
&& vaddr
<= VM_MAX_KERNEL_ADDRESS
))
1715 panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr
);
1718 while ((pdp
= pmap64_pde(map
, vaddr
)) == PD_ENTRY_NULL
) {
1719 kern_return_t pepkr
= pmap_expand_pdpt(map
, vaddr
, options
);
1720 if (pepkr
!= KERN_SUCCESS
)
1725 * Allocate a VM page for the pde entries.
1727 while ((m
= vm_page_grab()) == VM_PAGE_NULL
) {
1728 if (options
& PMAP_EXPAND_OPTIONS_NOWAIT
)
1729 return KERN_RESOURCE_SHORTAGE
;
1734 * put the page into the pmap's obj list so it
1735 * can be found later.
1739 i
= pdeidx(map
, vaddr
);
1746 vm_page_lockspin_queues();
1748 vm_page_unlock_queues();
1750 OSAddAtomic(1, &inuse_ptepages_count
);
1751 OSAddAtomic64(1, &alloc_ptepages_count
);
1752 PMAP_ZINFO_PALLOC(map
, PAGE_SIZE
);
1754 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1755 vm_object_lock(map
->pm_obj
);
1760 * See if someone else expanded us first
1762 if (pmap_pte(map
, vaddr
) != PT_ENTRY_NULL
) {
1764 vm_object_unlock(map
->pm_obj
);
1768 OSAddAtomic(-1, &inuse_ptepages_count
);
1769 PMAP_ZINFO_PFREE(map
, PAGE_SIZE
);
1770 return KERN_SUCCESS
;
1774 if (0 != vm_page_lookup(map
->pm_obj
, (vm_object_offset_t
)i
* PAGE_SIZE
)) {
1775 panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
1776 map
, map
->pm_obj
, vaddr
, i
);
1779 vm_page_insert(m
, map
->pm_obj
, (vm_object_offset_t
)i
* PAGE_SIZE
);
1780 vm_object_unlock(map
->pm_obj
);
1783 * Set the page directory entry for this page table.
1785 pdp
= pmap_pde(map
, vaddr
);
1786 pmap_store_pte(pdp
, pa_to_pte(pa
)
1793 return KERN_SUCCESS
;
1796 /* On K64 machines with more than 32GB of memory, pmap_steal_memory
1797 * will allocate past the 1GB of pre-expanded virtual kernel area. This
1798 * function allocates all the page tables using memory from the same pool
1799 * that pmap_steal_memory uses, rather than calling vm_page_grab (which
1800 * isn't available yet). */
1802 pmap_pre_expand(pmap_t pmap
, vm_map_offset_t vaddr
)
1809 if(pmap64_pdpt(pmap
, vaddr
) == PDPT_ENTRY_NULL
) {
1810 if (!pmap_next_page_hi(&pn
))
1811 panic("pmap_pre_expand");
1815 pte
= pmap64_pml4(pmap
, vaddr
);
1817 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1823 if(pmap64_pde(pmap
, vaddr
) == PD_ENTRY_NULL
) {
1824 if (!pmap_next_page_hi(&pn
))
1825 panic("pmap_pre_expand");
1829 pte
= pmap64_pdpt(pmap
, vaddr
);
1831 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1837 if(pmap_pte(pmap
, vaddr
) == PT_ENTRY_NULL
) {
1838 if (!pmap_next_page_hi(&pn
))
1839 panic("pmap_pre_expand");
1843 pte
= pmap64_pde(pmap
, vaddr
);
1845 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1855 * pmap_sync_page_data_phys(ppnum_t pa)
1857 * Invalidates all of the instruction cache on a physical page and
1858 * pushes any dirty data from the data cache for the same physical page
1859 * Not required in i386.
1862 pmap_sync_page_data_phys(__unused ppnum_t pa
)
1868 * pmap_sync_page_attributes_phys(ppnum_t pa)
1870 * Write back and invalidate all cachelines on a physical page.
1873 pmap_sync_page_attributes_phys(ppnum_t pa
)
1875 cache_flush_page_phys(pa
);
1880 #ifdef CURRENTLY_UNUSED_AND_UNTESTED
1886 * Routine: pmap_collect
1888 * Garbage collects the physical map system for
1889 * pages which are no longer used.
1890 * Success need not be guaranteed -- that is, there
1891 * may well be pages which are not referenced, but
1892 * others may be collected.
1894 * Called by the pageout daemon when pages are scarce.
1900 register pt_entry_t
*pdp
, *ptp
;
1907 if (p
== kernel_pmap
)
1911 * Garbage collect map.
1915 for (pdp
= (pt_entry_t
*)p
->dirbase
;
1916 pdp
< (pt_entry_t
*)&p
->dirbase
[(UMAXPTDI
+1)];
1919 if (*pdp
& INTEL_PTE_VALID
) {
1920 if(*pdp
& INTEL_PTE_REF
) {
1921 pmap_store_pte(pdp
, *pdp
& ~INTEL_PTE_REF
);
1925 ptp
= pmap_pte(p
, pdetova(pdp
- (pt_entry_t
*)p
->dirbase
));
1926 eptp
= ptp
+ NPTEPG
;
1929 * If the pte page has any wired mappings, we cannot
1934 register pt_entry_t
*ptep
;
1935 for (ptep
= ptp
; ptep
< eptp
; ptep
++) {
1936 if (iswired(*ptep
)) {
1944 * Remove the virtual addresses mapped by this pte page.
1946 pmap_remove_range(p
,
1947 pdetova(pdp
- (pt_entry_t
*)p
->dirbase
),
1952 * Invalidate the page directory pointer.
1954 pmap_store_pte(pdp
, 0x0);
1959 * And free the pte page itself.
1962 register vm_page_t m
;
1964 vm_object_lock(p
->pm_obj
);
1966 m
= vm_page_lookup(p
->pm_obj
,(vm_object_offset_t
)(pdp
- (pt_entry_t
*)&p
->dirbase
[0]) * PAGE_SIZE
);
1967 if (m
== VM_PAGE_NULL
)
1968 panic("pmap_collect: pte page not in object");
1970 vm_object_unlock(p
->pm_obj
);
1974 OSAddAtomic(-1, &inuse_ptepages_count
);
1975 PMAP_ZINFO_PFREE(p
, PAGE_SIZE
);
1984 PMAP_UPDATE_TLBS(p
, 0x0, 0xFFFFFFFFFFFFF000ULL
);
1993 pmap_copy_page(ppnum_t src
, ppnum_t dst
)
1995 bcopy_phys((addr64_t
)i386_ptob(src
),
1996 (addr64_t
)i386_ptob(dst
),
2002 * Routine: pmap_pageable
2004 * Make the specified pages (by pmap, offset)
2005 * pageable (or not) as requested.
2007 * A page which is not pageable may not take
2008 * a fault; therefore, its page table entry
2009 * must remain valid for the duration.
2011 * This routine is merely advisory; pmap_enter
2012 * will specify that these pages are to be wired
2013 * down (or not) as appropriate.
2017 __unused pmap_t pmap
,
2018 __unused vm_map_offset_t start_addr
,
2019 __unused vm_map_offset_t end_addr
,
2020 __unused boolean_t pageable
)
2023 pmap
++; start_addr
++; end_addr
++; pageable
++;
2028 invalidate_icache(__unused vm_offset_t addr
,
2029 __unused
unsigned cnt
,
2036 flush_dcache(__unused vm_offset_t addr
,
2037 __unused
unsigned count
,
2045 * Constrain DTrace copyin/copyout actions
2047 extern kern_return_t
dtrace_copyio_preflight(addr64_t
);
2048 extern kern_return_t
dtrace_copyio_postflight(addr64_t
);
2050 kern_return_t
dtrace_copyio_preflight(__unused addr64_t va
)
2052 thread_t thread
= current_thread();
2054 if (current_map() == kernel_map
)
2055 return KERN_FAILURE
;
2056 else if (((ccr3
= get_cr3_base()) != thread
->map
->pmap
->pm_cr3
) && (no_shared_cr3
== FALSE
))
2057 return KERN_FAILURE
;
2058 else if (no_shared_cr3
&& (ccr3
!= kernel_pmap
->pm_cr3
))
2059 return KERN_FAILURE
;
2061 return KERN_SUCCESS
;
2064 kern_return_t
dtrace_copyio_postflight(__unused addr64_t va
)
2066 return KERN_SUCCESS
;
2068 #endif /* CONFIG_DTRACE */
2070 #include <mach_vm_debug.h>
2072 #include <vm/vm_debug.h>
2075 pmap_list_resident_pages(
2076 __unused pmap_t pmap
,
2077 __unused vm_offset_t
*listp
,
2082 #endif /* MACH_VM_DEBUG */
2086 /* temporary workaround */
2088 coredumpok(__unused vm_map_t map
, __unused vm_offset_t va
)
2093 ptep
= pmap_pte(map
->pmap
, va
);
2096 return ((*ptep
& (INTEL_PTE_NCACHE
| INTEL_PTE_WIRED
)) != (INTEL_PTE_NCACHE
| INTEL_PTE_WIRED
));
2104 phys_page_exists(ppnum_t pn
)
2106 assert(pn
!= vm_page_fictitious_addr
);
2108 if (!pmap_initialized
)
2111 if (pn
== vm_page_guard_addr
)
2114 if (!IS_MANAGED_PAGE(ppn_to_pai(pn
)))
2123 pmap_switch(pmap_t tpmap
)
2127 s
= splhigh(); /* Make sure interruptions are disabled */
2128 set_dirbase(tpmap
, current_thread());
2134 * disable no-execute capability on
2135 * the specified pmap
2138 pmap_disable_NX(pmap_t pmap
)
2140 pmap
->nx_enabled
= 0;
2144 pt_fake_zone_init(int zone_index
)
2146 pt_fake_zone_index
= zone_index
;
2152 vm_size_t
*cur_size
,
2153 vm_size_t
*max_size
,
2154 vm_size_t
*elem_size
,
2155 vm_size_t
*alloc_size
,
2161 *count
= inuse_ptepages_count
;
2162 *cur_size
= PAGE_SIZE
* inuse_ptepages_count
;
2163 *max_size
= PAGE_SIZE
* (inuse_ptepages_count
+
2164 vm_page_inactive_count
+
2165 vm_page_active_count
+
2166 vm_page_free_count
);
2167 *elem_size
= PAGE_SIZE
;
2168 *alloc_size
= PAGE_SIZE
;
2169 *sum_size
= alloc_ptepages_count
* PAGE_SIZE
;
2177 pmap_cpuset_NMIPI(cpu_set cpu_mask
) {
2178 unsigned int cpu
, cpu_bit
;
2181 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2182 if (cpu_mask
& cpu_bit
)
2183 cpu_NMI_interrupt(cpu
);
2185 deadline
= mach_absolute_time() + (LockTimeOut
);
2186 while (mach_absolute_time() < deadline
)
2192 pmap_flush_context_init(pmap_flush_context
*pfc
)
2195 pfc
->pfc_invalid_global
= 0;
2200 pmap_flush_context
*pfc
)
2202 unsigned int my_cpu
;
2204 unsigned int cpu_bit
;
2205 cpu_set cpus_to_respond
= 0;
2206 cpu_set cpus_to_signal
= 0;
2207 cpu_set cpus_signaled
= 0;
2208 boolean_t flush_self
= FALSE
;
2211 mp_disable_preemption();
2213 my_cpu
= cpu_number();
2214 cpus_to_signal
= pfc
->pfc_cpus
;
2216 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS
) | DBG_FUNC_START
,
2217 NULL
, cpus_to_signal
, 0, 0, 0);
2219 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
&& cpus_to_signal
; cpu
++, cpu_bit
<<= 1) {
2221 if (cpus_to_signal
& cpu_bit
) {
2223 cpus_to_signal
&= ~cpu_bit
;
2225 if (!cpu_datap(cpu
)->cpu_running
)
2228 if (pfc
->pfc_invalid_global
& cpu_bit
)
2229 cpu_datap(cpu
)->cpu_tlb_invalid_global
= TRUE
;
2231 cpu_datap(cpu
)->cpu_tlb_invalid_local
= TRUE
;
2234 if (cpu
== my_cpu
) {
2238 if (CPU_CR3_IS_ACTIVE(cpu
)) {
2239 cpus_to_respond
|= cpu_bit
;
2240 i386_signal_cpu(cpu
, MP_TLB_FLUSH
, ASYNC
);
2244 cpus_signaled
= cpus_to_respond
;
2247 * Flush local tlb if required.
2248 * Do this now to overlap with other processors responding.
2250 if (flush_self
&& cpu_datap(my_cpu
)->cpu_tlb_invalid
!= FALSE
)
2251 process_pmap_updates();
2253 if (cpus_to_respond
) {
2255 deadline
= mach_absolute_time() + LockTimeOut
;
2257 * Wait for those other cpus to acknowledge
2259 while (cpus_to_respond
!= 0) {
2262 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2263 /* Consider checking local/global invalidity
2264 * as appropriate in the PCID case.
2266 if ((cpus_to_respond
& cpu_bit
) != 0) {
2267 if (!cpu_datap(cpu
)->cpu_running
||
2268 cpu_datap(cpu
)->cpu_tlb_invalid
== FALSE
||
2269 !CPU_CR3_IS_ACTIVE(cpu
)) {
2270 cpus_to_respond
&= ~cpu_bit
;
2274 if (cpus_to_respond
== 0)
2277 if (cpus_to_respond
&& (mach_absolute_time() > deadline
)) {
2278 if (machine_timeout_suspended())
2280 pmap_tlb_flush_timeout
= TRUE
;
2281 orig_acks
= NMIPI_acks
;
2282 pmap_cpuset_NMIPI(cpus_to_respond
);
2284 panic("TLB invalidation IPI timeout: "
2285 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2286 cpus_to_respond
, orig_acks
, NMIPI_acks
);
2290 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS
) | DBG_FUNC_END
,
2291 NULL
, cpus_signaled
, flush_self
, 0, 0);
2293 mp_enable_preemption();
2298 * Called with pmap locked, we:
2299 * - scan through per-cpu data to see which other cpus need to flush
2300 * - send an IPI to each non-idle cpu to be flushed
2301 * - wait for all to signal back that they are inactive or we see that
2302 * they are at a safe point (idle).
2303 * - flush the local tlb if active for this pmap
2304 * - return ... the caller will unlock the pmap
2308 pmap_flush_tlbs(pmap_t pmap
, vm_map_offset_t startv
, vm_map_offset_t endv
, int options
, pmap_flush_context
*pfc
)
2311 unsigned int cpu_bit
;
2312 cpu_set cpus_to_signal
;
2313 unsigned int my_cpu
= cpu_number();
2314 pmap_paddr_t pmap_cr3
= pmap
->pm_cr3
;
2315 boolean_t flush_self
= FALSE
;
2317 boolean_t pmap_is_shared
= (pmap
->pm_shared
|| (pmap
== kernel_pmap
));
2318 boolean_t need_global_flush
= FALSE
;
2320 assert((processor_avail_count
< 2) ||
2321 (ml_get_interrupts_enabled() && get_preemption_level() != 0));
2324 * Scan other cpus for matching active or task CR3.
2325 * For idle cpus (with no active map) we mark them invalid but
2326 * don't signal -- they'll check as they go busy.
2330 if (pmap_pcid_ncpus
) {
2332 need_global_flush
= TRUE
;
2333 pmap_pcid_invalidate_all_cpus(pmap
);
2336 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2337 if (!cpu_datap(cpu
)->cpu_running
)
2339 uint64_t cpu_active_cr3
= CPU_GET_ACTIVE_CR3(cpu
);
2340 uint64_t cpu_task_cr3
= CPU_GET_TASK_CR3(cpu
);
2342 if ((pmap_cr3
== cpu_task_cr3
) ||
2343 (pmap_cr3
== cpu_active_cr3
) ||
2346 if (options
& PMAP_DELAY_TLB_FLUSH
) {
2347 if (need_global_flush
== TRUE
)
2348 pfc
->pfc_invalid_global
|= cpu_bit
;
2349 pfc
->pfc_cpus
|= cpu_bit
;
2353 if (cpu
== my_cpu
) {
2357 if (need_global_flush
== TRUE
)
2358 cpu_datap(cpu
)->cpu_tlb_invalid_global
= TRUE
;
2360 cpu_datap(cpu
)->cpu_tlb_invalid_local
= TRUE
;
2364 * We don't need to signal processors which will flush
2365 * lazily at the idle state or kernel boundary.
2366 * For example, if we're invalidating the kernel pmap,
2367 * processors currently in userspace don't need to flush
2368 * their TLBs until the next time they enter the kernel.
2369 * Alterations to the address space of a task active
2370 * on a remote processor result in a signal, to
2371 * account for copy operations. (There may be room
2372 * for optimization in such cases).
2373 * The order of the loads below with respect
2374 * to the store to the "cpu_tlb_invalid" field above
2375 * is important--hence the barrier.
2377 if (CPU_CR3_IS_ACTIVE(cpu
) &&
2378 (pmap_cr3
== CPU_GET_ACTIVE_CR3(cpu
) ||
2380 (pmap_cr3
== CPU_GET_TASK_CR3(cpu
)))) {
2381 cpus_to_signal
|= cpu_bit
;
2382 i386_signal_cpu(cpu
, MP_TLB_FLUSH
, ASYNC
);
2386 if ((options
& PMAP_DELAY_TLB_FLUSH
))
2389 if (pmap
== kernel_pmap
) {
2390 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_KERN_TLBS
) | DBG_FUNC_START
,
2391 pmap
, cpus_to_signal
, flush_self
, startv
, endv
);
2393 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS
) | DBG_FUNC_START
,
2394 pmap
, cpus_to_signal
, flush_self
, startv
, endv
);
2397 * Flush local tlb if required.
2398 * Do this now to overlap with other processors responding.
2401 if (pmap_pcid_ncpus
) {
2402 pmap_pcid_validate_cpu(pmap
, my_cpu
);
2412 if (cpus_to_signal
) {
2413 cpu_set cpus_to_respond
= cpus_to_signal
;
2415 deadline
= mach_absolute_time() + LockTimeOut
;
2417 * Wait for those other cpus to acknowledge
2419 while (cpus_to_respond
!= 0) {
2422 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2423 /* Consider checking local/global invalidity
2424 * as appropriate in the PCID case.
2426 if ((cpus_to_respond
& cpu_bit
) != 0) {
2427 if (!cpu_datap(cpu
)->cpu_running
||
2428 cpu_datap(cpu
)->cpu_tlb_invalid
== FALSE
||
2429 !CPU_CR3_IS_ACTIVE(cpu
)) {
2430 cpus_to_respond
&= ~cpu_bit
;
2434 if (cpus_to_respond
== 0)
2437 if (cpus_to_respond
&& (mach_absolute_time() > deadline
)) {
2438 if (machine_timeout_suspended())
2440 pmap_tlb_flush_timeout
= TRUE
;
2441 orig_acks
= NMIPI_acks
;
2442 pmap_cpuset_NMIPI(cpus_to_respond
);
2444 panic("TLB invalidation IPI timeout: "
2445 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2446 cpus_to_respond
, orig_acks
, NMIPI_acks
);
2451 if (__improbable((pmap
== kernel_pmap
) && (flush_self
!= TRUE
))) {
2452 panic("pmap_flush_tlbs: pmap == kernel_pmap && flush_self != TRUE; kernel CR3: 0x%llX, pmap_cr3: 0x%llx, CPU active CR3: 0x%llX, CPU Task Map: %d", kernel_pmap
->pm_cr3
, pmap_cr3
, current_cpu_datap()->cpu_active_cr3
, current_cpu_datap()->cpu_task_map
);
2455 if (pmap
== kernel_pmap
) {
2456 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_KERN_TLBS
) | DBG_FUNC_END
,
2457 pmap
, cpus_to_signal
, startv
, endv
, 0);
2459 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS
) | DBG_FUNC_END
,
2460 pmap
, cpus_to_signal
, startv
, endv
, 0);
2466 process_pmap_updates(void)
2468 int ccpu
= cpu_number();
2469 pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2470 if (pmap_pcid_ncpus
) {
2471 pmap_pcid_validate_current();
2472 if (cpu_datap(ccpu
)->cpu_tlb_invalid_global
) {
2473 cpu_datap(ccpu
)->cpu_tlb_invalid
= FALSE
;
2477 cpu_datap(ccpu
)->cpu_tlb_invalid_local
= FALSE
;
2482 current_cpu_datap()->cpu_tlb_invalid
= FALSE
;
2490 pmap_update_interrupt(void)
2492 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT
) | DBG_FUNC_START
,
2495 if (current_cpu_datap()->cpu_tlb_invalid
)
2496 process_pmap_updates();
2498 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT
) | DBG_FUNC_END
,
2502 #include <mach/mach_vm.h> /* mach_vm_region_recurse() */
2503 /* Scan kernel pmap for W+X PTEs, scan kernel VM map for W+X map entries
2504 * and identify ranges with mismatched VM permissions and PTE permissions
2507 pmap_permissions_verify(pmap_t ipmap
, vm_map_t ivmmap
, vm_offset_t sv
, vm_offset_t ev
) {
2508 vm_offset_t cv
= sv
;
2509 kern_return_t rv
= KERN_SUCCESS
;
2510 uint64_t skip4
= 0, skip2
= 0;
2512 sv
&= ~PAGE_MASK_64
;
2513 ev
&= ~PAGE_MASK_64
;
2515 if (__improbable((cv
> 0x00007FFFFFFFFFFFULL
) &&
2516 (cv
< 0xFFFF800000000000ULL
))) {
2517 cv
= 0xFFFF800000000000ULL
;
2519 /* Potential inconsistencies from not holding pmap lock
2520 * but harmless for the moment.
2522 if (((cv
& PML4MASK
) == 0) && (pmap64_pml4(ipmap
, cv
) == 0)) {
2523 if ((cv
+ NBPML4
) > cv
)
2530 if (((cv
& PDMASK
) == 0) && (pmap_pde(ipmap
, cv
) == 0)) {
2531 if ((cv
+ NBPD
) > cv
)
2539 pt_entry_t
*ptep
= pmap_pte(ipmap
, cv
);
2540 if (ptep
&& (*ptep
& INTEL_PTE_VALID
)) {
2541 if (*ptep
& INTEL_PTE_WRITE
) {
2542 if (!(*ptep
& INTEL_PTE_NX
)) {
2543 kprintf("W+X PTE at 0x%lx, P4: 0x%llx, P3: 0x%llx, P2: 0x%llx, PT: 0x%llx, VP: %u\n", cv
, *pmap64_pml4(ipmap
, cv
), *pmap64_pdpt(ipmap
, cv
), *pmap64_pde(ipmap
, cv
), *ptep
, pmap_valid_page((ppnum_t
)(i386_btop(pte_to_pa(*ptep
)))));
2550 kprintf("Completed pmap scan\n");
2553 struct vm_region_submap_info_64 vbr
;
2554 mach_msg_type_number_t vbrcount
= 0;
2555 mach_vm_size_t vmsize
;
2557 uint32_t nesting_depth
= 0;
2563 vbrcount
= VM_REGION_SUBMAP_INFO_COUNT_64
;
2564 if((kret
= mach_vm_region_recurse(ivmmap
,
2565 (mach_vm_address_t
*) &cv
, &vmsize
, &nesting_depth
,
2566 (vm_region_recurse_info_t
)&vbr
,
2567 &vbrcount
)) != KERN_SUCCESS
) {
2579 if(kret
!= KERN_SUCCESS
)
2582 prot
= vbr
.protection
;
2584 if ((prot
& (VM_PROT_WRITE
| VM_PROT_EXECUTE
)) == (VM_PROT_WRITE
| VM_PROT_EXECUTE
)) {
2585 kprintf("W+X map entry at address 0x%lx\n", cv
);
2591 for (pcv
= cv
; pcv
< cv
+ vmsize
; pcv
+= PAGE_SIZE
) {
2592 pt_entry_t
*ptep
= pmap_pte(ipmap
, pcv
);
2595 if ((ptep
== NULL
) || !(*ptep
& INTEL_PTE_VALID
))
2597 tprot
= VM_PROT_READ
;
2598 if (*ptep
& INTEL_PTE_WRITE
)
2599 tprot
|= VM_PROT_WRITE
;
2600 if ((*ptep
& INTEL_PTE_NX
) == 0)
2601 tprot
|= VM_PROT_EXECUTE
;
2602 if (tprot
!= prot
) {
2603 kprintf("PTE/map entry permissions mismatch at address 0x%lx, pte: 0x%llx, protection: 0x%x\n", pcv
, *ptep
, prot
);