]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/pcb.c
e5274a5eb4014374b14c9ff3f79dd4d9036ba5cd
[apple/xnu.git] / osfmk / i386 / pcb.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 #include <mach_rt.h>
58 #include <mach_debug.h>
59 #include <mach_ldebug.h>
60
61 #include <sys/kdebug.h>
62
63 #include <mach/kern_return.h>
64 #include <mach/thread_status.h>
65 #include <mach/vm_param.h>
66
67 #include <kern/counters.h>
68 #include <kern/kalloc.h>
69 #include <kern/mach_param.h>
70 #include <kern/processor.h>
71 #include <kern/cpu_data.h>
72 #include <kern/cpu_number.h>
73 #include <kern/task.h>
74 #include <kern/thread.h>
75 #include <kern/sched_prim.h>
76 #include <kern/misc_protos.h>
77 #include <kern/assert.h>
78 #include <kern/spl.h>
79 #include <kern/machine.h>
80 #include <ipc/ipc_port.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_map.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_protos.h>
85
86 #include <i386/cpu_data.h>
87 #include <i386/cpu_number.h>
88 #include <i386/eflags.h>
89 #include <i386/proc_reg.h>
90 #include <i386/fpu.h>
91 #include <i386/misc_protos.h>
92 #include <i386/mp_desc.h>
93 #include <i386/thread.h>
94 #if defined(__i386__)
95 #include <i386/fpu.h>
96 #endif
97 #include <i386/machine_routines.h>
98 #include <i386/lapic.h> /* LAPIC_PMC_SWI_VECTOR */
99
100 #if CONFIG_COUNTERS
101 #include <pmc/pmc.h>
102 #endif /* CONFIG_COUNTERS */
103
104 /*
105 * Maps state flavor to number of words in the state:
106 */
107 unsigned int _MachineStateCount[] = {
108 /* FLAVOR_LIST */
109 0,
110 x86_THREAD_STATE32_COUNT,
111 x86_FLOAT_STATE32_COUNT,
112 x86_EXCEPTION_STATE32_COUNT,
113 x86_THREAD_STATE64_COUNT,
114 x86_FLOAT_STATE64_COUNT,
115 x86_EXCEPTION_STATE64_COUNT,
116 x86_THREAD_STATE_COUNT,
117 x86_FLOAT_STATE_COUNT,
118 x86_EXCEPTION_STATE_COUNT,
119 0,
120 x86_SAVED_STATE32_COUNT,
121 x86_SAVED_STATE64_COUNT,
122 x86_DEBUG_STATE32_COUNT,
123 x86_DEBUG_STATE64_COUNT,
124 x86_DEBUG_STATE_COUNT
125 };
126
127 zone_t iss_zone; /* zone for saved_state area */
128 zone_t ids_zone; /* zone for debug_state area */
129
130 /* Forward */
131
132 extern void Thread_continue(void);
133 extern void Load_context(
134 thread_t thread);
135
136 static void
137 get_exception_state32(thread_t thread, x86_exception_state32_t *es);
138
139 static void
140 get_exception_state64(thread_t thread, x86_exception_state64_t *es);
141
142 static void
143 get_thread_state32(thread_t thread, x86_thread_state32_t *ts);
144
145 static void
146 get_thread_state64(thread_t thread, x86_thread_state64_t *ts);
147
148 static int
149 set_thread_state32(thread_t thread, x86_thread_state32_t *ts);
150
151 static int
152 set_thread_state64(thread_t thread, x86_thread_state64_t *ts);
153
154 #if CONFIG_COUNTERS
155 static inline void
156 machine_pmc_cswitch(thread_t /* old */, thread_t /* new */);
157
158 static inline void
159 pmc_swi(thread_t /* old */, thread_t /*new */);
160
161 static inline void
162 pmc_swi(thread_t old, thread_t new) {
163 current_cpu_datap()->csw_old_thread = old;
164 current_cpu_datap()->csw_new_thread = new;
165 pal_pmc_swi();
166 }
167
168 static inline void
169 machine_pmc_cswitch(thread_t old, thread_t new) {
170 if (pmc_thread_eligible(old) || pmc_thread_eligible(new)) {
171 pmc_swi(old, new);
172 }
173 }
174
175 void ml_get_csw_threads(thread_t *old, thread_t *new) {
176 *old = current_cpu_datap()->csw_old_thread;
177 *new = current_cpu_datap()->csw_new_thread;
178 }
179
180 #endif /* CONFIG_COUNTERS */
181
182 /*
183 * Don't let an illegal value for dr7 get set. Specifically,
184 * check for undefined settings. Setting these bit patterns
185 * result in undefined behaviour and can lead to an unexpected
186 * TRCTRAP.
187 */
188 static boolean_t
189 dr7_is_valid(uint32_t *dr7)
190 {
191 int i;
192 uint32_t mask1, mask2;
193
194 /*
195 * If the DE bit is set in CR4, R/W0-3 can be pattern
196 * "10B" to indicate i/o reads and write
197 */
198 if (!(get_cr4() & CR4_DE))
199 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
200 i++, mask1 <<= 4, mask2 <<= 4)
201 if ((*dr7 & mask1) == mask2)
202 return (FALSE);
203
204 /*
205 * len0-3 pattern "10B" is ok for len on Merom and newer processors
206 * (it signifies an 8-byte wide region). We use the 64bit capability
207 * of the processor in lieu of the more laborious model/family checks
208 * as all 64-bit capable processors so far support this.
209 * Reject an attempt to use this on 64-bit incapable processors.
210 */
211 if (current_cpu_datap()->cpu_is64bit == FALSE)
212 for (i = 0, mask1 = 0x3<<18, mask2 = 0x2<<18; i < 4;
213 i++, mask1 <<= 4, mask2 <<= 4)
214 if ((*dr7 & mask1) == mask2)
215 return (FALSE);
216
217 /*
218 * if we are doing an instruction execution break (indicated
219 * by r/w[x] being "00B"), then the len[x] must also be set
220 * to "00B"
221 */
222 for (i = 0; i < 4; i++)
223 if (((((*dr7 >> (16 + i*4))) & 0x3) == 0) &&
224 ((((*dr7 >> (18 + i*4))) & 0x3) != 0))
225 return (FALSE);
226
227 /*
228 * Intel docs have these bits fixed.
229 */
230 *dr7 |= 0x1 << 10; /* set bit 10 to 1 */
231 *dr7 &= ~(0x1 << 11); /* set bit 11 to 0 */
232 *dr7 &= ~(0x1 << 12); /* set bit 12 to 0 */
233 *dr7 &= ~(0x1 << 14); /* set bit 14 to 0 */
234 *dr7 &= ~(0x1 << 15); /* set bit 15 to 0 */
235
236 /*
237 * We don't allow anything to set the global breakpoints.
238 */
239
240 if (*dr7 & 0x2)
241 return (FALSE);
242
243 if (*dr7 & (0x2<<2))
244 return (FALSE);
245
246 if (*dr7 & (0x2<<4))
247 return (FALSE);
248
249 if (*dr7 & (0x2<<6))
250 return (FALSE);
251
252 return (TRUE);
253 }
254
255 static inline void
256 set_live_debug_state32(cpu_data_t *cdp, x86_debug_state32_t *ds)
257 {
258 __asm__ volatile ("movl %0,%%db0" : :"r" (ds->dr0));
259 __asm__ volatile ("movl %0,%%db1" : :"r" (ds->dr1));
260 __asm__ volatile ("movl %0,%%db2" : :"r" (ds->dr2));
261 __asm__ volatile ("movl %0,%%db3" : :"r" (ds->dr3));
262 if (cpu_mode_is64bit())
263 cdp->cpu_dr7 = ds->dr7;
264 }
265
266 extern void set_64bit_debug_regs(x86_debug_state64_t *ds);
267
268 static inline void
269 set_live_debug_state64(cpu_data_t *cdp, x86_debug_state64_t *ds)
270 {
271 /*
272 * We need to enter 64-bit mode in order to set the full
273 * width of these registers
274 */
275 set_64bit_debug_regs(ds);
276 cdp->cpu_dr7 = ds->dr7;
277 }
278
279 boolean_t
280 debug_state_is_valid32(x86_debug_state32_t *ds)
281 {
282 if (!dr7_is_valid(&ds->dr7))
283 return FALSE;
284
285 #if defined(__i386__)
286 /*
287 * Only allow local breakpoints and make sure they are not
288 * in the trampoline code.
289 */
290 if (ds->dr7 & 0x1)
291 if (ds->dr0 >= (unsigned long)HIGH_MEM_BASE)
292 return FALSE;
293
294 if (ds->dr7 & (0x1<<2))
295 if (ds->dr1 >= (unsigned long)HIGH_MEM_BASE)
296 return FALSE;
297
298 if (ds->dr7 & (0x1<<4))
299 if (ds->dr2 >= (unsigned long)HIGH_MEM_BASE)
300 return FALSE;
301
302 if (ds->dr7 & (0x1<<6))
303 if (ds->dr3 >= (unsigned long)HIGH_MEM_BASE)
304 return FALSE;
305 #endif
306
307 return TRUE;
308 }
309
310 boolean_t
311 debug_state_is_valid64(x86_debug_state64_t *ds)
312 {
313 if (!dr7_is_valid((uint32_t *)&ds->dr7))
314 return FALSE;
315
316 /*
317 * Don't allow the user to set debug addresses above their max
318 * value
319 */
320 if (ds->dr7 & 0x1)
321 if (ds->dr0 >= VM_MAX_PAGE_ADDRESS)
322 return FALSE;
323
324 if (ds->dr7 & (0x1<<2))
325 if (ds->dr1 >= VM_MAX_PAGE_ADDRESS)
326 return FALSE;
327
328 if (ds->dr7 & (0x1<<4))
329 if (ds->dr2 >= VM_MAX_PAGE_ADDRESS)
330 return FALSE;
331
332 if (ds->dr7 & (0x1<<6))
333 if (ds->dr3 >= VM_MAX_PAGE_ADDRESS)
334 return FALSE;
335
336 return TRUE;
337 }
338
339
340 static kern_return_t
341 set_debug_state32(thread_t thread, x86_debug_state32_t *ds)
342 {
343 x86_debug_state32_t *ids;
344 pcb_t pcb;
345
346 pcb = THREAD_TO_PCB(thread);
347 ids = pcb->ids;
348
349 if (debug_state_is_valid32(ds) != TRUE) {
350 return KERN_INVALID_ARGUMENT;
351 }
352
353 if (ids == NULL) {
354 ids = zalloc(ids_zone);
355 bzero(ids, sizeof *ids);
356
357 simple_lock(&pcb->lock);
358 /* make sure it wasn't already alloc()'d elsewhere */
359 if (pcb->ids == NULL) {
360 pcb->ids = ids;
361 simple_unlock(&pcb->lock);
362 } else {
363 simple_unlock(&pcb->lock);
364 zfree(ids_zone, ids);
365 }
366 }
367
368
369 copy_debug_state32(ds, ids, FALSE);
370
371 return (KERN_SUCCESS);
372 }
373
374 static kern_return_t
375 set_debug_state64(thread_t thread, x86_debug_state64_t *ds)
376 {
377 x86_debug_state64_t *ids;
378 pcb_t pcb;
379
380 pcb = THREAD_TO_PCB(thread);
381 ids = pcb->ids;
382
383 if (debug_state_is_valid64(ds) != TRUE) {
384 return KERN_INVALID_ARGUMENT;
385 }
386
387 if (ids == NULL) {
388 ids = zalloc(ids_zone);
389 bzero(ids, sizeof *ids);
390
391 simple_lock(&pcb->lock);
392 /* make sure it wasn't already alloc()'d elsewhere */
393 if (pcb->ids == NULL) {
394 pcb->ids = ids;
395 simple_unlock(&pcb->lock);
396 } else {
397 simple_unlock(&pcb->lock);
398 zfree(ids_zone, ids);
399 }
400 }
401
402 copy_debug_state64(ds, ids, FALSE);
403
404 return (KERN_SUCCESS);
405 }
406
407 static void
408 get_debug_state32(thread_t thread, x86_debug_state32_t *ds)
409 {
410 x86_debug_state32_t *saved_state;
411
412 saved_state = thread->machine.ids;
413
414 if (saved_state) {
415 copy_debug_state32(saved_state, ds, TRUE);
416 } else
417 bzero(ds, sizeof *ds);
418 }
419
420 static void
421 get_debug_state64(thread_t thread, x86_debug_state64_t *ds)
422 {
423 x86_debug_state64_t *saved_state;
424
425 saved_state = (x86_debug_state64_t *)thread->machine.ids;
426
427 if (saved_state) {
428 copy_debug_state64(saved_state, ds, TRUE);
429 } else
430 bzero(ds, sizeof *ds);
431 }
432
433 /*
434 * consider_machine_collect:
435 *
436 * Try to collect machine-dependent pages
437 */
438 void
439 consider_machine_collect(void)
440 {
441 }
442
443 void
444 consider_machine_adjust(void)
445 {
446 }
447
448 /*
449 * Switch to the first thread on a CPU.
450 */
451 void
452 machine_load_context(
453 thread_t new)
454 {
455 #if CONFIG_COUNTERS
456 machine_pmc_cswitch(NULL, new);
457 #endif
458 new->machine.specFlags |= OnProc;
459 act_machine_switch_pcb(NULL, new);
460 Load_context(new);
461 }
462
463 /*
464 * Switch to a new thread.
465 * Save the old thread`s kernel state or continuation,
466 * and return it.
467 */
468 thread_t
469 machine_switch_context(
470 thread_t old,
471 thread_continue_t continuation,
472 thread_t new)
473 {
474 #if MACH_RT
475 assert(current_cpu_datap()->cpu_active_stack == old->kernel_stack);
476 #endif
477 #if CONFIG_COUNTERS
478 machine_pmc_cswitch(old, new);
479 #endif
480 /*
481 * Save FP registers if in use.
482 */
483 fpu_save_context(old);
484
485 old->machine.specFlags &= ~OnProc;
486 new->machine.specFlags |= OnProc;
487
488 /*
489 * Monitor the stack depth and report new max,
490 * not worrying about races.
491 */
492 vm_offset_t depth = current_stack_depth();
493 if (depth > kernel_stack_depth_max) {
494 kernel_stack_depth_max = depth;
495 KERNEL_DEBUG_CONSTANT(
496 MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH),
497 (long) depth, 0, 0, 0, 0);
498 }
499
500 /*
501 * Switch address maps if need be, even if not switching tasks.
502 * (A server activation may be "borrowing" a client map.)
503 */
504 PMAP_SWITCH_CONTEXT(old, new, cpu_number());
505
506 /*
507 * Load the rest of the user state for the new thread
508 */
509 act_machine_switch_pcb(old, new);
510
511 return(Switch_context(old, continuation, new));
512 }
513
514 thread_t
515 machine_processor_shutdown(
516 thread_t thread,
517 void (*doshutdown)(processor_t),
518 processor_t processor)
519 {
520 #if CONFIG_VMX
521 vmx_suspend();
522 #endif
523 fpu_save_context(thread);
524 PMAP_SWITCH_CONTEXT(thread, processor->idle_thread, cpu_number());
525 return(Shutdown_context(thread, doshutdown, processor));
526 }
527
528
529 /*
530 * This is where registers that are not normally specified by the mach-o
531 * file on an execve would be nullified, perhaps to avoid a covert channel.
532 */
533 kern_return_t
534 machine_thread_state_initialize(
535 thread_t thread)
536 {
537 /*
538 * If there's an fpu save area, free it.
539 * The initialized state will then be lazily faulted-in, if required.
540 * And if we're target, re-arm the no-fpu trap.
541 */
542 if (thread->machine.ifps) {
543 (void) fpu_set_fxstate(thread, NULL, x86_FLOAT_STATE64);
544
545 if (thread == current_thread())
546 clear_fpu();
547 }
548
549 if (thread->machine.ids) {
550 zfree(ids_zone, thread->machine.ids);
551 thread->machine.ids = NULL;
552 }
553
554 return KERN_SUCCESS;
555 }
556
557 uint32_t
558 get_eflags_exportmask(void)
559 {
560 return EFL_USER_SET;
561 }
562
563 /*
564 * x86_SAVED_STATE32 - internal save/restore general register state on 32/64 bit processors
565 * for 32bit tasks only
566 * x86_SAVED_STATE64 - internal save/restore general register state on 64 bit processors
567 * for 64bit tasks only
568 * x86_THREAD_STATE32 - external set/get general register state on 32/64 bit processors
569 * for 32bit tasks only
570 * x86_THREAD_STATE64 - external set/get general register state on 64 bit processors
571 * for 64bit tasks only
572 * x86_SAVED_STATE - external set/get general register state on 32/64 bit processors
573 * for either 32bit or 64bit tasks
574 * x86_FLOAT_STATE32 - internal/external save/restore float and xmm state on 32/64 bit processors
575 * for 32bit tasks only
576 * x86_FLOAT_STATE64 - internal/external save/restore float and xmm state on 64 bit processors
577 * for 64bit tasks only
578 * x86_FLOAT_STATE - external save/restore float and xmm state on 32/64 bit processors
579 * for either 32bit or 64bit tasks
580 * x86_EXCEPTION_STATE32 - external get exception state on 32/64 bit processors
581 * for 32bit tasks only
582 * x86_EXCEPTION_STATE64 - external get exception state on 64 bit processors
583 * for 64bit tasks only
584 * x86_EXCEPTION_STATE - external get exception state on 323/64 bit processors
585 * for either 32bit or 64bit tasks
586 */
587
588
589 static void
590 get_exception_state64(thread_t thread, x86_exception_state64_t *es)
591 {
592 x86_saved_state64_t *saved_state;
593
594 saved_state = USER_REGS64(thread);
595
596 es->trapno = saved_state->isf.trapno;
597 es->cpu = saved_state->isf.cpu;
598 es->err = (typeof(es->err))saved_state->isf.err;
599 es->faultvaddr = saved_state->cr2;
600 }
601
602 static void
603 get_exception_state32(thread_t thread, x86_exception_state32_t *es)
604 {
605 x86_saved_state32_t *saved_state;
606
607 saved_state = USER_REGS32(thread);
608
609 es->trapno = saved_state->trapno;
610 es->cpu = saved_state->cpu;
611 es->err = saved_state->err;
612 es->faultvaddr = saved_state->cr2;
613 }
614
615
616 static int
617 set_thread_state32(thread_t thread, x86_thread_state32_t *ts)
618 {
619 x86_saved_state32_t *saved_state;
620
621 pal_register_cache_state(thread, DIRTY);
622
623 saved_state = USER_REGS32(thread);
624
625 /*
626 * Scrub segment selector values:
627 */
628 ts->cs = USER_CS;
629 #ifdef __i386__
630 if (ts->ss == 0) ts->ss = USER_DS;
631 if (ts->ds == 0) ts->ds = USER_DS;
632 if (ts->es == 0) ts->es = USER_DS;
633 #else /* __x86_64__ */
634 /*
635 * On a 64 bit kernel, we always override the data segments,
636 * as the actual selector numbers have changed. This also
637 * means that we don't support setting the data segments
638 * manually any more.
639 */
640 ts->ss = USER_DS;
641 ts->ds = USER_DS;
642 ts->es = USER_DS;
643 #endif
644
645 /* Check segment selectors are safe */
646 if (!valid_user_segment_selectors(ts->cs,
647 ts->ss,
648 ts->ds,
649 ts->es,
650 ts->fs,
651 ts->gs))
652 return(KERN_INVALID_ARGUMENT);
653
654 saved_state->eax = ts->eax;
655 saved_state->ebx = ts->ebx;
656 saved_state->ecx = ts->ecx;
657 saved_state->edx = ts->edx;
658 saved_state->edi = ts->edi;
659 saved_state->esi = ts->esi;
660 saved_state->ebp = ts->ebp;
661 saved_state->uesp = ts->esp;
662 saved_state->efl = (ts->eflags & ~EFL_USER_CLEAR) | EFL_USER_SET;
663 saved_state->eip = ts->eip;
664 saved_state->cs = ts->cs;
665 saved_state->ss = ts->ss;
666 saved_state->ds = ts->ds;
667 saved_state->es = ts->es;
668 saved_state->fs = ts->fs;
669 saved_state->gs = ts->gs;
670
671 /*
672 * If the trace trap bit is being set,
673 * ensure that the user returns via iret
674 * - which is signaled thusly:
675 */
676 if ((saved_state->efl & EFL_TF) && saved_state->cs == SYSENTER_CS)
677 saved_state->cs = SYSENTER_TF_CS;
678
679 return(KERN_SUCCESS);
680 }
681
682 static int
683 set_thread_state64(thread_t thread, x86_thread_state64_t *ts)
684 {
685 x86_saved_state64_t *saved_state;
686
687 pal_register_cache_state(thread, DIRTY);
688
689 saved_state = USER_REGS64(thread);
690
691 if (!IS_USERADDR64_CANONICAL(ts->rsp) ||
692 !IS_USERADDR64_CANONICAL(ts->rip))
693 return(KERN_INVALID_ARGUMENT);
694
695 saved_state->r8 = ts->r8;
696 saved_state->r9 = ts->r9;
697 saved_state->r10 = ts->r10;
698 saved_state->r11 = ts->r11;
699 saved_state->r12 = ts->r12;
700 saved_state->r13 = ts->r13;
701 saved_state->r14 = ts->r14;
702 saved_state->r15 = ts->r15;
703 saved_state->rax = ts->rax;
704 saved_state->rbx = ts->rbx;
705 saved_state->rcx = ts->rcx;
706 saved_state->rdx = ts->rdx;
707 saved_state->rdi = ts->rdi;
708 saved_state->rsi = ts->rsi;
709 saved_state->rbp = ts->rbp;
710 saved_state->isf.rsp = ts->rsp;
711 saved_state->isf.rflags = (ts->rflags & ~EFL_USER_CLEAR) | EFL_USER_SET;
712 saved_state->isf.rip = ts->rip;
713 saved_state->isf.cs = USER64_CS;
714 saved_state->fs = (uint32_t)ts->fs;
715 saved_state->gs = (uint32_t)ts->gs;
716
717 return(KERN_SUCCESS);
718 }
719
720
721
722 static void
723 get_thread_state32(thread_t thread, x86_thread_state32_t *ts)
724 {
725 x86_saved_state32_t *saved_state;
726
727 pal_register_cache_state(thread, VALID);
728
729 saved_state = USER_REGS32(thread);
730
731 ts->eax = saved_state->eax;
732 ts->ebx = saved_state->ebx;
733 ts->ecx = saved_state->ecx;
734 ts->edx = saved_state->edx;
735 ts->edi = saved_state->edi;
736 ts->esi = saved_state->esi;
737 ts->ebp = saved_state->ebp;
738 ts->esp = saved_state->uesp;
739 ts->eflags = saved_state->efl;
740 ts->eip = saved_state->eip;
741 ts->cs = saved_state->cs;
742 ts->ss = saved_state->ss;
743 ts->ds = saved_state->ds;
744 ts->es = saved_state->es;
745 ts->fs = saved_state->fs;
746 ts->gs = saved_state->gs;
747 }
748
749
750 static void
751 get_thread_state64(thread_t thread, x86_thread_state64_t *ts)
752 {
753 x86_saved_state64_t *saved_state;
754
755 pal_register_cache_state(thread, VALID);
756
757 saved_state = USER_REGS64(thread);
758
759 ts->r8 = saved_state->r8;
760 ts->r9 = saved_state->r9;
761 ts->r10 = saved_state->r10;
762 ts->r11 = saved_state->r11;
763 ts->r12 = saved_state->r12;
764 ts->r13 = saved_state->r13;
765 ts->r14 = saved_state->r14;
766 ts->r15 = saved_state->r15;
767 ts->rax = saved_state->rax;
768 ts->rbx = saved_state->rbx;
769 ts->rcx = saved_state->rcx;
770 ts->rdx = saved_state->rdx;
771 ts->rdi = saved_state->rdi;
772 ts->rsi = saved_state->rsi;
773 ts->rbp = saved_state->rbp;
774 ts->rsp = saved_state->isf.rsp;
775 ts->rflags = saved_state->isf.rflags;
776 ts->rip = saved_state->isf.rip;
777 ts->cs = saved_state->isf.cs;
778 ts->fs = saved_state->fs;
779 ts->gs = saved_state->gs;
780 }
781
782
783 /*
784 * act_machine_set_state:
785 *
786 * Set the status of the specified thread.
787 */
788
789 kern_return_t
790 machine_thread_set_state(
791 thread_t thr_act,
792 thread_flavor_t flavor,
793 thread_state_t tstate,
794 mach_msg_type_number_t count)
795 {
796 switch (flavor) {
797 case x86_SAVED_STATE32:
798 {
799 x86_saved_state32_t *state;
800 x86_saved_state32_t *saved_state;
801
802 if (count < x86_SAVED_STATE32_COUNT)
803 return(KERN_INVALID_ARGUMENT);
804
805 if (thread_is_64bit(thr_act))
806 return(KERN_INVALID_ARGUMENT);
807
808 state = (x86_saved_state32_t *) tstate;
809
810 /* Check segment selectors are safe */
811 if (!valid_user_segment_selectors(state->cs,
812 state->ss,
813 state->ds,
814 state->es,
815 state->fs,
816 state->gs))
817 return KERN_INVALID_ARGUMENT;
818
819 pal_register_cache_state(thr_act, DIRTY);
820
821 saved_state = USER_REGS32(thr_act);
822
823 /*
824 * General registers
825 */
826 saved_state->edi = state->edi;
827 saved_state->esi = state->esi;
828 saved_state->ebp = state->ebp;
829 saved_state->uesp = state->uesp;
830 saved_state->ebx = state->ebx;
831 saved_state->edx = state->edx;
832 saved_state->ecx = state->ecx;
833 saved_state->eax = state->eax;
834 saved_state->eip = state->eip;
835
836 saved_state->efl = (state->efl & ~EFL_USER_CLEAR) | EFL_USER_SET;
837
838 /*
839 * If the trace trap bit is being set,
840 * ensure that the user returns via iret
841 * - which is signaled thusly:
842 */
843 if ((saved_state->efl & EFL_TF) && state->cs == SYSENTER_CS)
844 state->cs = SYSENTER_TF_CS;
845
846 /*
847 * User setting segment registers.
848 * Code and stack selectors have already been
849 * checked. Others will be reset by 'iret'
850 * if they are not valid.
851 */
852 saved_state->cs = state->cs;
853 saved_state->ss = state->ss;
854 saved_state->ds = state->ds;
855 saved_state->es = state->es;
856 saved_state->fs = state->fs;
857 saved_state->gs = state->gs;
858
859 break;
860 }
861
862 case x86_SAVED_STATE64:
863 {
864 x86_saved_state64_t *state;
865 x86_saved_state64_t *saved_state;
866
867 if (count < x86_SAVED_STATE64_COUNT)
868 return(KERN_INVALID_ARGUMENT);
869
870 if (!thread_is_64bit(thr_act))
871 return(KERN_INVALID_ARGUMENT);
872
873 state = (x86_saved_state64_t *) tstate;
874
875 /* Verify that the supplied code segment selector is
876 * valid. In 64-bit mode, the FS and GS segment overrides
877 * use the FS.base and GS.base MSRs to calculate
878 * base addresses, and the trampolines don't directly
879 * restore the segment registers--hence they are no
880 * longer relevant for validation.
881 */
882 if (!valid_user_code_selector(state->isf.cs))
883 return KERN_INVALID_ARGUMENT;
884
885 /* Check pc and stack are canonical addresses */
886 if (!IS_USERADDR64_CANONICAL(state->isf.rsp) ||
887 !IS_USERADDR64_CANONICAL(state->isf.rip))
888 return KERN_INVALID_ARGUMENT;
889
890 pal_register_cache_state(thr_act, DIRTY);
891
892 saved_state = USER_REGS64(thr_act);
893
894 /*
895 * General registers
896 */
897 saved_state->r8 = state->r8;
898 saved_state->r9 = state->r9;
899 saved_state->r10 = state->r10;
900 saved_state->r11 = state->r11;
901 saved_state->r12 = state->r12;
902 saved_state->r13 = state->r13;
903 saved_state->r14 = state->r14;
904 saved_state->r15 = state->r15;
905 saved_state->rdi = state->rdi;
906 saved_state->rsi = state->rsi;
907 saved_state->rbp = state->rbp;
908 saved_state->rbx = state->rbx;
909 saved_state->rdx = state->rdx;
910 saved_state->rcx = state->rcx;
911 saved_state->rax = state->rax;
912 saved_state->isf.rsp = state->isf.rsp;
913 saved_state->isf.rip = state->isf.rip;
914
915 saved_state->isf.rflags = (state->isf.rflags & ~EFL_USER_CLEAR) | EFL_USER_SET;
916
917 /*
918 * User setting segment registers.
919 * Code and stack selectors have already been
920 * checked. Others will be reset by 'sys'
921 * if they are not valid.
922 */
923 saved_state->isf.cs = state->isf.cs;
924 saved_state->isf.ss = state->isf.ss;
925 saved_state->fs = state->fs;
926 saved_state->gs = state->gs;
927
928 break;
929 }
930
931 case x86_FLOAT_STATE32:
932 {
933 if (count != x86_FLOAT_STATE32_COUNT)
934 return(KERN_INVALID_ARGUMENT);
935
936 if (thread_is_64bit(thr_act))
937 return(KERN_INVALID_ARGUMENT);
938
939 return fpu_set_fxstate(thr_act, tstate, flavor);
940 }
941
942 case x86_FLOAT_STATE64:
943 {
944 if (count != x86_FLOAT_STATE64_COUNT)
945 return(KERN_INVALID_ARGUMENT);
946
947 if ( !thread_is_64bit(thr_act))
948 return(KERN_INVALID_ARGUMENT);
949
950 return fpu_set_fxstate(thr_act, tstate, flavor);
951 }
952
953 case x86_FLOAT_STATE:
954 {
955 x86_float_state_t *state;
956
957 if (count != x86_FLOAT_STATE_COUNT)
958 return(KERN_INVALID_ARGUMENT);
959
960 state = (x86_float_state_t *)tstate;
961 if (state->fsh.flavor == x86_FLOAT_STATE64 && state->fsh.count == x86_FLOAT_STATE64_COUNT &&
962 thread_is_64bit(thr_act)) {
963 return fpu_set_fxstate(thr_act, (thread_state_t)&state->ufs.fs64, x86_FLOAT_STATE64);
964 }
965 if (state->fsh.flavor == x86_FLOAT_STATE32 && state->fsh.count == x86_FLOAT_STATE32_COUNT &&
966 !thread_is_64bit(thr_act)) {
967 return fpu_set_fxstate(thr_act, (thread_state_t)&state->ufs.fs32, x86_FLOAT_STATE32);
968 }
969 return(KERN_INVALID_ARGUMENT);
970 }
971
972 case x86_AVX_STATE32:
973 {
974 if (count != x86_AVX_STATE32_COUNT)
975 return(KERN_INVALID_ARGUMENT);
976
977 if (thread_is_64bit(thr_act))
978 return(KERN_INVALID_ARGUMENT);
979
980 return fpu_set_fxstate(thr_act, tstate, flavor);
981 }
982
983 case x86_AVX_STATE64:
984 {
985 if (count != x86_AVX_STATE64_COUNT)
986 return(KERN_INVALID_ARGUMENT);
987
988 if (!thread_is_64bit(thr_act))
989 return(KERN_INVALID_ARGUMENT);
990
991 return fpu_set_fxstate(thr_act, tstate, flavor);
992 }
993
994 case x86_AVX_STATE:
995 {
996 x86_avx_state_t *state;
997
998 if (count != x86_AVX_STATE_COUNT)
999 return(KERN_INVALID_ARGUMENT);
1000
1001 state = (x86_avx_state_t *)tstate;
1002 if (state->ash.flavor == x86_AVX_STATE64 &&
1003 state->ash.count == x86_FLOAT_STATE64_COUNT &&
1004 thread_is_64bit(thr_act)) {
1005 return fpu_set_fxstate(thr_act,
1006 (thread_state_t)&state->ufs.as64,
1007 x86_FLOAT_STATE64);
1008 }
1009 if (state->ash.flavor == x86_FLOAT_STATE32 &&
1010 state->ash.count == x86_FLOAT_STATE32_COUNT &&
1011 !thread_is_64bit(thr_act)) {
1012 return fpu_set_fxstate(thr_act,
1013 (thread_state_t)&state->ufs.as32,
1014 x86_FLOAT_STATE32);
1015 }
1016 return(KERN_INVALID_ARGUMENT);
1017 }
1018
1019 case x86_THREAD_STATE32:
1020 {
1021 if (count != x86_THREAD_STATE32_COUNT)
1022 return(KERN_INVALID_ARGUMENT);
1023
1024 if (thread_is_64bit(thr_act))
1025 return(KERN_INVALID_ARGUMENT);
1026
1027 return set_thread_state32(thr_act, (x86_thread_state32_t *)tstate);
1028 }
1029
1030 case x86_THREAD_STATE64:
1031 {
1032 if (count != x86_THREAD_STATE64_COUNT)
1033 return(KERN_INVALID_ARGUMENT);
1034
1035 if (!thread_is_64bit(thr_act))
1036 return(KERN_INVALID_ARGUMENT);
1037
1038 return set_thread_state64(thr_act, (x86_thread_state64_t *)tstate);
1039
1040 }
1041 case x86_THREAD_STATE:
1042 {
1043 x86_thread_state_t *state;
1044
1045 if (count != x86_THREAD_STATE_COUNT)
1046 return(KERN_INVALID_ARGUMENT);
1047
1048 state = (x86_thread_state_t *)tstate;
1049
1050 if (state->tsh.flavor == x86_THREAD_STATE64 &&
1051 state->tsh.count == x86_THREAD_STATE64_COUNT &&
1052 thread_is_64bit(thr_act)) {
1053 return set_thread_state64(thr_act, &state->uts.ts64);
1054 } else if (state->tsh.flavor == x86_THREAD_STATE32 &&
1055 state->tsh.count == x86_THREAD_STATE32_COUNT &&
1056 !thread_is_64bit(thr_act)) {
1057 return set_thread_state32(thr_act, &state->uts.ts32);
1058 } else
1059 return(KERN_INVALID_ARGUMENT);
1060
1061 break;
1062 }
1063 case x86_DEBUG_STATE32:
1064 {
1065 x86_debug_state32_t *state;
1066 kern_return_t ret;
1067
1068 if (thread_is_64bit(thr_act))
1069 return(KERN_INVALID_ARGUMENT);
1070
1071 state = (x86_debug_state32_t *)tstate;
1072
1073 ret = set_debug_state32(thr_act, state);
1074
1075 return ret;
1076 }
1077 case x86_DEBUG_STATE64:
1078 {
1079 x86_debug_state64_t *state;
1080 kern_return_t ret;
1081
1082 if (!thread_is_64bit(thr_act))
1083 return(KERN_INVALID_ARGUMENT);
1084
1085 state = (x86_debug_state64_t *)tstate;
1086
1087 ret = set_debug_state64(thr_act, state);
1088
1089 return ret;
1090 }
1091 case x86_DEBUG_STATE:
1092 {
1093 x86_debug_state_t *state;
1094 kern_return_t ret = KERN_INVALID_ARGUMENT;
1095
1096 if (count != x86_DEBUG_STATE_COUNT)
1097 return (KERN_INVALID_ARGUMENT);
1098
1099 state = (x86_debug_state_t *)tstate;
1100 if (state->dsh.flavor == x86_DEBUG_STATE64 &&
1101 state->dsh.count == x86_DEBUG_STATE64_COUNT &&
1102 thread_is_64bit(thr_act)) {
1103 ret = set_debug_state64(thr_act, &state->uds.ds64);
1104 }
1105 else
1106 if (state->dsh.flavor == x86_DEBUG_STATE32 &&
1107 state->dsh.count == x86_DEBUG_STATE32_COUNT &&
1108 !thread_is_64bit(thr_act)) {
1109 ret = set_debug_state32(thr_act, &state->uds.ds32);
1110 }
1111 return ret;
1112 }
1113 default:
1114 return(KERN_INVALID_ARGUMENT);
1115 }
1116
1117 return(KERN_SUCCESS);
1118 }
1119
1120
1121
1122 /*
1123 * thread_getstatus:
1124 *
1125 * Get the status of the specified thread.
1126 */
1127
1128 kern_return_t
1129 machine_thread_get_state(
1130 thread_t thr_act,
1131 thread_flavor_t flavor,
1132 thread_state_t tstate,
1133 mach_msg_type_number_t *count)
1134 {
1135
1136 switch (flavor) {
1137
1138 case THREAD_STATE_FLAVOR_LIST:
1139 {
1140 if (*count < 3)
1141 return (KERN_INVALID_ARGUMENT);
1142
1143 tstate[0] = i386_THREAD_STATE;
1144 tstate[1] = i386_FLOAT_STATE;
1145 tstate[2] = i386_EXCEPTION_STATE;
1146
1147 *count = 3;
1148 break;
1149 }
1150
1151 case THREAD_STATE_FLAVOR_LIST_NEW:
1152 {
1153 if (*count < 4)
1154 return (KERN_INVALID_ARGUMENT);
1155
1156 tstate[0] = x86_THREAD_STATE;
1157 tstate[1] = x86_FLOAT_STATE;
1158 tstate[2] = x86_EXCEPTION_STATE;
1159 tstate[3] = x86_DEBUG_STATE;
1160
1161 *count = 4;
1162 break;
1163 }
1164
1165 case THREAD_STATE_FLAVOR_LIST_10_9:
1166 {
1167 if (*count < 5)
1168 return (KERN_INVALID_ARGUMENT);
1169
1170 tstate[0] = x86_THREAD_STATE;
1171 tstate[1] = x86_FLOAT_STATE;
1172 tstate[2] = x86_EXCEPTION_STATE;
1173 tstate[3] = x86_DEBUG_STATE;
1174 tstate[4] = x86_AVX_STATE;
1175
1176 *count = 5;
1177 break;
1178 }
1179
1180 case x86_SAVED_STATE32:
1181 {
1182 x86_saved_state32_t *state;
1183 x86_saved_state32_t *saved_state;
1184
1185 if (*count < x86_SAVED_STATE32_COUNT)
1186 return(KERN_INVALID_ARGUMENT);
1187
1188 if (thread_is_64bit(thr_act))
1189 return(KERN_INVALID_ARGUMENT);
1190
1191 state = (x86_saved_state32_t *) tstate;
1192 saved_state = USER_REGS32(thr_act);
1193
1194 /*
1195 * First, copy everything:
1196 */
1197 *state = *saved_state;
1198 state->ds = saved_state->ds & 0xffff;
1199 state->es = saved_state->es & 0xffff;
1200 state->fs = saved_state->fs & 0xffff;
1201 state->gs = saved_state->gs & 0xffff;
1202
1203 *count = x86_SAVED_STATE32_COUNT;
1204 break;
1205 }
1206
1207 case x86_SAVED_STATE64:
1208 {
1209 x86_saved_state64_t *state;
1210 x86_saved_state64_t *saved_state;
1211
1212 if (*count < x86_SAVED_STATE64_COUNT)
1213 return(KERN_INVALID_ARGUMENT);
1214
1215 if (!thread_is_64bit(thr_act))
1216 return(KERN_INVALID_ARGUMENT);
1217
1218 state = (x86_saved_state64_t *)tstate;
1219 saved_state = USER_REGS64(thr_act);
1220
1221 /*
1222 * First, copy everything:
1223 */
1224 *state = *saved_state;
1225 state->fs = saved_state->fs & 0xffff;
1226 state->gs = saved_state->gs & 0xffff;
1227
1228 *count = x86_SAVED_STATE64_COUNT;
1229 break;
1230 }
1231
1232 case x86_FLOAT_STATE32:
1233 {
1234 if (*count < x86_FLOAT_STATE32_COUNT)
1235 return(KERN_INVALID_ARGUMENT);
1236
1237 if (thread_is_64bit(thr_act))
1238 return(KERN_INVALID_ARGUMENT);
1239
1240 *count = x86_FLOAT_STATE32_COUNT;
1241
1242 return fpu_get_fxstate(thr_act, tstate, flavor);
1243 }
1244
1245 case x86_FLOAT_STATE64:
1246 {
1247 if (*count < x86_FLOAT_STATE64_COUNT)
1248 return(KERN_INVALID_ARGUMENT);
1249
1250 if ( !thread_is_64bit(thr_act))
1251 return(KERN_INVALID_ARGUMENT);
1252
1253 *count = x86_FLOAT_STATE64_COUNT;
1254
1255 return fpu_get_fxstate(thr_act, tstate, flavor);
1256 }
1257
1258 case x86_FLOAT_STATE:
1259 {
1260 x86_float_state_t *state;
1261 kern_return_t kret;
1262
1263 if (*count < x86_FLOAT_STATE_COUNT)
1264 return(KERN_INVALID_ARGUMENT);
1265
1266 state = (x86_float_state_t *)tstate;
1267
1268 /*
1269 * no need to bzero... currently
1270 * x86_FLOAT_STATE64_COUNT == x86_FLOAT_STATE32_COUNT
1271 */
1272 if (thread_is_64bit(thr_act)) {
1273 state->fsh.flavor = x86_FLOAT_STATE64;
1274 state->fsh.count = x86_FLOAT_STATE64_COUNT;
1275
1276 kret = fpu_get_fxstate(thr_act, (thread_state_t)&state->ufs.fs64, x86_FLOAT_STATE64);
1277 } else {
1278 state->fsh.flavor = x86_FLOAT_STATE32;
1279 state->fsh.count = x86_FLOAT_STATE32_COUNT;
1280
1281 kret = fpu_get_fxstate(thr_act, (thread_state_t)&state->ufs.fs32, x86_FLOAT_STATE32);
1282 }
1283 *count = x86_FLOAT_STATE_COUNT;
1284
1285 return(kret);
1286 }
1287
1288 case x86_AVX_STATE32:
1289 {
1290 if (*count != x86_AVX_STATE32_COUNT)
1291 return(KERN_INVALID_ARGUMENT);
1292
1293 if (thread_is_64bit(thr_act))
1294 return(KERN_INVALID_ARGUMENT);
1295
1296 *count = x86_AVX_STATE32_COUNT;
1297
1298 return fpu_get_fxstate(thr_act, tstate, flavor);
1299 }
1300
1301 case x86_AVX_STATE64:
1302 {
1303 if (*count != x86_AVX_STATE64_COUNT)
1304 return(KERN_INVALID_ARGUMENT);
1305
1306 if ( !thread_is_64bit(thr_act))
1307 return(KERN_INVALID_ARGUMENT);
1308
1309 *count = x86_AVX_STATE64_COUNT;
1310
1311 return fpu_get_fxstate(thr_act, tstate, flavor);
1312 }
1313
1314 case x86_AVX_STATE:
1315 {
1316 x86_avx_state_t *state;
1317 kern_return_t kret;
1318
1319 if (*count < x86_AVX_STATE_COUNT)
1320 return(KERN_INVALID_ARGUMENT);
1321
1322 state = (x86_avx_state_t *)tstate;
1323
1324 bzero((char *)state, sizeof(x86_avx_state_t));
1325 if (thread_is_64bit(thr_act)) {
1326 state->ash.flavor = x86_AVX_STATE64;
1327 state->ash.count = x86_AVX_STATE64_COUNT;
1328 kret = fpu_get_fxstate(thr_act,
1329 (thread_state_t)&state->ufs.as64,
1330 x86_AVX_STATE64);
1331 } else {
1332 state->ash.flavor = x86_AVX_STATE32;
1333 state->ash.count = x86_AVX_STATE32_COUNT;
1334 kret = fpu_get_fxstate(thr_act,
1335 (thread_state_t)&state->ufs.as32,
1336 x86_AVX_STATE32);
1337 }
1338 *count = x86_AVX_STATE_COUNT;
1339
1340 return(kret);
1341 }
1342
1343 case x86_THREAD_STATE32:
1344 {
1345 if (*count < x86_THREAD_STATE32_COUNT)
1346 return(KERN_INVALID_ARGUMENT);
1347
1348 if (thread_is_64bit(thr_act))
1349 return(KERN_INVALID_ARGUMENT);
1350
1351 *count = x86_THREAD_STATE32_COUNT;
1352
1353 get_thread_state32(thr_act, (x86_thread_state32_t *)tstate);
1354 break;
1355 }
1356
1357 case x86_THREAD_STATE64:
1358 {
1359 if (*count < x86_THREAD_STATE64_COUNT)
1360 return(KERN_INVALID_ARGUMENT);
1361
1362 if ( !thread_is_64bit(thr_act))
1363 return(KERN_INVALID_ARGUMENT);
1364
1365 *count = x86_THREAD_STATE64_COUNT;
1366
1367 get_thread_state64(thr_act, (x86_thread_state64_t *)tstate);
1368 break;
1369 }
1370
1371 case x86_THREAD_STATE:
1372 {
1373 x86_thread_state_t *state;
1374
1375 if (*count < x86_THREAD_STATE_COUNT)
1376 return(KERN_INVALID_ARGUMENT);
1377
1378 state = (x86_thread_state_t *)tstate;
1379
1380 bzero((char *)state, sizeof(x86_thread_state_t));
1381
1382 if (thread_is_64bit(thr_act)) {
1383 state->tsh.flavor = x86_THREAD_STATE64;
1384 state->tsh.count = x86_THREAD_STATE64_COUNT;
1385
1386 get_thread_state64(thr_act, &state->uts.ts64);
1387 } else {
1388 state->tsh.flavor = x86_THREAD_STATE32;
1389 state->tsh.count = x86_THREAD_STATE32_COUNT;
1390
1391 get_thread_state32(thr_act, &state->uts.ts32);
1392 }
1393 *count = x86_THREAD_STATE_COUNT;
1394
1395 break;
1396 }
1397
1398
1399 case x86_EXCEPTION_STATE32:
1400 {
1401 if (*count < x86_EXCEPTION_STATE32_COUNT)
1402 return(KERN_INVALID_ARGUMENT);
1403
1404 if (thread_is_64bit(thr_act))
1405 return(KERN_INVALID_ARGUMENT);
1406
1407 *count = x86_EXCEPTION_STATE32_COUNT;
1408
1409 get_exception_state32(thr_act, (x86_exception_state32_t *)tstate);
1410 /*
1411 * Suppress the cpu number for binary compatibility
1412 * of this deprecated state.
1413 */
1414 ((x86_exception_state32_t *)tstate)->cpu = 0;
1415 break;
1416 }
1417
1418 case x86_EXCEPTION_STATE64:
1419 {
1420 if (*count < x86_EXCEPTION_STATE64_COUNT)
1421 return(KERN_INVALID_ARGUMENT);
1422
1423 if ( !thread_is_64bit(thr_act))
1424 return(KERN_INVALID_ARGUMENT);
1425
1426 *count = x86_EXCEPTION_STATE64_COUNT;
1427
1428 get_exception_state64(thr_act, (x86_exception_state64_t *)tstate);
1429 /*
1430 * Suppress the cpu number for binary compatibility
1431 * of this deprecated state.
1432 */
1433 ((x86_exception_state64_t *)tstate)->cpu = 0;
1434 break;
1435 }
1436
1437 case x86_EXCEPTION_STATE:
1438 {
1439 x86_exception_state_t *state;
1440
1441 if (*count < x86_EXCEPTION_STATE_COUNT)
1442 return(KERN_INVALID_ARGUMENT);
1443
1444 state = (x86_exception_state_t *)tstate;
1445
1446 bzero((char *)state, sizeof(x86_exception_state_t));
1447
1448 if (thread_is_64bit(thr_act)) {
1449 state->esh.flavor = x86_EXCEPTION_STATE64;
1450 state->esh.count = x86_EXCEPTION_STATE64_COUNT;
1451
1452 get_exception_state64(thr_act, &state->ues.es64);
1453 } else {
1454 state->esh.flavor = x86_EXCEPTION_STATE32;
1455 state->esh.count = x86_EXCEPTION_STATE32_COUNT;
1456
1457 get_exception_state32(thr_act, &state->ues.es32);
1458 }
1459 *count = x86_EXCEPTION_STATE_COUNT;
1460
1461 break;
1462 }
1463 case x86_DEBUG_STATE32:
1464 {
1465 if (*count < x86_DEBUG_STATE32_COUNT)
1466 return(KERN_INVALID_ARGUMENT);
1467
1468 if (thread_is_64bit(thr_act))
1469 return(KERN_INVALID_ARGUMENT);
1470
1471 get_debug_state32(thr_act, (x86_debug_state32_t *)tstate);
1472
1473 *count = x86_DEBUG_STATE32_COUNT;
1474
1475 break;
1476 }
1477 case x86_DEBUG_STATE64:
1478 {
1479 if (*count < x86_DEBUG_STATE64_COUNT)
1480 return(KERN_INVALID_ARGUMENT);
1481
1482 if (!thread_is_64bit(thr_act))
1483 return(KERN_INVALID_ARGUMENT);
1484
1485 get_debug_state64(thr_act, (x86_debug_state64_t *)tstate);
1486
1487 *count = x86_DEBUG_STATE64_COUNT;
1488
1489 break;
1490 }
1491 case x86_DEBUG_STATE:
1492 {
1493 x86_debug_state_t *state;
1494
1495 if (*count < x86_DEBUG_STATE_COUNT)
1496 return(KERN_INVALID_ARGUMENT);
1497
1498 state = (x86_debug_state_t *)tstate;
1499
1500 bzero(state, sizeof *state);
1501
1502 if (thread_is_64bit(thr_act)) {
1503 state->dsh.flavor = x86_DEBUG_STATE64;
1504 state->dsh.count = x86_DEBUG_STATE64_COUNT;
1505
1506 get_debug_state64(thr_act, &state->uds.ds64);
1507 } else {
1508 state->dsh.flavor = x86_DEBUG_STATE32;
1509 state->dsh.count = x86_DEBUG_STATE32_COUNT;
1510
1511 get_debug_state32(thr_act, &state->uds.ds32);
1512 }
1513 *count = x86_DEBUG_STATE_COUNT;
1514 break;
1515 }
1516 default:
1517 return(KERN_INVALID_ARGUMENT);
1518 }
1519
1520 return(KERN_SUCCESS);
1521 }
1522
1523 kern_return_t
1524 machine_thread_get_kern_state(
1525 thread_t thread,
1526 thread_flavor_t flavor,
1527 thread_state_t tstate,
1528 mach_msg_type_number_t *count)
1529 {
1530 x86_saved_state_t *int_state = current_cpu_datap()->cpu_int_state;
1531
1532 /*
1533 * This works only for an interrupted kernel thread
1534 */
1535 if (thread != current_thread() || int_state == NULL)
1536 return KERN_FAILURE;
1537
1538 switch (flavor) {
1539 case x86_THREAD_STATE32: {
1540 x86_thread_state32_t *state;
1541 x86_saved_state32_t *saved_state;
1542
1543 if (!is_saved_state32(int_state) ||
1544 *count < x86_THREAD_STATE32_COUNT)
1545 return (KERN_INVALID_ARGUMENT);
1546
1547 state = (x86_thread_state32_t *) tstate;
1548
1549 saved_state = saved_state32(int_state);
1550 /*
1551 * General registers.
1552 */
1553 state->eax = saved_state->eax;
1554 state->ebx = saved_state->ebx;
1555 state->ecx = saved_state->ecx;
1556 state->edx = saved_state->edx;
1557 state->edi = saved_state->edi;
1558 state->esi = saved_state->esi;
1559 state->ebp = saved_state->ebp;
1560 state->esp = saved_state->uesp;
1561 state->eflags = saved_state->efl;
1562 state->eip = saved_state->eip;
1563 state->cs = saved_state->cs;
1564 state->ss = saved_state->ss;
1565 state->ds = saved_state->ds & 0xffff;
1566 state->es = saved_state->es & 0xffff;
1567 state->fs = saved_state->fs & 0xffff;
1568 state->gs = saved_state->gs & 0xffff;
1569
1570 *count = x86_THREAD_STATE32_COUNT;
1571
1572 return KERN_SUCCESS;
1573 }
1574
1575 case x86_THREAD_STATE64: {
1576 x86_thread_state64_t *state;
1577 x86_saved_state64_t *saved_state;
1578
1579 if (!is_saved_state64(int_state) ||
1580 *count < x86_THREAD_STATE64_COUNT)
1581 return (KERN_INVALID_ARGUMENT);
1582
1583 state = (x86_thread_state64_t *) tstate;
1584
1585 saved_state = saved_state64(int_state);
1586 /*
1587 * General registers.
1588 */
1589 state->rax = saved_state->rax;
1590 state->rbx = saved_state->rbx;
1591 state->rcx = saved_state->rcx;
1592 state->rdx = saved_state->rdx;
1593 state->rdi = saved_state->rdi;
1594 state->rsi = saved_state->rsi;
1595 state->rbp = saved_state->rbp;
1596 state->rsp = saved_state->isf.rsp;
1597 state->r8 = saved_state->r8;
1598 state->r9 = saved_state->r9;
1599 state->r10 = saved_state->r10;
1600 state->r11 = saved_state->r11;
1601 state->r12 = saved_state->r12;
1602 state->r13 = saved_state->r13;
1603 state->r14 = saved_state->r14;
1604 state->r15 = saved_state->r15;
1605
1606 state->rip = saved_state->isf.rip;
1607 state->rflags = saved_state->isf.rflags;
1608 state->cs = saved_state->isf.cs;
1609 state->fs = saved_state->fs & 0xffff;
1610 state->gs = saved_state->gs & 0xffff;
1611 *count = x86_THREAD_STATE64_COUNT;
1612
1613 return KERN_SUCCESS;
1614 }
1615
1616 case x86_THREAD_STATE: {
1617 x86_thread_state_t *state = NULL;
1618
1619 if (*count < x86_THREAD_STATE_COUNT)
1620 return (KERN_INVALID_ARGUMENT);
1621
1622 state = (x86_thread_state_t *) tstate;
1623
1624 if (is_saved_state32(int_state)) {
1625 x86_saved_state32_t *saved_state = saved_state32(int_state);
1626
1627 state->tsh.flavor = x86_THREAD_STATE32;
1628 state->tsh.count = x86_THREAD_STATE32_COUNT;
1629
1630 /*
1631 * General registers.
1632 */
1633 state->uts.ts32.eax = saved_state->eax;
1634 state->uts.ts32.ebx = saved_state->ebx;
1635 state->uts.ts32.ecx = saved_state->ecx;
1636 state->uts.ts32.edx = saved_state->edx;
1637 state->uts.ts32.edi = saved_state->edi;
1638 state->uts.ts32.esi = saved_state->esi;
1639 state->uts.ts32.ebp = saved_state->ebp;
1640 state->uts.ts32.esp = saved_state->uesp;
1641 state->uts.ts32.eflags = saved_state->efl;
1642 state->uts.ts32.eip = saved_state->eip;
1643 state->uts.ts32.cs = saved_state->cs;
1644 state->uts.ts32.ss = saved_state->ss;
1645 state->uts.ts32.ds = saved_state->ds & 0xffff;
1646 state->uts.ts32.es = saved_state->es & 0xffff;
1647 state->uts.ts32.fs = saved_state->fs & 0xffff;
1648 state->uts.ts32.gs = saved_state->gs & 0xffff;
1649 } else if (is_saved_state64(int_state)) {
1650 x86_saved_state64_t *saved_state = saved_state64(int_state);
1651
1652 state->tsh.flavor = x86_THREAD_STATE64;
1653 state->tsh.count = x86_THREAD_STATE64_COUNT;
1654
1655 /*
1656 * General registers.
1657 */
1658 state->uts.ts64.rax = saved_state->rax;
1659 state->uts.ts64.rbx = saved_state->rbx;
1660 state->uts.ts64.rcx = saved_state->rcx;
1661 state->uts.ts64.rdx = saved_state->rdx;
1662 state->uts.ts64.rdi = saved_state->rdi;
1663 state->uts.ts64.rsi = saved_state->rsi;
1664 state->uts.ts64.rbp = saved_state->rbp;
1665 state->uts.ts64.rsp = saved_state->isf.rsp;
1666 state->uts.ts64.r8 = saved_state->r8;
1667 state->uts.ts64.r9 = saved_state->r9;
1668 state->uts.ts64.r10 = saved_state->r10;
1669 state->uts.ts64.r11 = saved_state->r11;
1670 state->uts.ts64.r12 = saved_state->r12;
1671 state->uts.ts64.r13 = saved_state->r13;
1672 state->uts.ts64.r14 = saved_state->r14;
1673 state->uts.ts64.r15 = saved_state->r15;
1674
1675 state->uts.ts64.rip = saved_state->isf.rip;
1676 state->uts.ts64.rflags = saved_state->isf.rflags;
1677 state->uts.ts64.cs = saved_state->isf.cs;
1678 state->uts.ts64.fs = saved_state->fs & 0xffff;
1679 state->uts.ts64.gs = saved_state->gs & 0xffff;
1680 } else {
1681 panic("unknown thread state");
1682 }
1683
1684 *count = x86_THREAD_STATE_COUNT;
1685 return KERN_SUCCESS;
1686 }
1687 }
1688 return KERN_FAILURE;
1689 }
1690
1691
1692 void
1693 machine_thread_switch_addrmode(thread_t thread)
1694 {
1695 /*
1696 * We don't want to be preempted until we're done
1697 * - particularly if we're switching the current thread
1698 */
1699 disable_preemption();
1700
1701 /*
1702 * Reset the state saveareas. As we're resetting, we anticipate no
1703 * memory allocations in this path.
1704 */
1705 machine_thread_create(thread, thread->task);
1706
1707 /* If we're switching ourselves, reset the pcb addresses etc. */
1708 if (thread == current_thread()) {
1709 boolean_t istate = ml_set_interrupts_enabled(FALSE);
1710 #if defined(__i386__)
1711 if (current_cpu_datap()->cpu_active_cr3 != kernel_pmap->pm_cr3)
1712 pmap_load_kernel_cr3();
1713 #endif /* defined(__i386) */
1714 act_machine_switch_pcb(NULL, thread);
1715 ml_set_interrupts_enabled(istate);
1716 }
1717 enable_preemption();
1718 }
1719
1720
1721
1722 /*
1723 * This is used to set the current thr_act/thread
1724 * when starting up a new processor
1725 */
1726 void
1727 machine_set_current_thread(thread_t thread)
1728 {
1729 current_cpu_datap()->cpu_active_thread = thread;
1730 }
1731
1732
1733 /*
1734 * Perform machine-dependent per-thread initializations
1735 */
1736 void
1737 machine_thread_init(void)
1738 {
1739 if (cpu_mode_is64bit()) {
1740 assert(sizeof(x86_sframe_compat32_t) % 16 == 0);
1741 iss_zone = zinit(sizeof(x86_sframe64_t),
1742 thread_max * sizeof(x86_sframe64_t),
1743 THREAD_CHUNK * sizeof(x86_sframe64_t),
1744 "x86_64 saved state");
1745
1746 ids_zone = zinit(sizeof(x86_debug_state64_t),
1747 thread_max * sizeof(x86_debug_state64_t),
1748 THREAD_CHUNK * sizeof(x86_debug_state64_t),
1749 "x86_64 debug state");
1750
1751 } else {
1752 iss_zone = zinit(sizeof(x86_sframe32_t),
1753 thread_max * sizeof(x86_sframe32_t),
1754 THREAD_CHUNK * sizeof(x86_sframe32_t),
1755 "x86 saved state");
1756 ids_zone = zinit(sizeof(x86_debug_state32_t),
1757 thread_max * (sizeof(x86_debug_state32_t)),
1758 THREAD_CHUNK * (sizeof(x86_debug_state32_t)),
1759 "x86 debug state");
1760 }
1761 fpu_module_init();
1762 }
1763
1764
1765 #if defined(__i386__)
1766 /*
1767 * Some routines for debugging activation code
1768 */
1769 static void dump_handlers(thread_t);
1770 void dump_regs(thread_t);
1771 int dump_act(thread_t thr_act);
1772
1773 static void
1774 dump_handlers(thread_t thr_act)
1775 {
1776 ReturnHandler *rhp = thr_act->handlers;
1777 int counter = 0;
1778
1779 printf("\t");
1780 while (rhp) {
1781 if (rhp == &thr_act->special_handler){
1782 if (rhp->next)
1783 printf("[NON-Zero next ptr(%p)]", rhp->next);
1784 printf("special_handler()->");
1785 break;
1786 }
1787 printf("hdlr_%d(%p)->", counter, rhp->handler);
1788 rhp = rhp->next;
1789 if (++counter > 32) {
1790 printf("Aborting: HUGE handler chain\n");
1791 break;
1792 }
1793 }
1794 printf("HLDR_NULL\n");
1795 }
1796
1797 void
1798 dump_regs(thread_t thr_act)
1799 {
1800 if (thread_is_64bit(thr_act)) {
1801 x86_saved_state64_t *ssp;
1802
1803 ssp = USER_REGS64(thr_act);
1804
1805 panic("dump_regs: 64bit tasks not yet supported");
1806
1807 } else {
1808 x86_saved_state32_t *ssp;
1809
1810 ssp = USER_REGS32(thr_act);
1811
1812 /*
1813 * Print out user register state
1814 */
1815 printf("\tRegs:\tedi=%x esi=%x ebp=%x ebx=%x edx=%x\n",
1816 ssp->edi, ssp->esi, ssp->ebp, ssp->ebx, ssp->edx);
1817
1818 printf("\t\tecx=%x eax=%x eip=%x efl=%x uesp=%x\n",
1819 ssp->ecx, ssp->eax, ssp->eip, ssp->efl, ssp->uesp);
1820
1821 printf("\t\tcs=%x ss=%x\n", ssp->cs, ssp->ss);
1822 }
1823 }
1824
1825 int
1826 dump_act(thread_t thr_act)
1827 {
1828 if (!thr_act)
1829 return(0);
1830
1831 printf("thread(%p)(%d): task=%p(%d)\n",
1832 thr_act, thr_act->ref_count,
1833 thr_act->task,
1834 thr_act->task ? thr_act->task->ref_count : 0);
1835
1836 printf("\tsusp=%d user_stop=%d active=%x ast=%x\n",
1837 thr_act->suspend_count, thr_act->user_stop_count,
1838 thr_act->active, thr_act->ast);
1839 printf("\tpcb=%p\n", &thr_act->machine);
1840
1841 if (thr_act->kernel_stack) {
1842 vm_offset_t stack = thr_act->kernel_stack;
1843
1844 printf("\tk_stk %lx eip %x ebx %x esp %x iss %p\n",
1845 (long)stack, STACK_IKS(stack)->k_eip, STACK_IKS(stack)->k_ebx,
1846 STACK_IKS(stack)->k_esp, thr_act->machine.iss);
1847 }
1848
1849 dump_handlers(thr_act);
1850 dump_regs(thr_act);
1851 return((int)thr_act);
1852 }
1853 #endif
1854
1855 user_addr_t
1856 get_useraddr(void)
1857 {
1858 thread_t thr_act = current_thread();
1859
1860 if (thread_is_64bit(thr_act)) {
1861 x86_saved_state64_t *iss64;
1862
1863 iss64 = USER_REGS64(thr_act);
1864
1865 return(iss64->isf.rip);
1866 } else {
1867 x86_saved_state32_t *iss32;
1868
1869 iss32 = USER_REGS32(thr_act);
1870
1871 return(iss32->eip);
1872 }
1873 }
1874
1875 /*
1876 * detach and return a kernel stack from a thread
1877 */
1878
1879 vm_offset_t
1880 machine_stack_detach(thread_t thread)
1881 {
1882 vm_offset_t stack;
1883
1884 KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DETACH),
1885 (uintptr_t)thread_tid(thread), thread->priority,
1886 thread->sched_pri, 0,
1887 0);
1888
1889 stack = thread->kernel_stack;
1890 thread->kernel_stack = 0;
1891
1892 return (stack);
1893 }
1894
1895 /*
1896 * attach a kernel stack to a thread and initialize it
1897 */
1898
1899 void
1900 machine_stack_attach(
1901 thread_t thread,
1902 vm_offset_t stack)
1903 {
1904 struct x86_kernel_state *statep;
1905
1906 KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_ATTACH),
1907 (uintptr_t)thread_tid(thread), thread->priority,
1908 thread->sched_pri, 0, 0);
1909
1910 assert(stack);
1911 thread->kernel_stack = stack;
1912
1913 statep = STACK_IKS(stack);
1914 #if defined(__x86_64__)
1915 statep->k_rip = (unsigned long) Thread_continue;
1916 statep->k_rbx = (unsigned long) thread_continue;
1917 statep->k_rsp = (unsigned long) (STACK_IKS(stack) - 1);
1918 #else
1919 statep->k_eip = (unsigned long) Thread_continue;
1920 statep->k_ebx = (unsigned long) thread_continue;
1921 statep->k_esp = (unsigned long) (STACK_IKS(stack) - 1);
1922 #endif
1923
1924 return;
1925 }
1926
1927 /*
1928 * move a stack from old to new thread
1929 */
1930
1931 void
1932 machine_stack_handoff(thread_t old,
1933 thread_t new)
1934 {
1935 vm_offset_t stack;
1936
1937 assert(new);
1938 assert(old);
1939
1940 #if CONFIG_COUNTERS
1941 machine_pmc_cswitch(old, new);
1942 #endif
1943
1944 stack = old->kernel_stack;
1945 if (stack == old->reserved_stack) {
1946 assert(new->reserved_stack);
1947 old->reserved_stack = new->reserved_stack;
1948 new->reserved_stack = stack;
1949 }
1950 old->kernel_stack = 0;
1951 /*
1952 * A full call to machine_stack_attach() is unnecessry
1953 * because old stack is already initialized.
1954 */
1955 new->kernel_stack = stack;
1956
1957 fpu_save_context(old);
1958
1959 old->machine.specFlags &= ~OnProc;
1960 new->machine.specFlags |= OnProc;
1961
1962 PMAP_SWITCH_CONTEXT(old, new, cpu_number());
1963 act_machine_switch_pcb(old, new);
1964
1965 machine_set_current_thread(new);
1966
1967 return;
1968 }
1969
1970
1971
1972
1973 struct x86_act_context32 {
1974 x86_saved_state32_t ss;
1975 x86_float_state32_t fs;
1976 x86_debug_state32_t ds;
1977 };
1978
1979 struct x86_act_context64 {
1980 x86_saved_state64_t ss;
1981 x86_float_state64_t fs;
1982 x86_debug_state64_t ds;
1983 };
1984
1985
1986
1987 void *
1988 act_thread_csave(void)
1989 {
1990 kern_return_t kret;
1991 mach_msg_type_number_t val;
1992 thread_t thr_act = current_thread();
1993
1994 if (thread_is_64bit(thr_act)) {
1995 struct x86_act_context64 *ic64;
1996
1997 ic64 = (struct x86_act_context64 *)kalloc(sizeof(struct x86_act_context64));
1998
1999 if (ic64 == (struct x86_act_context64 *)NULL)
2000 return((void *)0);
2001
2002 val = x86_SAVED_STATE64_COUNT;
2003 kret = machine_thread_get_state(thr_act, x86_SAVED_STATE64,
2004 (thread_state_t) &ic64->ss, &val);
2005 if (kret != KERN_SUCCESS) {
2006 kfree(ic64, sizeof(struct x86_act_context64));
2007 return((void *)0);
2008 }
2009 val = x86_FLOAT_STATE64_COUNT;
2010 kret = machine_thread_get_state(thr_act, x86_FLOAT_STATE64,
2011 (thread_state_t) &ic64->fs, &val);
2012 if (kret != KERN_SUCCESS) {
2013 kfree(ic64, sizeof(struct x86_act_context64));
2014 return((void *)0);
2015 }
2016
2017 val = x86_DEBUG_STATE64_COUNT;
2018 kret = machine_thread_get_state(thr_act,
2019 x86_DEBUG_STATE64,
2020 (thread_state_t)&ic64->ds,
2021 &val);
2022 if (kret != KERN_SUCCESS) {
2023 kfree(ic64, sizeof(struct x86_act_context64));
2024 return((void *)0);
2025 }
2026 return(ic64);
2027
2028 } else {
2029 struct x86_act_context32 *ic32;
2030
2031 ic32 = (struct x86_act_context32 *)kalloc(sizeof(struct x86_act_context32));
2032
2033 if (ic32 == (struct x86_act_context32 *)NULL)
2034 return((void *)0);
2035
2036 val = x86_SAVED_STATE32_COUNT;
2037 kret = machine_thread_get_state(thr_act, x86_SAVED_STATE32,
2038 (thread_state_t) &ic32->ss, &val);
2039 if (kret != KERN_SUCCESS) {
2040 kfree(ic32, sizeof(struct x86_act_context32));
2041 return((void *)0);
2042 }
2043 val = x86_FLOAT_STATE32_COUNT;
2044 kret = machine_thread_get_state(thr_act, x86_FLOAT_STATE32,
2045 (thread_state_t) &ic32->fs, &val);
2046 if (kret != KERN_SUCCESS) {
2047 kfree(ic32, sizeof(struct x86_act_context32));
2048 return((void *)0);
2049 }
2050
2051 val = x86_DEBUG_STATE32_COUNT;
2052 kret = machine_thread_get_state(thr_act,
2053 x86_DEBUG_STATE32,
2054 (thread_state_t)&ic32->ds,
2055 &val);
2056 if (kret != KERN_SUCCESS) {
2057 kfree(ic32, sizeof(struct x86_act_context32));
2058 return((void *)0);
2059 }
2060 return(ic32);
2061 }
2062 }
2063
2064
2065 void
2066 act_thread_catt(void *ctx)
2067 {
2068 thread_t thr_act = current_thread();
2069 kern_return_t kret;
2070
2071 if (ctx == (void *)NULL)
2072 return;
2073
2074 if (thread_is_64bit(thr_act)) {
2075 struct x86_act_context64 *ic64;
2076
2077 ic64 = (struct x86_act_context64 *)ctx;
2078
2079 kret = machine_thread_set_state(thr_act, x86_SAVED_STATE64,
2080 (thread_state_t) &ic64->ss, x86_SAVED_STATE64_COUNT);
2081 if (kret == KERN_SUCCESS) {
2082 machine_thread_set_state(thr_act, x86_FLOAT_STATE64,
2083 (thread_state_t) &ic64->fs, x86_FLOAT_STATE64_COUNT);
2084 }
2085 kfree(ic64, sizeof(struct x86_act_context64));
2086 } else {
2087 struct x86_act_context32 *ic32;
2088
2089 ic32 = (struct x86_act_context32 *)ctx;
2090
2091 kret = machine_thread_set_state(thr_act, x86_SAVED_STATE32,
2092 (thread_state_t) &ic32->ss, x86_SAVED_STATE32_COUNT);
2093 if (kret == KERN_SUCCESS) {
2094 (void) machine_thread_set_state(thr_act, x86_FLOAT_STATE32,
2095 (thread_state_t) &ic32->fs, x86_FLOAT_STATE32_COUNT);
2096 }
2097 kfree(ic32, sizeof(struct x86_act_context32));
2098 }
2099 }
2100
2101
2102 void act_thread_cfree(__unused void *ctx)
2103 {
2104 /* XXX - Unused */
2105 }
2106 void x86_toggle_sysenter_arg_store(thread_t thread, boolean_t valid);
2107 void x86_toggle_sysenter_arg_store(thread_t thread, boolean_t valid) {
2108 thread->machine.arg_store_valid = valid;
2109 }
2110
2111 boolean_t x86_sysenter_arg_store_isvalid(thread_t thread);
2112
2113 boolean_t x86_sysenter_arg_store_isvalid(thread_t thread) {
2114 return (thread->machine.arg_store_valid);
2115 }
2116
2117 /*
2118 * Duplicate one x86_debug_state32_t to another. "all" parameter
2119 * chooses whether dr4 and dr5 are copied (they are never meant
2120 * to be installed when we do machine_task_set_state() or
2121 * machine_thread_set_state()).
2122 */
2123 void
2124 copy_debug_state32(
2125 x86_debug_state32_t *src,
2126 x86_debug_state32_t *target,
2127 boolean_t all)
2128 {
2129 if (all) {
2130 target->dr4 = src->dr4;
2131 target->dr5 = src->dr5;
2132 }
2133
2134 target->dr0 = src->dr0;
2135 target->dr1 = src->dr1;
2136 target->dr2 = src->dr2;
2137 target->dr3 = src->dr3;
2138 target->dr6 = src->dr6;
2139 target->dr7 = src->dr7;
2140 }
2141
2142 /*
2143 * Duplicate one x86_debug_state64_t to another. "all" parameter
2144 * chooses whether dr4 and dr5 are copied (they are never meant
2145 * to be installed when we do machine_task_set_state() or
2146 * machine_thread_set_state()).
2147 */
2148 void
2149 copy_debug_state64(
2150 x86_debug_state64_t *src,
2151 x86_debug_state64_t *target,
2152 boolean_t all)
2153 {
2154 if (all) {
2155 target->dr4 = src->dr4;
2156 target->dr5 = src->dr5;
2157 }
2158
2159 target->dr0 = src->dr0;
2160 target->dr1 = src->dr1;
2161 target->dr2 = src->dr2;
2162 target->dr3 = src->dr3;
2163 target->dr6 = src->dr6;
2164 target->dr7 = src->dr7;
2165 }
2166
2167 boolean_t is_useraddr64_canonical(uint64_t addr64);
2168
2169 boolean_t
2170 is_useraddr64_canonical(uint64_t addr64)
2171 {
2172 return IS_USERADDR64_CANONICAL(addr64);
2173 }