2 * Copyright (c) 2000-2007, 2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections. This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
81 #include <kern/assert.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc_internal.h>
88 #include <sys/kauth.h>
90 #include <sys/resourcevar.h>
91 #include <sys/vnode_internal.h>
92 #include <sys/file_internal.h>
94 #include <sys/codesign.h>
95 #include <sys/sysproto.h>
97 #include <sys/persona.h>
100 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
101 extern void dtrace_fasttrap_fork(proc_t
, proc_t
);
102 extern void (*dtrace_helpers_fork
)(proc_t
, proc_t
);
103 extern void (*dtrace_proc_waitfor_exec_ptr
)(proc_t
);
104 extern void dtrace_lazy_dofs_duplicate(proc_t
, proc_t
);
107 * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c,
108 * we will store its value before actually calling it.
110 static void (*dtrace_proc_waitfor_hook
)(proc_t
) = NULL
;
112 #include <sys/dtrace_ptss.h>
115 #include <security/audit/audit.h>
117 #include <mach/mach_types.h>
118 #include <kern/coalition.h>
119 #include <kern/kern_types.h>
120 #include <kern/kalloc.h>
121 #include <kern/mach_param.h>
122 #include <kern/task.h>
123 #include <kern/thread.h>
124 #include <kern/thread_call.h>
125 #include <kern/zalloc.h>
127 #include <machine/spl.h>
130 #include <security/mac.h>
131 #include <security/mac_mach_internal.h>
134 #include <vm/vm_map.h>
135 #include <vm/vm_protos.h>
136 #include <vm/vm_shared_region.h>
138 #include <sys/shm_internal.h> /* for shmfork() */
139 #include <mach/task.h> /* for thread_create() */
140 #include <mach/thread_act.h> /* for thread_resume() */
144 #if CONFIG_MEMORYSTATUS
145 #include <sys/kern_memorystatus.h>
148 /* XXX routines which should have Mach prototypes, but don't */
149 void thread_set_parent(thread_t parent
, int pid
);
150 extern void act_thread_catt(void *ctx
);
151 void thread_set_child(thread_t child
, int pid
);
152 void *act_thread_csave(void);
155 thread_t
cloneproc(task_t
, coalition_t
*, proc_t
, int, int);
156 proc_t
forkproc(proc_t
);
157 void forkproc_free(proc_t
);
158 thread_t
fork_create_child(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t child
, int inherit_memory
, int is64bit
);
159 void proc_vfork_begin(proc_t parent_proc
);
160 void proc_vfork_end(proc_t parent_proc
);
162 #define DOFORK 0x1 /* fork() system call */
163 #define DOVFORK 0x2 /* vfork() system call */
168 * Description: start a vfork on a process
170 * Parameters: parent_proc process (re)entering vfork state
174 * Notes: Although this function increments a count, a count in
175 * excess of 1 is not currently supported. According to the
176 * POSIX standard, calling anything other than execve() or
177 * _exit() following a vfork(), including calling vfork()
178 * itself again, will result in undefined behaviour
181 proc_vfork_begin(proc_t parent_proc
)
183 proc_lock(parent_proc
);
184 parent_proc
->p_lflag
|= P_LVFORK
;
185 parent_proc
->p_vforkcnt
++;
186 proc_unlock(parent_proc
);
192 * Description: stop a vfork on a process
194 * Parameters: parent_proc process leaving vfork state
198 * Notes: Decrements the count; currently, reentrancy of vfork()
199 * is unsupported on the current process
202 proc_vfork_end(proc_t parent_proc
)
204 proc_lock(parent_proc
);
205 parent_proc
->p_vforkcnt
--;
206 if (parent_proc
->p_vforkcnt
< 0)
207 panic("vfork cnt is -ve");
208 if (parent_proc
->p_vforkcnt
== 0)
209 parent_proc
->p_lflag
&= ~P_LVFORK
;
210 proc_unlock(parent_proc
);
217 * Description: vfork system call
219 * Parameters: void [no arguments]
221 * Retval: 0 (to child process)
222 * !0 pid of child (to parent process)
223 * -1 error (see "Returns:")
225 * Returns: EAGAIN Administrative limit reached
226 * EINVAL vfork() called during vfork()
227 * ENOMEM Failed to allocate new process
229 * Note: After a successful call to this function, the parent process
230 * has its task, thread, and uthread lent to the child process,
231 * and control is returned to the caller; if this function is
232 * invoked as a system call, the return is to user space, and
233 * is effectively running on the child process.
235 * Subsequent calls that operate on process state are permitted,
236 * though discouraged, and will operate on the child process; any
237 * operations on the task, thread, or uthread will result in
238 * changes in the parent state, and, if inheritable, the child
239 * state, when a task, thread, and uthread are realized for the
240 * child process at execve() time, will also be effected. Given
241 * this, it's recemmended that people use the posix_spawn() call
244 * BLOCK DIAGRAM OF VFORK
248 * ,----------------. ,-------------.
250 * | parent_thread | ------> | parent_task |
252 * `----------------' `-------------'
253 * uthread | ^ bsd_info | ^
254 * v | vc_thread v | task
255 * ,----------------. ,-------------.
257 * | parent_uthread | <.list. | parent_proc | <-- current_proc()
259 * `----------------' `-------------'
266 * ,----------------. ,-------------.
268 * ,----> | parent_thread | ------> | parent_task |
270 * | `----------------' `-------------'
271 * | uthread | ^ bsd_info | ^
272 * | v | vc_thread v | task
273 * | ,----------------. ,-------------.
275 * | | parent_uthread | <.list. | parent_proc |
277 * | `----------------' `-------------'
280 * | ,----------------.
282 * p_vforkact | child_proc | <-- current_proc()
287 vfork(proc_t parent_proc
, __unused
struct vfork_args
*uap
, int32_t *retval
)
289 thread_t child_thread
;
292 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_VFORK
, NULL
)) != 0) {
295 uthread_t ut
= get_bsdthread_info(current_thread());
296 proc_t child_proc
= ut
->uu_proc
;
298 retval
[0] = child_proc
->p_pid
;
299 retval
[1] = 1; /* flag child return for user space */
302 * Drop the signal lock on the child which was taken on our
303 * behalf by forkproc()/cloneproc() to prevent signals being
304 * received by the child in a partially constructed state.
306 proc_signalend(child_proc
, 0);
307 proc_transend(child_proc
, 0);
309 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
310 DTRACE_PROC1(create
, proc_t
, child_proc
);
311 ut
->uu_flag
&= ~UT_VFORKING
;
321 * Description: common code used by all new process creation other than the
322 * bootstrap of the initial process on the system
324 * Parameters: parent_proc parent process of the process being
325 * child_threadp pointer to location to receive the
326 * Mach thread_t of the child process
328 * kind kind of creation being requested
329 * coalitions if spawn, the set of coalitions the
330 * child process should join, or NULL to
331 * inherit the parent's. On non-spawns,
332 * this param is ignored and the child
333 * always inherits the parent's
336 * Notes: Permissable values for 'kind':
338 * PROC_CREATE_FORK Create a complete process which will
339 * return actively running in both the
340 * parent and the child; the child copies
341 * the parent address space.
342 * PROC_CREATE_SPAWN Create a complete process which will
343 * return actively running in the parent
344 * only after returning actively running
345 * in the child; the child address space
346 * is newly created by an image activator,
347 * after which the child is run.
348 * PROC_CREATE_VFORK Creates a partial process which will
349 * borrow the parent task, thread, and
350 * uthread to return running in the child;
351 * the child address space and other parts
352 * are lazily created at execve() time, or
353 * the child is terminated, and the parent
354 * does not actively run until that
357 * At first it may seem strange that we return the child thread
358 * address rather than process structure, since the process is
359 * the only part guaranteed to be "new"; however, since we do
360 * not actualy adjust other references between Mach and BSD (see
361 * the block diagram above the implementation of vfork()), this
362 * is the only method which guarantees us the ability to get
363 * back to the other information.
366 fork1(proc_t parent_proc
, thread_t
*child_threadp
, int kind
, coalition_t
*coalitions
)
368 thread_t parent_thread
= (thread_t
)current_thread();
369 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
370 proc_t child_proc
= NULL
; /* set in switch, but compiler... */
371 thread_t child_thread
= NULL
;
378 * Although process entries are dynamically created, we still keep
379 * a global limit on the maximum number we will create. Don't allow
380 * a nonprivileged user to use the last process; don't let root
381 * exceed the limit. The variable nprocs is the current number of
382 * processes, maxproc is the limit.
384 uid
= kauth_getruid();
386 if ((nprocs
>= maxproc
- 1 && uid
!= 0) || nprocs
>= maxproc
) {
394 * Increment the count of procs running with this uid. Don't allow
395 * a nonprivileged user to exceed their current limit, which is
396 * always less than what an rlim_t can hold.
397 * (locking protection is provided by list lock held in chgproccnt)
399 count
= chgproccnt(uid
, 1);
401 (rlim_t
)count
> parent_proc
->p_rlimit
[RLIMIT_NPROC
].rlim_cur
) {
408 * Determine if MAC policies applied to the process will allow
409 * it to fork. This is an advisory-only check.
411 err
= mac_proc_check_fork(parent_proc
);
418 case PROC_CREATE_VFORK
:
420 * Prevent a vfork while we are in vfork(); we should
421 * also likely preventing a fork here as well, and this
422 * check should then be outside the switch statement,
423 * since the proc struct contents will copy from the
424 * child and the tash/thread/uthread from the parent in
425 * that case. We do not support vfork() in vfork()
426 * because we don't have to; the same non-requirement
427 * is true of both fork() and posix_spawn() and any
428 * call other than execve() amd _exit(), but we've
429 * been historically lenient, so we continue to be so
432 * <rdar://6640521> Probably a source of random panics
434 if (parent_uthread
->uu_flag
& UT_VFORK
) {
435 printf("fork1 called within vfork by %s\n", parent_proc
->p_comm
);
441 * Flag us in progress; if we chose to support vfork() in
442 * vfork(), we would chain our parent at this point (in
443 * effect, a stack push). We don't, since we actually want
444 * to disallow everything not specified in the standard
446 proc_vfork_begin(parent_proc
);
448 /* The newly created process comes with signal lock held */
449 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
450 /* Failed to allocate new process */
451 proc_vfork_end(parent_proc
);
456 // XXX BEGIN: wants to move to be common code (and safe)
459 * allow policies to associate the credential/label that
460 * we referenced from the parent ... with the child
461 * JMM - this really isn't safe, as we can drop that
462 * association without informing the policy in other
463 * situations (keep long enough to get policies changed)
465 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
469 * Propogate change of PID - may get new cred if auditing.
471 * NOTE: This has no effect in the vfork case, since
472 * child_proc->task != current_task(), but we duplicate it
473 * because this is probably, ultimately, wrong, since we
474 * will be running in the "child" which is the parent task
475 * with the wrong token until we get to the execve() or
476 * _exit() call; a lot of "undefined" can happen before
479 * <rdar://6640530> disallow everything but exeve()/_exit()?
481 set_security_token(child_proc
);
483 AUDIT_ARG(pid
, child_proc
->p_pid
);
485 // XXX END: wants to move to be common code (and safe)
488 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
490 * Note: this is where we would "push" state instead of setting
491 * it for nested vfork() support (see proc_vfork_end() for
492 * description if issues here).
494 child_proc
->task
= parent_proc
->task
;
496 child_proc
->p_lflag
|= P_LINVFORK
;
497 child_proc
->p_vforkact
= parent_thread
;
498 child_proc
->p_stat
= SRUN
;
501 * Until UT_VFORKING is cleared at the end of the vfork
502 * syscall, the process identity of this thread is slightly
505 * As long as UT_VFORK and it's associated field (uu_proc)
506 * is set, current_proc() will always return the child process.
508 * However dtrace_proc_selfpid() returns the parent pid to
509 * ensure that e.g. the proc:::create probe actions accrue
510 * to the parent. (Otherwise the child magically seems to
511 * have created itself!)
513 parent_uthread
->uu_flag
|= UT_VFORK
| UT_VFORKING
;
514 parent_uthread
->uu_proc
= child_proc
;
515 parent_uthread
->uu_userstate
= (void *)act_thread_csave();
516 parent_uthread
->uu_vforkmask
= parent_uthread
->uu_sigmask
;
518 /* temporarily drop thread-set-id state */
519 if (parent_uthread
->uu_flag
& UT_SETUID
) {
520 parent_uthread
->uu_flag
|= UT_WASSETUID
;
521 parent_uthread
->uu_flag
&= ~UT_SETUID
;
524 /* blow thread state information */
525 /* XXX is this actually necessary, given syscall return? */
526 thread_set_child(parent_thread
, child_proc
->p_pid
);
528 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
531 * Preserve synchronization semantics of vfork. If
532 * waiting for child to exec or exit, set P_PPWAIT
533 * on child, and sleep on our proc (in case of exit).
535 child_proc
->p_lflag
|= P_LPPWAIT
;
536 pinsertchild(parent_proc
, child_proc
); /* set visible */
540 case PROC_CREATE_SPAWN
:
542 * A spawned process differs from a forked process in that
543 * the spawned process does not carry around the parents
544 * baggage with regard to address space copying, dtrace,
551 case PROC_CREATE_FORK
:
553 * When we clone the parent process, we are going to inherit
554 * its task attributes and memory, since when we fork, we
555 * will, in effect, create a duplicate of it, with only minor
556 * differences. Contrarily, spawned processes do not inherit.
558 if ((child_thread
= cloneproc(parent_proc
->task
,
559 spawn
? coalitions
: NULL
,
561 spawn
? FALSE
: TRUE
,
563 /* Failed to create thread */
568 /* copy current thread state into the child thread (only for fork) */
570 thread_dup(child_thread
);
573 /* child_proc = child_thread->task->proc; */
574 child_proc
= (proc_t
)(get_bsdtask_info(get_threadtask(child_thread
)));
576 // XXX BEGIN: wants to move to be common code (and safe)
579 * allow policies to associate the credential/label that
580 * we referenced from the parent ... with the child
581 * JMM - this really isn't safe, as we can drop that
582 * association without informing the policy in other
583 * situations (keep long enough to get policies changed)
585 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
589 * Propogate change of PID - may get new cred if auditing.
591 * NOTE: This has no effect in the vfork case, since
592 * child_proc->task != current_task(), but we duplicate it
593 * because this is probably, ultimately, wrong, since we
594 * will be running in the "child" which is the parent task
595 * with the wrong token until we get to the execve() or
596 * _exit() call; a lot of "undefined" can happen before
599 * <rdar://6640530> disallow everything but exeve()/_exit()?
601 set_security_token(child_proc
);
603 AUDIT_ARG(pid
, child_proc
->p_pid
);
605 // XXX END: wants to move to be common code (and safe)
608 * Blow thread state information; this is what gives the child
609 * process its "return" value from a fork() call.
611 * Note: this should probably move to fork() proper, since it
612 * is not relevent to spawn, and the value won't matter
613 * until we resume the child there. If you are in here
614 * refactoring code, consider doing this at the same time.
616 thread_set_child(child_thread
, child_proc
->p_pid
);
618 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
620 // <rdar://6598155> dtrace code cleanup needed
623 * This code applies to new processes who are copying the task
624 * and thread state and address spaces of their parent process.
627 // <rdar://6598155> call dtrace specific function here instead of all this...
629 * APPLE NOTE: Solaris does a sprlock() and drops the
630 * proc_lock here. We're cheating a bit and only taking
631 * the p_dtrace_sprlock lock. A full sprlock would
632 * task_suspend the parent.
634 lck_mtx_lock(&parent_proc
->p_dtrace_sprlock
);
637 * Remove all DTrace tracepoints from the child process. We
638 * need to do this _before_ duplicating USDT providers since
639 * any associated probes may be immediately enabled.
641 if (parent_proc
->p_dtrace_count
> 0) {
642 dtrace_fasttrap_fork(parent_proc
, child_proc
);
645 lck_mtx_unlock(&parent_proc
->p_dtrace_sprlock
);
648 * Duplicate any lazy dof(s). This must be done while NOT
649 * holding the parent sprlock! Lock ordering is
650 * dtrace_dof_mode_lock, then sprlock. It is imperative we
651 * always call dtrace_lazy_dofs_duplicate, rather than null
652 * check and call if !NULL. If we NULL test, during lazy dof
653 * faulting we can race with the faulting code and proceed
654 * from here to beyond the helpers copy. The lazy dof
655 * faulting will then fail to copy the helpers to the child
658 dtrace_lazy_dofs_duplicate(parent_proc
, child_proc
);
661 * Duplicate any helper actions and providers. The SFORKING
662 * we set above informs the code to enable USDT probes that
663 * sprlock() may fail because the child is being forked.
666 * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
667 * never fails to find the child. We do not set SFORKING.
669 if (parent_proc
->p_dtrace_helpers
!= NULL
&& dtrace_helpers_fork
) {
670 (*dtrace_helpers_fork
)(parent_proc
, child_proc
);
674 #endif /* CONFIG_DTRACE */
677 * Of note, we need to initialize the bank context behind
678 * the protection of the proc_trans lock to prevent a race with exit.
680 task_bank_init(get_threadtask(child_thread
));
686 panic("fork1 called with unknown kind %d", kind
);
691 /* return the thread pointer to the caller */
692 *child_threadp
= child_thread
;
696 * In the error case, we return a 0 value for the returned pid (but
697 * it is ignored in the trampoline due to the error return); this
698 * is probably not necessary.
701 (void)chgproccnt(uid
, -1);
711 * Description: "Return" to parent vfork thread() following execve/_exit;
712 * this is done by reassociating the parent process structure
713 * with the task, thread, and uthread.
715 * Refer to the ASCII art above vfork() to figure out the
716 * state we're undoing.
718 * Parameters: child_proc Child process
719 * retval System call return value array
720 * rval Return value to present to parent
724 * Notes: The caller resumes or exits the parent, as appropriate, after
725 * calling this function.
728 vfork_return(proc_t child_proc
, int32_t *retval
, int rval
)
730 task_t parent_task
= get_threadtask(child_proc
->p_vforkact
);
731 proc_t parent_proc
= get_bsdtask_info(parent_task
);
732 thread_t th
= current_thread();
733 uthread_t uth
= get_bsdthread_info(th
);
735 act_thread_catt(uth
->uu_userstate
);
737 /* clear vfork state in parent proc structure */
738 proc_vfork_end(parent_proc
);
740 /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
741 uth
->uu_userstate
= 0;
742 uth
->uu_flag
&= ~UT_VFORK
;
743 /* restore thread-set-id state */
744 if (uth
->uu_flag
& UT_WASSETUID
) {
745 uth
->uu_flag
|= UT_SETUID
;
746 uth
->uu_flag
&= UT_WASSETUID
;
749 uth
->uu_sigmask
= uth
->uu_vforkmask
;
751 proc_lock(child_proc
);
752 child_proc
->p_lflag
&= ~P_LINVFORK
;
753 child_proc
->p_vforkact
= 0;
754 proc_unlock(child_proc
);
756 thread_set_parent(th
, rval
);
760 retval
[1] = 0; /* mark parent */
768 * Description: Common operations associated with the creation of a child
771 * Parameters: parent_task parent task
772 * parent_coalitions parent's set of coalitions
773 * child_proc child process
774 * inherit_memory TRUE, if the parents address space is
775 * to be inherited by the child
776 * is64bit TRUE, if the child being created will
777 * be associated with a 64 bit process
778 * rather than a 32 bit process
780 * Note: This code is called in the fork() case, from the execve() call
781 * graph, if implementing an execve() following a vfork(), from
782 * the posix_spawn() call graph (which implicitly includes a
783 * vfork() equivalent call, and in the system bootstrap case.
785 * It creates a new task and thread (and as a side effect of the
786 * thread creation, a uthread) in the parent coalition set, which is
787 * then associated with the process 'child'. If the parent
788 * process address space is to be inherited, then a flag
789 * indicates that the newly created task should inherit this from
792 * As a special concession to bootstrapping the initial process
793 * in the system, it's possible for 'parent_task' to be TASK_NULL;
794 * in this case, 'inherit_memory' MUST be FALSE.
797 fork_create_child(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t child_proc
, int inherit_memory
, int is64bit
)
799 thread_t child_thread
= NULL
;
801 kern_return_t result
;
803 /* Create a new task for the child process */
804 result
= task_create_internal(parent_task
,
809 if (result
!= KERN_SUCCESS
) {
810 printf("%s: task_create_internal failed. Code: %d\n",
815 /* Set the child process task to the new task */
816 child_proc
->task
= child_task
;
818 /* Set child task process to child proc */
819 set_bsdtask_info(child_task
, child_proc
);
821 /* Propagate CPU limit timer from parent */
822 if (timerisset(&child_proc
->p_rlim_cpu
))
823 task_vtimer_set(child_task
, TASK_VTIMER_RLIM
);
825 /* Set/clear 64 bit vm_map flag */
827 vm_map_set_64bit(get_task_map(child_task
));
829 vm_map_set_32bit(get_task_map(child_task
));
832 * Set child process BSD visible scheduler priority if nice value
833 * inherited from parent
835 if (child_proc
->p_nice
!= 0)
836 resetpriority(child_proc
);
838 /* Create a new thread for the child process */
839 result
= thread_create_with_continuation(child_task
, &child_thread
, (thread_continue_t
)proc_wait_to_return
);
840 if (result
!= KERN_SUCCESS
) {
841 printf("%s: thread_create failed. Code: %d\n",
843 task_deallocate(child_task
);
848 * Tag thread as being the first thread in its task.
850 thread_set_tag(child_thread
, THREAD_TAG_MAINTHREAD
);
853 thread_yield_internal(1);
855 return(child_thread
);
862 * Description: fork system call.
864 * Parameters: parent Parent process to fork
865 * uap (void) [unused]
866 * retval Return value
869 * EAGAIN Resource unavailable, try again
871 * Notes: Attempts to create a new child process which inherits state
872 * from the parent process. If successful, the call returns
873 * having created an initially suspended child process with an
874 * extra Mach task and thread reference, for which the thread
875 * is initially suspended. Until we resume the child process,
876 * it is not yet running.
878 * The return information to the child is contained in the
879 * thread state structure of the new child, and does not
880 * become visible to the child through a normal return process,
881 * since it never made the call into the kernel itself in the
884 * After resuming the thread, this function returns directly to
885 * the parent process which invoked the fork() system call.
887 * Important: The child thread_resume occurs before the parent returns;
888 * depending on scheduling latency, this means that it is not
889 * deterministic as to whether the parent or child is scheduled
890 * to run first. It is entirely possible that the child could
891 * run to completion prior to the parent running.
894 fork(proc_t parent_proc
, __unused
struct fork_args
*uap
, int32_t *retval
)
896 thread_t child_thread
;
899 retval
[1] = 0; /* flag parent return for user space */
901 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_FORK
, NULL
)) == 0) {
905 /* Return to the parent */
906 child_proc
= (proc_t
)get_bsdthreadtask_info(child_thread
);
907 retval
[0] = child_proc
->p_pid
;
910 * Drop the signal lock on the child which was taken on our
911 * behalf by forkproc()/cloneproc() to prevent signals being
912 * received by the child in a partially constructed state.
914 proc_signalend(child_proc
, 0);
915 proc_transend(child_proc
, 0);
917 /* flag the fork has occurred */
918 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
919 DTRACE_PROC1(create
, proc_t
, child_proc
);
922 if ((dtrace_proc_waitfor_hook
= dtrace_proc_waitfor_exec_ptr
) != NULL
)
923 (*dtrace_proc_waitfor_hook
)(child_proc
);
926 /* "Return" to the child */
927 proc_clear_return_wait(child_proc
, child_thread
);
929 /* drop the extra references we got during the creation */
930 if ((child_task
= (task_t
)get_threadtask(child_thread
)) != NULL
) {
931 task_deallocate(child_task
);
933 thread_deallocate(child_thread
);
943 * Description: Create a new process from a specified process.
945 * Parameters: parent_task The parent task to be cloned, or
946 * TASK_NULL is task characteristics
947 * are not to be inherited
948 * be cloned, or TASK_NULL if the new
949 * task is not to inherit the VM
950 * characteristics of the parent
951 * parent_proc The parent process to be cloned
952 * inherit_memory True if the child is to inherit
953 * memory from the parent; if this is
954 * non-NULL, then the parent_task must
956 * memstat_internal Whether to track the process in the
957 * jetsam priority list (if configured)
959 * Returns: !NULL pointer to new child thread
960 * NULL Failure (unspecified)
962 * Note: On return newly created child process has signal lock held
963 * to block delivery of signal to it if called with lock set.
964 * fork() code needs to explicity remove this lock before
965 * signals can be delivered
967 * In the case of bootstrap, this function can be called from
968 * bsd_utaskbootstrap() in order to bootstrap the first process;
969 * the net effect is to provide a uthread structure for the
970 * kernel process associated with the kernel task.
972 * XXX: Tristating using the value parent_task as the major key
973 * and inherit_memory as the minor key is something we should
974 * refactor later; we owe the current semantics, ultimately,
975 * to the semantics of task_create_internal. For now, we will
976 * live with this being somewhat awkward.
979 cloneproc(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t parent_proc
, int inherit_memory
, int memstat_internal
)
981 #if !CONFIG_MEMORYSTATUS
982 #pragma unused(memstat_internal)
986 thread_t child_thread
= NULL
;
988 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
989 /* Failed to allocate new process */
993 child_thread
= fork_create_child(parent_task
, parent_coalitions
, child_proc
, inherit_memory
, (parent_task
== TASK_NULL
) ? FALSE
: (parent_proc
->p_flag
& P_LP64
));
995 if (child_thread
== NULL
) {
997 * Failed to create thread; now we must deconstruct the new
998 * process previously obtained from forkproc().
1000 forkproc_free(child_proc
);
1004 child_task
= get_threadtask(child_thread
);
1005 if (parent_proc
->p_flag
& P_LP64
) {
1006 task_set_64bit(child_task
, TRUE
);
1007 OSBitOrAtomic(P_LP64
, (UInt32
*)&child_proc
->p_flag
);
1009 task_set_64bit(child_task
, FALSE
);
1010 OSBitAndAtomic(~((uint32_t)P_LP64
), (UInt32
*)&child_proc
->p_flag
);
1013 #if CONFIG_MEMORYSTATUS
1014 if (memstat_internal
) {
1016 child_proc
->p_memstat_state
|= P_MEMSTAT_INTERNAL
;
1021 /* make child visible */
1022 pinsertchild(parent_proc
, child_proc
);
1025 * Make child runnable, set start time.
1027 child_proc
->p_stat
= SRUN
;
1029 return(child_thread
);
1034 * Destroy a process structure that resulted from a call to forkproc(), but
1035 * which must be returned to the system because of a subsequent failure
1036 * preventing it from becoming active.
1038 * Parameters: p The incomplete process from forkproc()
1042 * Note: This function should only be used in an error handler following
1043 * a call to forkproc().
1045 * Operations occur in reverse order of those in forkproc().
1048 forkproc_free(proc_t p
)
1051 /* We held signal and a transition locks; drop them */
1052 proc_signalend(p
, 0);
1053 proc_transend(p
, 0);
1056 * If we have our own copy of the resource limits structure, we
1057 * need to free it. If it's a shared copy, we need to drop our
1060 proc_limitdrop(p
, 0);
1064 /* Need to drop references to the shared memory segment(s), if any */
1067 * Use shmexec(): we have no address space, so no mappings
1069 * XXX Yes, the routine is badly named.
1075 /* Need to undo the effects of the fdcopy(), if any */
1079 * Drop the reference on a text vnode pointer, if any
1080 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1081 * XXX if anyone ever uses this field, we will be extremely unhappy.
1084 vnode_rele(p
->p_textvp
);
1088 /* Stop the profiling clock */
1091 /* Update the audit session proc count */
1092 AUDIT_SESSION_PROCEXIT(p
);
1094 /* Release the credential reference */
1095 kauth_cred_unref(&p
->p_ucred
);
1098 /* Decrement the count of processes in the system */
1102 thread_call_free(p
->p_rcall
);
1104 /* Free allocated memory */
1105 FREE_ZONE(p
->p_sigacts
, sizeof *p
->p_sigacts
, M_SIGACTS
);
1106 FREE_ZONE(p
->p_stats
, sizeof *p
->p_stats
, M_PSTATS
);
1107 proc_checkdeadrefs(p
);
1108 FREE_ZONE(p
, sizeof *p
, M_PROC
);
1115 * Description: Create a new process structure, given a parent process
1118 * Parameters: parent_proc The parent process
1120 * Returns: !NULL The new process structure
1121 * NULL Error (insufficient free memory)
1123 * Note: When successful, the newly created process structure is
1124 * partially initialized; if a caller needs to deconstruct the
1125 * returned structure, they must call forkproc_free() to do so.
1128 forkproc(proc_t parent_proc
)
1130 proc_t child_proc
; /* Our new process */
1131 static int nextpid
= 0, pidwrap
= 0, nextpidversion
= 0;
1132 static uint64_t nextuniqueid
= 0;
1134 struct session
*sessp
;
1135 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(current_thread());
1137 MALLOC_ZONE(child_proc
, proc_t
, sizeof *child_proc
, M_PROC
, M_WAITOK
);
1138 if (child_proc
== NULL
) {
1139 printf("forkproc: M_PROC zone exhausted\n");
1142 /* zero it out as we need to insert in hash */
1143 bzero(child_proc
, sizeof *child_proc
);
1145 MALLOC_ZONE(child_proc
->p_stats
, struct pstats
*,
1146 sizeof *child_proc
->p_stats
, M_PSTATS
, M_WAITOK
);
1147 if (child_proc
->p_stats
== NULL
) {
1148 printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
1149 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1153 MALLOC_ZONE(child_proc
->p_sigacts
, struct sigacts
*,
1154 sizeof *child_proc
->p_sigacts
, M_SIGACTS
, M_WAITOK
);
1155 if (child_proc
->p_sigacts
== NULL
) {
1156 printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
1157 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1158 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1163 /* allocate a callout for use by interval timers */
1164 child_proc
->p_rcall
= thread_call_allocate((thread_call_func_t
)realitexpire
, child_proc
);
1165 if (child_proc
->p_rcall
== NULL
) {
1166 FREE_ZONE(child_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
, M_SIGACTS
);
1167 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1168 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1175 * Find an unused PID.
1183 * If the process ID prototype has wrapped around,
1184 * restart somewhat above 0, as the low-numbered procs
1185 * tend to include daemons that don't exit.
1187 if (nextpid
>= PID_MAX
) {
1193 /* if the pid stays in hash both for zombie and runniing state */
1194 if (pfind_locked(nextpid
) != PROC_NULL
) {
1199 if (pgfind_internal(nextpid
) != PGRP_NULL
) {
1203 if (session_find_internal(nextpid
) != SESSION_NULL
) {
1209 child_proc
->p_pid
= nextpid
;
1210 child_proc
->p_responsible_pid
= nextpid
; /* initially responsible for self */
1211 child_proc
->p_idversion
= nextpidversion
++;
1212 /* kernel process is handcrafted and not from fork, so start from 1 */
1213 child_proc
->p_uniqueid
= ++nextuniqueid
;
1215 if (child_proc
->p_pid
!= 0) {
1216 if (pfind_locked(child_proc
->p_pid
) != PROC_NULL
)
1217 panic("proc in the list already\n");
1220 /* Insert in the hash */
1221 child_proc
->p_listflag
|= (P_LIST_INHASH
| P_LIST_INCREATE
);
1222 LIST_INSERT_HEAD(PIDHASH(child_proc
->p_pid
), child_proc
, p_hash
);
1227 * We've identified the PID we are going to use; initialize the new
1228 * process structure.
1230 child_proc
->p_stat
= SIDL
;
1231 child_proc
->p_pgrpid
= PGRPID_DEAD
;
1234 * The zero'ing of the proc was at the allocation time due to need
1235 * for insertion to hash. Copy the section that is to be copied
1236 * directly from the parent.
1238 bcopy(&parent_proc
->p_startcopy
, &child_proc
->p_startcopy
,
1239 (unsigned) ((caddr_t
)&child_proc
->p_endcopy
- (caddr_t
)&child_proc
->p_startcopy
));
1242 * Some flags are inherited from the parent.
1243 * Duplicate sub-structures as needed.
1244 * Increase reference counts on shared objects.
1245 * The p_stats and p_sigacts substructs are set in vm_fork.
1247 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_DISABLE_ASLR
| P_DELAYIDLESLEEP
| P_SUGID
));
1248 if (parent_proc
->p_flag
& P_PROFIL
)
1249 startprofclock(child_proc
);
1251 child_proc
->p_vfs_iopolicy
= (parent_proc
->p_vfs_iopolicy
& (P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY
));
1254 * Note that if the current thread has an assumed identity, this
1255 * credential will be granted to the new process.
1257 child_proc
->p_ucred
= kauth_cred_get_with_ref();
1258 /* update cred on proc */
1259 PROC_UPDATE_CREDS_ONPROC(child_proc
);
1260 /* update audit session proc count */
1261 AUDIT_SESSION_PROCNEW(child_proc
);
1263 #if CONFIG_FINE_LOCK_GROUPS
1264 lck_mtx_init(&child_proc
->p_mlock
, proc_mlock_grp
, proc_lck_attr
);
1265 lck_mtx_init(&child_proc
->p_fdmlock
, proc_fdmlock_grp
, proc_lck_attr
);
1266 lck_mtx_init(&child_proc
->p_ucred_mlock
, proc_ucred_mlock_grp
, proc_lck_attr
);
1268 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1270 lck_spin_init(&child_proc
->p_slock
, proc_slock_grp
, proc_lck_attr
);
1271 #else /* !CONFIG_FINE_LOCK_GROUPS */
1272 lck_mtx_init(&child_proc
->p_mlock
, proc_lck_grp
, proc_lck_attr
);
1273 lck_mtx_init(&child_proc
->p_fdmlock
, proc_lck_grp
, proc_lck_attr
);
1274 lck_mtx_init(&child_proc
->p_ucred_mlock
, proc_lck_grp
, proc_lck_attr
);
1276 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1278 lck_spin_init(&child_proc
->p_slock
, proc_lck_grp
, proc_lck_attr
);
1279 #endif /* !CONFIG_FINE_LOCK_GROUPS */
1280 klist_init(&child_proc
->p_klist
);
1282 if (child_proc
->p_textvp
!= NULLVP
) {
1283 /* bump references to the text vnode */
1284 /* Need to hold iocount across the ref call */
1285 if (vnode_getwithref(child_proc
->p_textvp
) == 0) {
1286 error
= vnode_ref(child_proc
->p_textvp
);
1287 vnode_put(child_proc
->p_textvp
);
1289 child_proc
->p_textvp
= NULLVP
;
1294 * Copy the parents per process open file table to the child; if
1295 * there is a per-thread current working directory, set the childs
1296 * per-process current working directory to that instead of the
1299 * XXX may fail to copy descriptors to child
1301 child_proc
->p_fd
= fdcopy(parent_proc
, parent_uthread
->uu_cdir
);
1304 if (parent_proc
->vm_shm
) {
1305 /* XXX may fail to attach shm to child */
1306 (void)shmfork(parent_proc
, child_proc
);
1310 * inherit the limit structure to child
1312 proc_limitfork(parent_proc
, child_proc
);
1314 if (child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1315 uint64_t rlim_cur
= child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
;
1316 child_proc
->p_rlim_cpu
.tv_sec
= (rlim_cur
> __INT_MAX__
) ? __INT_MAX__
: rlim_cur
;
1319 /* Intialize new process stats, including start time */
1320 /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1321 bzero(child_proc
->p_stats
, sizeof(*child_proc
->p_stats
));
1322 microtime_with_abstime(&child_proc
->p_start
, &child_proc
->p_stats
->ps_start
);
1324 if (parent_proc
->p_sigacts
!= NULL
)
1325 (void)memcpy(child_proc
->p_sigacts
,
1326 parent_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
);
1328 (void)memset(child_proc
->p_sigacts
, 0, sizeof *child_proc
->p_sigacts
);
1330 sessp
= proc_session(parent_proc
);
1331 if (sessp
->s_ttyvp
!= NULL
&& parent_proc
->p_flag
& P_CONTROLT
)
1332 OSBitOrAtomic(P_CONTROLT
, &child_proc
->p_flag
);
1333 session_rele(sessp
);
1336 * block all signals to reach the process.
1337 * no transition race should be occuring with the child yet,
1338 * but indicate that the process is in (the creation) transition.
1340 proc_signalstart(child_proc
, 0);
1341 proc_transstart(child_proc
, 0, 0);
1342 proc_set_return_wait(child_proc
);
1344 child_proc
->p_pcaction
= 0;
1346 TAILQ_INIT(&child_proc
->p_uthlist
);
1347 TAILQ_INIT(&child_proc
->p_aio_activeq
);
1348 TAILQ_INIT(&child_proc
->p_aio_doneq
);
1350 /* Inherit the parent flags for code sign */
1351 child_proc
->p_csflags
= (parent_proc
->p_csflags
& ~CS_KILLED
);
1354 * All processes have work queue locks; cleaned up by
1355 * reap_child_locked()
1357 workqueue_init_lock(child_proc
);
1360 * Copy work queue information
1362 * Note: This should probably only happen in the case where we are
1363 * creating a child that is a copy of the parent; since this
1364 * routine is called in the non-duplication case of vfork()
1365 * or posix_spawn(), then this information should likely not
1368 * <rdar://6640553> Work queue pointers that no longer point to code
1370 child_proc
->p_wqthread
= parent_proc
->p_wqthread
;
1371 child_proc
->p_threadstart
= parent_proc
->p_threadstart
;
1372 child_proc
->p_pthsize
= parent_proc
->p_pthsize
;
1373 child_proc
->p_targconc
= parent_proc
->p_targconc
;
1374 if ((parent_proc
->p_lflag
& P_LREGISTER
) != 0) {
1375 child_proc
->p_lflag
|= P_LREGISTER
;
1377 child_proc
->p_wqkqueue
= NULL
;
1378 child_proc
->p_dispatchqueue_offset
= parent_proc
->p_dispatchqueue_offset
;
1379 child_proc
->p_dispatchqueue_serialno_offset
= parent_proc
->p_dispatchqueue_serialno_offset
;
1381 pth_proc_hashinit(child_proc
);
1385 child_proc
->p_persona
= NULL
;
1386 error
= persona_proc_inherit(child_proc
, parent_proc
);
1388 printf("forkproc: persona_proc_inherit failed (persona %d being destroyed?)\n", persona_get_uid(parent_proc
->p_persona
));
1389 forkproc_free(child_proc
);
1395 #if CONFIG_MEMORYSTATUS
1396 /* Memorystatus + jetsam init */
1397 child_proc
->p_memstat_state
= 0;
1398 child_proc
->p_memstat_effectivepriority
= JETSAM_PRIORITY_DEFAULT
;
1399 child_proc
->p_memstat_requestedpriority
= JETSAM_PRIORITY_DEFAULT
;
1400 child_proc
->p_memstat_userdata
= 0;
1402 child_proc
->p_memstat_suspendedfootprint
= 0;
1404 child_proc
->p_memstat_dirty
= 0;
1405 child_proc
->p_memstat_idledeadline
= 0;
1406 #endif /* CONFIG_MEMORYSTATUS */
1415 lck_mtx_assert(proc_list_mlock
, LCK_MTX_ASSERT_NOTOWNED
);
1416 lck_mtx_lock(&p
->p_mlock
);
1420 proc_unlock(proc_t p
)
1422 lck_mtx_unlock(&p
->p_mlock
);
1426 proc_spinlock(proc_t p
)
1428 lck_spin_lock(&p
->p_slock
);
1432 proc_spinunlock(proc_t p
)
1434 lck_spin_unlock(&p
->p_slock
);
1438 proc_list_lock(void)
1440 lck_mtx_lock(proc_list_mlock
);
1444 proc_list_unlock(void)
1446 lck_mtx_unlock(proc_list_mlock
);
1450 proc_ucred_lock(proc_t p
)
1452 lck_mtx_lock(&p
->p_ucred_mlock
);
1456 proc_ucred_unlock(proc_t p
)
1458 lck_mtx_unlock(&p
->p_ucred_mlock
);
1461 #include <kern/zalloc.h>
1463 struct zone
*uthread_zone
;
1464 static int uthread_zone_inited
= 0;
1467 uthread_zone_init(void)
1469 if (!uthread_zone_inited
) {
1470 uthread_zone
= zinit(sizeof(struct uthread
),
1471 thread_max
* sizeof(struct uthread
),
1472 THREAD_CHUNK
* sizeof(struct uthread
),
1474 uthread_zone_inited
= 1;
1479 uthread_alloc(task_t task
, thread_t thread
, int noinherit
)
1483 uthread_t uth_parent
;
1486 if (!uthread_zone_inited
)
1487 uthread_zone_init();
1489 ut
= (void *)zalloc(uthread_zone
);
1490 bzero(ut
, sizeof(struct uthread
));
1492 p
= (proc_t
) get_bsdtask_info(task
);
1493 uth
= (uthread_t
)ut
;
1494 uth
->uu_thread
= thread
;
1497 * Thread inherits credential from the creating thread, if both
1498 * are in the same task.
1500 * If the creating thread has no credential or is from another
1501 * task we can leave the new thread credential NULL. If it needs
1502 * one later, it will be lazily assigned from the task's process.
1504 uth_parent
= (uthread_t
)get_bsdthread_info(current_thread());
1505 if ((noinherit
== 0) && task
== current_task() &&
1506 uth_parent
!= NULL
&&
1507 IS_VALID_CRED(uth_parent
->uu_ucred
)) {
1509 * XXX The new thread is, in theory, being created in context
1510 * XXX of parent thread, so a direct reference to the parent
1513 kauth_cred_ref(uth_parent
->uu_ucred
);
1514 uth
->uu_ucred
= uth_parent
->uu_ucred
;
1515 /* the credential we just inherited is an assumed credential */
1516 if (uth_parent
->uu_flag
& UT_SETUID
)
1517 uth
->uu_flag
|= UT_SETUID
;
1519 /* sometimes workqueue threads are created out task context */
1520 if ((task
!= kernel_task
) && (p
!= PROC_NULL
))
1521 uth
->uu_ucred
= kauth_cred_proc_ref(p
);
1523 uth
->uu_ucred
= NOCRED
;
1527 if ((task
!= kernel_task
) && p
) {
1530 if (noinherit
!= 0) {
1531 /* workq threads will not inherit masks */
1532 uth
->uu_sigmask
= ~workq_threadmask
;
1533 } else if (uth_parent
) {
1534 if (uth_parent
->uu_flag
& UT_SAS_OLDMASK
)
1535 uth
->uu_sigmask
= uth_parent
->uu_oldmask
;
1537 uth
->uu_sigmask
= uth_parent
->uu_sigmask
;
1539 uth
->uu_context
.vc_thread
= thread
;
1540 TAILQ_INSERT_TAIL(&p
->p_uthlist
, uth
, uu_list
);
1544 if (p
->p_dtrace_ptss_pages
!= NULL
) {
1545 uth
->t_dtrace_scratch
= dtrace_ptss_claim_entry(p
);
1554 * This routine frees the thread name field of the uthread_t structure. Split out of
1555 * uthread_cleanup() so it can be called separately on the threads of a corpse after
1556 * the corpse notification has been sent, and the handler has had a chance to extract
1560 uthread_cleanup_name(void *uthread
)
1562 uthread_t uth
= (uthread_t
)uthread
;
1566 * Set pth_name to NULL before calling free().
1567 * Previously there was a race condition in the
1568 * case this code was executing during a stackshot
1569 * where the stackshot could try and copy pth_name
1570 * after it had been freed and before if was marked
1573 if (uth
->pth_name
!= NULL
) {
1574 void *pth_name
= uth
->pth_name
;
1575 uth
->pth_name
= NULL
;
1576 kfree(pth_name
, MAXTHREADNAMESIZE
);
1582 * This routine frees all the BSD context in uthread except the credential.
1583 * It does not free the uthread structure as well
1586 uthread_cleanup(task_t task
, void *uthread
, void * bsd_info
, boolean_t is_corpse
)
1588 struct _select
*sel
;
1589 uthread_t uth
= (uthread_t
)uthread
;
1590 proc_t p
= (proc_t
)bsd_info
;
1593 if (__improbable(uthread_get_proc_refcount(uthread
) != 0)) {
1594 panic("uthread_cleanup called for uthread %p with uu_proc_refcount != 0", uthread
);
1598 if (uth
->uu_lowpri_window
|| uth
->uu_throttle_info
) {
1600 * task is marked as a low priority I/O type
1601 * and we've somehow managed to not dismiss the throttle
1602 * through the normal exit paths back to user space...
1603 * no need to throttle this thread since its going away
1604 * but we do need to update our bookeeping w/r to throttled threads
1606 * Calling this routine will clean up any throttle info reference
1607 * still inuse by the thread.
1609 throttle_lowpri_io(0);
1612 * Per-thread audit state should never last beyond system
1613 * call return. Since we don't audit the thread creation/
1614 * removal, the thread state pointer should never be
1615 * non-NULL when we get here.
1617 assert(uth
->uu_ar
== NULL
);
1619 sel
= &uth
->uu_select
;
1620 /* cleanup the select bit space */
1622 FREE(sel
->ibits
, M_TEMP
);
1623 FREE(sel
->obits
, M_TEMP
);
1628 vnode_rele(uth
->uu_cdir
);
1629 uth
->uu_cdir
= NULLVP
;
1632 if (uth
->uu_wqset
) {
1633 if (waitq_set_is_valid(uth
->uu_wqset
))
1634 waitq_set_deinit(uth
->uu_wqset
);
1635 FREE(uth
->uu_wqset
, M_SELECT
);
1636 uth
->uu_wqset
= NULL
;
1637 uth
->uu_wqstate_sz
= 0;
1641 * defer the removal of the thread name on process corpses until the corpse has
1645 uthread_cleanup_name(uth
);
1648 if ((task
!= kernel_task
) && p
) {
1650 if (((uth
->uu_flag
& UT_VFORK
) == UT_VFORK
) && (uth
->uu_proc
!= PROC_NULL
)) {
1651 vfork_exit_internal(uth
->uu_proc
, 0, 1);
1654 * Remove the thread from the process list and
1655 * transfer [appropriate] pending signals to the process.
1657 if (get_bsdtask_info(task
) == p
) {
1659 TAILQ_REMOVE(&p
->p_uthlist
, uth
, uu_list
);
1660 p
->p_siglist
|= (uth
->uu_siglist
& execmask
& (~p
->p_sigignore
| sigcantmask
));
1664 struct dtrace_ptss_page_entry
*tmpptr
= uth
->t_dtrace_scratch
;
1665 uth
->t_dtrace_scratch
= NULL
;
1666 if (tmpptr
!= NULL
) {
1667 dtrace_ptss_release_entry(p
, tmpptr
);
1673 /* This routine releases the credential stored in uthread */
1675 uthread_cred_free(void *uthread
)
1677 uthread_t uth
= (uthread_t
)uthread
;
1679 /* and free the uthread itself */
1680 if (IS_VALID_CRED(uth
->uu_ucred
)) {
1681 kauth_cred_t oldcred
= uth
->uu_ucred
;
1682 uth
->uu_ucred
= NOCRED
;
1683 kauth_cred_unref(&oldcred
);
1687 /* This routine frees the uthread structure held in thread structure */
1689 uthread_zone_free(void *uthread
)
1691 uthread_t uth
= (uthread_t
)uthread
;
1693 if (uth
->t_tombstone
) {
1694 kfree(uth
->t_tombstone
, sizeof(struct doc_tombstone
));
1695 uth
->t_tombstone
= NULL
;
1698 /* and free the uthread itself */
1699 zfree(uthread_zone
, uthread
);