]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/fpu.c
d7b7056b2cb91a65beeb0d60208565c97e7cb8e3
[apple/xnu.git] / osfmk / i386 / fpu.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1992-1990 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 #include <platforms.h>
60
61 #include <mach/exception_types.h>
62 #include <mach/i386/thread_status.h>
63 #include <mach/i386/fp_reg.h>
64 #include <mach/branch_predicates.h>
65
66 #include <kern/mach_param.h>
67 #include <kern/processor.h>
68 #include <kern/thread.h>
69 #include <kern/zalloc.h>
70 #include <kern/misc_protos.h>
71 #include <kern/spl.h>
72 #include <kern/assert.h>
73
74 #include <libkern/OSAtomic.h>
75
76 #include <architecture/i386/pio.h>
77 #include <i386/cpuid.h>
78 #include <i386/fpu.h>
79 #include <i386/proc_reg.h>
80 #include <i386/misc_protos.h>
81 #include <i386/thread.h>
82 #include <i386/trap.h>
83
84 int fp_kind = FP_NO; /* not inited */
85 zone_t ifps_zone; /* zone for FPU save area */
86
87 #define ALIGNED(addr,size) (((uintptr_t)(addr)&((size)-1))==0)
88
89 /* Forward */
90
91 extern void fpinit(void);
92 extern void fp_save(
93 thread_t thr_act);
94 extern void fp_load(
95 thread_t thr_act);
96
97 static void configure_mxcsr_capability_mask(struct x86_avx_thread_state *fps);
98
99 struct x86_avx_thread_state initial_fp_state __attribute((aligned(64)));
100
101
102 /* Global MXCSR capability bitmask */
103 static unsigned int mxcsr_capability_mask;
104
105 #define fninit() \
106 __asm__ volatile("fninit")
107
108 #define fnstcw(control) \
109 __asm__("fnstcw %0" : "=m" (*(unsigned short *)(control)))
110
111 #define fldcw(control) \
112 __asm__ volatile("fldcw %0" : : "m" (*(unsigned short *) &(control)) )
113
114 #define fnclex() \
115 __asm__ volatile("fnclex")
116
117 #define fnsave(state) \
118 __asm__ volatile("fnsave %0" : "=m" (*state))
119
120 #define frstor(state) \
121 __asm__ volatile("frstor %0" : : "m" (state))
122
123 #define fwait() \
124 __asm__("fwait");
125
126 #define fxrstor(addr) __asm__ __volatile__("fxrstor %0" : : "m" (*(addr)))
127 #define fxsave(addr) __asm__ __volatile__("fxsave %0" : "=m" (*(addr)))
128
129 static uint32_t fp_register_state_size = 0;
130 static uint32_t fpu_YMM_present = FALSE;
131 static uint32_t cpuid_reevaluated = 0;
132
133 static void fpu_store_registers(void *, boolean_t);
134 static void fpu_load_registers(void *);
135
136 extern void xsave64o(void);
137 extern void xrstor64o(void);
138
139 #define XMASK ((uint32_t) (XFEM_X87 | XFEM_SSE | XFEM_YMM))
140
141 /* DRK: TODO replace opcodes with mnemonics when assembler support available */
142
143 static inline void xsetbv(uint32_t mask_hi, uint32_t mask_lo) {
144 __asm__ __volatile__(".short 0x010F\n\t.byte 0xD1" :: "a"(mask_lo), "d"(mask_hi), "c" (XCR0));
145 }
146
147 static inline void xsave(void *a) {
148 /* MOD 0x4, operand ECX 0x1 */
149 __asm__ __volatile__(".short 0xAE0F\n\t.byte 0x21" :: "a"(XMASK), "d"(0), "c" (a));
150 }
151
152 static inline void xrstor(void *a) {
153 /* MOD 0x5, operand ECX 0x1 */
154 __asm__ __volatile__(".short 0xAE0F\n\t.byte 0x29" :: "a"(XMASK), "d"(0), "c" (a));
155 }
156
157 static inline void xsave64(void *a) {
158 /* Out of line call that executes in 64-bit mode on K32 */
159 __asm__ __volatile__("call _xsave64o" :: "a"(XMASK), "d"(0), "c" (a));
160 }
161
162 static inline void xrstor64(void *a) {
163 /* Out of line call that executes in 64-bit mode on K32 */
164 __asm__ __volatile__("call _xrstor64o" :: "a"(XMASK), "d"(0), "c" (a));
165 }
166
167 static inline unsigned short
168 fnstsw(void)
169 {
170 unsigned short status;
171 __asm__ volatile("fnstsw %0" : "=ma" (status));
172 return(status);
173 }
174
175 /*
176 * Configure the initial FPU state presented to new threads.
177 * Determine the MXCSR capability mask, which allows us to mask off any
178 * potentially unsafe "reserved" bits before restoring the FPU context.
179 * *Not* per-cpu, assumes symmetry.
180 */
181
182 static void
183 configure_mxcsr_capability_mask(struct x86_avx_thread_state *fps)
184 {
185 /* XSAVE requires a 64 byte aligned store */
186 assert(ALIGNED(fps, 64));
187 /* Clear, to prepare for the diagnostic FXSAVE */
188 bzero(fps, sizeof(*fps));
189
190 fpinit();
191 fpu_store_registers(fps, FALSE);
192
193 mxcsr_capability_mask = fps->fx_MXCSR_MASK;
194
195 /* Set default mask value if necessary */
196 if (mxcsr_capability_mask == 0)
197 mxcsr_capability_mask = 0xffbf;
198
199 /* Clear vector register store */
200 bzero(&fps->fx_XMM_reg[0][0], sizeof(fps->fx_XMM_reg));
201 bzero(&fps->x_YMMH_reg[0][0], sizeof(fps->x_YMMH_reg));
202
203 fps->fp_valid = TRUE;
204 fps->fp_save_layout = fpu_YMM_present ? XSAVE32: FXSAVE32;
205 fpu_load_registers(fps);
206
207 /* Poison values to trap unsafe usage */
208 fps->fp_valid = 0xFFFFFFFF;
209 fps->fp_save_layout = FP_UNUSED;
210
211 /* Re-enable FPU/SSE DNA exceptions */
212 set_ts();
213 }
214
215
216 /*
217 * Look for FPU and initialize it.
218 * Called on each CPU.
219 */
220 void
221 init_fpu(void)
222 {
223 #if DEBUG
224 unsigned short status;
225 unsigned short control;
226 #endif
227 /*
228 * Check for FPU by initializing it,
229 * then trying to read the correct bit patterns from
230 * the control and status registers.
231 */
232 set_cr0((get_cr0() & ~(CR0_EM|CR0_TS)) | CR0_NE); /* allow use of FPU */
233 fninit();
234 #if DEBUG
235 status = fnstsw();
236 fnstcw(&control);
237
238 assert(((status & 0xff) == 0) && ((control & 0x103f) == 0x3f));
239 #endif
240 /* Advertise SSE support */
241 if (cpuid_features() & CPUID_FEATURE_FXSR) {
242 fp_kind = FP_FXSR;
243 set_cr4(get_cr4() | CR4_OSFXS);
244 /* And allow SIMD exceptions if present */
245 if (cpuid_features() & CPUID_FEATURE_SSE) {
246 set_cr4(get_cr4() | CR4_OSXMM);
247 }
248 fp_register_state_size = sizeof(struct x86_fx_thread_state);
249
250 } else
251 panic("fpu is not FP_FXSR");
252
253 /* Configure the XSAVE context mechanism if the processor supports
254 * AVX/YMM registers
255 */
256 if (cpuid_features() & CPUID_FEATURE_XSAVE) {
257 cpuid_xsave_leaf_t *xsp = &cpuid_info()->cpuid_xsave_leaf;
258 if (xsp->extended_state[0] & (uint32_t)XFEM_YMM) {
259 assert(xsp->extended_state[0] & (uint32_t) XFEM_SSE);
260 /* XSAVE container size for all features */
261 assert(xsp->extended_state[2] == sizeof(struct x86_avx_thread_state));
262 fp_register_state_size = sizeof(struct x86_avx_thread_state);
263 fpu_YMM_present = TRUE;
264 set_cr4(get_cr4() | CR4_OSXSAVE);
265 xsetbv(0, XMASK);
266 /* Re-evaluate CPUID, once, to reflect OSXSAVE */
267 if (OSCompareAndSwap(0, 1, &cpuid_reevaluated))
268 cpuid_set_info();
269 /* DRK: consider verifying AVX offset with cpuid(d, ECX:2) */
270 }
271 }
272 else
273 fpu_YMM_present = FALSE;
274
275 fpinit();
276
277 /*
278 * Trap wait instructions. Turn off FPU for now.
279 */
280 set_cr0(get_cr0() | CR0_TS | CR0_MP);
281 }
282
283 /*
284 * Allocate and initialize FP state for current thread.
285 * Don't load state.
286 */
287 static void *
288 fp_state_alloc(void)
289 {
290 void *ifps = zalloc(ifps_zone);
291
292 #if DEBUG
293 if (!(ALIGNED(ifps,64))) {
294 panic("fp_state_alloc: %p, %u, %p, %u", ifps, (unsigned) ifps_zone->elem_size, (void *) ifps_zone->free_elements, (unsigned) ifps_zone->alloc_size);
295 }
296 #endif
297 return ifps;
298 }
299
300 static inline void
301 fp_state_free(void *ifps)
302 {
303 zfree(ifps_zone, ifps);
304 }
305
306 void clear_fpu(void)
307 {
308 set_ts();
309 }
310
311
312 static void fpu_load_registers(void *fstate) {
313 struct x86_fx_thread_state *ifps = fstate;
314 fp_save_layout_t layout = ifps->fp_save_layout;
315
316 assert(layout == FXSAVE32 || layout == FXSAVE64 || layout == XSAVE32 || layout == XSAVE64);
317 assert(ALIGNED(ifps, 64));
318 assert(ml_get_interrupts_enabled() == FALSE);
319
320 #if DEBUG
321 if (layout == XSAVE32 || layout == XSAVE64) {
322 struct x86_avx_thread_state *iavx = fstate;
323 unsigned i;
324 /* Verify reserved bits in the XSAVE header*/
325 if (iavx->_xh.xsbv & ~7)
326 panic("iavx->_xh.xsbv: 0x%llx", iavx->_xh.xsbv);
327 for (i = 0; i < sizeof(iavx->_xh.xhrsvd); i++)
328 if (iavx->_xh.xhrsvd[i])
329 panic("Reserved bit set");
330 }
331 if (fpu_YMM_present) {
332 if (layout != XSAVE32 && layout != XSAVE64)
333 panic("Inappropriate layout: %u\n", layout);
334 }
335 #endif /* DEBUG */
336
337 if ((layout == XSAVE64) || (layout == XSAVE32))
338 xrstor(ifps);
339 else
340 fxrstor(ifps);
341 }
342
343 static void fpu_store_registers(void *fstate, boolean_t is64) {
344 struct x86_fx_thread_state *ifps = fstate;
345 assert(ALIGNED(ifps, 64));
346 if (fpu_YMM_present) {
347 xsave(ifps);
348 ifps->fp_save_layout = is64 ? XSAVE64 : XSAVE32;
349 }
350 else {
351 fxsave(ifps);
352 ifps->fp_save_layout = is64 ? FXSAVE64 : FXSAVE32;
353 }
354 }
355
356 /*
357 * Initialize FP handling.
358 */
359
360 void
361 fpu_module_init(void)
362 {
363 if ((fp_register_state_size != sizeof(struct x86_fx_thread_state)) &&
364 (fp_register_state_size != sizeof(struct x86_avx_thread_state)))
365 panic("fpu_module_init: incorrect savearea size %u\n", fp_register_state_size);
366
367 assert(fpu_YMM_present != 0xFFFFFFFF);
368
369 /* We explicitly choose an allocation size of 64
370 * to eliminate waste for the 832 byte sized
371 * AVX XSAVE register save area.
372 */
373 ifps_zone = zinit(fp_register_state_size,
374 thread_max * fp_register_state_size,
375 64 * fp_register_state_size,
376 "x86 fpsave state");
377
378 /* To maintain the required alignment, disable
379 * zone debugging for this zone as that appends
380 * 16 bytes to each element.
381 */
382 zone_change(ifps_zone, Z_ALIGNMENT_REQUIRED, TRUE);
383 /* Determine MXCSR reserved bits and configure initial FPU state*/
384 configure_mxcsr_capability_mask(&initial_fp_state);
385 }
386
387 /*
388 * Save thread`s FPU context.
389 */
390 void
391 fpu_save_context(thread_t thread)
392 {
393 struct x86_fx_thread_state *ifps;
394
395 assert(ml_get_interrupts_enabled() == FALSE);
396 ifps = (thread)->machine.ifps;
397 #if DEBUG
398 if (ifps && ((ifps->fp_valid != FALSE) && (ifps->fp_valid != TRUE))) {
399 panic("ifps->fp_valid: %u\n", ifps->fp_valid);
400 }
401 #endif
402 if (ifps != 0 && (ifps->fp_valid == FALSE)) {
403 /* Clear CR0.TS in preparation for the FP context save. In
404 * theory, this shouldn't be necessary since a live FPU should
405 * indicate that TS is clear. However, various routines
406 * (such as sendsig & sigreturn) manipulate TS directly.
407 */
408 clear_ts();
409 /* registers are in FPU - save to memory */
410 fpu_store_registers(ifps, (thread_is_64bit(thread) && is_saved_state64(thread->machine.iss)));
411 ifps->fp_valid = TRUE;
412 }
413 set_ts();
414 }
415
416
417 /*
418 * Free a FPU save area.
419 * Called only when thread terminating - no locking necessary.
420 */
421 void
422 fpu_free(void *fps)
423 {
424 fp_state_free(fps);
425 }
426
427 /*
428 * Set the floating-point state for a thread based
429 * on the FXSave formatted data. This is basically
430 * the same as fpu_set_state except it uses the
431 * expanded data structure.
432 * If the thread is not the current thread, it is
433 * not running (held). Locking needed against
434 * concurrent fpu_set_state or fpu_get_state.
435 */
436 kern_return_t
437 fpu_set_fxstate(
438 thread_t thr_act,
439 thread_state_t tstate,
440 thread_flavor_t f)
441 {
442 struct x86_fx_thread_state *ifps;
443 struct x86_fx_thread_state *new_ifps;
444 x86_float_state64_t *state;
445 pcb_t pcb;
446 size_t state_size = sizeof(struct x86_fx_thread_state);
447 boolean_t old_valid;
448 if (fp_kind == FP_NO)
449 return KERN_FAILURE;
450
451 if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) &&
452 !ml_fpu_avx_enabled())
453 return KERN_FAILURE;
454
455 state = (x86_float_state64_t *)tstate;
456
457 assert(thr_act != THREAD_NULL);
458 pcb = THREAD_TO_PCB(thr_act);
459
460 if (state == NULL) {
461 /*
462 * new FPU state is 'invalid'.
463 * Deallocate the fp state if it exists.
464 */
465 simple_lock(&pcb->lock);
466
467 ifps = pcb->ifps;
468 pcb->ifps = 0;
469
470 simple_unlock(&pcb->lock);
471
472 if (ifps != 0)
473 fp_state_free(ifps);
474 } else {
475 /*
476 * Valid state. Allocate the fp state if there is none.
477 */
478 new_ifps = 0;
479 Retry:
480 simple_lock(&pcb->lock);
481
482 ifps = pcb->ifps;
483 if (ifps == 0) {
484 if (new_ifps == 0) {
485 simple_unlock(&pcb->lock);
486 new_ifps = fp_state_alloc();
487 goto Retry;
488 }
489 ifps = new_ifps;
490 new_ifps = 0;
491 pcb->ifps = ifps;
492 }
493 /*
494 * now copy over the new data.
495 */
496 old_valid = ifps->fp_valid;
497
498 #if DEBUG
499 if ((old_valid == FALSE) && (thr_act != current_thread())) {
500 panic("fpu_set_fxstate inconsistency, thread: %p not stopped", thr_act);
501 }
502 #endif
503 /*
504 * Clear any reserved bits in the MXCSR to prevent a GPF
505 * when issuing an FXRSTOR.
506 */
507
508 state->fpu_mxcsr &= mxcsr_capability_mask;
509
510 bcopy((char *)&state->fpu_fcw, (char *)ifps, state_size);
511
512 if (fpu_YMM_present) {
513 struct x86_avx_thread_state *iavx = (void *) ifps;
514 uint32_t fpu_nyreg = 0;
515
516 if (f == x86_AVX_STATE32)
517 fpu_nyreg = 8;
518 else if (f == x86_AVX_STATE64)
519 fpu_nyreg = 16;
520
521 if (fpu_nyreg) {
522 x86_avx_state64_t *ystate = (x86_avx_state64_t *) state;
523 bcopy(&ystate->__fpu_ymmh0, &iavx->x_YMMH_reg[0][0], fpu_nyreg * sizeof(_STRUCT_XMM_REG));
524 }
525
526 iavx->fp_save_layout = thread_is_64bit(thr_act) ? XSAVE64 : XSAVE32;
527 /* Sanitize XSAVE header */
528 bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd));
529 if (fpu_nyreg)
530 iavx->_xh.xsbv = (XFEM_YMM | XFEM_SSE | XFEM_X87);
531 else
532 iavx->_xh.xsbv = (XFEM_SSE | XFEM_X87);
533 }
534 else
535 ifps->fp_save_layout = thread_is_64bit(thr_act) ? FXSAVE64 : FXSAVE32;
536 ifps->fp_valid = old_valid;
537
538 if (old_valid == FALSE) {
539 boolean_t istate = ml_set_interrupts_enabled(FALSE);
540 ifps->fp_valid = TRUE;
541 set_ts();
542 ml_set_interrupts_enabled(istate);
543 }
544
545 simple_unlock(&pcb->lock);
546
547 if (new_ifps != 0)
548 fp_state_free(new_ifps);
549 }
550 return KERN_SUCCESS;
551 }
552
553 /*
554 * Get the floating-point state for a thread.
555 * If the thread is not the current thread, it is
556 * not running (held). Locking needed against
557 * concurrent fpu_set_state or fpu_get_state.
558 */
559 kern_return_t
560 fpu_get_fxstate(
561 thread_t thr_act,
562 thread_state_t tstate,
563 thread_flavor_t f)
564 {
565 struct x86_fx_thread_state *ifps;
566 x86_float_state64_t *state;
567 kern_return_t ret = KERN_FAILURE;
568 pcb_t pcb;
569 size_t state_size = sizeof(struct x86_fx_thread_state);
570
571 if (fp_kind == FP_NO)
572 return KERN_FAILURE;
573
574 if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) &&
575 !ml_fpu_avx_enabled())
576 return KERN_FAILURE;
577
578 state = (x86_float_state64_t *)tstate;
579
580 assert(thr_act != THREAD_NULL);
581 pcb = THREAD_TO_PCB(thr_act);
582
583 simple_lock(&pcb->lock);
584
585 ifps = pcb->ifps;
586 if (ifps == 0) {
587 /*
588 * No valid floating-point state.
589 */
590
591 bcopy((char *)&initial_fp_state, (char *)&state->fpu_fcw,
592 state_size);
593
594 simple_unlock(&pcb->lock);
595
596 return KERN_SUCCESS;
597 }
598 /*
599 * Make sure we`ve got the latest fp state info
600 * If the live fpu state belongs to our target
601 */
602 if (thr_act == current_thread()) {
603 boolean_t intr;
604
605 intr = ml_set_interrupts_enabled(FALSE);
606
607 clear_ts();
608 fp_save(thr_act);
609 clear_fpu();
610
611 (void)ml_set_interrupts_enabled(intr);
612 }
613 if (ifps->fp_valid) {
614 bcopy((char *)ifps, (char *)&state->fpu_fcw, state_size);
615 if (fpu_YMM_present) {
616 struct x86_avx_thread_state *iavx = (void *) ifps;
617 uint32_t fpu_nyreg = 0;
618
619 if (f == x86_AVX_STATE32)
620 fpu_nyreg = 8;
621 else if (f == x86_AVX_STATE64)
622 fpu_nyreg = 16;
623
624 if (fpu_nyreg) {
625 x86_avx_state64_t *ystate = (x86_avx_state64_t *) state;
626 bcopy(&iavx->x_YMMH_reg[0][0], &ystate->__fpu_ymmh0, fpu_nyreg * sizeof(_STRUCT_XMM_REG));
627 }
628 }
629
630 ret = KERN_SUCCESS;
631 }
632 simple_unlock(&pcb->lock);
633
634 return ret;
635 }
636
637
638
639 /*
640 * the child thread is 'stopped' with the thread
641 * mutex held and is currently not known by anyone
642 * so no way for fpu state to get manipulated by an
643 * outside agency -> no need for pcb lock
644 */
645
646 void
647 fpu_dup_fxstate(
648 thread_t parent,
649 thread_t child)
650 {
651 struct x86_fx_thread_state *new_ifps = NULL;
652 boolean_t intr;
653 pcb_t ppcb;
654
655 ppcb = THREAD_TO_PCB(parent);
656
657 if (ppcb->ifps == NULL)
658 return;
659
660 if (child->machine.ifps)
661 panic("fpu_dup_fxstate: child's ifps non-null");
662
663 new_ifps = fp_state_alloc();
664
665 simple_lock(&ppcb->lock);
666
667 if (ppcb->ifps != NULL) {
668 struct x86_fx_thread_state *ifps = ppcb->ifps;
669 /*
670 * Make sure we`ve got the latest fp state info
671 */
672 intr = ml_set_interrupts_enabled(FALSE);
673 assert(current_thread() == parent);
674 clear_ts();
675 fp_save(parent);
676 clear_fpu();
677
678 (void)ml_set_interrupts_enabled(intr);
679
680 if (ifps->fp_valid) {
681 child->machine.ifps = new_ifps;
682 assert((fp_register_state_size == sizeof(struct x86_fx_thread_state)) ||
683 (fp_register_state_size == sizeof(struct x86_avx_thread_state)));
684 bcopy((char *)(ppcb->ifps),
685 (char *)(child->machine.ifps), fp_register_state_size);
686
687 /* Mark the new fp saved state as non-live. */
688 /* Temporarily disabled: radar 4647827
689 * new_ifps->fp_valid = TRUE;
690 */
691
692 /*
693 * Clear any reserved bits in the MXCSR to prevent a GPF
694 * when issuing an FXRSTOR.
695 */
696 new_ifps->fx_MXCSR &= mxcsr_capability_mask;
697 new_ifps = NULL;
698 }
699 }
700 simple_unlock(&ppcb->lock);
701
702 if (new_ifps != NULL)
703 fp_state_free(new_ifps);
704 }
705
706
707 /*
708 * Initialize FPU.
709 *
710 */
711
712 void
713 fpinit(void)
714 {
715 unsigned short control;
716
717 clear_ts();
718 fninit();
719 fnstcw(&control);
720 control &= ~(FPC_PC|FPC_RC); /* Clear precision & rounding control */
721 control |= (FPC_PC_64 | /* Set precision */
722 FPC_RC_RN | /* round-to-nearest */
723 FPC_ZE | /* Suppress zero-divide */
724 FPC_OE | /* and overflow */
725 FPC_UE | /* underflow */
726 FPC_IE | /* Allow NaNQs and +-INF */
727 FPC_DE | /* Allow denorms as operands */
728 FPC_PE); /* No trap for precision loss */
729 fldcw(control);
730
731 /* Initialize SSE/SSE2 */
732 __builtin_ia32_ldmxcsr(0x1f80);
733 }
734
735 /*
736 * Coprocessor not present.
737 */
738
739 void
740 fpnoextflt(void)
741 {
742 boolean_t intr;
743 thread_t thr_act;
744 pcb_t pcb;
745 struct x86_fx_thread_state *ifps = 0;
746
747 thr_act = current_thread();
748 pcb = THREAD_TO_PCB(thr_act);
749
750 assert(fp_register_state_size != 0);
751
752 if (pcb->ifps == 0 && !get_interrupt_level()) {
753 ifps = fp_state_alloc();
754 bcopy((char *)&initial_fp_state, (char *)ifps,
755 fp_register_state_size);
756 if (!thread_is_64bit(thr_act)) {
757 ifps->fp_save_layout = fpu_YMM_present ? XSAVE32 : FXSAVE32;
758 }
759 else
760 ifps->fp_save_layout = fpu_YMM_present ? XSAVE64 : FXSAVE64;
761 ifps->fp_valid = TRUE;
762 }
763 intr = ml_set_interrupts_enabled(FALSE);
764
765 clear_ts(); /* Enable FPU use */
766
767 if (__improbable(get_interrupt_level())) {
768 /*
769 * Save current coprocessor context if valid
770 * Initialize coprocessor live context
771 */
772 fp_save(thr_act);
773 fpinit();
774 } else {
775 if (pcb->ifps == 0) {
776 pcb->ifps = ifps;
777 ifps = 0;
778 }
779 /*
780 * Load this thread`s state into coprocessor live context.
781 */
782 fp_load(thr_act);
783 }
784 (void)ml_set_interrupts_enabled(intr);
785
786 if (ifps)
787 fp_state_free(ifps);
788 }
789
790 /*
791 * FPU overran end of segment.
792 * Re-initialize FPU. Floating point state is not valid.
793 */
794
795 void
796 fpextovrflt(void)
797 {
798 thread_t thr_act = current_thread();
799 pcb_t pcb;
800 struct x86_fx_thread_state *ifps;
801 boolean_t intr;
802
803 intr = ml_set_interrupts_enabled(FALSE);
804
805 if (get_interrupt_level())
806 panic("FPU segment overrun exception at interrupt context\n");
807 if (current_task() == kernel_task)
808 panic("FPU segment overrun exception in kernel thread context\n");
809
810 /*
811 * This is a non-recoverable error.
812 * Invalidate the thread`s FPU state.
813 */
814 pcb = THREAD_TO_PCB(thr_act);
815 simple_lock(&pcb->lock);
816 ifps = pcb->ifps;
817 pcb->ifps = 0;
818 simple_unlock(&pcb->lock);
819
820 /*
821 * Re-initialize the FPU.
822 */
823 clear_ts();
824 fninit();
825
826 /*
827 * And disable access.
828 */
829 clear_fpu();
830
831 (void)ml_set_interrupts_enabled(intr);
832
833 if (ifps)
834 zfree(ifps_zone, ifps);
835
836 /*
837 * Raise exception.
838 */
839 i386_exception(EXC_BAD_ACCESS, VM_PROT_READ|VM_PROT_EXECUTE, 0);
840 /*NOTREACHED*/
841 }
842
843 /*
844 * FPU error. Called by AST.
845 */
846
847 void
848 fpexterrflt(void)
849 {
850 thread_t thr_act = current_thread();
851 struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
852 boolean_t intr;
853
854 intr = ml_set_interrupts_enabled(FALSE);
855
856 if (get_interrupt_level())
857 panic("FPU error exception at interrupt context\n");
858 if (current_task() == kernel_task)
859 panic("FPU error exception in kernel thread context\n");
860
861 /*
862 * Save the FPU state and turn off the FPU.
863 */
864 fp_save(thr_act);
865
866 (void)ml_set_interrupts_enabled(intr);
867
868 /*
869 * Raise FPU exception.
870 * Locking not needed on pcb->ifps,
871 * since thread is running.
872 */
873 i386_exception(EXC_ARITHMETIC,
874 EXC_I386_EXTERR,
875 ifps->fx_status);
876
877 /*NOTREACHED*/
878 }
879
880 /*
881 * Save FPU state.
882 *
883 * Locking not needed:
884 * . if called from fpu_get_state, pcb already locked.
885 * . if called from fpnoextflt or fp_intr, we are single-cpu
886 * . otherwise, thread is running.
887 * N.B.: Must be called with interrupts disabled
888 */
889
890 void
891 fp_save(
892 thread_t thr_act)
893 {
894 pcb_t pcb = THREAD_TO_PCB(thr_act);
895 struct x86_fx_thread_state *ifps = pcb->ifps;
896
897 assert(ifps != 0);
898 if (ifps != 0 && !ifps->fp_valid) {
899 assert((get_cr0() & CR0_TS) == 0);
900 /* registers are in FPU */
901 ifps->fp_valid = TRUE;
902 fpu_store_registers(ifps, thread_is_64bit(thr_act));
903 }
904 }
905
906 /*
907 * Restore FPU state from PCB.
908 *
909 * Locking not needed; always called on the current thread.
910 */
911
912 void
913 fp_load(
914 thread_t thr_act)
915 {
916 pcb_t pcb = THREAD_TO_PCB(thr_act);
917 struct x86_fx_thread_state *ifps = pcb->ifps;
918
919 assert(ifps);
920 #if DEBUG
921 if (ifps->fp_valid != FALSE && ifps->fp_valid != TRUE) {
922 panic("fp_load() invalid fp_valid: %u, fp_save_layout: %u\n",
923 ifps->fp_valid, ifps->fp_save_layout);
924 }
925 #endif
926
927 if (ifps->fp_valid == FALSE) {
928 fpinit();
929 } else {
930 fpu_load_registers(ifps);
931 }
932 ifps->fp_valid = FALSE; /* in FPU */
933 }
934
935 /*
936 * SSE arithmetic exception handling code.
937 * Basically the same as the x87 exception handler with a different subtype
938 */
939
940 void
941 fpSSEexterrflt(void)
942 {
943 thread_t thr_act = current_thread();
944 struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
945 boolean_t intr;
946
947 intr = ml_set_interrupts_enabled(FALSE);
948
949 if (get_interrupt_level())
950 panic("SSE exception at interrupt context\n");
951 if (current_task() == kernel_task)
952 panic("SSE exception in kernel thread context\n");
953
954 /*
955 * Save the FPU state and turn off the FPU.
956 */
957 fp_save(thr_act);
958
959 (void)ml_set_interrupts_enabled(intr);
960 /*
961 * Raise FPU exception.
962 * Locking not needed on pcb->ifps,
963 * since thread is running.
964 */
965 assert(ifps->fp_save_layout == FXSAVE32 || ifps->fp_save_layout == FXSAVE64);
966 i386_exception(EXC_ARITHMETIC,
967 EXC_I386_SSEEXTERR,
968 ifps->fx_MXCSR);
969 /*NOTREACHED*/
970 }
971
972 void
973 fp_setvalid(boolean_t value) {
974 thread_t thr_act = current_thread();
975 struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
976
977 if (ifps) {
978 ifps->fp_valid = value;
979
980 if (value == TRUE) {
981 boolean_t istate = ml_set_interrupts_enabled(FALSE);
982 clear_fpu();
983 ml_set_interrupts_enabled(istate);
984 }
985 }
986 }
987
988 boolean_t
989 ml_fpu_avx_enabled(void) {
990 return (fpu_YMM_present == TRUE);
991 }