2 * Copyright (c) 2012-2013, 2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
34 * A corpse is a state of process that is past the point of its death. This means that process has
35 * completed all its termination operations like releasing file descriptors, mach ports, sockets and
36 * other constructs used to identify a process. For all the processes this mimics the behavior as if
37 * the process has died and no longer available by any means.
39 * Why do we need Corpses?
40 * -----------------------
41 * For crash inspection we need to inspect the state and data that is associated with process so that
42 * crash reporting infrastructure can build backtraces, find leaks etc. For example a crash
44 * Corpses functionality in kernel
45 * ===============================
46 * The corpse functionality is an extension of existing exception reporting mechanisms we have. The
47 * exception_triage calls will try to deliver the first round of exceptions allowing
48 * task/debugger/ReportCrash/launchd level exception handlers to respond to exception. If even after
49 * notification the exception is not handled, then the process begins the death operations and during
50 * proc_prepareexit, we decide to create a corpse for inspection. Following is a sample run through
51 * of events and data shuffling that happens when corpses is enabled.
53 * * a process causes an exception during normal execution of threads.
54 * * The exception generated by either mach(e.g GUARDED_MARCHPORT) or bsd(eg SIGABORT, GUARDED_FD
55 * etc) side is passed through the exception_triage() function to follow the thread -> task -> host
56 * level exception handling system. This set of steps are same as before and allow for existing
57 * crash reporting systems (both internal and 3rd party) to catch and create reports as required.
58 * * If above exception handling returns failed (when nobody handles the notification), then the
59 * proc_prepareexit path has logic to decide to create corpse.
60 * * The task_mark_corpse function allocates userspace vm memory and attaches the information
61 * kcdata_descriptor_t to task->corpse_info field of task.
62 * - All the task's threads are marked with the "inspection" flag which signals the termination
63 * daemon to not reap them but hold until they are being inspected.
64 * - task flags t_flags reflect the corpse bit and also a PENDING_CORPSE bit. PENDING_CORPSE
65 * prevents task_terminate from stripping important data from task.
66 * - It marks all the threads to terminate and return to AST for termination.
67 * - The allocation logic takes into account the rate limiting policy of allowing only
68 * TOTAL_CORPSES_ALLOWED in flight.
69 * * The proc exit threads continues and collects required information in the allocated vm region.
70 * Once complete it marks itself for termination.
71 * * In the thread_terminate_self(), the last thread to enter will do a call to proc_exit().
72 * Following this is a check to see if task is marked for corpse notification and will
73 * invoke the the task_deliver_crash_notification().
74 * * Once EXC_CORPSE_NOTIFY is delivered, it removes the PENDING_CORPSE flag from task (and
75 * inspection flag from all its threads) and allows task_terminate to go ahead and continue
76 * the mach task termination process.
77 * * ASIDE: The rest of the threads that are reaching the thread_terminate_daemon() with the
78 * inspection flag set are just bounced to another holding queue (crashed_threads_queue).
79 * Only after the corpse notification these are pulled out from holding queue and enqueued
80 * back to termination queue
85 * The kernel (task_mark_corpse()) makes a vm allocation in the dead task's vm space (with tag
86 * VM_MEMORY_CORPSEINFO (80)). Within this memory all corpse information is saved by various
88 * * bsd proc exit path may write down pid, parent pid, number of file descriptors etc
89 * * mach side may append data regarding ledger usage, memory stats etc
90 * See detailed info about the memory structure and format in kern_cdata.h documentation.
92 * Configuring Corpses functionality
93 * =================================
94 * boot-arg: -no_corpses disables the corpse generation. This can be added/removed without affecting
95 * any other subsystem.
96 * TOTAL_CORPSES_ALLOWED : (recompilation required) - Changing this number allows for controlling
97 * the number of corpse instances to be held for inspection before allowing memory to be reclaimed
99 * CORPSEINFO_ALLOCATION_SIZE: is the default size of vm allocation. If in future there is much more
100 * data to be put in, then please re-tune this parameter.
102 * Debugging/Visibility
103 * ====================
104 * * lldbmacros for thread and task summary are updated to show "C" flag for corpse task/threads.
105 * * there are macros to see list of threads in termination queue (dumpthread_terminate_queue)
106 * and holding queue (dumpcrashed_thread_queue).
107 * * In case of corpse creation is disabled of ignored then the system log is updated with
108 * printf data with reason.
110 * Limitations of Corpses
111 * ======================
112 * With holding off memory for inspection, it creates vm pressure which might not be desirable
113 * on low memory devices. There are limits to max corpses being inspected at a time which is
114 * marked by TOTAL_CORPSES_ALLOWED.
119 #include <stdatomic.h>
120 #include <kern/assert.h>
121 #include <mach/mach_types.h>
122 #include <mach/boolean.h>
123 #include <mach/vm_param.h>
124 #include <kern/kern_types.h>
125 #include <kern/mach_param.h>
126 #include <kern/thread.h>
127 #include <kern/task.h>
128 #include <corpses/task_corpse.h>
129 #include <kern/kalloc.h>
130 #include <kern/kern_cdata.h>
131 #include <mach/mach_vm.h>
132 #include <kern/exc_guard.h>
135 #include <security/mac_mach_internal.h>
139 * Exported interfaces
141 #include <mach/task_server.h>
143 union corpse_creation_gate
{
145 uint16_t user_faults
;
151 static _Atomic
uint32_t inflight_corpses
;
152 unsigned long total_corpses_created
= 0;
153 boolean_t corpse_enabled_config
= TRUE
;
155 /* bootarg to generate corpse with size up to max_footprint_mb */
156 boolean_t corpse_threshold_system_limit
= FALSE
;
158 /* bootarg to turn on corpse forking for EXC_RESOURCE */
159 int exc_via_corpse_forking
= 1;
161 /* bootarg to generate corpse for fatal high memory watermark violation */
162 int corpse_for_fatal_memkill
= 1;
166 IS_64BIT_PROCESS(__unused
void *p
)
171 extern int IS_64BIT_PROCESS(void *);
173 extern void gather_populate_corpse_crashinfo(void *p
, task_t task
,
174 mach_exception_data_type_t code
, mach_exception_data_type_t subcode
,
175 uint64_t *udata_buffer
, int num_udata
, void *reason
);
176 extern void *proc_find(int pid
);
177 extern int proc_rele(void *p
);
184 int exc_corpse_forking
;
186 if (PE_parse_boot_argn("-no_corpses", temp_buf
, sizeof(temp_buf
))) {
187 corpse_enabled_config
= FALSE
;
189 if (PE_parse_boot_argn("exc_via_corpse_forking", &exc_corpse_forking
, sizeof(exc_corpse_forking
))) {
190 exc_via_corpse_forking
= exc_corpse_forking
;
192 if (PE_parse_boot_argn("corpse_for_fatal_memkill", &fatal_memkill
, sizeof(fatal_memkill
))) {
193 corpse_for_fatal_memkill
= fatal_memkill
;
195 #if DEBUG || DEVELOPMENT
196 if (PE_parse_boot_argn("-corpse_threshold_system_limit", &corpse_threshold_system_limit
, sizeof(corpse_threshold_system_limit
))) {
197 corpse_threshold_system_limit
= TRUE
;
199 #endif /* DEBUG || DEVELOPMENT */
203 * Routine: corpses_enabled
204 * returns FALSE if not enabled
209 return corpse_enabled_config
;
213 total_corpses_count(void)
215 union corpse_creation_gate gate
;
217 gate
.value
= atomic_load_explicit(&inflight_corpses
, memory_order_relaxed
);
222 * Routine: task_crashinfo_get_ref()
223 * Grab a slot at creating a corpse.
224 * Returns: KERN_SUCCESS if the policy allows for creating a corpse.
227 task_crashinfo_get_ref(corpse_flags_t kcd_u_flags
)
229 union corpse_creation_gate oldgate
, newgate
;
231 assert(kcd_u_flags
& CORPSE_CRASHINFO_HAS_REF
);
233 oldgate
.value
= atomic_load_explicit(&inflight_corpses
, memory_order_relaxed
);
236 if (kcd_u_flags
& CORPSE_CRASHINFO_USER_FAULT
) {
237 if (newgate
.user_faults
++ >= TOTAL_USER_FAULTS_ALLOWED
) {
238 return KERN_RESOURCE_SHORTAGE
;
241 if (newgate
.corpses
++ >= TOTAL_CORPSES_ALLOWED
) {
242 return KERN_RESOURCE_SHORTAGE
;
245 // this reloads the value in oldgate
246 if (atomic_compare_exchange_strong_explicit(&inflight_corpses
,
247 &oldgate
.value
, newgate
.value
, memory_order_relaxed
,
248 memory_order_relaxed
)) {
255 * Routine: task_crashinfo_release_ref
256 * release the slot for corpse being used.
259 task_crashinfo_release_ref(corpse_flags_t kcd_u_flags
)
261 union corpse_creation_gate oldgate
, newgate
;
263 assert(kcd_u_flags
& CORPSE_CRASHINFO_HAS_REF
);
265 oldgate
.value
= atomic_load_explicit(&inflight_corpses
, memory_order_relaxed
);
268 if (kcd_u_flags
& CORPSE_CRASHINFO_USER_FAULT
) {
269 if (newgate
.user_faults
-- == 0) {
270 panic("corpse in flight count over-release");
273 if (newgate
.corpses
-- == 0) {
274 panic("corpse in flight count over-release");
276 // this reloads the value in oldgate
277 if (atomic_compare_exchange_strong_explicit(&inflight_corpses
,
278 &oldgate
.value
, newgate
.value
, memory_order_relaxed
,
279 memory_order_relaxed
)) {
287 task_crashinfo_alloc_init(mach_vm_address_t crash_data_p
, unsigned size
,
288 corpse_flags_t kc_u_flags
, unsigned kc_flags
)
290 kcdata_descriptor_t kcdata
;
292 if (kc_u_flags
& CORPSE_CRASHINFO_HAS_REF
) {
293 if (KERN_SUCCESS
!= task_crashinfo_get_ref(kc_u_flags
)) {
298 kcdata
= kcdata_memory_alloc_init(crash_data_p
, TASK_CRASHINFO_BEGIN
, size
,
301 kcdata
->kcd_user_flags
= kc_u_flags
;
302 } else if (kc_u_flags
& CORPSE_CRASHINFO_HAS_REF
) {
303 task_crashinfo_release_ref(kc_u_flags
);
310 * Free up the memory associated with task_crashinfo_data
313 task_crashinfo_destroy(kcdata_descriptor_t data
)
316 return KERN_INVALID_ARGUMENT
;
318 if (data
->kcd_user_flags
& CORPSE_CRASHINFO_HAS_REF
) {
319 task_crashinfo_release_ref(data
->kcd_user_flags
);
321 return kcdata_memory_destroy(data
);
325 * Routine: task_get_corpseinfo
326 * params: task - task which has corpse info setup.
327 * returns: crash info data attached to task.
328 * NULL if task is null or has no corpse info
331 task_get_corpseinfo(task_t task
)
333 kcdata_descriptor_t retval
= NULL
;
335 retval
= task
->corpse_info
;
341 * Routine: task_add_to_corpse_task_list
342 * params: task - task to be added to corpse task list
346 task_add_to_corpse_task_list(task_t corpse_task
)
348 lck_mtx_lock(&tasks_corpse_lock
);
349 queue_enter(&corpse_tasks
, corpse_task
, task_t
, corpse_tasks
);
350 lck_mtx_unlock(&tasks_corpse_lock
);
354 * Routine: task_remove_from_corpse_task_list
355 * params: task - task to be removed from corpse task list
359 task_remove_from_corpse_task_list(task_t corpse_task
)
361 lck_mtx_lock(&tasks_corpse_lock
);
362 queue_remove(&corpse_tasks
, corpse_task
, task_t
, corpse_tasks
);
363 lck_mtx_unlock(&tasks_corpse_lock
);
367 * Routine: task_purge_all_corpses
372 task_purge_all_corpses(void)
376 printf("Purging corpses......\n\n");
378 lck_mtx_lock(&tasks_corpse_lock
);
379 /* Iterate through all the corpse tasks and clear all map entries */
380 queue_iterate(&corpse_tasks
, task
, task_t
, corpse_tasks
) {
381 vm_map_remove(task
->map
,
382 task
->map
->min_offset
,
383 task
->map
->max_offset
,
387 * + remove immutable mappings
388 * + allow gaps in the range
390 (VM_MAP_REMOVE_NO_UNNESTING
|
391 VM_MAP_REMOVE_IMMUTABLE
|
392 VM_MAP_REMOVE_GAPS_OK
));
395 lck_mtx_unlock(&tasks_corpse_lock
);
399 * Routine: task_generate_corpse
400 * params: task - task to fork a corpse
401 * corpse_task - task port of the generated corpse
402 * returns: KERN_SUCCESS on Success.
403 * KERN_FAILURE on Failure.
404 * KERN_NOT_SUPPORTED on corpse disabled.
405 * KERN_RESOURCE_SHORTAGE on memory alloc failure or reaching max corpse.
408 task_generate_corpse(
410 ipc_port_t
*corpse_task_port
)
414 thread_t thread
, th_iter
;
415 ipc_port_t corpse_port
;
416 ipc_port_t old_notify
;
418 if (task
== kernel_task
|| task
== TASK_NULL
) {
419 return KERN_INVALID_ARGUMENT
;
423 if (task_is_a_corpse_fork(task
)) {
425 return KERN_INVALID_ARGUMENT
;
429 /* Generate a corpse for the given task, will return with a ref on corpse task */
430 kr
= task_generate_corpse_internal(task
, &new_task
, &thread
, 0, 0, 0, NULL
);
431 if (kr
!= KERN_SUCCESS
) {
434 if (thread
!= THREAD_NULL
) {
435 thread_deallocate(thread
);
438 /* wait for all the threads in the task to terminate */
440 task_wait_till_threads_terminate_locked(new_task
);
442 /* Reset thread ports of all the threads in task */
443 queue_iterate(&new_task
->threads
, th_iter
, thread_t
, task_threads
)
445 /* Do not reset the thread port for inactive threads */
446 if (th_iter
->corpse_dup
== FALSE
) {
447 ipc_thread_reset(th_iter
);
450 task_unlock(new_task
);
452 /* transfer the task ref to port and arm the no-senders notification */
453 corpse_port
= convert_task_to_port(new_task
);
454 assert(IP_NULL
!= corpse_port
);
456 ip_lock(corpse_port
);
457 require_ip_active(corpse_port
);
458 ipc_port_nsrequest(corpse_port
, corpse_port
->ip_mscount
, ipc_port_make_sonce_locked(corpse_port
), &old_notify
);
461 assert(IP_NULL
== old_notify
);
462 *corpse_task_port
= corpse_port
;
467 * Routine: task_enqueue_exception_with_corpse
468 * params: task - task to generate a corpse and enqueue it
469 * etype - EXC_RESOURCE or EXC_GUARD
470 * code - exception code to be enqueued
471 * codeCnt - code array count - code and subcode
473 * returns: KERN_SUCCESS on Success.
474 * KERN_FAILURE on Failure.
475 * KERN_INVALID_ARGUMENT on invalid arguments passed.
476 * KERN_NOT_SUPPORTED on corpse disabled.
477 * KERN_RESOURCE_SHORTAGE on memory alloc failure or reaching max corpse.
480 task_enqueue_exception_with_corpse(
482 exception_type_t etype
,
483 mach_exception_data_t code
,
484 mach_msg_type_number_t codeCnt
,
487 task_t new_task
= TASK_NULL
;
488 thread_t thread
= THREAD_NULL
;
492 return KERN_INVALID_ARGUMENT
;
495 /* Generate a corpse for the given task, will return with a ref on corpse task */
496 kr
= task_generate_corpse_internal(task
, &new_task
, &thread
,
497 etype
, code
[0], code
[1], reason
);
498 if (kr
== KERN_SUCCESS
) {
499 if (thread
== THREAD_NULL
) {
502 assert(new_task
!= TASK_NULL
);
503 assert(etype
== EXC_RESOURCE
|| etype
== EXC_GUARD
);
504 thread_exception_enqueue(new_task
, thread
, etype
);
510 * Routine: task_generate_corpse_internal
511 * params: task - task to fork a corpse
512 * corpse_task - task of the generated corpse
513 * exc_thread - equivalent thread in corpse enqueuing exception
514 * etype - EXC_RESOURCE or EXC_GUARD or 0
515 * code - mach exception code to be passed in corpse blob
516 * subcode - mach exception subcode to be passed in corpse blob
517 * returns: KERN_SUCCESS on Success.
518 * KERN_FAILURE on Failure.
519 * KERN_NOT_SUPPORTED on corpse disabled.
520 * KERN_RESOURCE_SHORTAGE on memory alloc failure or reaching max corpse.
523 task_generate_corpse_internal(
526 thread_t
*exc_thread
,
527 exception_type_t etype
,
528 mach_exception_data_type_t code
,
529 mach_exception_data_type_t subcode
,
532 task_t new_task
= TASK_NULL
;
533 thread_t thread
= THREAD_NULL
;
534 thread_t thread_next
= THREAD_NULL
;
536 struct proc
*p
= NULL
;
540 uint64_t *udata_buffer
= NULL
;
543 corpse_flags_t kc_u_flags
= CORPSE_CRASHINFO_HAS_REF
;
546 struct label
*label
= NULL
;
549 if (!corpses_enabled()) {
550 return KERN_NOT_SUPPORTED
;
553 if (etype
== EXC_GUARD
&& EXC_GUARD_DECODE_GUARD_TYPE(code
) == GUARD_TYPE_USER
) {
554 kc_u_flags
|= CORPSE_CRASHINFO_USER_FAULT
;
557 kr
= task_crashinfo_get_ref(kc_u_flags
);
558 if (kr
!= KERN_SUCCESS
) {
562 /* Having a task reference does not guarantee a proc reference */
563 p
= proc_find(task_pid(task
));
565 kr
= KERN_INVALID_TASK
;
566 goto error_task_generate_corpse
;
569 is_64bit_addr
= IS_64BIT_PROCESS(p
);
570 is_64bit_data
= (task
== TASK_NULL
) ? is_64bit_addr
: task_get_64bit_data(task
);
571 t_flags
= TF_CORPSE_FORK
|
574 (is_64bit_addr
? TF_64B_ADDR
: TF_NONE
) |
575 (is_64bit_data
? TF_64B_DATA
: TF_NONE
);
578 /* Create the corpse label credentials from the process. */
579 label
= mac_exc_create_label_for_proc(p
);
582 /* Create a task for corpse */
583 kr
= task_create_internal(task
,
592 if (kr
!= KERN_SUCCESS
) {
593 goto error_task_generate_corpse
;
596 /* Create and copy threads from task, returns a ref to thread */
597 kr
= task_duplicate_map_and_threads(task
, p
, new_task
, &thread
,
598 &udata_buffer
, &size
, &num_udata
);
599 if (kr
!= KERN_SUCCESS
) {
600 goto error_task_generate_corpse
;
603 kr
= task_collect_crash_info(new_task
,
608 if (kr
!= KERN_SUCCESS
) {
609 goto error_task_generate_corpse
;
612 /* transfer our references to the corpse info */
613 assert(new_task
->corpse_info
->kcd_user_flags
== 0);
614 new_task
->corpse_info
->kcd_user_flags
= kc_u_flags
;
617 kr
= task_start_halt(new_task
);
618 if (kr
!= KERN_SUCCESS
) {
619 goto error_task_generate_corpse
;
622 /* terminate the ipc space */
623 ipc_space_terminate(new_task
->itk_space
);
625 /* Populate the corpse blob, use the proc struct of task instead of corpse task */
626 gather_populate_corpse_crashinfo(p
, new_task
,
627 code
, subcode
, udata_buffer
, num_udata
, reason
);
629 /* Add it to global corpse task list */
630 task_add_to_corpse_task_list(new_task
);
632 *corpse_task
= new_task
;
633 *exc_thread
= thread
;
635 error_task_generate_corpse
:
638 mac_exc_free_label(label
);
642 /* Release the proc reference */
647 if (kr
!= KERN_SUCCESS
) {
648 if (thread
!= THREAD_NULL
) {
649 thread_deallocate(thread
);
651 if (new_task
!= TASK_NULL
) {
653 /* Terminate all the other threads in the task. */
654 queue_iterate(&new_task
->threads
, thread_next
, thread_t
, task_threads
)
656 thread_terminate_internal(thread_next
);
658 /* wait for all the threads in the task to terminate */
659 task_wait_till_threads_terminate_locked(new_task
);
660 task_unlock(new_task
);
662 task_clear_corpse(new_task
);
663 task_terminate_internal(new_task
);
664 task_deallocate(new_task
);
667 task_crashinfo_release_ref(kc_u_flags
);
670 /* Free the udata buffer allocated in task_duplicate_map_and_threads */
671 if (udata_buffer
!= NULL
) {
672 kheap_free(KHEAP_DATA_BUFFERS
, udata_buffer
, size
);
679 * Routine: task_map_corpse_info
680 * params: task - Map the corpse info in task's address space
681 * corpse_task - task port of the corpse
682 * kcd_addr_begin - address of the mapped corpse info
683 * kcd_addr_begin - size of the mapped corpse info
684 * returns: KERN_SUCCESS on Success.
685 * KERN_FAILURE on Failure.
686 * KERN_INVALID_ARGUMENT on invalid arguments.
687 * Note: Temporary function, will be deleted soon.
690 task_map_corpse_info(
693 vm_address_t
*kcd_addr_begin
,
697 mach_vm_address_t kcd_addr_begin_64
;
698 mach_vm_size_t size_64
;
700 kr
= task_map_corpse_info_64(task
, corpse_task
, &kcd_addr_begin_64
, &size_64
);
701 if (kr
!= KERN_SUCCESS
) {
705 *kcd_addr_begin
= (vm_address_t
)kcd_addr_begin_64
;
706 *kcd_size
= (uint32_t) size_64
;
711 * Routine: task_map_corpse_info_64
712 * params: task - Map the corpse info in task's address space
713 * corpse_task - task port of the corpse
714 * kcd_addr_begin - address of the mapped corpse info (takes mach_vm_addess_t *)
715 * kcd_addr_begin - size of the mapped corpse info (takes mach_vm_size_t *)
716 * returns: KERN_SUCCESS on Success.
717 * KERN_FAILURE on Failure.
718 * KERN_INVALID_ARGUMENT on invalid arguments.
721 task_map_corpse_info_64(
724 mach_vm_address_t
*kcd_addr_begin
,
725 mach_vm_size_t
*kcd_size
)
728 mach_vm_offset_t crash_data_ptr
= 0;
729 const mach_vm_size_t size
= CORPSEINFO_ALLOCATION_SIZE
;
730 void *corpse_info_kernel
= NULL
;
732 if (task
== TASK_NULL
|| task_is_a_corpse_fork(task
)) {
733 return KERN_INVALID_ARGUMENT
;
736 if (corpse_task
== TASK_NULL
|| !task_is_a_corpse(corpse_task
) ||
737 kcdata_memory_get_begin_addr(corpse_task
->corpse_info
) == NULL
) {
738 return KERN_INVALID_ARGUMENT
;
740 corpse_info_kernel
= kcdata_memory_get_begin_addr(corpse_task
->corpse_info
);
741 kr
= mach_vm_allocate_kernel(task
->map
, &crash_data_ptr
, size
,
742 VM_FLAGS_ANYWHERE
, VM_MEMORY_CORPSEINFO
);
743 if (kr
!= KERN_SUCCESS
) {
746 copyout(corpse_info_kernel
, (user_addr_t
)crash_data_ptr
, (size_t)size
);
747 *kcd_addr_begin
= crash_data_ptr
;
754 task_corpse_get_crashed_thread_id(task_t corpse_task
)
756 return corpse_task
->crashed_thread_id
;