2 * Copyright (c) 2007-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <arm/proc_reg.h>
30 #include <arm/machine_cpu.h>
31 #include <arm/cpu_internal.h>
32 #include <arm/cpuid.h>
33 #include <arm/io_map_entries.h>
34 #include <arm/cpu_data.h>
35 #include <arm/cpu_data_internal.h>
36 #include <arm/misc_protos.h>
37 #include <arm/rtclock.h>
38 #include <arm/caches_internal.h>
39 #include <console/serial_protos.h>
40 #include <kern/machine.h>
41 #include <prng/random.h>
42 #include <kern/startup.h>
43 #include <kern/sched.h>
44 #include <kern/thread.h>
45 #include <mach/machine.h>
46 #include <machine/atomic.h>
48 #include <vm/vm_page.h>
49 #include <sys/kdebug.h>
50 #include <kern/coalition.h>
51 #include <pexpert/device_tree.h>
52 #include <arm/cpuid_internal.h>
53 #include <arm/cpu_capabilities.h>
55 #include <IOKit/IOPlatformExpert.h>
61 static int max_cpus_initialized
= 0;
62 #define MAX_CPUS_SET 0x1
63 #define MAX_CPUS_WAIT 0x2
65 static unsigned int avail_cpus
= 0;
68 uint32_t LockTimeOutUsec
;
69 uint64_t TLockTimeOut
;
71 boolean_t is_clock_configured
= FALSE
;
73 #if CONFIG_NONFATAL_ASSERTS
74 extern int mach_assert
;
76 extern volatile uint32_t debug_enabled
;
78 void machine_conf(void);
81 machine_startup(__unused boot_args
* args
)
85 #if CONFIG_NONFATAL_ASSERTS
86 PE_parse_boot_argn("assert", &mach_assert
, sizeof(mach_assert
));
89 if (PE_parse_boot_argn("preempt", &boot_arg
, sizeof(boot_arg
))) {
90 default_preemption_rate
= boot_arg
;
92 if (PE_parse_boot_argn("bg_preempt", &boot_arg
, sizeof(boot_arg
))) {
93 default_bg_preemption_rate
= boot_arg
;
99 * Kick off the kernel bootstrap.
108 __unused vm_size_t size
)
110 return PE_boot_args();
116 machine_info
.memory_size
= mem_size
;
124 is_clock_configured
= TRUE
;
131 slave_machine_init(__unused
void *param
)
133 cpu_machine_init(); /* Initialize the processor */
134 clock_init(); /* Init the clock */
138 * Routine: machine_processor_shutdown
142 machine_processor_shutdown(
143 __unused thread_t thread
,
144 void (*doshutdown
)(processor_t
),
145 processor_t processor
)
147 return Shutdown_context(doshutdown
, processor
);
151 * Routine: ml_init_max_cpus
155 ml_init_max_cpus(unsigned int max_cpus
)
157 boolean_t current_state
;
159 current_state
= ml_set_interrupts_enabled(FALSE
);
160 if (max_cpus_initialized
!= MAX_CPUS_SET
) {
161 machine_info
.max_cpus
= max_cpus
;
162 machine_info
.physical_cpu_max
= max_cpus
;
163 machine_info
.logical_cpu_max
= max_cpus
;
164 if (max_cpus_initialized
== MAX_CPUS_WAIT
) {
165 thread_wakeup((event_t
) &max_cpus_initialized
);
167 max_cpus_initialized
= MAX_CPUS_SET
;
169 (void) ml_set_interrupts_enabled(current_state
);
173 * Routine: ml_get_max_cpus
177 ml_get_max_cpus(void)
179 boolean_t current_state
;
181 current_state
= ml_set_interrupts_enabled(FALSE
);
182 if (max_cpus_initialized
!= MAX_CPUS_SET
) {
183 max_cpus_initialized
= MAX_CPUS_WAIT
;
184 assert_wait((event_t
) &max_cpus_initialized
, THREAD_UNINT
);
185 (void) thread_block(THREAD_CONTINUE_NULL
);
187 (void) ml_set_interrupts_enabled(current_state
);
188 return machine_info
.max_cpus
;
192 * Routine: ml_init_lock_timeout
196 ml_init_lock_timeout(void)
200 uint64_t default_timeout_ns
= NSEC_PER_SEC
>> 2;
203 if (PE_parse_boot_argn("slto_us", &slto
, sizeof(slto
))) {
204 default_timeout_ns
= slto
* NSEC_PER_USEC
;
207 nanoseconds_to_absolutetime(default_timeout_ns
, &abstime
);
208 LockTimeOutUsec
= (uint32_t)(default_timeout_ns
/ NSEC_PER_USEC
);
209 LockTimeOut
= (uint32_t)abstime
;
210 TLockTimeOut
= LockTimeOut
;
212 if (PE_parse_boot_argn("mtxspin", &mtxspin
, sizeof(mtxspin
))) {
213 if (mtxspin
> USEC_PER_SEC
>> 4) {
214 mtxspin
= USEC_PER_SEC
>> 4;
216 nanoseconds_to_absolutetime(mtxspin
* NSEC_PER_USEC
, &abstime
);
218 nanoseconds_to_absolutetime(10 * NSEC_PER_USEC
, &abstime
);
224 * This is called from the machine-independent routine cpu_up()
225 * to perform machine-dependent info updates.
230 os_atomic_inc(&machine_info
.physical_cpu
, relaxed
);
231 os_atomic_inc(&machine_info
.logical_cpu
, relaxed
);
235 * This is called from the machine-independent routine cpu_down()
236 * to perform machine-dependent info updates.
241 cpu_data_t
*cpu_data_ptr
;
243 os_atomic_dec(&machine_info
.physical_cpu
, relaxed
);
244 os_atomic_dec(&machine_info
.logical_cpu
, relaxed
);
247 * If we want to deal with outstanding IPIs, we need to
248 * do relatively early in the processor_doshutdown path,
249 * as we pend decrementer interrupts using the IPI
250 * mechanism if we cannot immediately service them (if
251 * IRQ is masked). Do so now.
253 * We aren't on the interrupt stack here; would it make
254 * more sense to disable signaling and then enable
255 * interrupts? It might be a bit cleaner.
257 cpu_data_ptr
= getCpuDatap();
258 cpu_data_ptr
->cpu_running
= FALSE
;
260 cpu_signal_handler_internal(TRUE
);
264 * Routine: ml_cpu_get_info
268 ml_cpu_get_info(ml_cpu_info_t
* ml_cpu_info
)
270 cache_info_t
*cpuid_cache_info
;
272 cpuid_cache_info
= cache_info();
273 ml_cpu_info
->vector_unit
= 0;
274 ml_cpu_info
->cache_line_size
= cpuid_cache_info
->c_linesz
;
275 ml_cpu_info
->l1_icache_size
= cpuid_cache_info
->c_isize
;
276 ml_cpu_info
->l1_dcache_size
= cpuid_cache_info
->c_dsize
;
278 #if (__ARM_ARCH__ >= 7)
279 ml_cpu_info
->l2_settings
= 1;
280 ml_cpu_info
->l2_cache_size
= cpuid_cache_info
->c_l2size
;
282 ml_cpu_info
->l2_settings
= 0;
283 ml_cpu_info
->l2_cache_size
= 0xFFFFFFFF;
285 ml_cpu_info
->l3_settings
= 0;
286 ml_cpu_info
->l3_cache_size
= 0xFFFFFFFF;
290 ml_get_machine_mem(void)
292 return machine_info
.memory_size
;
295 /* Return max offset */
301 unsigned int pmap_max_offset_option
= 0;
304 case MACHINE_MAX_OFFSET_DEFAULT
:
305 pmap_max_offset_option
= ARM_PMAP_MAX_OFFSET_DEFAULT
;
307 case MACHINE_MAX_OFFSET_MIN
:
308 pmap_max_offset_option
= ARM_PMAP_MAX_OFFSET_MIN
;
310 case MACHINE_MAX_OFFSET_MAX
:
311 pmap_max_offset_option
= ARM_PMAP_MAX_OFFSET_MAX
;
313 case MACHINE_MAX_OFFSET_DEVICE
:
314 pmap_max_offset_option
= ARM_PMAP_MAX_OFFSET_DEVICE
;
317 panic("ml_get_max_offset(): Illegal option 0x%x\n", option
);
320 return pmap_max_offset(is64
, pmap_max_offset_option
);
324 ml_wants_panic_trap_to_debugger(void)
330 ml_panic_trap_to_debugger(__unused
const char *panic_format_str
,
331 __unused
va_list *panic_args
,
332 __unused
unsigned int reason
,
334 __unused
uint64_t panic_options_mask
,
335 __unused
unsigned long panic_caller
)
340 __attribute__((noreturn
))
342 halt_all_cpus(boolean_t reboot
)
345 printf("MACH Reboot\n");
346 PEHaltRestart(kPERestartCPU
);
348 printf("CPU halted\n");
349 PEHaltRestart(kPEHaltCPU
);
356 __attribute__((noreturn
))
360 halt_all_cpus(FALSE
);
364 * Routine: machine_signal_idle
369 processor_t processor
)
371 cpu_signal(processor_to_cpu_datap(processor
), SIGPnop
, (void *)NULL
, (void *)NULL
);
372 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_REMOTE_AST
), processor
->cpu_id
, 0 /* nop */, 0, 0, 0);
376 machine_signal_idle_deferred(
377 processor_t processor
)
379 cpu_signal_deferred(processor_to_cpu_datap(processor
));
380 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_REMOTE_DEFERRED_AST
), processor
->cpu_id
, 0 /* nop */, 0, 0, 0);
384 machine_signal_idle_cancel(
385 processor_t processor
)
387 cpu_signal_cancel(processor_to_cpu_datap(processor
));
388 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_REMOTE_CANCEL_AST
), processor
->cpu_id
, 0 /* nop */, 0, 0, 0);
392 * Routine: ml_install_interrupt_handler
393 * Function: Initialize Interrupt Handler
396 ml_install_interrupt_handler(
400 IOInterruptHandler handler
,
403 cpu_data_t
*cpu_data_ptr
;
404 boolean_t current_state
;
406 current_state
= ml_set_interrupts_enabled(FALSE
);
407 cpu_data_ptr
= getCpuDatap();
409 cpu_data_ptr
->interrupt_nub
= nub
;
410 cpu_data_ptr
->interrupt_source
= source
;
411 cpu_data_ptr
->interrupt_target
= target
;
412 cpu_data_ptr
->interrupt_handler
= handler
;
413 cpu_data_ptr
->interrupt_refCon
= refCon
;
415 cpu_data_ptr
->interrupts_enabled
= TRUE
;
416 (void) ml_set_interrupts_enabled(current_state
);
418 initialize_screen(NULL
, kPEAcquireScreen
);
422 * Routine: ml_init_interrupt
423 * Function: Initialize Interrupts
426 ml_init_interrupt(void)
431 * Routine: ml_init_timebase
432 * Function: register and setup Timebase, Decremeter services
438 vm_offset_t int_address
,
439 vm_offset_t int_value
)
441 cpu_data_t
*cpu_data_ptr
;
443 cpu_data_ptr
= (cpu_data_t
*)args
;
445 if ((cpu_data_ptr
== &BootCpuData
)
446 && (rtclock_timebase_func
.tbd_fiq_handler
== (void *)NULL
)) {
447 rtclock_timebase_func
= *tbd_funcs
;
448 rtclock_timebase_addr
= int_address
;
449 rtclock_timebase_val
= int_value
;
454 fiq_context_bootstrap(boolean_t enable_fiq
)
456 fiq_context_init(enable_fiq
);
460 ml_parse_cpu_topology(void)
462 DTEntry entry
, child
;
463 OpaqueDTEntryIterator iter
;
464 uint32_t cpu_boot_arg
;
467 err
= DTLookupEntry(NULL
, "/cpus", &entry
);
468 assert(err
== kSuccess
);
470 err
= DTInitEntryIterator(entry
, &iter
);
471 assert(err
== kSuccess
);
473 while (kSuccess
== DTIterateEntries(&iter
, &child
)) {
475 unsigned int propSize
;
477 if (avail_cpus
== 0) {
478 if (kSuccess
!= DTGetProperty(child
, "state", &prop
, &propSize
)) {
479 panic("unable to retrieve state for cpu %u", avail_cpus
);
482 if (strncmp((char*)prop
, "running", propSize
) != 0) {
483 panic("cpu 0 has not been marked as running!");
486 assert(kSuccess
== DTGetProperty(child
, "reg", &prop
, &propSize
));
487 assert(avail_cpus
== *((uint32_t*)prop
));
492 cpu_boot_arg
= avail_cpus
;
493 if (PE_parse_boot_argn("cpus", &cpu_boot_arg
, sizeof(cpu_boot_arg
)) &&
494 (avail_cpus
> cpu_boot_arg
)) {
495 avail_cpus
= cpu_boot_arg
;
498 if (avail_cpus
== 0) {
499 panic("No cpus found!");
504 ml_get_cpu_count(void)
510 ml_get_boot_cpu_number(void)
516 ml_get_boot_cluster(void)
518 return CLUSTER_TYPE_SMP
;
522 ml_get_cpu_number(uint32_t phys_id
)
528 ml_get_max_cpu_number(void)
530 return avail_cpus
- 1;
534 ml_processor_register(ml_processor_info_t
*in_processor_info
,
535 processor_t
* processor_out
, ipi_handler_t
*ipi_handler_out
,
536 perfmon_interrupt_handler_func
*pmi_handler_out
)
538 cpu_data_t
*this_cpu_datap
;
539 boolean_t is_boot_cpu
;
541 if (in_processor_info
->phys_id
>= MAX_CPUS
) {
543 * The physical CPU ID indicates that we have more CPUs than
544 * this xnu build support. This probably means we have an
545 * incorrect board configuration.
547 * TODO: Should this just return a failure instead? A panic
548 * is simply a convenient way to catch bugs in the pexpert
551 panic("phys_id %u is too large for MAX_CPUS (%u)", in_processor_info
->phys_id
, MAX_CPUS
);
554 /* Fail the registration if the number of CPUs has been limited by boot-arg. */
555 if ((in_processor_info
->phys_id
>= avail_cpus
) ||
556 (in_processor_info
->log_id
> (uint32_t)ml_get_max_cpu_number())) {
560 if (in_processor_info
->log_id
!= (uint32_t)ml_get_boot_cpu_number()) {
562 this_cpu_datap
= cpu_data_alloc(FALSE
);
563 cpu_data_init(this_cpu_datap
);
565 this_cpu_datap
= &BootCpuData
;
569 this_cpu_datap
->cpu_id
= in_processor_info
->cpu_id
;
571 this_cpu_datap
->cpu_console_buf
= console_cpu_alloc(is_boot_cpu
);
572 if (this_cpu_datap
->cpu_console_buf
== (void *)(NULL
)) {
573 goto processor_register_error
;
577 if (cpu_data_register(this_cpu_datap
) != KERN_SUCCESS
) {
578 goto processor_register_error
;
582 this_cpu_datap
->cpu_idle_notify
= (void *) in_processor_info
->processor_idle
;
583 this_cpu_datap
->cpu_cache_dispatch
= in_processor_info
->platform_cache_dispatch
;
584 nanoseconds_to_absolutetime((uint64_t) in_processor_info
->powergate_latency
, &this_cpu_datap
->cpu_idle_latency
);
585 this_cpu_datap
->cpu_reset_assist
= kvtophys(in_processor_info
->powergate_stub_addr
);
587 this_cpu_datap
->idle_timer_notify
= (void *) in_processor_info
->idle_timer
;
588 this_cpu_datap
->idle_timer_refcon
= in_processor_info
->idle_timer_refcon
;
590 this_cpu_datap
->platform_error_handler
= (void *) in_processor_info
->platform_error_handler
;
591 this_cpu_datap
->cpu_regmap_paddr
= in_processor_info
->regmap_paddr
;
592 this_cpu_datap
->cpu_phys_id
= in_processor_info
->phys_id
;
593 this_cpu_datap
->cpu_l2_access_penalty
= in_processor_info
->l2_access_penalty
;
596 processor_init((struct processor
*)this_cpu_datap
->cpu_processor
,
597 this_cpu_datap
->cpu_number
, processor_pset(master_processor
));
599 if (this_cpu_datap
->cpu_l2_access_penalty
) {
601 * Cores that have a non-zero L2 access penalty compared
602 * to the boot processor should be de-prioritized by the
603 * scheduler, so that threads use the cores with better L2
606 processor_set_primary(this_cpu_datap
->cpu_processor
,
611 *processor_out
= this_cpu_datap
->cpu_processor
;
612 *ipi_handler_out
= cpu_signal_handler
;
613 *pmi_handler_out
= NULL
;
614 if (in_processor_info
->idle_tickle
!= (idle_tickle_t
*) NULL
) {
615 *in_processor_info
->idle_tickle
= (idle_tickle_t
) cpu_idle_tickle
;
619 if (kpc_register_cpu(this_cpu_datap
) != TRUE
) {
620 goto processor_register_error
;
625 random_cpu_init(this_cpu_datap
->cpu_number
);
630 processor_register_error
:
632 kpc_unregister_cpu(this_cpu_datap
);
635 cpu_data_free(this_cpu_datap
);
641 ml_init_arm_debug_interface(
643 vm_offset_t virt_address
)
645 ((cpu_data_t
*)in_cpu_datap
)->cpu_debug_interface_map
= virt_address
;
650 * Routine: init_ast_check
655 __unused processor_t processor
)
660 * Routine: cause_ast_check
665 processor_t processor
)
667 if (current_processor() != processor
) {
668 cpu_signal(processor_to_cpu_datap(processor
), SIGPast
, (void *)NULL
, (void *)NULL
);
669 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_REMOTE_AST
), processor
->cpu_id
, 1 /* ast */, 0, 0, 0);
673 extern uint32_t cpu_idle_count
;
676 ml_get_power_state(boolean_t
*icp
, boolean_t
*pidlep
)
678 *icp
= ml_at_interrupt_context();
679 *pidlep
= (cpu_idle_count
== real_ncpus
);
683 * Routine: ml_cause_interrupt
684 * Function: Generate a fake interrupt
687 ml_cause_interrupt(void)
692 /* Map memory map IO space */
695 vm_offset_t phys_addr
,
698 return io_map(phys_addr
, size
, VM_WIMG_IO
);
701 /* Map memory map IO space (with protections specified) */
704 vm_offset_t phys_addr
,
708 return io_map_with_prot(phys_addr
, size
, VM_WIMG_IO
, prot
);
713 vm_offset_t phys_addr
,
716 return io_map(phys_addr
, size
, VM_WIMG_WCOMB
);
719 /* boot memory allocation */
722 __unused vm_size_t size
)
724 return (vm_offset_t
) NULL
;
729 vm_offset_t phys_addr
,
732 return pmap_map_high_window_bd(phys_addr
, len
, VM_PROT_READ
| VM_PROT_WRITE
);
739 return phystokv(paddr
);
746 assertf(((vm_address_t
)(vaddr
) - gVirtBase
) < gPhysSize
, "%s: illegal vaddr: %p", __func__
, (void*)vaddr
);
747 return (vm_address_t
)(vaddr
) - gVirtBase
+ gPhysBase
;
751 * Return the maximum contiguous KVA range that can be accessed from this
752 * physical address. For arm64, we employ a segmented physical aperture
753 * relocation table which can limit the available range for a given PA to
754 * something less than the extent of physical memory. But here, we still
755 * have a flat physical aperture, so no such requirement exists.
758 phystokv_range(pmap_paddr_t pa
, vm_size_t
*max_len
)
760 vm_size_t len
= gPhysSize
- (pa
- gPhysBase
);
761 if (*max_len
> len
) {
764 assertf((pa
- gPhysBase
) < gPhysSize
, "%s: illegal PA: 0x%lx", __func__
, (unsigned long)pa
);
765 return pa
- gPhysBase
+ gVirtBase
;
772 return VM_KERNEL_SLIDE(vaddr
);
779 return VM_KERNEL_UNSLIDE(vaddr
);
784 vm_offset_t vaddr
, /* kernel virtual address */
788 pt_entry_t arm_prot
= 0;
789 pt_entry_t arm_block_prot
= 0;
790 vm_offset_t vaddr_cur
;
792 kern_return_t result
= KERN_SUCCESS
;
794 if (vaddr
< VM_MIN_KERNEL_ADDRESS
) {
798 assert((vaddr
& (ARM_PGBYTES
- 1)) == 0); /* must be page aligned */
800 if ((new_prot
& VM_PROT_WRITE
) && (new_prot
& VM_PROT_EXECUTE
)) {
801 panic("ml_static_protect(): WX request on %p", (void *) vaddr
);
804 /* Set up the protection bits, and block bits so we can validate block mappings. */
805 if (new_prot
& VM_PROT_WRITE
) {
806 arm_prot
|= ARM_PTE_AP(AP_RWNA
);
807 arm_block_prot
|= ARM_TTE_BLOCK_AP(AP_RWNA
);
809 arm_prot
|= ARM_PTE_AP(AP_RONA
);
810 arm_block_prot
|= ARM_TTE_BLOCK_AP(AP_RONA
);
813 if (!(new_prot
& VM_PROT_EXECUTE
)) {
814 arm_prot
|= ARM_PTE_NX
;
815 arm_block_prot
|= ARM_TTE_BLOCK_NX
;
818 for (vaddr_cur
= vaddr
;
819 vaddr_cur
< ((vaddr
+ size
) & ~ARM_PGMASK
);
820 vaddr_cur
+= ARM_PGBYTES
) {
821 ppn
= pmap_find_phys(kernel_pmap
, vaddr_cur
);
822 if (ppn
!= (vm_offset_t
) NULL
) {
823 tt_entry_t
*ttp
= &kernel_pmap
->tte
[ttenum(vaddr_cur
)];
824 tt_entry_t tte
= *ttp
;
826 if ((tte
& ARM_TTE_TYPE_MASK
) != ARM_TTE_TYPE_TABLE
) {
827 if (((tte
& ARM_TTE_TYPE_MASK
) == ARM_TTE_TYPE_BLOCK
) &&
828 ((tte
& (ARM_TTE_BLOCK_APMASK
| ARM_TTE_BLOCK_NX_MASK
)) == arm_block_prot
)) {
830 * We can support ml_static_protect on a block mapping if the mapping already has
831 * the desired protections. We still want to run checks on a per-page basis.
836 result
= KERN_FAILURE
;
840 pt_entry_t
*pte_p
= (pt_entry_t
*) ttetokv(tte
) + ptenum(vaddr_cur
);
841 pt_entry_t ptmp
= *pte_p
;
843 ptmp
= (ptmp
& ~(ARM_PTE_APMASK
| ARM_PTE_NX_MASK
)) | arm_prot
;
848 if (vaddr_cur
> vaddr
) {
849 flush_mmu_tlb_region(vaddr
, (vm_size_t
)(vaddr_cur
- vaddr
));
856 * Routine: ml_static_mfree
864 vm_offset_t vaddr_cur
;
866 uint32_t freed_pages
= 0;
868 /* It is acceptable (if bad) to fail to free. */
869 if (vaddr
< VM_MIN_KERNEL_ADDRESS
) {
873 assert((vaddr
& (PAGE_SIZE
- 1)) == 0); /* must be page aligned */
875 for (vaddr_cur
= vaddr
;
876 vaddr_cur
< trunc_page_32(vaddr
+ size
);
877 vaddr_cur
+= PAGE_SIZE
) {
878 ppn
= pmap_find_phys(kernel_pmap
, vaddr_cur
);
879 if (ppn
!= (vm_offset_t
) NULL
) {
881 * It is not acceptable to fail to update the protections on a page
882 * we will release to the VM. We need to either panic or continue.
883 * For now, we'll panic (to help flag if there is memory we can
886 if (ml_static_protect(vaddr_cur
, PAGE_SIZE
, VM_PROT_WRITE
| VM_PROT_READ
) != KERN_SUCCESS
) {
887 panic("Failed ml_static_mfree on %p", (void *) vaddr_cur
);
891 * Must NOT tear down the "V==P" mapping for vaddr_cur as the zone alias scheme
892 * relies on the persistence of these mappings for all time.
894 // pmap_remove(kernel_pmap, (addr64_t) vaddr_cur, (addr64_t) (vaddr_cur + PAGE_SIZE));
896 vm_page_create(ppn
, (ppn
+ 1));
900 vm_page_lockspin_queues();
901 vm_page_wire_count
-= freed_pages
;
902 vm_page_wire_count_initial
-= freed_pages
;
903 vm_page_unlock_queues();
905 kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages
, (void *)vaddr
, (uint64_t)size
, ppn
);
910 /* virtual to physical on wired pages */
912 ml_vtophys(vm_offset_t vaddr
)
914 return kvtophys(vaddr
);
918 * Routine: ml_nofault_copy
919 * Function: Perform a physical mode copy if the source and destination have
920 * valid translations in the kernel pmap. If translations are present, they are
921 * assumed to be wired; e.g., no attempt is made to guarantee that the
922 * translations obtained remain valid for the duration of the copy process.
925 ml_nofault_copy(vm_offset_t virtsrc
, vm_offset_t virtdst
, vm_size_t size
)
927 addr64_t cur_phys_dst
, cur_phys_src
;
928 uint32_t count
, nbytes
= 0;
931 if (!(cur_phys_src
= kvtophys(virtsrc
))) {
934 if (!(cur_phys_dst
= kvtophys(virtdst
))) {
937 if (!pmap_valid_address(trunc_page_64(cur_phys_dst
)) ||
938 !pmap_valid_address(trunc_page_64(cur_phys_src
))) {
941 count
= PAGE_SIZE
- (cur_phys_src
& PAGE_MASK
);
942 if (count
> (PAGE_SIZE
- (cur_phys_dst
& PAGE_MASK
))) {
943 count
= PAGE_SIZE
- (cur_phys_dst
& PAGE_MASK
);
949 bcopy_phys(cur_phys_src
, cur_phys_dst
, count
);
961 * Routine: ml_validate_nofault
962 * Function: Validate that ths address range has a valid translations
963 * in the kernel pmap. If translations are present, they are
964 * assumed to be wired; i.e. no attempt is made to guarantee
965 * that the translation persist after the check.
966 * Returns: TRUE if the range is mapped and will not cause a fault,
972 vm_offset_t virtsrc
, vm_size_t size
)
974 addr64_t cur_phys_src
;
978 if (!(cur_phys_src
= kvtophys(virtsrc
))) {
981 if (!pmap_valid_address(trunc_page_64(cur_phys_src
))) {
984 count
= (uint32_t)(PAGE_SIZE
- (cur_phys_src
& PAGE_MASK
));
986 count
= (uint32_t)size
;
997 ml_get_bouncepool_info(vm_offset_t
* phys_addr
, vm_size_t
* size
)
1004 * Stubs for CPU Stepper
1007 active_rt_threads(__unused boolean_t active
)
1012 thread_tell_urgency(__unused thread_urgency_t urgency
,
1013 __unused
uint64_t rt_period
,
1014 __unused
uint64_t rt_deadline
,
1015 __unused
uint64_t sched_latency
,
1016 __unused thread_t nthread
)
1021 machine_run_count(__unused
uint32_t count
)
1026 machine_choose_processor(__unused processor_set_t pset
, processor_t processor
)
1032 machine_timeout_suspended(void)
1038 ml_interrupt_prewarm(__unused
uint64_t deadline
)
1040 return KERN_FAILURE
;
1044 ml_get_hwclock(void)
1046 uint64_t high_first
= 0;
1047 uint64_t high_second
= 0;
1050 __builtin_arm_isb(ISB_SY
);
1053 high_first
= __builtin_arm_mrrc(15, 0, 14) >> 32;
1054 low
= __builtin_arm_mrrc(15, 0, 14) & 0xFFFFFFFFULL
;
1055 high_second
= __builtin_arm_mrrc(15, 0, 14) >> 32;
1056 } while (high_first
!= high_second
);
1058 return (high_first
<< 32) | (low
);
1062 ml_delay_should_spin(uint64_t interval
)
1064 cpu_data_t
*cdp
= getCpuDatap();
1066 if (cdp
->cpu_idle_latency
) {
1067 return (interval
< cdp
->cpu_idle_latency
) ? TRUE
: FALSE
;
1070 * Early boot, latency is unknown. Err on the side of blocking,
1071 * which should always be safe, even if slow
1078 ml_delay_on_yield(void)
1083 ml_thread_is64bit(thread_t thread
)
1085 return thread_is_64bit_addr(thread
);
1089 ml_timer_evaluate(void)
1094 ml_timer_forced_evaluation(void)
1100 ml_energy_stat(__unused thread_t t
)
1107 ml_gpu_stat_update(__unused
uint64_t gpu_ns_delta
)
1111 * For now: update the resource coalition stats of the
1112 * current thread's coalition
1114 task_coalition_update_gpu_stats(current_task(), gpu_ns_delta
);
1119 ml_gpu_stat(__unused thread_t t
)
1124 #if !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME
1126 timer_state_event(boolean_t switch_to_kernel
)
1128 thread_t thread
= current_thread();
1129 if (!thread
->precise_user_kernel_time
) {
1133 processor_data_t
*pd
= &getCpuDatap()->cpu_processor
->processor_data
;
1134 uint64_t now
= ml_get_timebase();
1136 timer_stop(pd
->current_state
, now
);
1137 pd
->current_state
= (switch_to_kernel
) ? &pd
->system_state
: &pd
->user_state
;
1138 timer_start(pd
->current_state
, now
);
1140 timer_stop(pd
->thread_timer
, now
);
1141 pd
->thread_timer
= (switch_to_kernel
) ? &thread
->system_timer
: &thread
->user_timer
;
1142 timer_start(pd
->thread_timer
, now
);
1146 timer_state_event_user_to_kernel(void)
1148 timer_state_event(TRUE
);
1152 timer_state_event_kernel_to_user(void)
1154 timer_state_event(FALSE
);
1156 #endif /* !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME */
1159 get_arm_cpu_version(void)
1161 uint32_t value
= machine_read_midr();
1163 /* Compose the register values into 8 bits; variant[7:4], revision[3:0]. */
1164 return ((value
& MIDR_REV_MASK
) >> MIDR_REV_SHIFT
) | ((value
& MIDR_VAR_MASK
) >> (MIDR_VAR_SHIFT
- 4));
1168 user_cont_hwclock_allowed(void)
1174 user_timebase_type(void)
1177 return USER_TIMEBASE_SPEC
;
1179 return USER_TIMEBASE_NONE
;
1184 * The following are required for parts of the kernel
1185 * that cannot resolve these functions as inlines:
1187 extern thread_t
current_act(void) __attribute__((const));
1191 return current_thread_fast();
1194 #undef current_thread
1195 extern thread_t
current_thread(void) __attribute__((const));
1197 current_thread(void)
1199 return current_thread_fast();
1202 #if __ARM_USER_PROTECT__
1204 arm_user_protect_begin(thread_t thread
)
1206 uintptr_t ttbr0
, asid
= 0; // kernel asid
1208 ttbr0
= __builtin_arm_mrc(15, 0, 2, 0, 0); // Get TTBR0
1209 if (ttbr0
!= thread
->machine
.kptw_ttb
) {
1210 __builtin_arm_mcr(15, 0, thread
->machine
.kptw_ttb
, 2, 0, 0); // Set TTBR0
1211 __builtin_arm_mcr(15, 0, asid
, 13, 0, 1); // Set CONTEXTIDR
1212 __builtin_arm_isb(ISB_SY
);
1218 arm_user_protect_end(thread_t thread
, uintptr_t ttbr0
, boolean_t disable_interrupts
)
1220 if ((ttbr0
!= thread
->machine
.kptw_ttb
) && (thread
->machine
.uptw_ttb
!= thread
->machine
.kptw_ttb
)) {
1221 if (disable_interrupts
) {
1222 __asm__
volatile ("cpsid if" ::: "memory"); // Disable FIQ/IRQ
1224 __builtin_arm_mcr(15, 0, thread
->machine
.uptw_ttb
, 2, 0, 0); // Set TTBR0
1225 __builtin_arm_mcr(15, 0, thread
->machine
.asid
, 13, 0, 1); // Set CONTEXTIDR with thread asid
1226 __builtin_arm_dsb(DSB_ISH
);
1227 __builtin_arm_isb(ISB_SY
);
1230 #endif // __ARM_USER_PROTECT__