]> git.saurik.com Git - apple/xnu.git/blob - osfmk/x86_64/pmap.c
e9d0157eff67061d34356bceb44cdc191b5c8148
[apple/xnu.git] / osfmk / x86_64 / pmap.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * File: pmap.c
61 * Author: Avadis Tevanian, Jr., Michael Wayne Young
62 * (These guys wrote the Vax version)
63 *
64 * Physical Map management code for Intel i386, i486, and i860.
65 *
66 * Manages physical address maps.
67 *
68 * In addition to hardware address maps, this
69 * module is called upon to provide software-use-only
70 * maps which may or may not be stored in the same
71 * form as hardware maps. These pseudo-maps are
72 * used to store intermediate results from copy
73 * operations to and from address spaces.
74 *
75 * Since the information managed by this module is
76 * also stored by the logical address mapping module,
77 * this module may throw away valid virtual-to-physical
78 * mappings at almost any time. However, invalidations
79 * of virtual-to-physical mappings must be done as
80 * requested.
81 *
82 * In order to cope with hardware architectures which
83 * make virtual-to-physical map invalidates expensive,
84 * this module may delay invalidate or reduced protection
85 * operations until such time as they are actually
86 * necessary. This module is given full information as
87 * to which processors are currently using which maps,
88 * and to when physical maps must be made correct.
89 */
90
91 #include <string.h>
92 #include <mach_ldebug.h>
93
94 #include <libkern/OSAtomic.h>
95
96 #include <mach/machine/vm_types.h>
97
98 #include <mach/boolean.h>
99 #include <kern/thread.h>
100 #include <kern/zalloc.h>
101 #include <kern/queue.h>
102 #include <kern/ledger.h>
103 #include <kern/mach_param.h>
104
105 #include <kern/lock.h>
106 #include <kern/kalloc.h>
107 #include <kern/spl.h>
108
109 #include <vm/pmap.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_kern.h>
112 #include <mach/vm_param.h>
113 #include <mach/vm_prot.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116
117 #include <mach/machine/vm_param.h>
118 #include <machine/thread.h>
119
120 #include <kern/misc_protos.h> /* prototyping */
121 #include <i386/misc_protos.h>
122 #include <i386/i386_lowmem.h>
123 #include <x86_64/lowglobals.h>
124
125 #include <i386/cpuid.h>
126 #include <i386/cpu_data.h>
127 #include <i386/cpu_number.h>
128 #include <i386/machine_cpu.h>
129 #include <i386/seg.h>
130 #include <i386/serial_io.h>
131 #include <i386/cpu_capabilities.h>
132 #include <i386/machine_routines.h>
133 #include <i386/proc_reg.h>
134 #include <i386/tsc.h>
135 #include <i386/pmap_internal.h>
136 #include <i386/pmap_pcid.h>
137
138 #include <vm/vm_protos.h>
139
140 #include <i386/mp.h>
141 #include <i386/mp_desc.h>
142 #include <libkern/kernel_mach_header.h>
143
144 #include <pexpert/i386/efi.h>
145
146
147 #ifdef IWANTTODEBUG
148 #undef DEBUG
149 #define DEBUG 1
150 #define POSTCODE_DELAY 1
151 #include <i386/postcode.h>
152 #endif /* IWANTTODEBUG */
153
154 #ifdef PMAP_DEBUG
155 #define DBG(x...) kprintf("DBG: " x)
156 #else
157 #define DBG(x...)
158 #endif
159 /* Compile time assert to ensure adjacency/alignment of per-CPU data fields used
160 * in the trampolines for kernel/user boundary TLB coherency.
161 */
162 char pmap_cpu_data_assert[(((offsetof(cpu_data_t, cpu_tlb_invalid) - offsetof(cpu_data_t, cpu_active_cr3)) == 8) && (offsetof(cpu_data_t, cpu_active_cr3) % 64 == 0)) ? 1 : -1];
163 boolean_t pmap_trace = FALSE;
164
165 boolean_t no_shared_cr3 = DEBUG; /* TRUE for DEBUG by default */
166
167 int nx_enabled = 1; /* enable no-execute protection */
168 int allow_data_exec = VM_ABI_32; /* 32-bit apps may execute data by default, 64-bit apps may not */
169 int allow_stack_exec = 0; /* No apps may execute from the stack by default */
170
171 const boolean_t cpu_64bit = TRUE; /* Mais oui! */
172
173 uint64_t max_preemption_latency_tsc = 0;
174
175 pv_hashed_entry_t *pv_hash_table; /* hash lists */
176
177 uint32_t npvhash = 0;
178
179 pv_hashed_entry_t pv_hashed_free_list = PV_HASHED_ENTRY_NULL;
180 pv_hashed_entry_t pv_hashed_kern_free_list = PV_HASHED_ENTRY_NULL;
181 decl_simple_lock_data(,pv_hashed_free_list_lock)
182 decl_simple_lock_data(,pv_hashed_kern_free_list_lock)
183 decl_simple_lock_data(,pv_hash_table_lock)
184
185 zone_t pv_hashed_list_zone; /* zone of pv_hashed_entry structures */
186
187 /*
188 * First and last physical addresses that we maintain any information
189 * for. Initialized to zero so that pmap operations done before
190 * pmap_init won't touch any non-existent structures.
191 */
192 boolean_t pmap_initialized = FALSE;/* Has pmap_init completed? */
193
194 static struct vm_object kptobj_object_store;
195 static struct vm_object kpml4obj_object_store;
196 static struct vm_object kpdptobj_object_store;
197
198 /*
199 * Array of physical page attribites for managed pages.
200 * One byte per physical page.
201 */
202 char *pmap_phys_attributes;
203 ppnum_t last_managed_page = 0;
204
205 /*
206 * Amount of virtual memory mapped by one
207 * page-directory entry.
208 */
209
210 uint64_t pde_mapped_size = PDE_MAPPED_SIZE;
211
212 unsigned pmap_memory_region_count;
213 unsigned pmap_memory_region_current;
214
215 pmap_memory_region_t pmap_memory_regions[PMAP_MEMORY_REGIONS_SIZE];
216
217 /*
218 * Other useful macros.
219 */
220 #define current_pmap() (vm_map_pmap(current_thread()->map))
221
222 struct pmap kernel_pmap_store;
223 pmap_t kernel_pmap;
224
225 struct zone *pmap_zone; /* zone of pmap structures */
226
227 struct zone *pmap_anchor_zone;
228 int pmap_debug = 0; /* flag for debugging prints */
229
230 unsigned int inuse_ptepages_count = 0;
231 long long alloc_ptepages_count __attribute__((aligned(8))) = 0; /* aligned for atomic access */
232 unsigned int bootstrap_wired_pages = 0;
233 int pt_fake_zone_index = -1;
234
235 extern long NMIPI_acks;
236
237 boolean_t kernel_text_ps_4K = TRUE;
238 boolean_t wpkernel = TRUE;
239
240 extern char end;
241
242 static int nkpt;
243
244 pt_entry_t *DMAP1, *DMAP2;
245 caddr_t DADDR1;
246 caddr_t DADDR2;
247
248 const boolean_t pmap_disable_kheap_nx = FALSE;
249 const boolean_t pmap_disable_kstack_nx = FALSE;
250 extern boolean_t doconstro_override;
251
252 extern long __stack_chk_guard[];
253
254 /*
255 * Map memory at initialization. The physical addresses being
256 * mapped are not managed and are never unmapped.
257 *
258 * For now, VM is already on, we only need to map the
259 * specified memory.
260 */
261 vm_offset_t
262 pmap_map(
263 vm_offset_t virt,
264 vm_map_offset_t start_addr,
265 vm_map_offset_t end_addr,
266 vm_prot_t prot,
267 unsigned int flags)
268 {
269 int ps;
270
271 ps = PAGE_SIZE;
272 while (start_addr < end_addr) {
273 pmap_enter(kernel_pmap, (vm_map_offset_t)virt,
274 (ppnum_t) i386_btop(start_addr), prot, VM_PROT_NONE, flags, TRUE);
275 virt += ps;
276 start_addr += ps;
277 }
278 return(virt);
279 }
280
281 extern char *first_avail;
282 extern vm_offset_t virtual_avail, virtual_end;
283 extern pmap_paddr_t avail_start, avail_end;
284 extern vm_offset_t sHIB;
285 extern vm_offset_t eHIB;
286 extern vm_offset_t stext;
287 extern vm_offset_t etext;
288 extern vm_offset_t sdata, edata;
289 extern vm_offset_t sconstdata, econstdata;
290
291 extern void *KPTphys;
292
293 boolean_t pmap_smep_enabled = FALSE;
294
295 void
296 pmap_cpu_init(void)
297 {
298 cpu_data_t *cdp = current_cpu_datap();
299 /*
300 * Here early in the life of a processor (from cpu_mode_init()).
301 * Ensure global page feature is disabled at this point.
302 */
303
304 set_cr4(get_cr4() &~ CR4_PGE);
305
306 /*
307 * Initialize the per-cpu, TLB-related fields.
308 */
309 cdp->cpu_kernel_cr3 = kernel_pmap->pm_cr3;
310 cdp->cpu_active_cr3 = kernel_pmap->pm_cr3;
311 cdp->cpu_tlb_invalid = FALSE;
312 cdp->cpu_task_map = TASK_MAP_64BIT;
313 pmap_pcid_configure();
314 if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMEP) {
315 boolean_t nsmep;
316 if (!PE_parse_boot_argn("-pmap_smep_disable", &nsmep, sizeof(nsmep))) {
317 set_cr4(get_cr4() | CR4_SMEP);
318 pmap_smep_enabled = TRUE;
319 }
320 }
321
322 if (cdp->cpu_fixed_pmcs_enabled) {
323 boolean_t enable = TRUE;
324 cpu_pmc_control(&enable);
325 }
326 }
327
328
329
330 /*
331 * Bootstrap the system enough to run with virtual memory.
332 * Map the kernel's code and data, and allocate the system page table.
333 * Called with mapping OFF. Page_size must already be set.
334 */
335
336 void
337 pmap_bootstrap(
338 __unused vm_offset_t load_start,
339 __unused boolean_t IA32e)
340 {
341 #if NCOPY_WINDOWS > 0
342 vm_offset_t va;
343 int i;
344 #endif
345 assert(IA32e);
346
347 vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Set the highest address
348 * known to VM */
349 /*
350 * The kernel's pmap is statically allocated so we don't
351 * have to use pmap_create, which is unlikely to work
352 * correctly at this part of the boot sequence.
353 */
354
355 kernel_pmap = &kernel_pmap_store;
356 kernel_pmap->ref_count = 1;
357 kernel_pmap->nx_enabled = TRUE;
358 kernel_pmap->pm_task_map = TASK_MAP_64BIT;
359 kernel_pmap->pm_obj = (vm_object_t) NULL;
360 kernel_pmap->dirbase = (pd_entry_t *)((uintptr_t)IdlePTD);
361 kernel_pmap->pm_pdpt = (pd_entry_t *) ((uintptr_t)IdlePDPT);
362 kernel_pmap->pm_pml4 = IdlePML4;
363 kernel_pmap->pm_cr3 = (uintptr_t)ID_MAP_VTOP(IdlePML4);
364 pmap_pcid_initialize_kernel(kernel_pmap);
365
366
367
368 current_cpu_datap()->cpu_kernel_cr3 = (addr64_t) kernel_pmap->pm_cr3;
369
370 nkpt = NKPT;
371 OSAddAtomic(NKPT, &inuse_ptepages_count);
372 OSAddAtomic64(NKPT, &alloc_ptepages_count);
373 bootstrap_wired_pages = NKPT;
374
375 virtual_avail = (vm_offset_t)(VM_MIN_KERNEL_ADDRESS) + (vm_offset_t)first_avail;
376 virtual_end = (vm_offset_t)(VM_MAX_KERNEL_ADDRESS);
377
378 #if NCOPY_WINDOWS > 0
379 /*
380 * Reserve some special page table entries/VA space for temporary
381 * mapping of pages.
382 */
383 #define SYSMAP(c, p, v, n) \
384 v = (c)va; va += ((n)*INTEL_PGBYTES);
385
386 va = virtual_avail;
387
388 for (i=0; i<PMAP_NWINDOWS; i++) {
389 #if 1
390 kprintf("trying to do SYSMAP idx %d %p\n", i,
391 current_cpu_datap());
392 kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap);
393 kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap->mapwindow);
394 kprintf("two stuff %p %p\n",
395 (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP),
396 (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR));
397 #endif
398 SYSMAP(caddr_t,
399 (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP),
400 (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR),
401 1);
402 current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP =
403 &(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP_store);
404 *current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = 0;
405 }
406
407 /* DMAP user for debugger */
408 SYSMAP(caddr_t, DMAP1, DADDR1, 1);
409 SYSMAP(caddr_t, DMAP2, DADDR2, 1); /* XXX temporary - can remove */
410
411 virtual_avail = va;
412 #endif
413
414 if (PE_parse_boot_argn("npvhash", &npvhash, sizeof (npvhash))) {
415 if (0 != ((npvhash + 1) & npvhash)) {
416 kprintf("invalid hash %d, must be ((2^N)-1), "
417 "using default %d\n", npvhash, NPVHASH);
418 npvhash = NPVHASH;
419 }
420 } else {
421 npvhash = NPVHASH;
422 }
423
424 simple_lock_init(&kernel_pmap->lock, 0);
425 simple_lock_init(&pv_hashed_free_list_lock, 0);
426 simple_lock_init(&pv_hashed_kern_free_list_lock, 0);
427 simple_lock_init(&pv_hash_table_lock,0);
428
429 pmap_cpu_init();
430
431 if (pmap_pcid_ncpus)
432 printf("PMAP: PCID enabled\n");
433
434 if (pmap_smep_enabled)
435 printf("PMAP: Supervisor Mode Execute Protection enabled\n");
436
437 #if DEBUG
438 printf("Stack canary: 0x%lx\n", __stack_chk_guard[0]);
439 printf("ml_early_random(): 0x%qx\n", ml_early_random());
440 #endif
441 boolean_t ptmp;
442 /* Check if the user has requested disabling stack or heap no-execute
443 * enforcement. These are "const" variables; that qualifier is cast away
444 * when altering them. The TEXT/DATA const sections are marked
445 * write protected later in the kernel startup sequence, so altering
446 * them is possible at this point, in pmap_bootstrap().
447 */
448 if (PE_parse_boot_argn("-pmap_disable_kheap_nx", &ptmp, sizeof(ptmp))) {
449 boolean_t *pdknxp = (boolean_t *) &pmap_disable_kheap_nx;
450 *pdknxp = TRUE;
451 }
452
453 if (PE_parse_boot_argn("-pmap_disable_kstack_nx", &ptmp, sizeof(ptmp))) {
454 boolean_t *pdknhp = (boolean_t *) &pmap_disable_kstack_nx;
455 *pdknhp = TRUE;
456 }
457
458 boot_args *args = (boot_args *)PE_state.bootArgs;
459 if (args->efiMode == kBootArgsEfiMode32) {
460 printf("EFI32: kernel virtual space limited to 4GB\n");
461 virtual_end = VM_MAX_KERNEL_ADDRESS_EFI32;
462 }
463 kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n",
464 (long)KERNEL_BASE, (long)virtual_end);
465 kprintf("Available physical space from 0x%llx to 0x%llx\n",
466 avail_start, avail_end);
467
468 /*
469 * The -no_shared_cr3 boot-arg is a debugging feature (set by default
470 * in the DEBUG kernel) to force the kernel to switch to its own map
471 * (and cr3) when control is in kernelspace. The kernel's map does not
472 * include (i.e. share) userspace so wild references will cause
473 * a panic. Only copyin and copyout are exempt from this.
474 */
475 (void) PE_parse_boot_argn("-no_shared_cr3",
476 &no_shared_cr3, sizeof (no_shared_cr3));
477 if (no_shared_cr3)
478 kprintf("Kernel not sharing user map\n");
479
480 #ifdef PMAP_TRACES
481 if (PE_parse_boot_argn("-pmap_trace", &pmap_trace, sizeof (pmap_trace))) {
482 kprintf("Kernel traces for pmap operations enabled\n");
483 }
484 #endif /* PMAP_TRACES */
485 }
486
487 void
488 pmap_virtual_space(
489 vm_offset_t *startp,
490 vm_offset_t *endp)
491 {
492 *startp = virtual_avail;
493 *endp = virtual_end;
494 }
495
496
497
498
499 #if HIBERNATION
500
501 #include <IOKit/IOHibernatePrivate.h>
502
503 int32_t pmap_npages;
504 int32_t pmap_teardown_last_valid_compact_indx = -1;
505
506
507 void hibernate_rebuild_pmap_structs(void);
508 void hibernate_teardown_pmap_structs(addr64_t *, addr64_t *);
509 void pmap_pack_index(uint32_t);
510 int32_t pmap_unpack_index(pv_rooted_entry_t);
511
512
513 int32_t
514 pmap_unpack_index(pv_rooted_entry_t pv_h)
515 {
516 int32_t indx = 0;
517
518 indx = (int32_t)(*((uint64_t *)(&pv_h->qlink.next)) >> 48);
519 indx = indx << 16;
520 indx |= (int32_t)(*((uint64_t *)(&pv_h->qlink.prev)) >> 48);
521
522 *((uint64_t *)(&pv_h->qlink.next)) |= ((uint64_t)0xffff << 48);
523 *((uint64_t *)(&pv_h->qlink.prev)) |= ((uint64_t)0xffff << 48);
524
525 return (indx);
526 }
527
528
529 void
530 pmap_pack_index(uint32_t indx)
531 {
532 pv_rooted_entry_t pv_h;
533
534 pv_h = &pv_head_table[indx];
535
536 *((uint64_t *)(&pv_h->qlink.next)) &= ~((uint64_t)0xffff << 48);
537 *((uint64_t *)(&pv_h->qlink.prev)) &= ~((uint64_t)0xffff << 48);
538
539 *((uint64_t *)(&pv_h->qlink.next)) |= ((uint64_t)(indx >> 16)) << 48;
540 *((uint64_t *)(&pv_h->qlink.prev)) |= ((uint64_t)(indx & 0xffff)) << 48;
541 }
542
543
544 void
545 hibernate_teardown_pmap_structs(addr64_t *unneeded_start, addr64_t *unneeded_end)
546 {
547 int32_t i;
548 int32_t compact_target_indx;
549
550 compact_target_indx = 0;
551
552 for (i = 0; i < pmap_npages; i++) {
553 if (pv_head_table[i].pmap == PMAP_NULL) {
554
555 if (pv_head_table[compact_target_indx].pmap != PMAP_NULL)
556 compact_target_indx = i;
557 } else {
558 pmap_pack_index((uint32_t)i);
559
560 if (pv_head_table[compact_target_indx].pmap == PMAP_NULL) {
561 /*
562 * we've got a hole to fill, so
563 * move this pv_rooted_entry_t to it's new home
564 */
565 pv_head_table[compact_target_indx] = pv_head_table[i];
566 pv_head_table[i].pmap = PMAP_NULL;
567
568 pmap_teardown_last_valid_compact_indx = compact_target_indx;
569 compact_target_indx++;
570 } else
571 pmap_teardown_last_valid_compact_indx = i;
572 }
573 }
574 *unneeded_start = (addr64_t)&pv_head_table[pmap_teardown_last_valid_compact_indx+1];
575 *unneeded_end = (addr64_t)&pv_head_table[pmap_npages-1];
576
577 HIBLOG("hibernate_teardown_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx);
578 }
579
580
581 void
582 hibernate_rebuild_pmap_structs(void)
583 {
584 int32_t cindx, eindx, rindx;
585 pv_rooted_entry_t pv_h;
586
587 eindx = (int32_t)pmap_npages;
588
589 for (cindx = pmap_teardown_last_valid_compact_indx; cindx >= 0; cindx--) {
590
591 pv_h = &pv_head_table[cindx];
592
593 rindx = pmap_unpack_index(pv_h);
594 assert(rindx < pmap_npages);
595
596 if (rindx != cindx) {
597 /*
598 * this pv_rooted_entry_t was moved by hibernate_teardown_pmap_structs,
599 * so move it back to its real location
600 */
601 pv_head_table[rindx] = pv_head_table[cindx];
602 }
603 if (rindx+1 != eindx) {
604 /*
605 * the 'hole' between this vm_rooted_entry_t and the previous
606 * vm_rooted_entry_t we moved needs to be initialized as
607 * a range of zero'd vm_rooted_entry_t's
608 */
609 bzero((char *)&pv_head_table[rindx+1], (eindx - rindx - 1) * sizeof (struct pv_rooted_entry));
610 }
611 eindx = rindx;
612 }
613 if (rindx)
614 bzero ((char *)&pv_head_table[0], rindx * sizeof (struct pv_rooted_entry));
615
616 HIBLOG("hibernate_rebuild_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx);
617 }
618
619 #endif
620
621 /*
622 * Initialize the pmap module.
623 * Called by vm_init, to initialize any structures that the pmap
624 * system needs to map virtual memory.
625 */
626 void
627 pmap_init(void)
628 {
629 long npages;
630 vm_offset_t addr;
631 vm_size_t s, vsize;
632 vm_map_offset_t vaddr;
633 ppnum_t ppn;
634
635
636 kernel_pmap->pm_obj_pml4 = &kpml4obj_object_store;
637 _vm_object_allocate((vm_object_size_t)NPML4PGS * PAGE_SIZE, &kpml4obj_object_store);
638
639 kernel_pmap->pm_obj_pdpt = &kpdptobj_object_store;
640 _vm_object_allocate((vm_object_size_t)NPDPTPGS * PAGE_SIZE, &kpdptobj_object_store);
641
642 kernel_pmap->pm_obj = &kptobj_object_store;
643 _vm_object_allocate((vm_object_size_t)NPDEPGS * PAGE_SIZE, &kptobj_object_store);
644
645 /*
646 * Allocate memory for the pv_head_table and its lock bits,
647 * the modify bit array, and the pte_page table.
648 */
649
650 /*
651 * zero bias all these arrays now instead of off avail_start
652 * so we cover all memory
653 */
654
655 npages = i386_btop(avail_end);
656 #if HIBERNATION
657 pmap_npages = (uint32_t)npages;
658 #endif
659 s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages
660 + (sizeof (struct pv_hashed_entry_t *) * (npvhash+1))
661 + pv_lock_table_size(npages)
662 + pv_hash_lock_table_size((npvhash+1))
663 + npages);
664
665 s = round_page(s);
666 if (kernel_memory_allocate(kernel_map, &addr, s, 0,
667 KMA_KOBJECT | KMA_PERMANENT)
668 != KERN_SUCCESS)
669 panic("pmap_init");
670
671 memset((char *)addr, 0, s);
672
673 vaddr = addr;
674 vsize = s;
675
676 #if PV_DEBUG
677 if (0 == npvhash) panic("npvhash not initialized");
678 #endif
679
680 /*
681 * Allocate the structures first to preserve word-alignment.
682 */
683 pv_head_table = (pv_rooted_entry_t) addr;
684 addr = (vm_offset_t) (pv_head_table + npages);
685
686 pv_hash_table = (pv_hashed_entry_t *)addr;
687 addr = (vm_offset_t) (pv_hash_table + (npvhash + 1));
688
689 pv_lock_table = (char *) addr;
690 addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages));
691
692 pv_hash_lock_table = (char *) addr;
693 addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhash+1)));
694
695 pmap_phys_attributes = (char *) addr;
696
697 ppnum_t last_pn = i386_btop(avail_end);
698 unsigned int i;
699 pmap_memory_region_t *pmptr = pmap_memory_regions;
700 for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
701 if (pmptr->type != kEfiConventionalMemory)
702 continue;
703 ppnum_t pn;
704 for (pn = pmptr->base; pn <= pmptr->end; pn++) {
705 if (pn < last_pn) {
706 pmap_phys_attributes[pn] |= PHYS_MANAGED;
707
708 if (pn > last_managed_page)
709 last_managed_page = pn;
710
711 if (pn >= lowest_hi && pn <= highest_hi)
712 pmap_phys_attributes[pn] |= PHYS_NOENCRYPT;
713 }
714 }
715 }
716 while (vsize) {
717 ppn = pmap_find_phys(kernel_pmap, vaddr);
718
719 pmap_phys_attributes[ppn] |= PHYS_NOENCRYPT;
720
721 vaddr += PAGE_SIZE;
722 vsize -= PAGE_SIZE;
723 }
724 /*
725 * Create the zone of physical maps,
726 * and of the physical-to-virtual entries.
727 */
728 s = (vm_size_t) sizeof(struct pmap);
729 pmap_zone = zinit(s, 400*s, 4096, "pmap"); /* XXX */
730 zone_change(pmap_zone, Z_NOENCRYPT, TRUE);
731
732 pmap_anchor_zone = zinit(PAGE_SIZE, task_max, PAGE_SIZE, "pagetable anchors");
733 zone_change(pmap_anchor_zone, Z_NOENCRYPT, TRUE);
734
735 /* The anchor is required to be page aligned. Zone debugging adds
736 * padding which may violate that requirement. Tell the zone
737 * subsystem that alignment is required.
738 */
739
740 zone_change(pmap_anchor_zone, Z_ALIGNMENT_REQUIRED, TRUE);
741
742 s = (vm_size_t) sizeof(struct pv_hashed_entry);
743 pv_hashed_list_zone = zinit(s, 10000*s /* Expandable zone */,
744 4096 * 3 /* LCM x86_64*/, "pv_list");
745 zone_change(pv_hashed_list_zone, Z_NOENCRYPT, TRUE);
746
747 /* create pv entries for kernel pages mapped by low level
748 startup code. these have to exist so we can pmap_remove()
749 e.g. kext pages from the middle of our addr space */
750
751 vaddr = (vm_map_offset_t) VM_MIN_KERNEL_ADDRESS;
752 for (ppn = VM_MIN_KERNEL_PAGE; ppn < i386_btop(avail_start); ppn++) {
753 pv_rooted_entry_t pv_e;
754
755 pv_e = pai_to_pvh(ppn);
756 pv_e->va = vaddr;
757 vaddr += PAGE_SIZE;
758 pv_e->pmap = kernel_pmap;
759 queue_init(&pv_e->qlink);
760 }
761 pmap_initialized = TRUE;
762
763 max_preemption_latency_tsc = tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS, tscFCvtn2t);
764
765 /*
766 * Ensure the kernel's PML4 entry exists for the basement
767 * before this is shared with any user.
768 */
769 pmap_expand_pml4(kernel_pmap, KERNEL_BASEMENT, PMAP_EXPAND_OPTIONS_NONE);
770 }
771
772 static
773 void pmap_mark_range(pmap_t npmap, uint64_t sv, uint64_t nxrosz, boolean_t NX, boolean_t ro) {
774 uint64_t ev = sv + nxrosz, cv = sv;
775 pd_entry_t *pdep;
776 pt_entry_t *ptep = NULL;
777
778 assert(((sv & 0xFFFULL) | (nxrosz & 0xFFFULL)) == 0);
779
780 for (pdep = pmap_pde(npmap, cv); pdep != NULL && (cv < ev);) {
781 uint64_t pdev = (cv & ~((uint64_t)PDEMASK));
782
783 if (*pdep & INTEL_PTE_PS) {
784 if (NX)
785 *pdep |= INTEL_PTE_NX;
786 if (ro)
787 *pdep &= ~INTEL_PTE_WRITE;
788 cv += NBPD;
789 cv &= ~((uint64_t) PDEMASK);
790 pdep = pmap_pde(npmap, cv);
791 continue;
792 }
793
794 for (ptep = pmap_pte(npmap, cv); ptep != NULL && (cv < (pdev + NBPD)) && (cv < ev);) {
795 if (NX)
796 *ptep |= INTEL_PTE_NX;
797 if (ro)
798 *ptep &= ~INTEL_PTE_WRITE;
799 cv += NBPT;
800 ptep = pmap_pte(npmap, cv);
801 }
802 }
803 DPRINTF("%s(0x%llx, 0x%llx, %u, %u): 0x%llx, 0x%llx\n", __FUNCTION__, sv, nxrosz, NX, ro, cv, ptep ? *ptep: 0);
804 }
805
806 /*
807 * Called once VM is fully initialized so that we can release unused
808 * sections of low memory to the general pool.
809 * Also complete the set-up of identity-mapped sections of the kernel:
810 * 1) write-protect kernel text
811 * 2) map kernel text using large pages if possible
812 * 3) read and write-protect page zero (for K32)
813 * 4) map the global page at the appropriate virtual address.
814 *
815 * Use of large pages
816 * ------------------
817 * To effectively map and write-protect all kernel text pages, the text
818 * must be 2M-aligned at the base, and the data section above must also be
819 * 2M-aligned. That is, there's padding below and above. This is achieved
820 * through linker directives. Large pages are used only if this alignment
821 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
822 * memory layout is:
823 *
824 * : :
825 * | __DATA |
826 * sdata: ================== 2Meg
827 * | |
828 * | zero-padding |
829 * | |
830 * etext: ------------------
831 * | |
832 * : :
833 * | |
834 * | __TEXT |
835 * | |
836 * : :
837 * | |
838 * stext: ================== 2Meg
839 * | |
840 * | zero-padding |
841 * | |
842 * eHIB: ------------------
843 * | __HIB |
844 * : :
845 *
846 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
847 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
848 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
849 * The now unused level-1 PTE pages are also freed.
850 */
851 extern ppnum_t vm_kernel_base_page;
852 void
853 pmap_lowmem_finalize(void)
854 {
855 spl_t spl;
856 int i;
857
858 /*
859 * Update wired memory statistics for early boot pages
860 */
861 PMAP_ZINFO_PALLOC(kernel_pmap, bootstrap_wired_pages * PAGE_SIZE);
862
863 /*
864 * Free pages in pmap regions below the base:
865 * rdar://6332712
866 * We can't free all the pages to VM that EFI reports available.
867 * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
868 * There's also a size miscalculation here: pend is one page less
869 * than it should be but this is not fixed to be backwards
870 * compatible.
871 * This is important for KASLR because up to 256*2MB = 512MB of space
872 * needs has to be released to VM.
873 */
874 for (i = 0;
875 pmap_memory_regions[i].end < vm_kernel_base_page;
876 i++) {
877 vm_offset_t pbase = i386_ptob(pmap_memory_regions[i].base);
878 vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1);
879
880 DBG("pmap region %d [%p..[%p\n",
881 i, (void *) pbase, (void *) pend);
882
883 if (pmap_memory_regions[i].attribute & EFI_MEMORY_KERN_RESERVED)
884 continue;
885 /*
886 * rdar://6332712
887 * Adjust limits not to free pages in range 0xc0000-0xff000.
888 */
889 if (pbase >= 0xc0000 && pend <= 0x100000)
890 continue;
891 if (pbase < 0xc0000 && pend > 0x100000) {
892 /* page range entirely within region, free lower part */
893 DBG("- ml_static_mfree(%p,%p)\n",
894 (void *) ml_static_ptovirt(pbase),
895 (void *) (0xc0000-pbase));
896 ml_static_mfree(ml_static_ptovirt(pbase),0xc0000-pbase);
897 pbase = 0x100000;
898 }
899 if (pbase < 0xc0000)
900 pend = MIN(pend, 0xc0000);
901 if (pend > 0x100000)
902 pbase = MAX(pbase, 0x100000);
903 DBG("- ml_static_mfree(%p,%p)\n",
904 (void *) ml_static_ptovirt(pbase),
905 (void *) (pend - pbase));
906 ml_static_mfree(ml_static_ptovirt(pbase), pend - pbase);
907 }
908
909 /* A final pass to get rid of all initial identity mappings to
910 * low pages.
911 */
912 DPRINTF("%s: Removing mappings from 0->0x%lx\n", __FUNCTION__, vm_kernel_base);
913
914 /*
915 * Remove all mappings past the boot-cpu descriptor aliases and low globals.
916 * Non-boot-cpu GDT aliases will be remapped later as needed.
917 */
918 pmap_remove(kernel_pmap, LOWGLOBAL_ALIAS + PAGE_SIZE, vm_kernel_base);
919
920 /*
921 * If text and data are both 2MB-aligned,
922 * we can map text with large-pages,
923 * unless the -kernel_text_ps_4K boot-arg overrides.
924 */
925 if ((stext & I386_LPGMASK) == 0 && (sdata & I386_LPGMASK) == 0) {
926 kprintf("Kernel text is 2MB aligned");
927 kernel_text_ps_4K = FALSE;
928 if (PE_parse_boot_argn("-kernel_text_ps_4K",
929 &kernel_text_ps_4K,
930 sizeof (kernel_text_ps_4K)))
931 kprintf(" but will be mapped with 4K pages\n");
932 else
933 kprintf(" and will be mapped with 2M pages\n");
934 }
935
936 (void) PE_parse_boot_argn("wpkernel", &wpkernel, sizeof (wpkernel));
937 if (wpkernel)
938 kprintf("Kernel text %p-%p to be write-protected\n",
939 (void *) stext, (void *) etext);
940
941 spl = splhigh();
942
943 /*
944 * Scan over text if mappings are to be changed:
945 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
946 * - Change to large-pages if possible and not overriden.
947 */
948 if (kernel_text_ps_4K && wpkernel) {
949 vm_offset_t myva;
950 for (myva = stext; myva < etext; myva += PAGE_SIZE) {
951 pt_entry_t *ptep;
952
953 ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
954 if (ptep)
955 pmap_store_pte(ptep, *ptep & ~INTEL_PTE_WRITE);
956 }
957 }
958
959 if (!kernel_text_ps_4K) {
960 vm_offset_t myva;
961
962 /*
963 * Release zero-filled page padding used for 2M-alignment.
964 */
965 DBG("ml_static_mfree(%p,%p) for padding below text\n",
966 (void *) eHIB, (void *) (stext - eHIB));
967 ml_static_mfree(eHIB, stext - eHIB);
968 DBG("ml_static_mfree(%p,%p) for padding above text\n",
969 (void *) etext, (void *) (sdata - etext));
970 ml_static_mfree(etext, sdata - etext);
971
972 /*
973 * Coalesce text pages into large pages.
974 */
975 for (myva = stext; myva < sdata; myva += I386_LPGBYTES) {
976 pt_entry_t *ptep;
977 vm_offset_t pte_phys;
978 pt_entry_t *pdep;
979 pt_entry_t pde;
980
981 pdep = pmap_pde(kernel_pmap, (vm_map_offset_t)myva);
982 ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
983 DBG("myva: %p pdep: %p ptep: %p\n",
984 (void *) myva, (void *) pdep, (void *) ptep);
985 if ((*ptep & INTEL_PTE_VALID) == 0)
986 continue;
987 pte_phys = (vm_offset_t)(*ptep & PG_FRAME);
988 pde = *pdep & PTMASK; /* page attributes from pde */
989 pde |= INTEL_PTE_PS; /* make it a 2M entry */
990 pde |= pte_phys; /* take page frame from pte */
991
992 if (wpkernel)
993 pde &= ~INTEL_PTE_WRITE;
994 DBG("pmap_store_pte(%p,0x%llx)\n",
995 (void *)pdep, pde);
996 pmap_store_pte(pdep, pde);
997
998 /*
999 * Free the now-unused level-1 pte.
1000 * Note: ptep is a virtual address to the pte in the
1001 * recursive map. We can't use this address to free
1002 * the page. Instead we need to compute its address
1003 * in the Idle PTEs in "low memory".
1004 */
1005 vm_offset_t vm_ptep = (vm_offset_t) KPTphys
1006 + (pte_phys >> PTPGSHIFT);
1007 DBG("ml_static_mfree(%p,0x%x) for pte\n",
1008 (void *) vm_ptep, PAGE_SIZE);
1009 ml_static_mfree(vm_ptep, PAGE_SIZE);
1010 }
1011
1012 /* Change variable read by sysctl machdep.pmap */
1013 pmap_kernel_text_ps = I386_LPGBYTES;
1014 }
1015
1016 boolean_t doconstro = TRUE;
1017
1018 (void) PE_parse_boot_argn("dataconstro", &doconstro, sizeof(doconstro));
1019
1020 if ((sconstdata | econstdata) & PAGE_MASK) {
1021 kprintf("Const DATA misaligned 0x%lx 0x%lx\n", sconstdata, econstdata);
1022 if ((sconstdata & PAGE_MASK) || (doconstro_override == FALSE))
1023 doconstro = FALSE;
1024 }
1025
1026 if ((sconstdata > edata) || (sconstdata < sdata) || ((econstdata - sconstdata) >= (edata - sdata))) {
1027 kprintf("Const DATA incorrect size 0x%lx 0x%lx 0x%lx 0x%lx\n", sconstdata, econstdata, sdata, edata);
1028 doconstro = FALSE;
1029 }
1030
1031 if (doconstro)
1032 kprintf("Marking const DATA read-only\n");
1033
1034 vm_offset_t dva;
1035
1036 for (dva = sdata; dva < edata; dva += I386_PGBYTES) {
1037 assert(((sdata | edata) & PAGE_MASK) == 0);
1038 if ( (sdata | edata) & PAGE_MASK) {
1039 kprintf("DATA misaligned, 0x%lx, 0x%lx\n", sdata, edata);
1040 break;
1041 }
1042
1043 pt_entry_t dpte, *dptep = pmap_pte(kernel_pmap, dva);
1044
1045 dpte = *dptep;
1046
1047 assert((dpte & INTEL_PTE_VALID));
1048 if ((dpte & INTEL_PTE_VALID) == 0) {
1049 kprintf("Missing data mapping 0x%lx 0x%lx 0x%lx\n", dva, sdata, edata);
1050 continue;
1051 }
1052
1053 dpte |= INTEL_PTE_NX;
1054 if (doconstro && (dva >= sconstdata) && (dva < econstdata)) {
1055 dpte &= ~INTEL_PTE_WRITE;
1056 }
1057 pmap_store_pte(dptep, dpte);
1058 }
1059 kernel_segment_command_t * seg;
1060 kernel_section_t * sec;
1061
1062 for (seg = firstseg(); seg != NULL; seg = nextsegfromheader(&_mh_execute_header, seg)) {
1063 if (!strcmp(seg->segname, "__TEXT") ||
1064 !strcmp(seg->segname, "__DATA")) {
1065 continue;
1066 }
1067 //XXX
1068 if (!strcmp(seg->segname, "__KLD")) {
1069 continue;
1070 }
1071 if (!strcmp(seg->segname, "__HIB")) {
1072 for (sec = firstsect(seg); sec != NULL; sec = nextsect(seg, sec)) {
1073 if (sec->addr & PAGE_MASK)
1074 panic("__HIB segment's sections misaligned");
1075 if (!strcmp(sec->sectname, "__text")) {
1076 pmap_mark_range(kernel_pmap, sec->addr, round_page(sec->size), FALSE, TRUE);
1077 } else {
1078 pmap_mark_range(kernel_pmap, sec->addr, round_page(sec->size), TRUE, FALSE);
1079 }
1080 }
1081 } else {
1082 pmap_mark_range(kernel_pmap, seg->vmaddr, round_page_64(seg->vmsize), TRUE, FALSE);
1083 }
1084 }
1085
1086 /*
1087 * If we're debugging, map the low global vector page at the fixed
1088 * virtual address. Otherwise, remove the mapping for this.
1089 */
1090 if (debug_boot_arg) {
1091 pt_entry_t *pte = NULL;
1092 if (0 == (pte = pmap_pte(kernel_pmap, LOWGLOBAL_ALIAS)))
1093 panic("lowmem pte");
1094 /* make sure it is defined on page boundary */
1095 assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK));
1096 pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo)
1097 | INTEL_PTE_REF
1098 | INTEL_PTE_MOD
1099 | INTEL_PTE_WIRED
1100 | INTEL_PTE_VALID
1101 | INTEL_PTE_WRITE
1102 | INTEL_PTE_NX);
1103 } else {
1104 pmap_remove(kernel_pmap,
1105 LOWGLOBAL_ALIAS, LOWGLOBAL_ALIAS + PAGE_SIZE);
1106 }
1107
1108 splx(spl);
1109 if (pmap_pcid_ncpus)
1110 tlb_flush_global();
1111 else
1112 flush_tlb_raw();
1113 }
1114
1115 /*
1116 * this function is only used for debugging fron the vm layer
1117 */
1118 boolean_t
1119 pmap_verify_free(
1120 ppnum_t pn)
1121 {
1122 pv_rooted_entry_t pv_h;
1123 int pai;
1124 boolean_t result;
1125
1126 assert(pn != vm_page_fictitious_addr);
1127
1128 if (!pmap_initialized)
1129 return(TRUE);
1130
1131 if (pn == vm_page_guard_addr)
1132 return TRUE;
1133
1134 pai = ppn_to_pai(pn);
1135 if (!IS_MANAGED_PAGE(pai))
1136 return(FALSE);
1137 pv_h = pai_to_pvh(pn);
1138 result = (pv_h->pmap == PMAP_NULL);
1139 return(result);
1140 }
1141
1142 boolean_t
1143 pmap_is_empty(
1144 pmap_t pmap,
1145 vm_map_offset_t va_start,
1146 vm_map_offset_t va_end)
1147 {
1148 vm_map_offset_t offset;
1149 ppnum_t phys_page;
1150
1151 if (pmap == PMAP_NULL) {
1152 return TRUE;
1153 }
1154
1155 /*
1156 * Check the resident page count
1157 * - if it's zero, the pmap is completely empty.
1158 * This short-circuit test prevents a virtual address scan which is
1159 * painfully slow for 64-bit spaces.
1160 * This assumes the count is correct
1161 * .. the debug kernel ought to be checking perhaps by page table walk.
1162 */
1163 if (pmap->stats.resident_count == 0)
1164 return TRUE;
1165
1166 for (offset = va_start;
1167 offset < va_end;
1168 offset += PAGE_SIZE_64) {
1169 phys_page = pmap_find_phys(pmap, offset);
1170 if (phys_page) {
1171 kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
1172 "page %d at 0x%llx\n",
1173 pmap, va_start, va_end, phys_page, offset);
1174 return FALSE;
1175 }
1176 }
1177
1178 return TRUE;
1179 }
1180
1181
1182 /*
1183 * Create and return a physical map.
1184 *
1185 * If the size specified for the map
1186 * is zero, the map is an actual physical
1187 * map, and may be referenced by the
1188 * hardware.
1189 *
1190 * If the size specified is non-zero,
1191 * the map will be used in software only, and
1192 * is bounded by that size.
1193 */
1194 pmap_t
1195 pmap_create(
1196 ledger_t ledger,
1197 vm_map_size_t sz,
1198 boolean_t is_64bit)
1199 {
1200 pmap_t p;
1201 vm_size_t size;
1202 pml4_entry_t *pml4;
1203 pml4_entry_t *kpml4;
1204
1205 PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
1206 (uint32_t) (sz>>32), (uint32_t) sz, is_64bit, 0, 0);
1207
1208 size = (vm_size_t) sz;
1209
1210 /*
1211 * A software use-only map doesn't even need a map.
1212 */
1213
1214 if (size != 0) {
1215 return(PMAP_NULL);
1216 }
1217
1218 p = (pmap_t) zalloc(pmap_zone);
1219 if (PMAP_NULL == p)
1220 panic("pmap_create zalloc");
1221 /* Zero all fields */
1222 bzero(p, sizeof(*p));
1223 /* init counts now since we'll be bumping some */
1224 simple_lock_init(&p->lock, 0);
1225 #if 00
1226 p->stats.resident_count = 0;
1227 p->stats.resident_max = 0;
1228 p->stats.wired_count = 0;
1229 #else
1230 bzero(&p->stats, sizeof (p->stats));
1231 #endif
1232 p->ref_count = 1;
1233 p->nx_enabled = 1;
1234 p->pm_shared = FALSE;
1235 ledger_reference(ledger);
1236 p->ledger = ledger;
1237
1238 p->pm_task_map = is_64bit ? TASK_MAP_64BIT : TASK_MAP_32BIT;;
1239 if (pmap_pcid_ncpus)
1240 pmap_pcid_initialize(p);
1241
1242 p->pm_pml4 = zalloc(pmap_anchor_zone);
1243
1244 pmap_assert((((uintptr_t)p->pm_pml4) & PAGE_MASK) == 0);
1245
1246 memset((char *)p->pm_pml4, 0, PAGE_SIZE);
1247
1248 p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4);
1249
1250 /* allocate the vm_objs to hold the pdpt, pde and pte pages */
1251
1252 p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS) * PAGE_SIZE);
1253 if (NULL == p->pm_obj_pml4)
1254 panic("pmap_create pdpt obj");
1255
1256 p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS) * PAGE_SIZE);
1257 if (NULL == p->pm_obj_pdpt)
1258 panic("pmap_create pdpt obj");
1259
1260 p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS) * PAGE_SIZE);
1261 if (NULL == p->pm_obj)
1262 panic("pmap_create pte obj");
1263
1264 /* All pmaps share the kernel's pml4 */
1265 pml4 = pmap64_pml4(p, 0ULL);
1266 kpml4 = kernel_pmap->pm_pml4;
1267 pml4[KERNEL_PML4_INDEX] = kpml4[KERNEL_PML4_INDEX];
1268 pml4[KERNEL_KEXTS_INDEX] = kpml4[KERNEL_KEXTS_INDEX];
1269 pml4[KERNEL_PHYSMAP_PML4_INDEX] = kpml4[KERNEL_PHYSMAP_PML4_INDEX];
1270
1271 PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
1272 p, is_64bit, 0, 0, 0);
1273
1274 return(p);
1275 }
1276
1277 /*
1278 * Retire the given physical map from service.
1279 * Should only be called if the map contains
1280 * no valid mappings.
1281 */
1282
1283 void
1284 pmap_destroy(pmap_t p)
1285 {
1286 int c;
1287
1288 if (p == PMAP_NULL)
1289 return;
1290
1291 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_START,
1292 p, 0, 0, 0, 0);
1293
1294 PMAP_LOCK(p);
1295
1296 c = --p->ref_count;
1297
1298 pmap_assert((current_thread() && (current_thread()->map)) ? (current_thread()->map->pmap != p) : TRUE);
1299
1300 if (c == 0) {
1301 /*
1302 * If some cpu is not using the physical pmap pointer that it
1303 * is supposed to be (see set_dirbase), we might be using the
1304 * pmap that is being destroyed! Make sure we are
1305 * physically on the right pmap:
1306 */
1307 PMAP_UPDATE_TLBS(p, 0x0ULL, 0xFFFFFFFFFFFFF000ULL);
1308 if (pmap_pcid_ncpus)
1309 pmap_destroy_pcid_sync(p);
1310 }
1311
1312 PMAP_UNLOCK(p);
1313
1314 if (c != 0) {
1315 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
1316 p, 1, 0, 0, 0);
1317 pmap_assert(p == kernel_pmap);
1318 return; /* still in use */
1319 }
1320
1321 /*
1322 * Free the memory maps, then the
1323 * pmap structure.
1324 */
1325 int inuse_ptepages = 0;
1326
1327 zfree(pmap_anchor_zone, p->pm_pml4);
1328
1329 inuse_ptepages += p->pm_obj_pml4->resident_page_count;
1330 vm_object_deallocate(p->pm_obj_pml4);
1331
1332 inuse_ptepages += p->pm_obj_pdpt->resident_page_count;
1333 vm_object_deallocate(p->pm_obj_pdpt);
1334
1335 inuse_ptepages += p->pm_obj->resident_page_count;
1336 vm_object_deallocate(p->pm_obj);
1337
1338 OSAddAtomic(-inuse_ptepages, &inuse_ptepages_count);
1339 PMAP_ZINFO_PFREE(p, inuse_ptepages * PAGE_SIZE);
1340 ledger_dereference(p->ledger);
1341 zfree(pmap_zone, p);
1342
1343 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
1344 0, 0, 0, 0, 0);
1345 }
1346
1347 /*
1348 * Add a reference to the specified pmap.
1349 */
1350
1351 void
1352 pmap_reference(pmap_t p)
1353 {
1354 if (p != PMAP_NULL) {
1355 PMAP_LOCK(p);
1356 p->ref_count++;
1357 PMAP_UNLOCK(p);;
1358 }
1359 }
1360
1361 /*
1362 * Remove phys addr if mapped in specified map
1363 *
1364 */
1365 void
1366 pmap_remove_some_phys(
1367 __unused pmap_t map,
1368 __unused ppnum_t pn)
1369 {
1370
1371 /* Implement to support working set code */
1372
1373 }
1374
1375
1376 void
1377 pmap_protect(
1378 pmap_t map,
1379 vm_map_offset_t sva,
1380 vm_map_offset_t eva,
1381 vm_prot_t prot)
1382 {
1383 pmap_protect_options(map, sva, eva, prot, 0, NULL);
1384 }
1385
1386
1387 /*
1388 * Set the physical protection on the
1389 * specified range of this map as requested.
1390 * Will not increase permissions.
1391 */
1392 void
1393 pmap_protect_options(
1394 pmap_t map,
1395 vm_map_offset_t sva,
1396 vm_map_offset_t eva,
1397 vm_prot_t prot,
1398 unsigned int options,
1399 void *arg)
1400 {
1401 pt_entry_t *pde;
1402 pt_entry_t *spte, *epte;
1403 vm_map_offset_t lva;
1404 vm_map_offset_t orig_sva;
1405 boolean_t set_NX;
1406 int num_found = 0;
1407
1408 pmap_intr_assert();
1409
1410 if (map == PMAP_NULL)
1411 return;
1412
1413 if (prot == VM_PROT_NONE) {
1414 pmap_remove_options(map, sva, eva, options);
1415 return;
1416 }
1417 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START,
1418 map,
1419 (uint32_t) (sva >> 32), (uint32_t) sva,
1420 (uint32_t) (eva >> 32), (uint32_t) eva);
1421
1422 if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !map->nx_enabled)
1423 set_NX = FALSE;
1424 else
1425 set_NX = TRUE;
1426
1427 PMAP_LOCK(map);
1428
1429 orig_sva = sva;
1430 while (sva < eva) {
1431 lva = (sva + pde_mapped_size) & ~(pde_mapped_size - 1);
1432 if (lva > eva)
1433 lva = eva;
1434 pde = pmap_pde(map, sva);
1435 if (pde && (*pde & INTEL_PTE_VALID)) {
1436 if (*pde & INTEL_PTE_PS) {
1437 /* superpage */
1438 spte = pde;
1439 epte = spte+1; /* excluded */
1440 } else {
1441 spte = pmap_pte(map, (sva & ~(pde_mapped_size - 1)));
1442 spte = &spte[ptenum(sva)];
1443 epte = &spte[intel_btop(lva - sva)];
1444 }
1445
1446 for (; spte < epte; spte++) {
1447 if (!(*spte & INTEL_PTE_VALID))
1448 continue;
1449
1450 if (prot & VM_PROT_WRITE)
1451 pmap_update_pte(spte, 0, INTEL_PTE_WRITE);
1452 else
1453 pmap_update_pte(spte, INTEL_PTE_WRITE, 0);
1454
1455 if (set_NX)
1456 pmap_update_pte(spte, 0, INTEL_PTE_NX);
1457 else
1458 pmap_update_pte(spte, INTEL_PTE_NX, 0);
1459 num_found++;
1460 }
1461 }
1462 sva = lva;
1463 }
1464 if (num_found) {
1465 if (options & PMAP_OPTIONS_NOFLUSH)
1466 PMAP_UPDATE_TLBS_DELAYED(map, orig_sva, eva, (pmap_flush_context *)arg);
1467 else
1468 PMAP_UPDATE_TLBS(map, orig_sva, eva);
1469 }
1470 PMAP_UNLOCK(map);
1471
1472 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END,
1473 0, 0, 0, 0, 0);
1474
1475 }
1476
1477 /* Map a (possibly) autogenned block */
1478 void
1479 pmap_map_block(
1480 pmap_t pmap,
1481 addr64_t va,
1482 ppnum_t pa,
1483 uint32_t size,
1484 vm_prot_t prot,
1485 int attr,
1486 __unused unsigned int flags)
1487 {
1488 uint32_t page;
1489 int cur_page_size;
1490
1491 if (attr & VM_MEM_SUPERPAGE)
1492 cur_page_size = SUPERPAGE_SIZE;
1493 else
1494 cur_page_size = PAGE_SIZE;
1495
1496 for (page = 0; page < size; page+=cur_page_size/PAGE_SIZE) {
1497 pmap_enter(pmap, va, pa, prot, VM_PROT_NONE, attr, TRUE);
1498 va += cur_page_size;
1499 pa+=cur_page_size/PAGE_SIZE;
1500 }
1501 }
1502
1503 kern_return_t
1504 pmap_expand_pml4(
1505 pmap_t map,
1506 vm_map_offset_t vaddr,
1507 unsigned int options)
1508 {
1509 vm_page_t m;
1510 pmap_paddr_t pa;
1511 uint64_t i;
1512 ppnum_t pn;
1513 pml4_entry_t *pml4p;
1514
1515 DBG("pmap_expand_pml4(%p,%p)\n", map, (void *)vaddr);
1516
1517 /*
1518 * Allocate a VM page for the pml4 page
1519 */
1520 while ((m = vm_page_grab()) == VM_PAGE_NULL) {
1521 if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
1522 return KERN_RESOURCE_SHORTAGE;
1523 VM_PAGE_WAIT();
1524 }
1525 /*
1526 * put the page into the pmap's obj list so it
1527 * can be found later.
1528 */
1529 pn = m->phys_page;
1530 pa = i386_ptob(pn);
1531 i = pml4idx(map, vaddr);
1532
1533 /*
1534 * Zero the page.
1535 */
1536 pmap_zero_page(pn);
1537
1538 vm_page_lockspin_queues();
1539 vm_page_wire(m);
1540 vm_page_unlock_queues();
1541
1542 OSAddAtomic(1, &inuse_ptepages_count);
1543 OSAddAtomic64(1, &alloc_ptepages_count);
1544 PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1545
1546 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1547 vm_object_lock(map->pm_obj_pml4);
1548
1549 PMAP_LOCK(map);
1550 /*
1551 * See if someone else expanded us first
1552 */
1553 if (pmap64_pdpt(map, vaddr) != PDPT_ENTRY_NULL) {
1554 PMAP_UNLOCK(map);
1555 vm_object_unlock(map->pm_obj_pml4);
1556
1557 VM_PAGE_FREE(m);
1558
1559 OSAddAtomic(-1, &inuse_ptepages_count);
1560 PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1561 return KERN_SUCCESS;
1562 }
1563
1564 #if 0 /* DEBUG */
1565 if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i * PAGE_SIZE)) {
1566 panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1567 map, map->pm_obj_pml4, vaddr, i);
1568 }
1569 #endif
1570 vm_page_insert(m, map->pm_obj_pml4, (vm_object_offset_t)i * PAGE_SIZE);
1571 vm_object_unlock(map->pm_obj_pml4);
1572
1573 /*
1574 * Set the page directory entry for this page table.
1575 */
1576 pml4p = pmap64_pml4(map, vaddr); /* refetch under lock */
1577
1578 pmap_store_pte(pml4p, pa_to_pte(pa)
1579 | INTEL_PTE_VALID
1580 | INTEL_PTE_USER
1581 | INTEL_PTE_WRITE);
1582
1583 PMAP_UNLOCK(map);
1584
1585 return KERN_SUCCESS;
1586 }
1587
1588 kern_return_t
1589 pmap_expand_pdpt(pmap_t map, vm_map_offset_t vaddr, unsigned int options)
1590 {
1591 vm_page_t m;
1592 pmap_paddr_t pa;
1593 uint64_t i;
1594 ppnum_t pn;
1595 pdpt_entry_t *pdptp;
1596
1597 DBG("pmap_expand_pdpt(%p,%p)\n", map, (void *)vaddr);
1598
1599 while ((pdptp = pmap64_pdpt(map, vaddr)) == PDPT_ENTRY_NULL) {
1600 kern_return_t pep4kr = pmap_expand_pml4(map, vaddr, options);
1601 if (pep4kr != KERN_SUCCESS)
1602 return pep4kr;
1603 }
1604
1605 /*
1606 * Allocate a VM page for the pdpt page
1607 */
1608 while ((m = vm_page_grab()) == VM_PAGE_NULL) {
1609 if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
1610 return KERN_RESOURCE_SHORTAGE;
1611 VM_PAGE_WAIT();
1612 }
1613
1614 /*
1615 * put the page into the pmap's obj list so it
1616 * can be found later.
1617 */
1618 pn = m->phys_page;
1619 pa = i386_ptob(pn);
1620 i = pdptidx(map, vaddr);
1621
1622 /*
1623 * Zero the page.
1624 */
1625 pmap_zero_page(pn);
1626
1627 vm_page_lockspin_queues();
1628 vm_page_wire(m);
1629 vm_page_unlock_queues();
1630
1631 OSAddAtomic(1, &inuse_ptepages_count);
1632 OSAddAtomic64(1, &alloc_ptepages_count);
1633 PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1634
1635 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1636 vm_object_lock(map->pm_obj_pdpt);
1637
1638 PMAP_LOCK(map);
1639 /*
1640 * See if someone else expanded us first
1641 */
1642 if (pmap64_pde(map, vaddr) != PD_ENTRY_NULL) {
1643 PMAP_UNLOCK(map);
1644 vm_object_unlock(map->pm_obj_pdpt);
1645
1646 VM_PAGE_FREE(m);
1647
1648 OSAddAtomic(-1, &inuse_ptepages_count);
1649 PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1650 return KERN_SUCCESS;
1651 }
1652
1653 #if 0 /* DEBUG */
1654 if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i * PAGE_SIZE)) {
1655 panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1656 map, map->pm_obj_pdpt, vaddr, i);
1657 }
1658 #endif
1659 vm_page_insert(m, map->pm_obj_pdpt, (vm_object_offset_t)i * PAGE_SIZE);
1660 vm_object_unlock(map->pm_obj_pdpt);
1661
1662 /*
1663 * Set the page directory entry for this page table.
1664 */
1665 pdptp = pmap64_pdpt(map, vaddr); /* refetch under lock */
1666
1667 pmap_store_pte(pdptp, pa_to_pte(pa)
1668 | INTEL_PTE_VALID
1669 | INTEL_PTE_USER
1670 | INTEL_PTE_WRITE);
1671
1672 PMAP_UNLOCK(map);
1673
1674 return KERN_SUCCESS;
1675
1676 }
1677
1678
1679
1680 /*
1681 * Routine: pmap_expand
1682 *
1683 * Expands a pmap to be able to map the specified virtual address.
1684 *
1685 * Allocates new virtual memory for the P0 or P1 portion of the
1686 * pmap, then re-maps the physical pages that were in the old
1687 * pmap to be in the new pmap.
1688 *
1689 * Must be called with the pmap system and the pmap unlocked,
1690 * since these must be unlocked to use vm_allocate or vm_deallocate.
1691 * Thus it must be called in a loop that checks whether the map
1692 * has been expanded enough.
1693 * (We won't loop forever, since page tables aren't shrunk.)
1694 */
1695 kern_return_t
1696 pmap_expand(
1697 pmap_t map,
1698 vm_map_offset_t vaddr,
1699 unsigned int options)
1700 {
1701 pt_entry_t *pdp;
1702 register vm_page_t m;
1703 register pmap_paddr_t pa;
1704 uint64_t i;
1705 ppnum_t pn;
1706
1707
1708 /*
1709 * For the kernel, the virtual address must be in or above the basement
1710 * which is for kexts and is in the 512GB immediately below the kernel..
1711 * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT
1712 */
1713 if (map == kernel_pmap &&
1714 !(vaddr >= KERNEL_BASEMENT && vaddr <= VM_MAX_KERNEL_ADDRESS))
1715 panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr);
1716
1717
1718 while ((pdp = pmap64_pde(map, vaddr)) == PD_ENTRY_NULL) {
1719 kern_return_t pepkr = pmap_expand_pdpt(map, vaddr, options);
1720 if (pepkr != KERN_SUCCESS)
1721 return pepkr;
1722 }
1723
1724 /*
1725 * Allocate a VM page for the pde entries.
1726 */
1727 while ((m = vm_page_grab()) == VM_PAGE_NULL) {
1728 if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
1729 return KERN_RESOURCE_SHORTAGE;
1730 VM_PAGE_WAIT();
1731 }
1732
1733 /*
1734 * put the page into the pmap's obj list so it
1735 * can be found later.
1736 */
1737 pn = m->phys_page;
1738 pa = i386_ptob(pn);
1739 i = pdeidx(map, vaddr);
1740
1741 /*
1742 * Zero the page.
1743 */
1744 pmap_zero_page(pn);
1745
1746 vm_page_lockspin_queues();
1747 vm_page_wire(m);
1748 vm_page_unlock_queues();
1749
1750 OSAddAtomic(1, &inuse_ptepages_count);
1751 OSAddAtomic64(1, &alloc_ptepages_count);
1752 PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1753
1754 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1755 vm_object_lock(map->pm_obj);
1756
1757 PMAP_LOCK(map);
1758
1759 /*
1760 * See if someone else expanded us first
1761 */
1762 if (pmap_pte(map, vaddr) != PT_ENTRY_NULL) {
1763 PMAP_UNLOCK(map);
1764 vm_object_unlock(map->pm_obj);
1765
1766 VM_PAGE_FREE(m);
1767
1768 OSAddAtomic(-1, &inuse_ptepages_count);
1769 PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1770 return KERN_SUCCESS;
1771 }
1772
1773 #if 0 /* DEBUG */
1774 if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i * PAGE_SIZE)) {
1775 panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
1776 map, map->pm_obj, vaddr, i);
1777 }
1778 #endif
1779 vm_page_insert(m, map->pm_obj, (vm_object_offset_t)i * PAGE_SIZE);
1780 vm_object_unlock(map->pm_obj);
1781
1782 /*
1783 * Set the page directory entry for this page table.
1784 */
1785 pdp = pmap_pde(map, vaddr);
1786 pmap_store_pte(pdp, pa_to_pte(pa)
1787 | INTEL_PTE_VALID
1788 | INTEL_PTE_USER
1789 | INTEL_PTE_WRITE);
1790
1791 PMAP_UNLOCK(map);
1792
1793 return KERN_SUCCESS;
1794 }
1795
1796 /* On K64 machines with more than 32GB of memory, pmap_steal_memory
1797 * will allocate past the 1GB of pre-expanded virtual kernel area. This
1798 * function allocates all the page tables using memory from the same pool
1799 * that pmap_steal_memory uses, rather than calling vm_page_grab (which
1800 * isn't available yet). */
1801 void
1802 pmap_pre_expand(pmap_t pmap, vm_map_offset_t vaddr)
1803 {
1804 ppnum_t pn;
1805 pt_entry_t *pte;
1806
1807 PMAP_LOCK(pmap);
1808
1809 if(pmap64_pdpt(pmap, vaddr) == PDPT_ENTRY_NULL) {
1810 if (!pmap_next_page_hi(&pn))
1811 panic("pmap_pre_expand");
1812
1813 pmap_zero_page(pn);
1814
1815 pte = pmap64_pml4(pmap, vaddr);
1816
1817 pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1818 | INTEL_PTE_VALID
1819 | INTEL_PTE_USER
1820 | INTEL_PTE_WRITE);
1821 }
1822
1823 if(pmap64_pde(pmap, vaddr) == PD_ENTRY_NULL) {
1824 if (!pmap_next_page_hi(&pn))
1825 panic("pmap_pre_expand");
1826
1827 pmap_zero_page(pn);
1828
1829 pte = pmap64_pdpt(pmap, vaddr);
1830
1831 pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1832 | INTEL_PTE_VALID
1833 | INTEL_PTE_USER
1834 | INTEL_PTE_WRITE);
1835 }
1836
1837 if(pmap_pte(pmap, vaddr) == PT_ENTRY_NULL) {
1838 if (!pmap_next_page_hi(&pn))
1839 panic("pmap_pre_expand");
1840
1841 pmap_zero_page(pn);
1842
1843 pte = pmap64_pde(pmap, vaddr);
1844
1845 pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1846 | INTEL_PTE_VALID
1847 | INTEL_PTE_USER
1848 | INTEL_PTE_WRITE);
1849 }
1850
1851 PMAP_UNLOCK(pmap);
1852 }
1853
1854 /*
1855 * pmap_sync_page_data_phys(ppnum_t pa)
1856 *
1857 * Invalidates all of the instruction cache on a physical page and
1858 * pushes any dirty data from the data cache for the same physical page
1859 * Not required in i386.
1860 */
1861 void
1862 pmap_sync_page_data_phys(__unused ppnum_t pa)
1863 {
1864 return;
1865 }
1866
1867 /*
1868 * pmap_sync_page_attributes_phys(ppnum_t pa)
1869 *
1870 * Write back and invalidate all cachelines on a physical page.
1871 */
1872 void
1873 pmap_sync_page_attributes_phys(ppnum_t pa)
1874 {
1875 cache_flush_page_phys(pa);
1876 }
1877
1878
1879
1880 #ifdef CURRENTLY_UNUSED_AND_UNTESTED
1881
1882 int collect_ref;
1883 int collect_unref;
1884
1885 /*
1886 * Routine: pmap_collect
1887 * Function:
1888 * Garbage collects the physical map system for
1889 * pages which are no longer used.
1890 * Success need not be guaranteed -- that is, there
1891 * may well be pages which are not referenced, but
1892 * others may be collected.
1893 * Usage:
1894 * Called by the pageout daemon when pages are scarce.
1895 */
1896 void
1897 pmap_collect(
1898 pmap_t p)
1899 {
1900 register pt_entry_t *pdp, *ptp;
1901 pt_entry_t *eptp;
1902 int wired;
1903
1904 if (p == PMAP_NULL)
1905 return;
1906
1907 if (p == kernel_pmap)
1908 return;
1909
1910 /*
1911 * Garbage collect map.
1912 */
1913 PMAP_LOCK(p);
1914
1915 for (pdp = (pt_entry_t *)p->dirbase;
1916 pdp < (pt_entry_t *)&p->dirbase[(UMAXPTDI+1)];
1917 pdp++)
1918 {
1919 if (*pdp & INTEL_PTE_VALID) {
1920 if(*pdp & INTEL_PTE_REF) {
1921 pmap_store_pte(pdp, *pdp & ~INTEL_PTE_REF);
1922 collect_ref++;
1923 } else {
1924 collect_unref++;
1925 ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase));
1926 eptp = ptp + NPTEPG;
1927
1928 /*
1929 * If the pte page has any wired mappings, we cannot
1930 * free it.
1931 */
1932 wired = 0;
1933 {
1934 register pt_entry_t *ptep;
1935 for (ptep = ptp; ptep < eptp; ptep++) {
1936 if (iswired(*ptep)) {
1937 wired = 1;
1938 break;
1939 }
1940 }
1941 }
1942 if (!wired) {
1943 /*
1944 * Remove the virtual addresses mapped by this pte page.
1945 */
1946 pmap_remove_range(p,
1947 pdetova(pdp - (pt_entry_t *)p->dirbase),
1948 ptp,
1949 eptp);
1950
1951 /*
1952 * Invalidate the page directory pointer.
1953 */
1954 pmap_store_pte(pdp, 0x0);
1955
1956 PMAP_UNLOCK(p);
1957
1958 /*
1959 * And free the pte page itself.
1960 */
1961 {
1962 register vm_page_t m;
1963
1964 vm_object_lock(p->pm_obj);
1965
1966 m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0]) * PAGE_SIZE);
1967 if (m == VM_PAGE_NULL)
1968 panic("pmap_collect: pte page not in object");
1969
1970 vm_object_unlock(p->pm_obj);
1971
1972 VM_PAGE_FREE(m);
1973
1974 OSAddAtomic(-1, &inuse_ptepages_count);
1975 PMAP_ZINFO_PFREE(p, PAGE_SIZE);
1976 }
1977
1978 PMAP_LOCK(p);
1979 }
1980 }
1981 }
1982 }
1983
1984 PMAP_UPDATE_TLBS(p, 0x0, 0xFFFFFFFFFFFFF000ULL);
1985 PMAP_UNLOCK(p);
1986 return;
1987
1988 }
1989 #endif
1990
1991
1992 void
1993 pmap_copy_page(ppnum_t src, ppnum_t dst)
1994 {
1995 bcopy_phys((addr64_t)i386_ptob(src),
1996 (addr64_t)i386_ptob(dst),
1997 PAGE_SIZE);
1998 }
1999
2000
2001 /*
2002 * Routine: pmap_pageable
2003 * Function:
2004 * Make the specified pages (by pmap, offset)
2005 * pageable (or not) as requested.
2006 *
2007 * A page which is not pageable may not take
2008 * a fault; therefore, its page table entry
2009 * must remain valid for the duration.
2010 *
2011 * This routine is merely advisory; pmap_enter
2012 * will specify that these pages are to be wired
2013 * down (or not) as appropriate.
2014 */
2015 void
2016 pmap_pageable(
2017 __unused pmap_t pmap,
2018 __unused vm_map_offset_t start_addr,
2019 __unused vm_map_offset_t end_addr,
2020 __unused boolean_t pageable)
2021 {
2022 #ifdef lint
2023 pmap++; start_addr++; end_addr++; pageable++;
2024 #endif /* lint */
2025 }
2026
2027 void
2028 invalidate_icache(__unused vm_offset_t addr,
2029 __unused unsigned cnt,
2030 __unused int phys)
2031 {
2032 return;
2033 }
2034
2035 void
2036 flush_dcache(__unused vm_offset_t addr,
2037 __unused unsigned count,
2038 __unused int phys)
2039 {
2040 return;
2041 }
2042
2043 #if CONFIG_DTRACE
2044 /*
2045 * Constrain DTrace copyin/copyout actions
2046 */
2047 extern kern_return_t dtrace_copyio_preflight(addr64_t);
2048 extern kern_return_t dtrace_copyio_postflight(addr64_t);
2049
2050 kern_return_t dtrace_copyio_preflight(__unused addr64_t va)
2051 {
2052 thread_t thread = current_thread();
2053 uint64_t ccr3;
2054 if (current_map() == kernel_map)
2055 return KERN_FAILURE;
2056 else if (((ccr3 = get_cr3_base()) != thread->map->pmap->pm_cr3) && (no_shared_cr3 == FALSE))
2057 return KERN_FAILURE;
2058 else if (no_shared_cr3 && (ccr3 != kernel_pmap->pm_cr3))
2059 return KERN_FAILURE;
2060 else
2061 return KERN_SUCCESS;
2062 }
2063
2064 kern_return_t dtrace_copyio_postflight(__unused addr64_t va)
2065 {
2066 return KERN_SUCCESS;
2067 }
2068 #endif /* CONFIG_DTRACE */
2069
2070 #include <mach_vm_debug.h>
2071 #if MACH_VM_DEBUG
2072 #include <vm/vm_debug.h>
2073
2074 int
2075 pmap_list_resident_pages(
2076 __unused pmap_t pmap,
2077 __unused vm_offset_t *listp,
2078 __unused int space)
2079 {
2080 return 0;
2081 }
2082 #endif /* MACH_VM_DEBUG */
2083
2084
2085
2086 /* temporary workaround */
2087 boolean_t
2088 coredumpok(__unused vm_map_t map, __unused vm_offset_t va)
2089 {
2090 #if 0
2091 pt_entry_t *ptep;
2092
2093 ptep = pmap_pte(map->pmap, va);
2094 if (0 == ptep)
2095 return FALSE;
2096 return ((*ptep & (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)) != (INTEL_PTE_NCACHE | INTEL_PTE_WIRED));
2097 #else
2098 return TRUE;
2099 #endif
2100 }
2101
2102
2103 boolean_t
2104 phys_page_exists(ppnum_t pn)
2105 {
2106 assert(pn != vm_page_fictitious_addr);
2107
2108 if (!pmap_initialized)
2109 return TRUE;
2110
2111 if (pn == vm_page_guard_addr)
2112 return FALSE;
2113
2114 if (!IS_MANAGED_PAGE(ppn_to_pai(pn)))
2115 return FALSE;
2116
2117 return TRUE;
2118 }
2119
2120
2121
2122 void
2123 pmap_switch(pmap_t tpmap)
2124 {
2125 spl_t s;
2126
2127 s = splhigh(); /* Make sure interruptions are disabled */
2128 set_dirbase(tpmap, current_thread());
2129 splx(s);
2130 }
2131
2132
2133 /*
2134 * disable no-execute capability on
2135 * the specified pmap
2136 */
2137 void
2138 pmap_disable_NX(pmap_t pmap)
2139 {
2140 pmap->nx_enabled = 0;
2141 }
2142
2143 void
2144 pt_fake_zone_init(int zone_index)
2145 {
2146 pt_fake_zone_index = zone_index;
2147 }
2148
2149 void
2150 pt_fake_zone_info(
2151 int *count,
2152 vm_size_t *cur_size,
2153 vm_size_t *max_size,
2154 vm_size_t *elem_size,
2155 vm_size_t *alloc_size,
2156 uint64_t *sum_size,
2157 int *collectable,
2158 int *exhaustable,
2159 int *caller_acct)
2160 {
2161 *count = inuse_ptepages_count;
2162 *cur_size = PAGE_SIZE * inuse_ptepages_count;
2163 *max_size = PAGE_SIZE * (inuse_ptepages_count +
2164 vm_page_inactive_count +
2165 vm_page_active_count +
2166 vm_page_free_count);
2167 *elem_size = PAGE_SIZE;
2168 *alloc_size = PAGE_SIZE;
2169 *sum_size = alloc_ptepages_count * PAGE_SIZE;
2170
2171 *collectable = 1;
2172 *exhaustable = 0;
2173 *caller_acct = 1;
2174 }
2175
2176 static inline void
2177 pmap_cpuset_NMIPI(cpu_set cpu_mask) {
2178 unsigned int cpu, cpu_bit;
2179 uint64_t deadline;
2180
2181 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2182 if (cpu_mask & cpu_bit)
2183 cpu_NMI_interrupt(cpu);
2184 }
2185 deadline = mach_absolute_time() + (LockTimeOut);
2186 while (mach_absolute_time() < deadline)
2187 cpu_pause();
2188 }
2189
2190
2191 void
2192 pmap_flush_context_init(pmap_flush_context *pfc)
2193 {
2194 pfc->pfc_cpus = 0;
2195 pfc->pfc_invalid_global = 0;
2196 }
2197
2198 void
2199 pmap_flush(
2200 pmap_flush_context *pfc)
2201 {
2202 unsigned int my_cpu;
2203 unsigned int cpu;
2204 unsigned int cpu_bit;
2205 cpu_set cpus_to_respond = 0;
2206 cpu_set cpus_to_signal = 0;
2207 cpu_set cpus_signaled = 0;
2208 boolean_t flush_self = FALSE;
2209 uint64_t deadline;
2210
2211 mp_disable_preemption();
2212
2213 my_cpu = cpu_number();
2214 cpus_to_signal = pfc->pfc_cpus;
2215
2216 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS) | DBG_FUNC_START,
2217 NULL, cpus_to_signal, 0, 0, 0);
2218
2219 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus && cpus_to_signal; cpu++, cpu_bit <<= 1) {
2220
2221 if (cpus_to_signal & cpu_bit) {
2222
2223 cpus_to_signal &= ~cpu_bit;
2224
2225 if (!cpu_datap(cpu)->cpu_running)
2226 continue;
2227
2228 if (pfc->pfc_invalid_global & cpu_bit)
2229 cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE;
2230 else
2231 cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE;
2232 mfence();
2233
2234 if (cpu == my_cpu) {
2235 flush_self = TRUE;
2236 continue;
2237 }
2238 if (CPU_CR3_IS_ACTIVE(cpu)) {
2239 cpus_to_respond |= cpu_bit;
2240 i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC);
2241 }
2242 }
2243 }
2244 cpus_signaled = cpus_to_respond;
2245
2246 /*
2247 * Flush local tlb if required.
2248 * Do this now to overlap with other processors responding.
2249 */
2250 if (flush_self && cpu_datap(my_cpu)->cpu_tlb_invalid != FALSE)
2251 process_pmap_updates();
2252
2253 if (cpus_to_respond) {
2254
2255 deadline = mach_absolute_time() + LockTimeOut;
2256 /*
2257 * Wait for those other cpus to acknowledge
2258 */
2259 while (cpus_to_respond != 0) {
2260 long orig_acks = 0;
2261
2262 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2263 /* Consider checking local/global invalidity
2264 * as appropriate in the PCID case.
2265 */
2266 if ((cpus_to_respond & cpu_bit) != 0) {
2267 if (!cpu_datap(cpu)->cpu_running ||
2268 cpu_datap(cpu)->cpu_tlb_invalid == FALSE ||
2269 !CPU_CR3_IS_ACTIVE(cpu)) {
2270 cpus_to_respond &= ~cpu_bit;
2271 }
2272 cpu_pause();
2273 }
2274 if (cpus_to_respond == 0)
2275 break;
2276 }
2277 if (cpus_to_respond && (mach_absolute_time() > deadline)) {
2278 if (machine_timeout_suspended())
2279 continue;
2280 pmap_tlb_flush_timeout = TRUE;
2281 orig_acks = NMIPI_acks;
2282 pmap_cpuset_NMIPI(cpus_to_respond);
2283
2284 panic("TLB invalidation IPI timeout: "
2285 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2286 cpus_to_respond, orig_acks, NMIPI_acks);
2287 }
2288 }
2289 }
2290 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS) | DBG_FUNC_END,
2291 NULL, cpus_signaled, flush_self, 0, 0);
2292
2293 mp_enable_preemption();
2294 }
2295
2296
2297 /*
2298 * Called with pmap locked, we:
2299 * - scan through per-cpu data to see which other cpus need to flush
2300 * - send an IPI to each non-idle cpu to be flushed
2301 * - wait for all to signal back that they are inactive or we see that
2302 * they are at a safe point (idle).
2303 * - flush the local tlb if active for this pmap
2304 * - return ... the caller will unlock the pmap
2305 */
2306
2307 void
2308 pmap_flush_tlbs(pmap_t pmap, vm_map_offset_t startv, vm_map_offset_t endv, int options, pmap_flush_context *pfc)
2309 {
2310 unsigned int cpu;
2311 unsigned int cpu_bit;
2312 cpu_set cpus_to_signal;
2313 unsigned int my_cpu = cpu_number();
2314 pmap_paddr_t pmap_cr3 = pmap->pm_cr3;
2315 boolean_t flush_self = FALSE;
2316 uint64_t deadline;
2317 boolean_t pmap_is_shared = (pmap->pm_shared || (pmap == kernel_pmap));
2318 boolean_t need_global_flush = FALSE;
2319
2320 assert((processor_avail_count < 2) ||
2321 (ml_get_interrupts_enabled() && get_preemption_level() != 0));
2322
2323 /*
2324 * Scan other cpus for matching active or task CR3.
2325 * For idle cpus (with no active map) we mark them invalid but
2326 * don't signal -- they'll check as they go busy.
2327 */
2328 cpus_to_signal = 0;
2329
2330 if (pmap_pcid_ncpus) {
2331 if (pmap_is_shared)
2332 need_global_flush = TRUE;
2333 pmap_pcid_invalidate_all_cpus(pmap);
2334 mfence();
2335 }
2336 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2337 if (!cpu_datap(cpu)->cpu_running)
2338 continue;
2339 uint64_t cpu_active_cr3 = CPU_GET_ACTIVE_CR3(cpu);
2340 uint64_t cpu_task_cr3 = CPU_GET_TASK_CR3(cpu);
2341
2342 if ((pmap_cr3 == cpu_task_cr3) ||
2343 (pmap_cr3 == cpu_active_cr3) ||
2344 (pmap_is_shared)) {
2345
2346 if (options & PMAP_DELAY_TLB_FLUSH) {
2347 if (need_global_flush == TRUE)
2348 pfc->pfc_invalid_global |= cpu_bit;
2349 pfc->pfc_cpus |= cpu_bit;
2350
2351 continue;
2352 }
2353 if (cpu == my_cpu) {
2354 flush_self = TRUE;
2355 continue;
2356 }
2357 if (need_global_flush == TRUE)
2358 cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE;
2359 else
2360 cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE;
2361 mfence();
2362
2363 /*
2364 * We don't need to signal processors which will flush
2365 * lazily at the idle state or kernel boundary.
2366 * For example, if we're invalidating the kernel pmap,
2367 * processors currently in userspace don't need to flush
2368 * their TLBs until the next time they enter the kernel.
2369 * Alterations to the address space of a task active
2370 * on a remote processor result in a signal, to
2371 * account for copy operations. (There may be room
2372 * for optimization in such cases).
2373 * The order of the loads below with respect
2374 * to the store to the "cpu_tlb_invalid" field above
2375 * is important--hence the barrier.
2376 */
2377 if (CPU_CR3_IS_ACTIVE(cpu) &&
2378 (pmap_cr3 == CPU_GET_ACTIVE_CR3(cpu) ||
2379 pmap->pm_shared ||
2380 (pmap_cr3 == CPU_GET_TASK_CR3(cpu)))) {
2381 cpus_to_signal |= cpu_bit;
2382 i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC);
2383 }
2384 }
2385 }
2386 if ((options & PMAP_DELAY_TLB_FLUSH))
2387 return;
2388
2389 if (pmap == kernel_pmap) {
2390 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_KERN_TLBS) | DBG_FUNC_START,
2391 pmap, cpus_to_signal, flush_self, startv, endv);
2392 } else {
2393 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_START,
2394 pmap, cpus_to_signal, flush_self, startv, endv);
2395 }
2396 /*
2397 * Flush local tlb if required.
2398 * Do this now to overlap with other processors responding.
2399 */
2400 if (flush_self) {
2401 if (pmap_pcid_ncpus) {
2402 pmap_pcid_validate_cpu(pmap, my_cpu);
2403 if (pmap_is_shared)
2404 tlb_flush_global();
2405 else
2406 flush_tlb_raw();
2407 }
2408 else
2409 flush_tlb_raw();
2410 }
2411
2412 if (cpus_to_signal) {
2413 cpu_set cpus_to_respond = cpus_to_signal;
2414
2415 deadline = mach_absolute_time() + LockTimeOut;
2416 /*
2417 * Wait for those other cpus to acknowledge
2418 */
2419 while (cpus_to_respond != 0) {
2420 long orig_acks = 0;
2421
2422 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2423 /* Consider checking local/global invalidity
2424 * as appropriate in the PCID case.
2425 */
2426 if ((cpus_to_respond & cpu_bit) != 0) {
2427 if (!cpu_datap(cpu)->cpu_running ||
2428 cpu_datap(cpu)->cpu_tlb_invalid == FALSE ||
2429 !CPU_CR3_IS_ACTIVE(cpu)) {
2430 cpus_to_respond &= ~cpu_bit;
2431 }
2432 cpu_pause();
2433 }
2434 if (cpus_to_respond == 0)
2435 break;
2436 }
2437 if (cpus_to_respond && (mach_absolute_time() > deadline)) {
2438 if (machine_timeout_suspended())
2439 continue;
2440 pmap_tlb_flush_timeout = TRUE;
2441 orig_acks = NMIPI_acks;
2442 pmap_cpuset_NMIPI(cpus_to_respond);
2443
2444 panic("TLB invalidation IPI timeout: "
2445 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2446 cpus_to_respond, orig_acks, NMIPI_acks);
2447 }
2448 }
2449 }
2450
2451 if (__improbable((pmap == kernel_pmap) && (flush_self != TRUE))) {
2452 panic("pmap_flush_tlbs: pmap == kernel_pmap && flush_self != TRUE; kernel CR3: 0x%llX, pmap_cr3: 0x%llx, CPU active CR3: 0x%llX, CPU Task Map: %d", kernel_pmap->pm_cr3, pmap_cr3, current_cpu_datap()->cpu_active_cr3, current_cpu_datap()->cpu_task_map);
2453 }
2454
2455 if (pmap == kernel_pmap) {
2456 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_KERN_TLBS) | DBG_FUNC_END,
2457 pmap, cpus_to_signal, startv, endv, 0);
2458 } else {
2459 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_END,
2460 pmap, cpus_to_signal, startv, endv, 0);
2461 }
2462
2463 }
2464
2465 void
2466 process_pmap_updates(void)
2467 {
2468 int ccpu = cpu_number();
2469 pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2470 if (pmap_pcid_ncpus) {
2471 pmap_pcid_validate_current();
2472 if (cpu_datap(ccpu)->cpu_tlb_invalid_global) {
2473 cpu_datap(ccpu)->cpu_tlb_invalid = FALSE;
2474 tlb_flush_global();
2475 }
2476 else {
2477 cpu_datap(ccpu)->cpu_tlb_invalid_local = FALSE;
2478 flush_tlb_raw();
2479 }
2480 }
2481 else {
2482 current_cpu_datap()->cpu_tlb_invalid = FALSE;
2483 flush_tlb_raw();
2484 }
2485
2486 mfence();
2487 }
2488
2489 void
2490 pmap_update_interrupt(void)
2491 {
2492 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_START,
2493 0, 0, 0, 0, 0);
2494
2495 if (current_cpu_datap()->cpu_tlb_invalid)
2496 process_pmap_updates();
2497
2498 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_END,
2499 0, 0, 0, 0, 0);
2500 }
2501
2502 #include <mach/mach_vm.h> /* mach_vm_region_recurse() */
2503 /* Scan kernel pmap for W+X PTEs, scan kernel VM map for W+X map entries
2504 * and identify ranges with mismatched VM permissions and PTE permissions
2505 */
2506 kern_return_t
2507 pmap_permissions_verify(pmap_t ipmap, vm_map_t ivmmap, vm_offset_t sv, vm_offset_t ev) {
2508 vm_offset_t cv = sv;
2509 kern_return_t rv = KERN_SUCCESS;
2510 uint64_t skip4 = 0, skip2 = 0;
2511
2512 sv &= ~PAGE_MASK_64;
2513 ev &= ~PAGE_MASK_64;
2514 while (cv < ev) {
2515 if (__improbable((cv > 0x00007FFFFFFFFFFFULL) &&
2516 (cv < 0xFFFF800000000000ULL))) {
2517 cv = 0xFFFF800000000000ULL;
2518 }
2519 /* Potential inconsistencies from not holding pmap lock
2520 * but harmless for the moment.
2521 */
2522 if (((cv & PML4MASK) == 0) && (pmap64_pml4(ipmap, cv) == 0)) {
2523 if ((cv + NBPML4) > cv)
2524 cv += NBPML4;
2525 else
2526 break;
2527 skip4++;
2528 continue;
2529 }
2530 if (((cv & PDMASK) == 0) && (pmap_pde(ipmap, cv) == 0)) {
2531 if ((cv + NBPD) > cv)
2532 cv += NBPD;
2533 else
2534 break;
2535 skip2++;
2536 continue;
2537 }
2538
2539 pt_entry_t *ptep = pmap_pte(ipmap, cv);
2540 if (ptep && (*ptep & INTEL_PTE_VALID)) {
2541 if (*ptep & INTEL_PTE_WRITE) {
2542 if (!(*ptep & INTEL_PTE_NX)) {
2543 kprintf("W+X PTE at 0x%lx, P4: 0x%llx, P3: 0x%llx, P2: 0x%llx, PT: 0x%llx, VP: %u\n", cv, *pmap64_pml4(ipmap, cv), *pmap64_pdpt(ipmap, cv), *pmap64_pde(ipmap, cv), *ptep, pmap_valid_page((ppnum_t)(i386_btop(pte_to_pa(*ptep)))));
2544 rv = KERN_FAILURE;
2545 }
2546 }
2547 }
2548 cv += PAGE_SIZE;
2549 }
2550 kprintf("Completed pmap scan\n");
2551 cv = sv;
2552
2553 struct vm_region_submap_info_64 vbr;
2554 mach_msg_type_number_t vbrcount = 0;
2555 mach_vm_size_t vmsize;
2556 vm_prot_t prot;
2557 uint32_t nesting_depth = 0;
2558 kern_return_t kret;
2559
2560 while (cv < ev) {
2561
2562 for (;;) {
2563 vbrcount = VM_REGION_SUBMAP_INFO_COUNT_64;
2564 if((kret = mach_vm_region_recurse(ivmmap,
2565 (mach_vm_address_t *) &cv, &vmsize, &nesting_depth,
2566 (vm_region_recurse_info_t)&vbr,
2567 &vbrcount)) != KERN_SUCCESS) {
2568 break;
2569 }
2570
2571 if(vbr.is_submap) {
2572 nesting_depth++;
2573 continue;
2574 } else {
2575 break;
2576 }
2577 }
2578
2579 if(kret != KERN_SUCCESS)
2580 break;
2581
2582 prot = vbr.protection;
2583
2584 if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2585 kprintf("W+X map entry at address 0x%lx\n", cv);
2586 rv = KERN_FAILURE;
2587 }
2588
2589 if (prot) {
2590 vm_offset_t pcv;
2591 for (pcv = cv; pcv < cv + vmsize; pcv += PAGE_SIZE) {
2592 pt_entry_t *ptep = pmap_pte(ipmap, pcv);
2593 vm_prot_t tprot;
2594
2595 if ((ptep == NULL) || !(*ptep & INTEL_PTE_VALID))
2596 continue;
2597 tprot = VM_PROT_READ;
2598 if (*ptep & INTEL_PTE_WRITE)
2599 tprot |= VM_PROT_WRITE;
2600 if ((*ptep & INTEL_PTE_NX) == 0)
2601 tprot |= VM_PROT_EXECUTE;
2602 if (tprot != prot) {
2603 kprintf("PTE/map entry permissions mismatch at address 0x%lx, pte: 0x%llx, protection: 0x%x\n", pcv, *ptep, prot);
2604 rv = KERN_FAILURE;
2605 }
2606 }
2607 }
2608 cv += vmsize;
2609 }
2610 return rv;
2611 }