]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/trap.c
e15f40b059769587ba11c69b239b76900b4d4a72
[apple/xnu.git] / osfmk / i386 / trap.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * Hardware trap/fault handler.
61 */
62
63 #include <mach_kdp.h>
64 #include <mach_ldebug.h>
65
66 #include <types.h>
67 #include <i386/eflags.h>
68 #include <i386/trap.h>
69 #include <i386/pmap.h>
70 #include <i386/fpu.h>
71 #include <i386/misc_protos.h> /* panic_io_port_read() */
72 #include <i386/lapic.h>
73
74 #include <mach/exception.h>
75 #include <mach/kern_return.h>
76 #include <mach/vm_param.h>
77 #include <mach/i386/thread_status.h>
78
79 #include <vm/vm_kern.h>
80 #include <vm/vm_fault.h>
81
82 #include <kern/kern_types.h>
83 #include <kern/processor.h>
84 #include <kern/thread.h>
85 #include <kern/task.h>
86 #include <kern/sched.h>
87 #include <kern/sched_prim.h>
88 #include <kern/exception.h>
89 #include <kern/spl.h>
90 #include <kern/misc_protos.h>
91 #include <kern/debug.h>
92 #if CONFIG_TELEMETRY
93 #include <kern/telemetry.h>
94 #endif
95 #include <sys/kdebug.h>
96
97 #include <string.h>
98
99 #include <i386/postcode.h>
100 #include <i386/mp_desc.h>
101 #include <i386/proc_reg.h>
102 #if CONFIG_MCA
103 #include <i386/machine_check.h>
104 #endif
105 #include <mach/i386/syscall_sw.h>
106
107 #include <libkern/OSDebug.h>
108 #include <i386/cpu_threads.h>
109 #include <machine/pal_routines.h>
110
111 extern void throttle_lowpri_io(int);
112 extern void kprint_state(x86_saved_state64_t *saved_state);
113
114 /*
115 * Forward declarations
116 */
117 static void user_page_fault_continue(kern_return_t kret);
118 static void panic_trap(x86_saved_state64_t *saved_state);
119 static void set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip);
120
121 volatile perfCallback perfTrapHook = NULL; /* Pointer to CHUD trap hook routine */
122
123 #if CONFIG_DTRACE
124 /* See <rdar://problem/4613924> */
125 perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */
126
127 extern boolean_t dtrace_tally_fault(user_addr_t);
128 #endif
129
130 extern boolean_t pmap_smep_enabled;
131
132 void
133 thread_syscall_return(
134 kern_return_t ret)
135 {
136 thread_t thr_act = current_thread();
137 boolean_t is_mach;
138 int code;
139
140 pal_register_cache_state(thr_act, DIRTY);
141
142 if (thread_is_64bit(thr_act)) {
143 x86_saved_state64_t *regs;
144
145 regs = USER_REGS64(thr_act);
146
147 code = (int) (regs->rax & SYSCALL_NUMBER_MASK);
148 is_mach = (regs->rax & SYSCALL_CLASS_MASK)
149 == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT);
150 if (kdebug_enable && is_mach) {
151 /* Mach trap */
152 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
153 MACHDBG_CODE(DBG_MACH_EXCP_SC,code)|DBG_FUNC_END,
154 ret, 0, 0, 0, 0);
155 }
156 regs->rax = ret;
157 #if DEBUG
158 if (is_mach)
159 DEBUG_KPRINT_SYSCALL_MACH(
160 "thread_syscall_return: 64-bit mach ret=%u\n",
161 ret);
162 else
163 DEBUG_KPRINT_SYSCALL_UNIX(
164 "thread_syscall_return: 64-bit unix ret=%u\n",
165 ret);
166 #endif
167 } else {
168 x86_saved_state32_t *regs;
169
170 regs = USER_REGS32(thr_act);
171
172 code = ((int) regs->eax);
173 is_mach = (code < 0);
174 if (kdebug_enable && is_mach) {
175 /* Mach trap */
176 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
177 MACHDBG_CODE(DBG_MACH_EXCP_SC,-code)|DBG_FUNC_END,
178 ret, 0, 0, 0, 0);
179 }
180 regs->eax = ret;
181 #if DEBUG
182 if (is_mach)
183 DEBUG_KPRINT_SYSCALL_MACH(
184 "thread_syscall_return: 32-bit mach ret=%u\n",
185 ret);
186 else
187 DEBUG_KPRINT_SYSCALL_UNIX(
188 "thread_syscall_return: 32-bit unix ret=%u\n",
189 ret);
190 #endif
191 }
192 throttle_lowpri_io(1);
193
194 thread_exception_return();
195 /*NOTREACHED*/
196 }
197
198
199 static inline void
200 user_page_fault_continue(
201 kern_return_t kr)
202 {
203 thread_t thread = current_thread();
204 user_addr_t vaddr;
205
206 if (thread_is_64bit(thread)) {
207 x86_saved_state64_t *uregs;
208
209 uregs = USER_REGS64(thread);
210
211 vaddr = (user_addr_t)uregs->cr2;
212 } else {
213 x86_saved_state32_t *uregs;
214
215 uregs = USER_REGS32(thread);
216
217 vaddr = uregs->cr2;
218 }
219
220
221 /* PAL debug hook */
222 pal_dbg_page_fault( thread, vaddr, kr );
223
224 i386_exception(EXC_BAD_ACCESS, kr, vaddr);
225 /*NOTREACHED*/
226 }
227
228 /*
229 * Fault recovery in copyin/copyout routines.
230 */
231 struct recovery {
232 uintptr_t fault_addr;
233 uintptr_t recover_addr;
234 };
235
236 extern struct recovery recover_table[];
237 extern struct recovery recover_table_end[];
238
239 const char * trap_type[] = {TRAP_NAMES};
240 unsigned TRAP_TYPES = sizeof(trap_type)/sizeof(trap_type[0]);
241
242 extern void PE_incoming_interrupt(int interrupt);
243
244 #if defined(__x86_64__) && DEBUG
245 void
246 kprint_state(x86_saved_state64_t *saved_state)
247 {
248 kprintf("current_cpu_datap() 0x%lx\n", (uintptr_t)current_cpu_datap());
249 kprintf("Current GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_GS_BASE));
250 kprintf("Kernel GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_KERNEL_GS_BASE));
251 kprintf("state at 0x%lx:\n", (uintptr_t) saved_state);
252
253 kprintf(" rdi 0x%llx\n", saved_state->rdi);
254 kprintf(" rsi 0x%llx\n", saved_state->rsi);
255 kprintf(" rdx 0x%llx\n", saved_state->rdx);
256 kprintf(" r10 0x%llx\n", saved_state->r10);
257 kprintf(" r8 0x%llx\n", saved_state->r8);
258 kprintf(" r9 0x%llx\n", saved_state->r9);
259 kprintf(" v_arg6 0x%llx\n", saved_state->v_arg6);
260 kprintf(" v_arg7 0x%llx\n", saved_state->v_arg7);
261 kprintf(" v_arg8 0x%llx\n", saved_state->v_arg8);
262
263 kprintf(" cr2 0x%llx\n", saved_state->cr2);
264 kprintf("real cr2 0x%lx\n", get_cr2());
265 kprintf(" r15 0x%llx\n", saved_state->r15);
266 kprintf(" r14 0x%llx\n", saved_state->r14);
267 kprintf(" r13 0x%llx\n", saved_state->r13);
268 kprintf(" r12 0x%llx\n", saved_state->r12);
269 kprintf(" r11 0x%llx\n", saved_state->r11);
270 kprintf(" rbp 0x%llx\n", saved_state->rbp);
271 kprintf(" rbx 0x%llx\n", saved_state->rbx);
272 kprintf(" rcx 0x%llx\n", saved_state->rcx);
273 kprintf(" rax 0x%llx\n", saved_state->rax);
274
275 kprintf(" gs 0x%x\n", saved_state->gs);
276 kprintf(" fs 0x%x\n", saved_state->fs);
277
278 kprintf(" isf.trapno 0x%x\n", saved_state->isf.trapno);
279 kprintf(" isf._pad 0x%x\n", saved_state->isf._pad);
280 kprintf(" isf.trapfn 0x%llx\n", saved_state->isf.trapfn);
281 kprintf(" isf.err 0x%llx\n", saved_state->isf.err);
282 kprintf(" isf.rip 0x%llx\n", saved_state->isf.rip);
283 kprintf(" isf.cs 0x%llx\n", saved_state->isf.cs);
284 kprintf(" isf.rflags 0x%llx\n", saved_state->isf.rflags);
285 kprintf(" isf.rsp 0x%llx\n", saved_state->isf.rsp);
286 kprintf(" isf.ss 0x%llx\n", saved_state->isf.ss);
287 }
288 #endif
289
290
291 /*
292 * Non-zero indicates latency assert is enabled and capped at valued
293 * absolute time units.
294 */
295
296 uint64_t interrupt_latency_cap = 0;
297 boolean_t ilat_assert = FALSE;
298
299 void
300 interrupt_latency_tracker_setup(void) {
301 uint32_t ilat_cap_us;
302 if (PE_parse_boot_argn("interrupt_latency_cap_us", &ilat_cap_us, sizeof(ilat_cap_us))) {
303 interrupt_latency_cap = ilat_cap_us * NSEC_PER_USEC;
304 nanoseconds_to_absolutetime(interrupt_latency_cap, &interrupt_latency_cap);
305 } else {
306 interrupt_latency_cap = LockTimeOut;
307 }
308 PE_parse_boot_argn("-interrupt_latency_assert_enable", &ilat_assert, sizeof(ilat_assert));
309 }
310
311 void interrupt_reset_latency_stats(void) {
312 uint32_t i;
313 for (i = 0; i < real_ncpus; i++) {
314 cpu_data_ptr[i]->cpu_max_observed_int_latency =
315 cpu_data_ptr[i]->cpu_max_observed_int_latency_vector = 0;
316 }
317 }
318
319 void interrupt_populate_latency_stats(char *buf, unsigned bufsize) {
320 uint32_t i, tcpu = ~0;
321 uint64_t cur_max = 0;
322
323 for (i = 0; i < real_ncpus; i++) {
324 if (cur_max < cpu_data_ptr[i]->cpu_max_observed_int_latency) {
325 cur_max = cpu_data_ptr[i]->cpu_max_observed_int_latency;
326 tcpu = i;
327 }
328 }
329
330 if (tcpu < real_ncpus)
331 snprintf(buf, bufsize, "0x%x 0x%x 0x%llx", tcpu, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency_vector, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency);
332 }
333
334 uint32_t interrupt_timer_coalescing_enabled = 1;
335 uint64_t interrupt_coalesced_timers;
336
337 /*
338 * Handle interrupts:
339 * - local APIC interrupts (IPIs, timers, etc) are handled by the kernel,
340 * - device interrupts go to the platform expert.
341 */
342 void
343 interrupt(x86_saved_state_t *state)
344 {
345 uint64_t rip;
346 uint64_t rsp;
347 int interrupt_num;
348 boolean_t user_mode = FALSE;
349 int ipl;
350 int cnum = cpu_number();
351 cpu_data_t *cdp = cpu_data_ptr[cnum];
352 int itype = 0;
353
354 if (is_saved_state64(state) == TRUE) {
355 x86_saved_state64_t *state64;
356
357 state64 = saved_state64(state);
358 rip = state64->isf.rip;
359 rsp = state64->isf.rsp;
360 interrupt_num = state64->isf.trapno;
361 #ifdef __x86_64__
362 if(state64->isf.cs & 0x03)
363 #endif
364 user_mode = TRUE;
365 } else {
366 x86_saved_state32_t *state32;
367
368 state32 = saved_state32(state);
369 if (state32->cs & 0x03)
370 user_mode = TRUE;
371 rip = state32->eip;
372 rsp = state32->uesp;
373 interrupt_num = state32->trapno;
374 }
375
376 if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage)
377 cpu_data_ptr[cnum]->cpu_hwIntpexits[interrupt_num]++;
378
379 if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT))
380 itype = 1;
381 else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT))
382 itype = 2;
383 else
384 itype = 3;
385
386 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
387 MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
388 interrupt_num,
389 (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)),
390 user_mode, itype, 0);
391
392 SCHED_STATS_INTERRUPT(current_processor());
393
394 #if CONFIG_TELEMETRY
395 if (telemetry_needs_record
396 && (current_task() != kernel_task)
397 #if CONFIG_SCHED_IDLE_IN_PLACE
398 && ((current_thread()->state & TH_IDLE) == 0) /* idle-in-place should be treated like the idle thread */
399 #endif
400 ) {
401 telemetry_mark_curthread(user_mode);
402 }
403 #endif
404
405 ipl = get_preemption_level();
406
407 /*
408 * Handle local APIC interrupts
409 * else call platform expert for devices.
410 */
411 if (!lapic_interrupt(interrupt_num, state))
412 PE_incoming_interrupt(interrupt_num);
413
414 if (__improbable(get_preemption_level() != ipl)) {
415 panic("Preemption level altered by interrupt vector 0x%x: initial 0x%x, final: 0x%x\n", interrupt_num, ipl, get_preemption_level());
416 }
417
418
419 if (__improbable(cdp->cpu_nested_istack)) {
420 cdp->cpu_nested_istack_events++;
421 }
422 else {
423 uint64_t ctime = mach_absolute_time();
424 uint64_t int_latency = ctime - cdp->cpu_int_event_time;
425 uint64_t esdeadline, ehdeadline;
426 /* Attempt to process deferred timers in the context of
427 * this interrupt, unless interrupt time has already exceeded
428 * TCOAL_ILAT_THRESHOLD.
429 */
430 #define TCOAL_ILAT_THRESHOLD (30000ULL)
431
432 if ((int_latency < TCOAL_ILAT_THRESHOLD) &&
433 interrupt_timer_coalescing_enabled) {
434 esdeadline = cdp->rtclock_timer.queue.earliest_soft_deadline;
435 ehdeadline = cdp->rtclock_timer.deadline;
436 if ((ctime >= esdeadline) && (ctime < ehdeadline)) {
437 interrupt_coalesced_timers++;
438 TCOAL_DEBUG(0x88880000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, interrupt_coalesced_timers, 0);
439 rtclock_intr(state);
440 TCOAL_DEBUG(0x88880000 | DBG_FUNC_END, ctime, esdeadline, interrupt_coalesced_timers, 0, 0);
441 } else {
442 TCOAL_DEBUG(0x77770000, ctime, cdp->rtclock_timer.queue.earliest_soft_deadline, cdp->rtclock_timer.deadline, interrupt_coalesced_timers, 0);
443 }
444 }
445
446 if (__improbable(ilat_assert && (int_latency > interrupt_latency_cap) && !machine_timeout_suspended())) {
447 panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x", interrupt_num, int_latency, cdp->cpu_prior_signals, cdp->cpu_signals);
448 }
449
450 if (__improbable(int_latency > cdp->cpu_max_observed_int_latency)) {
451 cdp->cpu_max_observed_int_latency = int_latency;
452 cdp->cpu_max_observed_int_latency_vector = interrupt_num;
453 }
454 }
455
456 /*
457 * Having serviced the interrupt first, look at the interrupted stack depth.
458 */
459 if (!user_mode) {
460 uint64_t depth = cdp->cpu_kernel_stack
461 + sizeof(struct x86_kernel_state)
462 + sizeof(struct i386_exception_link *)
463 - rsp;
464 if (__improbable(depth > kernel_stack_depth_max)) {
465 kernel_stack_depth_max = (vm_offset_t)depth;
466 KERNEL_DEBUG_CONSTANT(
467 MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH),
468 (long) depth, (long) VM_KERNEL_UNSLIDE(rip), 0, 0, 0);
469 }
470 }
471
472 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
473 MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END,
474 interrupt_num, 0, 0, 0, 0);
475
476 }
477
478 static inline void
479 reset_dr7(void)
480 {
481 long dr7 = 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */
482 __asm__ volatile("mov %0,%%dr7" : : "r" (dr7));
483 }
484 #if MACH_KDP
485 unsigned kdp_has_active_watchpoints = 0;
486 #define NO_WATCHPOINTS (!kdp_has_active_watchpoints)
487 #else
488 #define NO_WATCHPOINTS 1
489 #endif
490 /*
491 * Trap from kernel mode. Only page-fault errors are recoverable,
492 * and then only in special circumstances. All other errors are
493 * fatal. Return value indicates if trap was handled.
494 */
495
496 void
497 kernel_trap(
498 x86_saved_state_t *state,
499 uintptr_t *lo_spp)
500 {
501 x86_saved_state64_t *saved_state;
502 int code;
503 user_addr_t vaddr;
504 int type;
505 vm_map_t map = 0; /* protected by T_PAGE_FAULT */
506 kern_return_t result = KERN_FAILURE;
507 thread_t thread;
508 ast_t *myast;
509 boolean_t intr;
510 vm_prot_t prot;
511 struct recovery *rp;
512 vm_offset_t kern_ip;
513 #if NCOPY_WINDOWS > 0
514 int fault_in_copy_window = -1;
515 #endif
516 int is_user = 0;
517
518 thread = current_thread();
519
520 if (__improbable(is_saved_state32(state)))
521 panic("kernel_trap(%p) with 32-bit state", state);
522 saved_state = saved_state64(state);
523
524 /* Record cpu where state was captured */
525 saved_state->isf.cpu = cpu_number();
526
527 vaddr = (user_addr_t)saved_state->cr2;
528 type = saved_state->isf.trapno;
529 code = (int)(saved_state->isf.err & 0xffff);
530 intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */
531 kern_ip = (vm_offset_t)saved_state->isf.rip;
532
533 myast = ast_pending();
534
535 perfASTCallback astfn = perfASTHook;
536 if (__improbable(astfn != NULL)) {
537 if (*myast & AST_CHUD_ALL)
538 astfn(AST_CHUD_ALL, myast);
539 } else
540 *myast &= ~AST_CHUD_ALL;
541
542 /*
543 * Is there a hook?
544 */
545 perfCallback fn = perfTrapHook;
546 if (__improbable(fn != NULL)) {
547 if (fn(type, NULL, 0, 0) == KERN_SUCCESS) {
548 /*
549 * If it succeeds, we are done...
550 */
551 return;
552 }
553 }
554
555 #if CONFIG_DTRACE
556 if (__improbable(tempDTraceTrapHook != NULL)) {
557 if (tempDTraceTrapHook(type, state, lo_spp, 0) == KERN_SUCCESS) {
558 /*
559 * If it succeeds, we are done...
560 */
561 return;
562 }
563 }
564 #endif /* CONFIG_DTRACE */
565
566 /*
567 * we come here with interrupts off as we don't want to recurse
568 * on preemption below. but we do want to re-enable interrupts
569 * as soon we possibly can to hold latency down
570 */
571 if (__improbable(T_PREEMPT == type)) {
572 ast_taken(AST_PREEMPTION, FALSE);
573
574 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
575 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
576 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0);
577 return;
578 }
579
580 if (T_PAGE_FAULT == type) {
581 /*
582 * assume we're faulting in the kernel map
583 */
584 map = kernel_map;
585
586 if (__probable(thread != THREAD_NULL && thread->map != kernel_map)) {
587 #if NCOPY_WINDOWS > 0
588 vm_offset_t copy_window_base;
589 vm_offset_t kvaddr;
590 int window_index;
591
592 kvaddr = (vm_offset_t)vaddr;
593 /*
594 * must determine if fault occurred in
595 * the copy window while pre-emption is
596 * disabled for this processor so that
597 * we only need to look at the window
598 * associated with this processor
599 */
600 copy_window_base = current_cpu_datap()->cpu_copywindow_base;
601
602 if (kvaddr >= copy_window_base && kvaddr < (copy_window_base + (NBPDE * NCOPY_WINDOWS)) ) {
603
604 window_index = (int)((kvaddr - copy_window_base) / NBPDE);
605
606 if (thread->machine.copy_window[window_index].user_base != (user_addr_t)-1) {
607
608 kvaddr -= (copy_window_base + (NBPDE * window_index));
609 vaddr = thread->machine.copy_window[window_index].user_base + kvaddr;
610
611 map = thread->map;
612 fault_in_copy_window = window_index;
613 }
614 is_user = -1;
615 }
616 #else
617 if (__probable(vaddr < VM_MAX_USER_PAGE_ADDRESS)) {
618 /* fault occurred in userspace */
619 map = thread->map;
620 is_user = -1;
621
622 /* Intercept a potential Supervisor Mode Execute
623 * Protection fault. These criteria identify
624 * both NX faults and SMEP faults, but both
625 * are fatal. We avoid checking PTEs (racy).
626 * (The VM could just redrive a SMEP fault, hence
627 * the intercept).
628 */
629 if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) && (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) {
630 goto debugger_entry;
631 }
632
633 /*
634 * If we're not sharing cr3 with the user
635 * and we faulted in copyio,
636 * then switch cr3 here and dismiss the fault.
637 */
638 if (no_shared_cr3 &&
639 (thread->machine.specFlags&CopyIOActive) &&
640 map->pmap->pm_cr3 != get_cr3_base()) {
641 pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE);
642 set_cr3_raw(map->pmap->pm_cr3);
643 return;
644 }
645 }
646 #endif
647 }
648 }
649 user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr);
650 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
651 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
652 (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user,
653 VM_KERNEL_UNSLIDE(kern_ip), 0);
654
655
656 (void) ml_set_interrupts_enabled(intr);
657
658 switch (type) {
659
660 case T_NO_FPU:
661 fpnoextflt();
662 return;
663
664 case T_FPU_FAULT:
665 fpextovrflt();
666 return;
667
668 case T_FLOATING_POINT_ERROR:
669 fpexterrflt();
670 return;
671
672 case T_SSE_FLOAT_ERROR:
673 fpSSEexterrflt();
674 return;
675 case T_DEBUG:
676 if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS)
677 {
678 /* We've somehow encountered a debug
679 * register match that does not belong
680 * to the kernel debugger.
681 * This isn't supposed to happen.
682 */
683 reset_dr7();
684 return;
685 }
686 goto debugger_entry;
687 #ifdef __x86_64__
688 case T_INT3:
689 goto debugger_entry;
690 #endif
691 case T_PAGE_FAULT:
692
693 #if CONFIG_DTRACE
694 if (thread != THREAD_NULL && thread->options & TH_OPT_DTRACE) { /* Executing under dtrace_probe? */
695 if (dtrace_tally_fault(vaddr)) { /* Should a fault under dtrace be ignored? */
696 /*
697 * DTrace has "anticipated" the possibility of this fault, and has
698 * established the suitable recovery state. Drop down now into the
699 * recovery handling code in "case T_GENERAL_PROTECTION:".
700 */
701 goto FALL_THROUGH;
702 }
703 }
704 #endif /* CONFIG_DTRACE */
705
706 prot = VM_PROT_READ;
707
708 if (code & T_PF_WRITE)
709 prot |= VM_PROT_WRITE;
710 #if PAE
711 if (code & T_PF_EXECUTE)
712 prot |= VM_PROT_EXECUTE;
713 #endif
714
715 result = vm_fault(map,
716 vm_map_trunc_page(vaddr,
717 PAGE_MASK),
718 prot,
719 FALSE,
720 THREAD_UNINT, NULL, 0);
721
722 if (result == KERN_SUCCESS) {
723 #if NCOPY_WINDOWS > 0
724 if (fault_in_copy_window != -1) {
725 ml_set_interrupts_enabled(FALSE);
726 copy_window_fault(thread, map,
727 fault_in_copy_window);
728 (void) ml_set_interrupts_enabled(intr);
729 }
730 #endif /* NCOPY_WINDOWS > 0 */
731 return;
732 }
733 /*
734 * fall through
735 */
736 #if CONFIG_DTRACE
737 FALL_THROUGH:
738 #endif /* CONFIG_DTRACE */
739
740 case T_GENERAL_PROTECTION:
741 /*
742 * If there is a failure recovery address
743 * for this fault, go there.
744 */
745 for (rp = recover_table; rp < recover_table_end; rp++) {
746 if (kern_ip == rp->fault_addr) {
747 set_recovery_ip(saved_state, rp->recover_addr);
748 return;
749 }
750 }
751
752 /*
753 * Check thread recovery address also.
754 */
755 if (thread != THREAD_NULL && thread->recover) {
756 set_recovery_ip(saved_state, thread->recover);
757 thread->recover = 0;
758 return;
759 }
760 /*
761 * Unanticipated page-fault errors in kernel
762 * should not happen.
763 *
764 * fall through...
765 */
766 default:
767 /*
768 * Exception 15 is reserved but some chips may generate it
769 * spuriously. Seen at startup on AMD Athlon-64.
770 */
771 if (type == 15) {
772 kprintf("kernel_trap() ignoring spurious trap 15\n");
773 return;
774 }
775 debugger_entry:
776 /* Ensure that the i386_kernel_state at the base of the
777 * current thread's stack (if any) is synchronized with the
778 * context at the moment of the trap, to facilitate
779 * access through the debugger.
780 */
781 sync_iss_to_iks(state);
782 #if MACH_KDP
783 if (current_debugger != KDB_CUR_DB) {
784 if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr))
785 return;
786 }
787 #endif
788 }
789 pal_cli();
790 panic_trap(saved_state);
791 /*
792 * NO RETURN
793 */
794 }
795
796
797 static void
798 set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip)
799 {
800 saved_state->isf.rip = ip;
801 }
802
803
804
805
806 static void
807 panic_trap(x86_saved_state64_t *regs)
808 {
809 const char *trapname = "Unknown";
810 pal_cr_t cr0, cr2, cr3, cr4;
811 boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE;
812
813 pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 );
814 assert(ml_get_interrupts_enabled() == FALSE);
815 current_cpu_datap()->cpu_fatal_trap_state = regs;
816 /*
817 * Issue an I/O port read if one has been requested - this is an
818 * event logic analyzers can use as a trigger point.
819 */
820 panic_io_port_read();
821
822 kprintf("panic trap number 0x%x, rip 0x%016llx\n",
823 regs->isf.trapno, regs->isf.rip);
824 kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n",
825 cr0, cr2, cr3, cr4);
826
827 if (regs->isf.trapno < TRAP_TYPES)
828 trapname = trap_type[regs->isf.trapno];
829
830 if ((regs->isf.trapno == T_PAGE_FAULT) && (regs->isf.err == (T_PF_PROT | T_PF_EXECUTE)) && (regs->isf.rip == regs->cr2)) {
831 if (pmap_smep_enabled && (regs->isf.rip < VM_MAX_USER_PAGE_ADDRESS)) {
832 potential_smep_fault = TRUE;
833 } else if (regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
834 potential_kernel_NX_fault = TRUE;
835 }
836 }
837
838 #undef panic
839 panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n"
840 "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
841 "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
842 "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
843 "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
844 "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
845 "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n"
846 "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s\n",
847 regs->isf.rip, regs->isf.trapno, trapname,
848 cr0, cr2, cr3, cr4,
849 regs->rax, regs->rbx, regs->rcx, regs->rdx,
850 regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi,
851 regs->r8, regs->r9, regs->r10, regs->r11,
852 regs->r12, regs->r13, regs->r14, regs->r15,
853 regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF,
854 regs->isf.ss & 0xFFFF,regs->cr2, regs->isf.err, regs->isf.cpu,
855 virtualized ? " VMM" : "",
856 potential_kernel_NX_fault ? " Kernel NX fault" : "",
857 potential_smep_fault ? " SMEP/User NX fault" : "");
858 /*
859 * This next statement is not executed,
860 * but it's needed to stop the compiler using tail call optimization
861 * for the panic call - which confuses the subsequent backtrace.
862 */
863 cr0 = 0;
864 }
865
866 #if CONFIG_DTRACE
867 extern kern_return_t dtrace_user_probe(x86_saved_state_t *);
868 #endif
869
870 /*
871 * Trap from user mode.
872 */
873 void
874 user_trap(
875 x86_saved_state_t *saved_state)
876 {
877 int exc;
878 int err;
879 mach_exception_code_t code;
880 mach_exception_subcode_t subcode;
881 int type;
882 user_addr_t vaddr;
883 vm_prot_t prot;
884 thread_t thread = current_thread();
885 ast_t *myast;
886 kern_return_t kret;
887 user_addr_t rip;
888 unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */
889
890 assert((is_saved_state32(saved_state) && !thread_is_64bit(thread)) ||
891 (is_saved_state64(saved_state) && thread_is_64bit(thread)));
892
893 if (is_saved_state64(saved_state)) {
894 x86_saved_state64_t *regs;
895
896 regs = saved_state64(saved_state);
897
898 /* Record cpu where state was captured */
899 regs->isf.cpu = cpu_number();
900
901 type = regs->isf.trapno;
902 err = (int)regs->isf.err & 0xffff;
903 vaddr = (user_addr_t)regs->cr2;
904 rip = (user_addr_t)regs->isf.rip;
905 } else {
906 x86_saved_state32_t *regs;
907
908 regs = saved_state32(saved_state);
909
910 /* Record cpu where state was captured */
911 regs->cpu = cpu_number();
912
913 type = regs->trapno;
914 err = regs->err & 0xffff;
915 vaddr = (user_addr_t)regs->cr2;
916 rip = (user_addr_t)regs->eip;
917 }
918
919 if ((type == T_DEBUG) && thread->machine.ids) {
920 unsigned long clear = 0;
921 /* Stash and clear this processor's DR6 value, in the event
922 * this was a debug register match
923 */
924 __asm__ volatile ("mov %%db6, %0" : "=r" (dr6));
925 __asm__ volatile ("mov %0, %%db6" : : "r" (clear));
926 }
927
928 pal_sti();
929
930 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
931 (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE,
932 (unsigned)(vaddr>>32), (unsigned)vaddr,
933 (unsigned)(rip>>32), (unsigned)rip, 0);
934
935 code = 0;
936 subcode = 0;
937 exc = 0;
938
939 #if DEBUG_TRACE
940 kprintf("user_trap(0x%08x) type=%d vaddr=0x%016llx\n",
941 saved_state, type, vaddr);
942 #endif
943
944 perfASTCallback astfn = perfASTHook;
945 if (__improbable(astfn != NULL)) {
946 myast = ast_pending();
947 if (*myast & AST_CHUD_ALL) {
948 astfn(AST_CHUD_ALL, myast);
949 }
950 }
951
952 /* Is there a hook? */
953 perfCallback fn = perfTrapHook;
954 if (__improbable(fn != NULL)) {
955 if (fn(type, saved_state, 0, 0) == KERN_SUCCESS)
956 return; /* If it succeeds, we are done... */
957 }
958
959 /*
960 * DTrace does not consume all user traps, only INT_3's for now.
961 * Avoid needlessly calling tempDTraceTrapHook here, and let the
962 * INT_3 case handle them.
963 */
964 DEBUG_KPRINT_SYSCALL_MASK(1,
965 "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
966 type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip);
967
968 switch (type) {
969
970 case T_DIVIDE_ERROR:
971 exc = EXC_ARITHMETIC;
972 code = EXC_I386_DIV;
973 break;
974
975 case T_DEBUG:
976 {
977 pcb_t pcb;
978 /*
979 * Update the PCB with this processor's DR6 value
980 * in the event this was a debug register match.
981 */
982 pcb = THREAD_TO_PCB(thread);
983 if (pcb->ids) {
984 /*
985 * We can get and set the status register
986 * in 32-bit mode even on a 64-bit thread
987 * because the high order bits are not
988 * used on x86_64
989 */
990 if (thread_is_64bit(thread)) {
991 x86_debug_state64_t *ids = pcb->ids;
992 ids->dr6 = dr6;
993 } else { /* 32 bit thread */
994 x86_debug_state32_t *ids = pcb->ids;
995 ids->dr6 = (uint32_t) dr6;
996 }
997 }
998 exc = EXC_BREAKPOINT;
999 code = EXC_I386_SGL;
1000 break;
1001 }
1002 case T_INT3:
1003 #if CONFIG_DTRACE
1004 if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
1005 return; /* If it succeeds, we are done... */
1006 #endif
1007 exc = EXC_BREAKPOINT;
1008 code = EXC_I386_BPT;
1009 break;
1010
1011 case T_OVERFLOW:
1012 exc = EXC_ARITHMETIC;
1013 code = EXC_I386_INTO;
1014 break;
1015
1016 case T_OUT_OF_BOUNDS:
1017 exc = EXC_SOFTWARE;
1018 code = EXC_I386_BOUND;
1019 break;
1020
1021 case T_INVALID_OPCODE:
1022 exc = EXC_BAD_INSTRUCTION;
1023 code = EXC_I386_INVOP;
1024 break;
1025
1026 case T_NO_FPU:
1027 fpnoextflt();
1028 return;
1029
1030 case T_FPU_FAULT:
1031 fpextovrflt(); /* Propagates exception directly, doesn't return */
1032 return;
1033
1034 case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */
1035 exc = EXC_BAD_INSTRUCTION;
1036 code = EXC_I386_INVTSSFLT;
1037 subcode = err;
1038 break;
1039
1040 case T_SEGMENT_NOT_PRESENT:
1041 exc = EXC_BAD_INSTRUCTION;
1042 code = EXC_I386_SEGNPFLT;
1043 subcode = err;
1044 break;
1045
1046 case T_STACK_FAULT:
1047 exc = EXC_BAD_INSTRUCTION;
1048 code = EXC_I386_STKFLT;
1049 subcode = err;
1050 break;
1051
1052 case T_GENERAL_PROTECTION:
1053 /*
1054 * There's a wide range of circumstances which generate this
1055 * class of exception. From user-space, many involve bad
1056 * addresses (such as a non-canonical 64-bit address).
1057 * So we map this to EXC_BAD_ACCESS (and thereby SIGSEGV).
1058 * The trouble is cr2 doesn't contain the faulting address;
1059 * we'd need to decode the faulting instruction to really
1060 * determine this. We'll leave that to debuggers.
1061 * However, attempted execution of privileged instructions
1062 * (e.g. cli) also generate GP faults and so we map these to
1063 * to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than
1064 * EXC_BAD_INSTRUCTION which is more accurate. We just can't
1065 * win!
1066 */
1067 exc = EXC_BAD_ACCESS;
1068 code = EXC_I386_GPFLT;
1069 subcode = err;
1070 break;
1071
1072 case T_PAGE_FAULT:
1073 {
1074 prot = VM_PROT_READ;
1075
1076 if (err & T_PF_WRITE)
1077 prot |= VM_PROT_WRITE;
1078 #if PAE
1079 if (__improbable(err & T_PF_EXECUTE))
1080 prot |= VM_PROT_EXECUTE;
1081 #endif
1082 kret = vm_fault(thread->map,
1083 vm_map_trunc_page(vaddr,
1084 PAGE_MASK),
1085 prot, FALSE,
1086 THREAD_ABORTSAFE, NULL, 0);
1087
1088 if (__probable((kret == KERN_SUCCESS) || (kret == KERN_ABORTED))) {
1089 thread_exception_return();
1090 /*NOTREACHED*/
1091 }
1092
1093 user_page_fault_continue(kret);
1094 } /* NOTREACHED */
1095 break;
1096
1097 case T_SSE_FLOAT_ERROR:
1098 fpSSEexterrflt(); /* Propagates exception directly, doesn't return */
1099 return;
1100
1101
1102 case T_FLOATING_POINT_ERROR:
1103 fpexterrflt(); /* Propagates exception directly, doesn't return */
1104 return;
1105
1106 case T_DTRACE_RET:
1107 #if CONFIG_DTRACE
1108 if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
1109 return; /* If it succeeds, we are done... */
1110 #endif
1111 /*
1112 * If we get an INT 0x7f when we do not expect to,
1113 * treat it as an illegal instruction
1114 */
1115 exc = EXC_BAD_INSTRUCTION;
1116 code = EXC_I386_INVOP;
1117 break;
1118
1119 default:
1120 panic("Unexpected user trap, type %d", type);
1121 return;
1122 }
1123 /* Note: Codepaths that directly return from user_trap() have pending
1124 * ASTs processed in locore
1125 */
1126 i386_exception(exc, code, subcode);
1127 /* NOTREACHED */
1128 }
1129
1130
1131 /*
1132 * Handle AST traps for i386.
1133 */
1134
1135 extern void log_thread_action (thread_t, char *);
1136
1137 void
1138 i386_astintr(int preemption)
1139 {
1140 ast_t mask = AST_ALL;
1141 spl_t s;
1142
1143 if (preemption)
1144 mask = AST_PREEMPTION;
1145
1146 s = splsched();
1147
1148 ast_taken(mask, s);
1149
1150 splx(s);
1151 }
1152
1153 /*
1154 * Handle exceptions for i386.
1155 *
1156 * If we are an AT bus machine, we must turn off the AST for a
1157 * delayed floating-point exception.
1158 *
1159 * If we are providing floating-point emulation, we may have
1160 * to retrieve the real register values from the floating point
1161 * emulator.
1162 */
1163 void
1164 i386_exception(
1165 int exc,
1166 mach_exception_code_t code,
1167 mach_exception_subcode_t subcode)
1168 {
1169 mach_exception_data_type_t codes[EXCEPTION_CODE_MAX];
1170
1171 DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n",
1172 exc, code, subcode);
1173 codes[0] = code; /* new exception interface */
1174 codes[1] = subcode;
1175 exception_triage(exc, codes, 2);
1176 /*NOTREACHED*/
1177 }
1178
1179
1180 /* Synchronize a thread's i386_kernel_state (if any) with the given
1181 * i386_saved_state_t obtained from the trap/IPI handler; called in
1182 * kernel_trap() prior to entering the debugger, and when receiving
1183 * an "MP_KDP" IPI.
1184 */
1185
1186 void
1187 sync_iss_to_iks(x86_saved_state_t *saved_state)
1188 {
1189 struct x86_kernel_state *iks;
1190 vm_offset_t kstack;
1191 boolean_t record_active_regs = FALSE;
1192
1193 /* The PAL may have a special way to sync registers */
1194 if( saved_state->flavor == THREAD_STATE_NONE )
1195 pal_get_kern_regs( saved_state );
1196
1197 if ((kstack = current_thread()->kernel_stack) != 0) {
1198 x86_saved_state64_t *regs = saved_state64(saved_state);
1199
1200 iks = STACK_IKS(kstack);
1201
1202 /* Did we take the trap/interrupt in kernel mode? */
1203 if (regs == USER_REGS64(current_thread()))
1204 record_active_regs = TRUE;
1205 else {
1206 iks->k_rbx = regs->rbx;
1207 iks->k_rsp = regs->isf.rsp;
1208 iks->k_rbp = regs->rbp;
1209 iks->k_r12 = regs->r12;
1210 iks->k_r13 = regs->r13;
1211 iks->k_r14 = regs->r14;
1212 iks->k_r15 = regs->r15;
1213 iks->k_rip = regs->isf.rip;
1214 }
1215 }
1216
1217 if (record_active_regs == TRUE) {
1218 /* Show the trap handler path */
1219 __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
1220 __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
1221 __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
1222 __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
1223 __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
1224 __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
1225 __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
1226 /* "Current" instruction pointer */
1227 __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
1228 : "=m" (iks->k_rip)
1229 :
1230 : "rax");
1231 }
1232 }
1233
1234 /*
1235 * This is used by the NMI interrupt handler (from mp.c) to
1236 * uncondtionally sync the trap handler context to the IKS
1237 * irrespective of whether the NMI was fielded in kernel
1238 * or user space.
1239 */
1240 void
1241 sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state) {
1242 struct x86_kernel_state *iks;
1243 vm_offset_t kstack;
1244
1245 if ((kstack = current_thread()->kernel_stack) != 0) {
1246 iks = STACK_IKS(kstack);
1247 /* Display the trap handler path */
1248 __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
1249 __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
1250 __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
1251 __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
1252 __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
1253 __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
1254 __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
1255 /* "Current" instruction pointer */
1256 __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax");
1257 }
1258 }