2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
74 #include <sys/mcache.h>
76 #include <sys/domain.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/sysctl.h>
81 #include <libkern/OSAtomic.h>
82 #include <kern/zalloc.h>
84 #include <pexpert/pexpert.h>
87 #include <net/net_api_stats.h>
88 #include <net/route.h>
91 #include <netinet/in.h>
92 #include <netinet/in_systm.h>
93 #include <netinet/in_tclass.h>
94 #include <netinet/ip.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet/in_var.h>
97 #include <netinet/ip_var.h>
100 #include <netinet6/in6_pcb.h>
103 #include <netinet/ip_fw.h>
106 #include <netinet6/ipsec.h>
110 #include <netinet/ip_dummynet.h>
114 #include <security/mac_framework.h>
118 int rip_detach(struct socket
*);
119 int rip_abort(struct socket
*);
120 int rip_disconnect(struct socket
*);
121 int rip_bind(struct socket
*, struct sockaddr
*, struct proc
*);
122 int rip_connect(struct socket
*, struct sockaddr
*, struct proc
*);
123 int rip_shutdown(struct socket
*);
125 struct inpcbhead ripcb
;
126 struct inpcbinfo ripcbinfo
;
128 /* control hooks for ipfw and dummynet */
130 ip_fw_ctl_t
*ip_fw_ctl_ptr
;
131 #endif /* IPFIREWALL */
133 ip_dn_ctl_t
*ip_dn_ctl_ptr
;
134 #endif /* DUMMYNET */
137 * Nominal space allocated to a raw ip socket.
143 * Raw interface to IP protocol.
147 * Initialize raw connection block q.
150 rip_init(struct protosw
*pp
, struct domain
*dp
)
153 static int rip_initialized
= 0;
154 struct inpcbinfo
*pcbinfo
;
156 VERIFY((pp
->pr_flags
& (PR_INITIALIZED
| PR_ATTACHED
)) == PR_ATTACHED
);
158 if (rip_initialized
) {
164 ripcbinfo
.ipi_listhead
= &ripcb
;
166 * XXX We don't use the hash list for raw IP, but it's easier
167 * to allocate a one entry hash list than it is to check all
168 * over the place for ipi_hashbase == NULL.
170 ripcbinfo
.ipi_hashbase
= hashinit(1, M_PCB
, &ripcbinfo
.ipi_hashmask
);
171 ripcbinfo
.ipi_porthashbase
= hashinit(1, M_PCB
, &ripcbinfo
.ipi_porthashmask
);
173 ripcbinfo
.ipi_zone
= zinit(sizeof(struct inpcb
),
174 (4096 * sizeof(struct inpcb
)), 4096, "ripzone");
176 pcbinfo
= &ripcbinfo
;
178 * allocate lock group attribute and group for udp pcb mutexes
180 pcbinfo
->ipi_lock_grp_attr
= lck_grp_attr_alloc_init();
181 pcbinfo
->ipi_lock_grp
= lck_grp_alloc_init("ripcb", pcbinfo
->ipi_lock_grp_attr
);
184 * allocate the lock attribute for udp pcb mutexes
186 pcbinfo
->ipi_lock_attr
= lck_attr_alloc_init();
187 if ((pcbinfo
->ipi_lock
= lck_rw_alloc_init(pcbinfo
->ipi_lock_grp
,
188 pcbinfo
->ipi_lock_attr
)) == NULL
) {
189 panic("%s: unable to allocate PCB lock\n", __func__
);
193 in_pcbinfo_attach(&ripcbinfo
);
196 static struct sockaddr_in ripsrc
= {
197 .sin_len
= sizeof(ripsrc
),
198 .sin_family
= AF_INET
,
200 .sin_addr
= { .s_addr
= 0 },
201 .sin_zero
= {0, 0, 0, 0, 0, 0, 0, 0, }
205 * Setup generic address and protocol structures
206 * for raw_input routine, then pass them along with
210 rip_input(struct mbuf
*m
, int iphlen
)
212 struct ip
*ip
= mtod(m
, struct ip
*);
214 struct inpcb
*last
= 0;
215 struct mbuf
*opts
= 0;
216 int skipit
= 0, ret
= 0;
217 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
219 /* Expect 32-bit aligned data pointer on strict-align platforms */
220 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
222 ripsrc
.sin_addr
= ip
->ip_src
;
223 lck_rw_lock_shared(ripcbinfo
.ipi_lock
);
224 LIST_FOREACH(inp
, &ripcb
, inp_list
) {
226 if ((inp
->inp_vflag
& INP_IPV4
) == 0) {
230 if (inp
->inp_ip_p
&& (inp
->inp_ip_p
!= ip
->ip_p
)) {
233 if (inp
->inp_laddr
.s_addr
&&
234 inp
->inp_laddr
.s_addr
!= ip
->ip_dst
.s_addr
) {
237 if (inp
->inp_faddr
.s_addr
&&
238 inp
->inp_faddr
.s_addr
!= ip
->ip_src
.s_addr
) {
241 if (inp_restricted_recv(inp
, ifp
)) {
245 struct mbuf
*n
= m_copy(m
, 0, (int)M_COPYALL
);
250 if (n
&& !necp_socket_is_allowed_to_send_recv_v4(last
, 0, 0,
251 &ip
->ip_dst
, &ip
->ip_src
, ifp
, NULL
, NULL
, NULL
)) {
253 /* do not inject data to pcb */
258 if (n
&& skipit
== 0) {
259 if (mac_inpcb_check_deliver(last
, n
, AF_INET
,
266 if (n
&& skipit
== 0) {
268 if ((last
->inp_flags
& INP_CONTROLOPTS
) != 0 ||
269 (last
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0 ||
270 (last
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0 ||
271 (last
->inp_socket
->so_options
& SO_TIMESTAMP_CONTINUOUS
) != 0) {
272 ret
= ip_savecontrol(last
, &opts
, ip
, n
);
280 if (last
->inp_flags
& INP_STRIPHDR
) {
282 n
->m_pkthdr
.len
-= iphlen
;
285 so_recv_data_stat(last
->inp_socket
, m
, 0);
286 if (sbappendaddr(&last
->inp_socket
->so_rcv
,
287 (struct sockaddr
*)&ripsrc
, n
,
288 opts
, &error
) != 0) {
289 sorwakeup(last
->inp_socket
);
292 /* should notify about lost packet */
293 ipstat
.ips_raw_sappend_fail
++;
304 if (last
&& !necp_socket_is_allowed_to_send_recv_v4(last
, 0, 0,
305 &ip
->ip_dst
, &ip
->ip_src
, ifp
, NULL
, NULL
, NULL
)) {
307 OSAddAtomic(1, &ipstat
.ips_delivered
);
308 /* do not inject data to pcb */
313 if (last
&& skipit
== 0) {
314 if (mac_inpcb_check_deliver(last
, m
, AF_INET
, SOCK_RAW
) != 0) {
322 if ((last
->inp_flags
& INP_CONTROLOPTS
) != 0 ||
323 (last
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0 ||
324 (last
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0 ||
325 (last
->inp_socket
->so_options
& SO_TIMESTAMP_CONTINUOUS
) != 0) {
326 ret
= ip_savecontrol(last
, &opts
, ip
, m
);
333 if (last
->inp_flags
& INP_STRIPHDR
) {
335 m
->m_pkthdr
.len
-= iphlen
;
338 so_recv_data_stat(last
->inp_socket
, m
, 0);
339 if (sbappendaddr(&last
->inp_socket
->so_rcv
,
340 (struct sockaddr
*)&ripsrc
, m
, opts
, NULL
) != 0) {
341 sorwakeup(last
->inp_socket
);
343 ipstat
.ips_raw_sappend_fail
++;
347 OSAddAtomic(1, &ipstat
.ips_noproto
);
348 OSAddAtomic(-1, &ipstat
.ips_delivered
);
353 * Keep the list locked because socket filter may force the socket lock
354 * to be released when calling sbappendaddr() -- see rdar://7627704
356 lck_rw_done(ripcbinfo
.ipi_lock
);
360 * Generate IP header and pass packet to ip_output.
361 * Tack on options user may have setup with control call.
368 struct mbuf
*control
)
371 struct inpcb
*inp
= sotoinpcb(so
);
372 int flags
= (so
->so_options
& SO_DONTROUTE
) | IP_ALLOWBROADCAST
;
373 struct ip_out_args ipoa
;
374 struct ip_moptions
*imo
;
375 int tos
= IPTOS_UNSPEC
;
378 bzero(&ipoa
, sizeof(ipoa
));
379 ipoa
.ipoa_boundif
= IFSCOPE_NONE
;
380 ipoa
.ipoa_flags
= IPOAF_SELECT_SRCIF
;
382 int sotc
= SO_TC_UNSPEC
;
383 int netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
386 if (control
!= NULL
) {
387 tos
= so_tos_from_control(control
);
388 sotc
= so_tc_from_control(control
, &netsvctype
);
393 if (sotc
== SO_TC_UNSPEC
) {
394 sotc
= so
->so_traffic_class
;
395 netsvctype
= so
->so_netsvctype
;
400 || (necp_socket_should_use_flow_divert(inp
))
406 VERIFY(control
== NULL
);
407 return inp
== NULL
? EINVAL
: EPROTOTYPE
;
411 /* If socket was bound to an ifindex, tell ip_output about it */
412 if (inp
->inp_flags
& INP_BOUND_IF
) {
413 ipoa
.ipoa_boundif
= inp
->inp_boundifp
->if_index
;
414 ipoa
.ipoa_flags
|= IPOAF_BOUND_IF
;
416 if (INP_NO_CELLULAR(inp
)) {
417 ipoa
.ipoa_flags
|= IPOAF_NO_CELLULAR
;
419 if (INP_NO_EXPENSIVE(inp
)) {
420 ipoa
.ipoa_flags
|= IPOAF_NO_EXPENSIVE
;
422 if (INP_NO_CONSTRAINED(inp
)) {
423 ipoa
.ipoa_flags
|= IPOAF_NO_CONSTRAINED
;
425 if (INP_AWDL_UNRESTRICTED(inp
)) {
426 ipoa
.ipoa_flags
|= IPOAF_AWDL_UNRESTRICTED
;
428 ipoa
.ipoa_sotc
= sotc
;
429 ipoa
.ipoa_netsvctype
= netsvctype
;
431 if (inp
->inp_flowhash
== 0) {
432 inp
->inp_flowhash
= inp_calc_flowhash(inp
);
436 * If the user handed us a complete IP packet, use it.
437 * Otherwise, allocate an mbuf for a header and fill it in.
439 if ((inp
->inp_flags
& INP_HDRINCL
) == 0) {
440 if (m
->m_pkthdr
.len
+ sizeof(struct ip
) > IP_MAXPACKET
) {
444 M_PREPEND(m
, sizeof(struct ip
), M_WAIT
, 1);
448 ip
= mtod(m
, struct ip
*);
449 if (tos
!= IPTOS_UNSPEC
) {
450 ip
->ip_tos
= (uint8_t)(tos
& IPTOS_MASK
);
452 ip
->ip_tos
= inp
->inp_ip_tos
;
455 ip
->ip_p
= inp
->inp_ip_p
;
456 ip
->ip_len
= m
->m_pkthdr
.len
;
457 ip
->ip_src
= inp
->inp_laddr
;
458 ip
->ip_dst
.s_addr
= dst
;
459 ip
->ip_ttl
= inp
->inp_ip_ttl
;
461 if (m
->m_pkthdr
.len
> IP_MAXPACKET
) {
465 ip
= mtod(m
, struct ip
*);
466 /* don't allow both user specified and setsockopt options,
467 * and don't allow packet length sizes that will crash */
468 if (((IP_VHL_HL(ip
->ip_vhl
) != (sizeof(*ip
) >> 2))
470 || (ip
->ip_len
> m
->m_pkthdr
.len
)
471 || (ip
->ip_len
< (IP_VHL_HL(ip
->ip_vhl
) << 2))) {
475 if (ip
->ip_id
== 0 && !(rfc6864
&& IP_OFF_IS_ATOMIC(ntohs(ip
->ip_off
)))) {
476 ip
->ip_id
= ip_randomid();
478 /* XXX prevent ip_output from overwriting header fields */
479 flags
|= IP_RAWOUTPUT
;
480 OSAddAtomic(1, &ipstat
.ips_rawout
);
483 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
484 ipoa
.ipoa_flags
|= IPOAF_BOUND_SRCADDR
;
489 necp_kernel_policy_id policy_id
;
490 necp_kernel_policy_id skip_policy_id
;
491 u_int32_t route_rule_id
;
494 * We need a route to perform NECP route rule checks
496 if (net_qos_policy_restricted
!= 0 &&
497 ROUTE_UNUSABLE(&inp
->inp_route
)) {
498 struct sockaddr_in to
;
499 struct sockaddr_in from
;
500 struct in_addr laddr
= ip
->ip_src
;
502 ROUTE_RELEASE(&inp
->inp_route
);
504 bzero(&from
, sizeof(struct sockaddr_in
));
505 from
.sin_family
= AF_INET
;
506 from
.sin_len
= sizeof(struct sockaddr_in
);
507 from
.sin_addr
= laddr
;
509 bzero(&to
, sizeof(struct sockaddr_in
));
510 to
.sin_family
= AF_INET
;
511 to
.sin_len
= sizeof(struct sockaddr_in
);
512 to
.sin_addr
.s_addr
= ip
->ip_dst
.s_addr
;
514 if ((error
= in_pcbladdr(inp
, (struct sockaddr
*)&to
,
515 &laddr
, ipoa
.ipoa_boundif
, NULL
, 1)) != 0) {
516 printf("%s in_pcbladdr(%p) error %d\n",
517 __func__
, inp
, error
);
522 inp_update_necp_policy(inp
, (struct sockaddr
*)&from
,
523 (struct sockaddr
*)&to
, ipoa
.ipoa_boundif
);
524 inp
->inp_policyresult
.results
.qos_marking_gencount
= 0;
527 if (!necp_socket_is_allowed_to_send_recv_v4(inp
, 0, 0,
528 &ip
->ip_src
, &ip
->ip_dst
, NULL
, &policy_id
, &route_rule_id
, &skip_policy_id
)) {
533 necp_mark_packet_from_socket(m
, inp
, policy_id
, route_rule_id
, skip_policy_id
);
535 if (net_qos_policy_restricted
!= 0) {
536 struct ifnet
*rt_ifp
= NULL
;
538 if (inp
->inp_route
.ro_rt
!= NULL
) {
539 rt_ifp
= inp
->inp_route
.ro_rt
->rt_ifp
;
542 necp_socket_update_qos_marking(inp
, inp
->inp_route
.ro_rt
,
543 NULL
, route_rule_id
);
547 if ((so
->so_flags1
& SOF1_QOSMARKING_ALLOWED
)) {
548 ipoa
.ipoa_flags
|= IPOAF_QOSMARKING_ALLOWED
;
552 if (inp
->inp_sp
!= NULL
&& ipsec_setsocket(m
, so
) != 0) {
558 if (ROUTE_UNUSABLE(&inp
->inp_route
)) {
559 ROUTE_RELEASE(&inp
->inp_route
);
562 set_packet_service_class(m
, so
, sotc
, 0);
563 m
->m_pkthdr
.pkt_flowsrc
= FLOWSRC_INPCB
;
564 m
->m_pkthdr
.pkt_flowid
= inp
->inp_flowhash
;
565 m
->m_pkthdr
.pkt_flags
|= (PKTF_FLOW_ID
| PKTF_FLOW_LOCALSRC
|
567 m
->m_pkthdr
.pkt_proto
= inp
->inp_ip_p
;
568 m
->m_pkthdr
.tx_rawip_pid
= so
->last_pid
;
569 m
->m_pkthdr
.tx_rawip_e_pid
= so
->e_pid
;
570 if (so
->so_flags
& SOF_DELEGATED
) {
571 m
->m_pkthdr
.tx_rawip_e_pid
= so
->e_pid
;
573 m
->m_pkthdr
.tx_rawip_e_pid
= 0;
577 mac_mbuf_label_associate_inpcb(inp
, m
);
580 imo
= inp
->inp_moptions
;
585 * The domain lock is held across ip_output, so it is okay
586 * to pass the PCB cached route pointer directly to IP and
587 * the modules beneath it.
589 // TODO: PASS DOWN ROUTE RULE ID
590 error
= ip_output(m
, inp
->inp_options
, &inp
->inp_route
, flags
,
597 if (inp
->inp_route
.ro_rt
!= NULL
) {
598 struct rtentry
*rt
= inp
->inp_route
.ro_rt
;
601 if ((rt
->rt_flags
& (RTF_MULTICAST
| RTF_BROADCAST
)) ||
602 inp
->inp_socket
== NULL
||
603 !(inp
->inp_socket
->so_state
& SS_ISCONNECTED
)) {
604 rt
= NULL
; /* unusable */
607 * Always discard the cached route for unconnected
608 * socket or if it is a multicast route.
611 ROUTE_RELEASE(&inp
->inp_route
);
615 * If this is a connected socket and the destination
616 * route is unicast, update outif with that of the
617 * route interface used by IP.
620 (outif
= rt
->rt_ifp
) != inp
->inp_last_outifp
) {
621 inp
->inp_last_outifp
= outif
;
624 ROUTE_RELEASE(&inp
->inp_route
);
628 * If output interface was cellular/expensive/constrained, and this socket is
629 * denied access to it, generate an event.
631 if (error
!= 0 && (ipoa
.ipoa_retflags
& IPOARF_IFDENIED
) &&
632 (INP_NO_CELLULAR(inp
) || INP_NO_EXPENSIVE(inp
) || INP_NO_CONSTRAINED(inp
))) {
633 soevent(so
, (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_IFDENIED
));
648 if (!DUMMYNET_LOADED
) {
651 #endif /* DUMMYNET */
654 return err
== 0 && ip_fw_ctl_ptr
== NULL
? -1 : err
;
656 #endif /* IPFIREWALL */
659 * Raw IP socket option processing.
662 rip_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
664 struct inpcb
*inp
= sotoinpcb(so
);
667 /* Allow <SOL_SOCKET,SO_FLUSH> at this level */
668 if (sopt
->sopt_level
!= IPPROTO_IP
&&
669 !(sopt
->sopt_level
== SOL_SOCKET
&& sopt
->sopt_name
== SO_FLUSH
)) {
675 switch (sopt
->sopt_dir
) {
677 switch (sopt
->sopt_name
) {
679 optval
= inp
->inp_flags
& INP_HDRINCL
;
680 error
= sooptcopyout(sopt
, &optval
, sizeof optval
);
684 optval
= inp
->inp_flags
& INP_STRIPHDR
;
685 error
= sooptcopyout(sopt
, &optval
, sizeof optval
);
693 if (ip_fw_ctl_ptr
== 0) {
696 if (ip_fw_ctl_ptr
&& error
== 0) {
697 error
= ip_fw_ctl_ptr(sopt
);
702 #endif /* IPFIREWALL */
705 case IP_DUMMYNET_GET
:
706 if (!DUMMYNET_LOADED
) {
709 if (DUMMYNET_LOADED
) {
710 error
= ip_dn_ctl_ptr(sopt
);
715 #endif /* DUMMYNET */
718 error
= ip_ctloutput(so
, sopt
);
724 switch (sopt
->sopt_name
) {
726 error
= sooptcopyin(sopt
, &optval
, sizeof optval
,
732 inp
->inp_flags
|= INP_HDRINCL
;
734 inp
->inp_flags
&= ~INP_HDRINCL
;
739 error
= sooptcopyin(sopt
, &optval
, sizeof optval
,
745 inp
->inp_flags
|= INP_STRIPHDR
;
747 inp
->inp_flags
&= ~INP_STRIPHDR
;
759 case IP_OLD_FW_FLUSH
:
761 case IP_OLD_FW_RESETLOG
:
762 if (ip_fw_ctl_ptr
== 0) {
765 if (ip_fw_ctl_ptr
&& error
== 0) {
766 error
= ip_fw_ctl_ptr(sopt
);
771 #endif /* IPFIREWALL */
774 case IP_DUMMYNET_CONFIGURE
:
775 case IP_DUMMYNET_DEL
:
776 case IP_DUMMYNET_FLUSH
:
777 if (!DUMMYNET_LOADED
) {
780 if (DUMMYNET_LOADED
) {
781 error
= ip_dn_ctl_ptr(sopt
);
789 if ((error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
790 sizeof(optval
))) != 0) {
794 error
= inp_flush(inp
, optval
);
798 error
= ip_ctloutput(so
, sopt
);
808 * This function exists solely to receive the PRC_IFDOWN messages which
809 * are sent by if_down(). It looks for an ifaddr whose ifa_addr is sa,
810 * and calls in_ifadown() to remove all routes corresponding to that address.
811 * It also receives the PRC_IFUP messages from if_up() and reinstalls the
819 __unused
struct ifnet
*ifp
)
821 struct in_ifaddr
*ia
= NULL
;
822 struct ifnet
*iaifp
= NULL
;
828 lck_rw_lock_shared(in_ifaddr_rwlock
);
829 for (ia
= in_ifaddrhead
.tqh_first
; ia
;
830 ia
= ia
->ia_link
.tqe_next
) {
831 IFA_LOCK(&ia
->ia_ifa
);
832 if (ia
->ia_ifa
.ifa_addr
== sa
&&
833 (ia
->ia_flags
& IFA_ROUTE
)) {
835 IFA_ADDREF_LOCKED(&ia
->ia_ifa
);
836 IFA_UNLOCK(&ia
->ia_ifa
);
837 lck_rw_done(in_ifaddr_rwlock
);
838 lck_mtx_lock(rnh_lock
);
840 * in_ifscrub kills the interface route.
842 in_ifscrub(ia
->ia_ifp
, ia
, 1);
844 * in_ifadown gets rid of all the rest of
845 * the routes. This is not quite the right
846 * thing to do, but at least if we are running
847 * a routing process they will come back.
849 in_ifadown(&ia
->ia_ifa
, 1);
850 lck_mtx_unlock(rnh_lock
);
851 IFA_REMREF(&ia
->ia_ifa
);
854 IFA_UNLOCK(&ia
->ia_ifa
);
857 lck_rw_done(in_ifaddr_rwlock
);
862 lck_rw_lock_shared(in_ifaddr_rwlock
);
863 for (ia
= in_ifaddrhead
.tqh_first
; ia
;
864 ia
= ia
->ia_link
.tqe_next
) {
865 IFA_LOCK(&ia
->ia_ifa
);
866 if (ia
->ia_ifa
.ifa_addr
== sa
) {
870 IFA_UNLOCK(&ia
->ia_ifa
);
872 if (ia
== NULL
|| (ia
->ia_flags
& IFA_ROUTE
) ||
873 (ia
->ia_ifa
.ifa_debug
& IFD_NOTREADY
)) {
875 IFA_UNLOCK(&ia
->ia_ifa
);
877 lck_rw_done(in_ifaddr_rwlock
);
880 IFA_ADDREF_LOCKED(&ia
->ia_ifa
);
881 IFA_UNLOCK(&ia
->ia_ifa
);
882 lck_rw_done(in_ifaddr_rwlock
);
885 iaifp
= ia
->ia_ifa
.ifa_ifp
;
887 if ((iaifp
->if_flags
& IFF_LOOPBACK
)
888 || (iaifp
->if_flags
& IFF_POINTOPOINT
)) {
892 err
= rtinit(&ia
->ia_ifa
, RTM_ADD
, flags
);
894 IFA_LOCK_SPIN(&ia
->ia_ifa
);
895 ia
->ia_flags
|= IFA_ROUTE
;
896 IFA_UNLOCK(&ia
->ia_ifa
);
898 IFA_REMREF(&ia
->ia_ifa
);
903 u_int32_t rip_sendspace
= RIPSNDQ
;
904 u_int32_t rip_recvspace
= RIPRCVQ
;
906 SYSCTL_INT(_net_inet_raw
, OID_AUTO
, maxdgram
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
907 &rip_sendspace
, 0, "Maximum outgoing raw IP datagram size");
908 SYSCTL_INT(_net_inet_raw
, OID_AUTO
, recvspace
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
909 &rip_recvspace
, 0, "Maximum incoming raw IP datagram size");
910 SYSCTL_UINT(_net_inet_raw
, OID_AUTO
, pcbcount
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
911 &ripcbinfo
.ipi_count
, 0, "Number of active PCBs");
914 rip_attach(struct socket
*so
, int proto
, struct proc
*p
)
923 if ((so
->so_state
& SS_PRIV
) == 0) {
927 error
= soreserve(so
, rip_sendspace
, rip_recvspace
);
931 error
= in_pcballoc(so
, &ripcbinfo
, p
);
935 inp
= (struct inpcb
*)so
->so_pcb
;
936 inp
->inp_vflag
|= INP_IPV4
;
937 inp
->inp_ip_p
= proto
;
938 inp
->inp_ip_ttl
= ip_defttl
;
942 __private_extern__
int
943 rip_detach(struct socket
*so
)
955 __private_extern__
int
956 rip_abort(struct socket
*so
)
958 soisdisconnected(so
);
959 return rip_detach(so
);
962 __private_extern__
int
963 rip_disconnect(struct socket
*so
)
965 if ((so
->so_state
& SS_ISCONNECTED
) == 0) {
968 return rip_abort(so
);
971 __private_extern__
int
972 rip_bind(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
975 struct inpcb
*inp
= sotoinpcb(so
);
976 struct sockaddr_in sin
;
977 struct ifaddr
*ifa
= NULL
;
978 struct ifnet
*outif
= NULL
;
982 || (necp_socket_should_use_flow_divert(inp
))
985 return inp
== NULL
? EINVAL
: EPROTOTYPE
;
988 if (nam
->sa_len
!= sizeof(struct sockaddr_in
)) {
992 /* Sanitized local copy for interface address searches */
993 bzero(&sin
, sizeof(sin
));
994 sin
.sin_family
= AF_INET
;
995 sin
.sin_len
= sizeof(struct sockaddr_in
);
996 sin
.sin_addr
.s_addr
= SIN(nam
)->sin_addr
.s_addr
;
998 if (TAILQ_EMPTY(&ifnet_head
) ||
999 (sin
.sin_family
!= AF_INET
&& sin
.sin_family
!= AF_IMPLINK
) ||
1000 (sin
.sin_addr
.s_addr
&& (ifa
= ifa_ifwithaddr(SA(&sin
))) == 0)) {
1001 return EADDRNOTAVAIL
;
1004 * Opportunistically determine the outbound
1005 * interface that may be used; this may not
1006 * hold true if we end up using a route
1007 * going over a different interface, e.g.
1008 * when sending to a local address. This
1009 * will get updated again after sending.
1012 outif
= ifa
->ifa_ifp
;
1016 inp
->inp_laddr
= sin
.sin_addr
;
1017 inp
->inp_last_outifp
= outif
;
1022 __private_extern__
int
1023 rip_connect(struct socket
*so
, struct sockaddr
*nam
, __unused
struct proc
*p
)
1025 struct inpcb
*inp
= sotoinpcb(so
);
1026 struct sockaddr_in
*addr
= (struct sockaddr_in
*)(void *)nam
;
1030 || (necp_socket_should_use_flow_divert(inp
))
1033 return inp
== NULL
? EINVAL
: EPROTOTYPE
;
1035 if (nam
->sa_len
!= sizeof(*addr
)) {
1038 if (TAILQ_EMPTY(&ifnet_head
)) {
1039 return EADDRNOTAVAIL
;
1041 if ((addr
->sin_family
!= AF_INET
) &&
1042 (addr
->sin_family
!= AF_IMPLINK
)) {
1043 return EAFNOSUPPORT
;
1046 if (!(so
->so_flags1
& SOF1_CONNECT_COUNTED
)) {
1047 so
->so_flags1
|= SOF1_CONNECT_COUNTED
;
1048 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_connected
);
1051 inp
->inp_faddr
= addr
->sin_addr
;
1057 __private_extern__
int
1058 rip_shutdown(struct socket
*so
)
1064 __private_extern__
int
1065 rip_send(struct socket
*so
, int flags
, struct mbuf
*m
, struct sockaddr
*nam
,
1066 struct mbuf
*control
, struct proc
*p
)
1068 #pragma unused(flags, p)
1069 struct inpcb
*inp
= sotoinpcb(so
);
1075 || (necp_socket_should_use_flow_divert(inp
) && (error
= EPROTOTYPE
))
1086 if (so
->so_state
& SS_ISCONNECTED
) {
1091 dst
= inp
->inp_faddr
.s_addr
;
1097 dst
= ((struct sockaddr_in
*)(void *)nam
)->sin_addr
.s_addr
;
1099 return rip_output(m
, so
, dst
, control
);
1107 if (control
!= NULL
) {
1114 /* note: rip_unlock is called from different protos instead of the generic socket_unlock,
1115 * it will handle the socket dealloc on last reference
1118 rip_unlock(struct socket
*so
, int refcount
, void *debug
)
1121 struct inpcb
*inp
= sotoinpcb(so
);
1123 if (debug
== NULL
) {
1124 lr_saved
= __builtin_return_address(0);
1130 if (so
->so_usecount
<= 0) {
1131 panic("rip_unlock: bad refoucnt so=%p val=%x lrh= %s\n",
1132 so
, so
->so_usecount
, solockhistory_nr(so
));
1136 if (so
->so_usecount
== 0 && (inp
->inp_wantcnt
== WNT_STOPUSING
)) {
1137 /* cleanup after last reference */
1138 lck_mtx_unlock(so
->so_proto
->pr_domain
->dom_mtx
);
1139 lck_rw_lock_exclusive(ripcbinfo
.ipi_lock
);
1140 if (inp
->inp_state
!= INPCB_STATE_DEAD
) {
1142 if (SOCK_CHECK_DOM(so
, PF_INET6
)) {
1149 lck_rw_done(ripcbinfo
.ipi_lock
);
1153 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
1154 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
1155 lck_mtx_unlock(so
->so_proto
->pr_domain
->dom_mtx
);
1160 rip_pcblist SYSCTL_HANDLER_ARGS
1162 #pragma unused(oidp, arg1, arg2)
1164 struct inpcb
*inp
, **inp_list
;
1169 * The process of preparing the TCB list is too time-consuming and
1170 * resource-intensive to repeat twice on every request.
1172 lck_rw_lock_exclusive(ripcbinfo
.ipi_lock
);
1173 if (req
->oldptr
== USER_ADDR_NULL
) {
1174 n
= ripcbinfo
.ipi_count
;
1175 req
->oldidx
= 2 * (sizeof xig
)
1176 + (n
+ n
/ 8) * sizeof(struct xinpcb
);
1177 lck_rw_done(ripcbinfo
.ipi_lock
);
1181 if (req
->newptr
!= USER_ADDR_NULL
) {
1182 lck_rw_done(ripcbinfo
.ipi_lock
);
1187 * OK, now we're committed to doing something.
1189 gencnt
= ripcbinfo
.ipi_gencnt
;
1190 n
= ripcbinfo
.ipi_count
;
1192 bzero(&xig
, sizeof(xig
));
1193 xig
.xig_len
= sizeof xig
;
1195 xig
.xig_gen
= gencnt
;
1196 xig
.xig_sogen
= so_gencnt
;
1197 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1199 lck_rw_done(ripcbinfo
.ipi_lock
);
1203 * We are done if there is no pcb
1206 lck_rw_done(ripcbinfo
.ipi_lock
);
1210 inp_list
= _MALLOC(n
* sizeof *inp_list
, M_TEMP
, M_WAITOK
);
1211 if (inp_list
== 0) {
1212 lck_rw_done(ripcbinfo
.ipi_lock
);
1216 for (inp
= ripcbinfo
.ipi_listhead
->lh_first
, i
= 0; inp
&& i
< n
;
1217 inp
= inp
->inp_list
.le_next
) {
1218 if (inp
->inp_gencnt
<= gencnt
&& inp
->inp_state
!= INPCB_STATE_DEAD
) {
1219 inp_list
[i
++] = inp
;
1225 for (i
= 0; i
< n
; i
++) {
1227 if (inp
->inp_gencnt
<= gencnt
&& inp
->inp_state
!= INPCB_STATE_DEAD
) {
1230 bzero(&xi
, sizeof(xi
));
1231 xi
.xi_len
= sizeof xi
;
1232 /* XXX should avoid extra copy */
1233 inpcb_to_compat(inp
, &xi
.xi_inp
);
1234 if (inp
->inp_socket
) {
1235 sotoxsocket(inp
->inp_socket
, &xi
.xi_socket
);
1237 error
= SYSCTL_OUT(req
, &xi
, sizeof xi
);
1242 * Give the user an updated idea of our state.
1243 * If the generation differs from what we told
1244 * her before, she knows that something happened
1245 * while we were processing this request, and it
1246 * might be necessary to retry.
1248 bzero(&xig
, sizeof(xig
));
1249 xig
.xig_len
= sizeof xig
;
1250 xig
.xig_gen
= ripcbinfo
.ipi_gencnt
;
1251 xig
.xig_sogen
= so_gencnt
;
1252 xig
.xig_count
= ripcbinfo
.ipi_count
;
1253 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1255 FREE(inp_list
, M_TEMP
);
1256 lck_rw_done(ripcbinfo
.ipi_lock
);
1260 SYSCTL_PROC(_net_inet_raw
, OID_AUTO
/*XXX*/, pcblist
,
1261 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
1262 rip_pcblist
, "S,xinpcb", "List of active raw IP sockets");
1264 #if !CONFIG_EMBEDDED
1267 rip_pcblist64 SYSCTL_HANDLER_ARGS
1269 #pragma unused(oidp, arg1, arg2)
1271 struct inpcb
*inp
, **inp_list
;
1276 * The process of preparing the TCB list is too time-consuming and
1277 * resource-intensive to repeat twice on every request.
1279 lck_rw_lock_exclusive(ripcbinfo
.ipi_lock
);
1280 if (req
->oldptr
== USER_ADDR_NULL
) {
1281 n
= ripcbinfo
.ipi_count
;
1282 req
->oldidx
= 2 * (sizeof xig
)
1283 + (n
+ n
/ 8) * sizeof(struct xinpcb64
);
1284 lck_rw_done(ripcbinfo
.ipi_lock
);
1288 if (req
->newptr
!= USER_ADDR_NULL
) {
1289 lck_rw_done(ripcbinfo
.ipi_lock
);
1294 * OK, now we're committed to doing something.
1296 gencnt
= ripcbinfo
.ipi_gencnt
;
1297 n
= ripcbinfo
.ipi_count
;
1299 bzero(&xig
, sizeof(xig
));
1300 xig
.xig_len
= sizeof xig
;
1302 xig
.xig_gen
= gencnt
;
1303 xig
.xig_sogen
= so_gencnt
;
1304 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1306 lck_rw_done(ripcbinfo
.ipi_lock
);
1310 * We are done if there is no pcb
1313 lck_rw_done(ripcbinfo
.ipi_lock
);
1317 inp_list
= _MALLOC(n
* sizeof *inp_list
, M_TEMP
, M_WAITOK
);
1318 if (inp_list
== 0) {
1319 lck_rw_done(ripcbinfo
.ipi_lock
);
1323 for (inp
= ripcbinfo
.ipi_listhead
->lh_first
, i
= 0; inp
&& i
< n
;
1324 inp
= inp
->inp_list
.le_next
) {
1325 if (inp
->inp_gencnt
<= gencnt
&& inp
->inp_state
!= INPCB_STATE_DEAD
) {
1326 inp_list
[i
++] = inp
;
1332 for (i
= 0; i
< n
; i
++) {
1334 if (inp
->inp_gencnt
<= gencnt
&& inp
->inp_state
!= INPCB_STATE_DEAD
) {
1337 bzero(&xi
, sizeof(xi
));
1338 xi
.xi_len
= sizeof xi
;
1339 inpcb_to_xinpcb64(inp
, &xi
);
1340 if (inp
->inp_socket
) {
1341 sotoxsocket64(inp
->inp_socket
, &xi
.xi_socket
);
1343 error
= SYSCTL_OUT(req
, &xi
, sizeof xi
);
1348 * Give the user an updated idea of our state.
1349 * If the generation differs from what we told
1350 * her before, she knows that something happened
1351 * while we were processing this request, and it
1352 * might be necessary to retry.
1354 bzero(&xig
, sizeof(xig
));
1355 xig
.xig_len
= sizeof xig
;
1356 xig
.xig_gen
= ripcbinfo
.ipi_gencnt
;
1357 xig
.xig_sogen
= so_gencnt
;
1358 xig
.xig_count
= ripcbinfo
.ipi_count
;
1359 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1361 FREE(inp_list
, M_TEMP
);
1362 lck_rw_done(ripcbinfo
.ipi_lock
);
1366 SYSCTL_PROC(_net_inet_raw
, OID_AUTO
, pcblist64
,
1367 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
1368 rip_pcblist64
, "S,xinpcb64", "List of active raw IP sockets");
1370 #endif /* !CONFIG_EMBEDDED */
1374 rip_pcblist_n SYSCTL_HANDLER_ARGS
1376 #pragma unused(oidp, arg1, arg2)
1379 error
= get_pcblist_n(IPPROTO_IP
, req
, &ripcbinfo
);
1384 SYSCTL_PROC(_net_inet_raw
, OID_AUTO
, pcblist_n
,
1385 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0,
1386 rip_pcblist_n
, "S,xinpcb_n", "List of active raw IP sockets");
1388 struct pr_usrreqs rip_usrreqs
= {
1389 .pru_abort
= rip_abort
,
1390 .pru_attach
= rip_attach
,
1391 .pru_bind
= rip_bind
,
1392 .pru_connect
= rip_connect
,
1393 .pru_control
= in_control
,
1394 .pru_detach
= rip_detach
,
1395 .pru_disconnect
= rip_disconnect
,
1396 .pru_peeraddr
= in_getpeeraddr
,
1397 .pru_send
= rip_send
,
1398 .pru_shutdown
= rip_shutdown
,
1399 .pru_sockaddr
= in_getsockaddr
,
1400 .pru_sosend
= sosend
,
1401 .pru_soreceive
= soreceive
,
1403 /* DSEP Review Done pl-20051213-v02 @3253 */