]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/machine_routines.c
d0307ca7f33ef95f1062ae0b45686642cea7b9d5
[apple/xnu.git] / osfmk / i386 / machine_routines.c
1 /*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <i386/machine_routines.h>
30 #include <i386/io_map_entries.h>
31 #include <i386/cpuid.h>
32 #include <i386/fpu.h>
33 #include <mach/processor.h>
34 #include <kern/processor.h>
35 #include <kern/machine.h>
36 #include <kern/cpu_data.h>
37 #include <kern/cpu_number.h>
38 #include <kern/thread.h>
39 #include <i386/machine_cpu.h>
40 #include <i386/lapic.h>
41 #include <i386/mp_events.h>
42 #include <i386/pmCPU.h>
43 #include <i386/tsc.h>
44 #include <i386/cpu_threads.h>
45 #include <i386/proc_reg.h>
46 #include <mach/vm_param.h>
47 #include <i386/pmap.h>
48 #include <i386/misc_protos.h>
49 #if MACH_KDB
50 #include <machine/db_machdep.h>
51 #include <ddb/db_aout.h>
52 #include <ddb/db_access.h>
53 #include <ddb/db_sym.h>
54 #include <ddb/db_variables.h>
55 #include <ddb/db_command.h>
56 #include <ddb/db_output.h>
57 #include <ddb/db_expr.h>
58 #endif
59
60 #if DEBUG
61 #define DBG(x...) kprintf("DBG: " x)
62 #else
63 #define DBG(x...)
64 #endif
65
66
67 extern void wakeup(void *);
68
69 static int max_cpus_initialized = 0;
70
71 unsigned int LockTimeOut;
72 unsigned int LockTimeOutTSC;
73 unsigned int MutexSpin;
74 uint64_t LastDebuggerEntryAllowance;
75
76 #define MAX_CPUS_SET 0x1
77 #define MAX_CPUS_WAIT 0x2
78
79 /* IO memory map services */
80
81 /* Map memory map IO space */
82 vm_offset_t ml_io_map(
83 vm_offset_t phys_addr,
84 vm_size_t size)
85 {
86 return(io_map(phys_addr,size,VM_WIMG_IO));
87 }
88
89 /* boot memory allocation */
90 vm_offset_t ml_static_malloc(
91 __unused vm_size_t size)
92 {
93 return((vm_offset_t)NULL);
94 }
95
96
97 void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
98 {
99 *phys_addr = bounce_pool_base;
100 *size = bounce_pool_size;
101 }
102
103
104 vm_offset_t
105 ml_static_ptovirt(
106 vm_offset_t paddr)
107 {
108 #if defined(__x86_64__)
109 return (vm_offset_t)(((unsigned long) paddr) | VM_MIN_KERNEL_ADDRESS);
110 #else
111 return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS);
112 #endif
113 }
114
115
116 /*
117 * Routine: ml_static_mfree
118 * Function:
119 */
120 void
121 ml_static_mfree(
122 vm_offset_t vaddr,
123 vm_size_t size)
124 {
125 addr64_t vaddr_cur;
126 ppnum_t ppn;
127
128 assert(vaddr >= VM_MIN_KERNEL_ADDRESS);
129
130 assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
131
132
133 for (vaddr_cur = vaddr;
134 vaddr_cur < round_page_64(vaddr+size);
135 vaddr_cur += PAGE_SIZE) {
136 ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
137 if (ppn != (vm_offset_t)NULL) {
138 kernel_pmap->stats.resident_count++;
139 if (kernel_pmap->stats.resident_count >
140 kernel_pmap->stats.resident_max) {
141 kernel_pmap->stats.resident_max =
142 kernel_pmap->stats.resident_count;
143 }
144 pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur+PAGE_SIZE);
145 vm_page_create(ppn,(ppn+1));
146 vm_page_wire_count--;
147 }
148 }
149 }
150
151
152 /* virtual to physical on wired pages */
153 vm_offset_t ml_vtophys(
154 vm_offset_t vaddr)
155 {
156 return (vm_offset_t)kvtophys(vaddr);
157 }
158
159 /*
160 * Routine: ml_nofault_copy
161 * Function: Perform a physical mode copy if the source and
162 * destination have valid translations in the kernel pmap.
163 * If translations are present, they are assumed to
164 * be wired; i.e. no attempt is made to guarantee that the
165 * translations obtained remained valid for
166 * the duration of the copy process.
167 */
168
169 vm_size_t ml_nofault_copy(
170 vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
171 {
172 addr64_t cur_phys_dst, cur_phys_src;
173 uint32_t count, nbytes = 0;
174
175 while (size > 0) {
176 if (!(cur_phys_src = kvtophys(virtsrc)))
177 break;
178 if (!(cur_phys_dst = kvtophys(virtdst)))
179 break;
180 if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src)))
181 break;
182 count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
183 if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK)))
184 count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK));
185 if (count > size)
186 count = (uint32_t)size;
187
188 bcopy_phys(cur_phys_src, cur_phys_dst, count);
189
190 nbytes += count;
191 virtsrc += count;
192 virtdst += count;
193 size -= count;
194 }
195
196 return nbytes;
197 }
198
199 /* Interrupt handling */
200
201 /* Initialize Interrupts */
202 void ml_init_interrupt(void)
203 {
204 (void) ml_set_interrupts_enabled(TRUE);
205 }
206
207
208
209 /* Get Interrupts Enabled */
210 boolean_t ml_get_interrupts_enabled(void)
211 {
212 unsigned long flags;
213
214 __asm__ volatile("pushf; pop %0" : "=r" (flags));
215 return (flags & EFL_IF) != 0;
216 }
217
218 /* Set Interrupts Enabled */
219 boolean_t ml_set_interrupts_enabled(boolean_t enable)
220 {
221 unsigned long flags;
222
223 __asm__ volatile("pushf; pop %0" : "=r" (flags));
224
225 if (enable) {
226 ast_t *myast;
227
228 myast = ast_pending();
229
230 if ( (get_preemption_level() == 0) && (*myast & AST_URGENT) ) {
231 __asm__ volatile("sti");
232 __asm__ volatile ("int $0xff");
233 } else {
234 __asm__ volatile ("sti");
235 }
236 }
237 else {
238 __asm__ volatile("cli");
239 }
240
241 return (flags & EFL_IF) != 0;
242 }
243
244 /* Check if running at interrupt context */
245 boolean_t ml_at_interrupt_context(void)
246 {
247 return get_interrupt_level() != 0;
248 }
249
250 /* Generate a fake interrupt */
251 void ml_cause_interrupt(void)
252 {
253 panic("ml_cause_interrupt not defined yet on Intel");
254 }
255
256 void ml_thread_policy(
257 thread_t thread,
258 __unused unsigned policy_id,
259 unsigned policy_info)
260 {
261 if (policy_info & MACHINE_NETWORK_WORKLOOP) {
262 spl_t s = splsched();
263
264 thread_lock(thread);
265
266 set_priority(thread, thread->priority + 1);
267
268 thread_unlock(thread);
269 splx(s);
270 }
271 }
272
273 /* Initialize Interrupts */
274 void ml_install_interrupt_handler(
275 void *nub,
276 int source,
277 void *target,
278 IOInterruptHandler handler,
279 void *refCon)
280 {
281 boolean_t current_state;
282
283 current_state = ml_get_interrupts_enabled();
284
285 PE_install_interrupt_handler(nub, source, target,
286 (IOInterruptHandler) handler, refCon);
287
288 (void) ml_set_interrupts_enabled(current_state);
289
290 initialize_screen(NULL, kPEAcquireScreen);
291 }
292
293
294 void
295 machine_signal_idle(
296 processor_t processor)
297 {
298 cpu_interrupt(processor->cpu_id);
299 }
300
301 static kern_return_t
302 register_cpu(
303 uint32_t lapic_id,
304 processor_t *processor_out,
305 boolean_t boot_cpu )
306 {
307 int target_cpu;
308 cpu_data_t *this_cpu_datap;
309
310 this_cpu_datap = cpu_data_alloc(boot_cpu);
311 if (this_cpu_datap == NULL) {
312 return KERN_FAILURE;
313 }
314 target_cpu = this_cpu_datap->cpu_number;
315 assert((boot_cpu && (target_cpu == 0)) ||
316 (!boot_cpu && (target_cpu != 0)));
317
318 lapic_cpu_map(lapic_id, target_cpu);
319
320 /* The cpu_id is not known at registration phase. Just do
321 * lapic_id for now
322 */
323 this_cpu_datap->cpu_phys_number = lapic_id;
324
325 this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
326 if (this_cpu_datap->cpu_console_buf == NULL)
327 goto failed;
328
329 this_cpu_datap->cpu_chud = chudxnu_cpu_alloc(boot_cpu);
330 if (this_cpu_datap->cpu_chud == NULL)
331 goto failed;
332
333 if (!boot_cpu) {
334 cpu_thread_alloc(this_cpu_datap->cpu_number);
335 if (this_cpu_datap->lcpu.core == NULL)
336 goto failed;
337
338 pmCPUStateInit();
339
340 #if NCOPY_WINDOWS > 0
341 this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
342 if (this_cpu_datap->cpu_pmap == NULL)
343 goto failed;
344 #endif
345
346 this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
347 if (this_cpu_datap->cpu_processor == NULL)
348 goto failed;
349 /*
350 * processor_init() deferred to topology start
351 * because "slot numbers" a.k.a. logical processor numbers
352 * are not yet finalized.
353 */
354 }
355
356 *processor_out = this_cpu_datap->cpu_processor;
357
358 return KERN_SUCCESS;
359
360 failed:
361 cpu_processor_free(this_cpu_datap->cpu_processor);
362 #if NCOPY_WINDOWS > 0
363 pmap_cpu_free(this_cpu_datap->cpu_pmap);
364 #endif
365 chudxnu_cpu_free(this_cpu_datap->cpu_chud);
366 console_cpu_free(this_cpu_datap->cpu_console_buf);
367 return KERN_FAILURE;
368 }
369
370
371 kern_return_t
372 ml_processor_register(
373 cpu_id_t cpu_id,
374 uint32_t lapic_id,
375 processor_t *processor_out,
376 boolean_t boot_cpu,
377 boolean_t start )
378 {
379 static boolean_t done_topo_sort = FALSE;
380 static uint32_t num_registered = 0;
381
382 /* Register all CPUs first, and track max */
383 if( start == FALSE )
384 {
385 num_registered++;
386
387 DBG( "registering CPU lapic id %d\n", lapic_id );
388
389 return register_cpu( lapic_id, processor_out, boot_cpu );
390 }
391
392 /* Sort by topology before we start anything */
393 if( !done_topo_sort )
394 {
395 DBG( "about to start CPUs. %d registered\n", num_registered );
396
397 cpu_topology_sort( num_registered );
398 done_topo_sort = TRUE;
399 }
400
401 /* Assign the cpu ID */
402 uint32_t cpunum = -1;
403 cpu_data_t *this_cpu_datap = NULL;
404
405 /* find cpu num and pointer */
406 cpunum = ml_get_cpuid( lapic_id );
407
408 if( cpunum == 0xFFFFFFFF ) /* never heard of it? */
409 panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
410
411 this_cpu_datap = cpu_datap(cpunum);
412
413 /* fix the CPU id */
414 this_cpu_datap->cpu_id = cpu_id;
415
416 /* output arg */
417 *processor_out = this_cpu_datap->cpu_processor;
418
419 /* OK, try and start this CPU */
420 return cpu_topology_start_cpu( cpunum );
421 }
422
423
424 void
425 ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
426 {
427 boolean_t os_supports_sse;
428 i386_cpu_info_t *cpuid_infop;
429
430 if (cpu_infop == NULL)
431 return;
432
433 /*
434 * Are we supporting MMX/SSE/SSE2/SSE3?
435 * As distinct from whether the cpu has these capabilities.
436 */
437 os_supports_sse = !!(get_cr4() & CR4_XMM);
438 if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse)
439 cpu_infop->vector_unit = 8;
440 else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse)
441 cpu_infop->vector_unit = 7;
442 else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse)
443 cpu_infop->vector_unit = 6;
444 else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
445 cpu_infop->vector_unit = 5;
446 else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
447 cpu_infop->vector_unit = 4;
448 else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
449 cpu_infop->vector_unit = 3;
450 else if (cpuid_features() & CPUID_FEATURE_MMX)
451 cpu_infop->vector_unit = 2;
452 else
453 cpu_infop->vector_unit = 0;
454
455 cpuid_infop = cpuid_info();
456
457 cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
458
459 cpu_infop->l1_icache_size = cpuid_infop->cache_size[L1I];
460 cpu_infop->l1_dcache_size = cpuid_infop->cache_size[L1D];
461
462 if (cpuid_infop->cache_size[L2U] > 0) {
463 cpu_infop->l2_settings = 1;
464 cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
465 } else {
466 cpu_infop->l2_settings = 0;
467 cpu_infop->l2_cache_size = 0xFFFFFFFF;
468 }
469
470 if (cpuid_infop->cache_size[L3U] > 0) {
471 cpu_infop->l3_settings = 1;
472 cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
473 } else {
474 cpu_infop->l3_settings = 0;
475 cpu_infop->l3_cache_size = 0xFFFFFFFF;
476 }
477 }
478
479 void
480 ml_init_max_cpus(unsigned long max_cpus)
481 {
482 boolean_t current_state;
483
484 current_state = ml_set_interrupts_enabled(FALSE);
485 if (max_cpus_initialized != MAX_CPUS_SET) {
486 if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
487 /*
488 * Note: max_cpus is the number of enabled processors
489 * that ACPI found; max_ncpus is the maximum number
490 * that the kernel supports or that the "cpus="
491 * boot-arg has set. Here we take int minimum.
492 */
493 machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
494 }
495 if (max_cpus_initialized == MAX_CPUS_WAIT)
496 wakeup((event_t)&max_cpus_initialized);
497 max_cpus_initialized = MAX_CPUS_SET;
498 }
499 (void) ml_set_interrupts_enabled(current_state);
500 }
501
502 int
503 ml_get_max_cpus(void)
504 {
505 boolean_t current_state;
506
507 current_state = ml_set_interrupts_enabled(FALSE);
508 if (max_cpus_initialized != MAX_CPUS_SET) {
509 max_cpus_initialized = MAX_CPUS_WAIT;
510 assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
511 (void)thread_block(THREAD_CONTINUE_NULL);
512 }
513 (void) ml_set_interrupts_enabled(current_state);
514 return(machine_info.max_cpus);
515 }
516
517 /*
518 * Routine: ml_init_lock_timeout
519 * Function:
520 */
521 void
522 ml_init_lock_timeout(void)
523 {
524 uint64_t abstime;
525 uint32_t mtxspin;
526 uint64_t default_timeout_ns = NSEC_PER_SEC>>2;
527 uint32_t slto;
528
529 if (PE_parse_boot_argn("slto_us", &slto, sizeof (slto)))
530 default_timeout_ns = slto * NSEC_PER_USEC;
531
532 /* LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks */
533 nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
534 LockTimeOut = (uint32_t) abstime;
535 LockTimeOutTSC = (uint32_t) tmrCvt(abstime, tscFCvtn2t);
536
537 if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof (mtxspin))) {
538 if (mtxspin > USEC_PER_SEC>>4)
539 mtxspin = USEC_PER_SEC>>4;
540 nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
541 } else {
542 nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
543 }
544 MutexSpin = (unsigned int)abstime;
545
546 nanoseconds_to_absolutetime(2 * NSEC_PER_SEC, &LastDebuggerEntryAllowance);
547 }
548
549 /*
550 * This is called from the machine-independent routine cpu_up()
551 * to perform machine-dependent info updates. Defer to cpu_thread_init().
552 */
553 void
554 ml_cpu_up(void)
555 {
556 return;
557 }
558
559 /*
560 * This is called from the machine-independent routine cpu_down()
561 * to perform machine-dependent info updates.
562 */
563 void
564 ml_cpu_down(void)
565 {
566 return;
567 }
568
569 /*
570 * The following are required for parts of the kernel
571 * that cannot resolve these functions as inlines:
572 */
573 extern thread_t current_act(void);
574 thread_t
575 current_act(void)
576 {
577 return(current_thread_fast());
578 }
579
580 #undef current_thread
581 extern thread_t current_thread(void);
582 thread_t
583 current_thread(void)
584 {
585 return(current_thread_fast());
586 }
587
588
589 boolean_t ml_is64bit(void) {
590
591 return (cpu_mode_is64bit());
592 }
593
594
595 boolean_t ml_thread_is64bit(thread_t thread) {
596
597 return (thread_is_64bit(thread));
598 }
599
600
601 boolean_t ml_state_is64bit(void *saved_state) {
602
603 return is_saved_state64(saved_state);
604 }
605
606 void ml_cpu_set_ldt(int selector)
607 {
608 /*
609 * Avoid loading the LDT
610 * if we're setting the KERNEL LDT and it's already set.
611 */
612 if (selector == KERNEL_LDT &&
613 current_cpu_datap()->cpu_ldt == KERNEL_LDT)
614 return;
615
616 #if defined(__i386__)
617 /*
618 * If 64bit this requires a mode switch (and back).
619 */
620 if (cpu_mode_is64bit())
621 ml_64bit_lldt(selector);
622 else
623 lldt(selector);
624 #else
625 lldt(selector);
626 #endif
627 current_cpu_datap()->cpu_ldt = selector;
628 }
629
630 void ml_fp_setvalid(boolean_t value)
631 {
632 fp_setvalid(value);
633 }
634
635 uint64_t ml_cpu_int_event_time(void)
636 {
637 return current_cpu_datap()->cpu_int_event_time;
638 }
639
640 vm_offset_t ml_stack_remaining(void)
641 {
642 uintptr_t local = (uintptr_t) &local;
643
644 if (ml_at_interrupt_context() != 0) {
645 return (local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE));
646 } else {
647 return (local - current_thread()->kernel_stack);
648 }
649 }
650
651 #if MACH_KDB
652
653 /*
654 * Display the global msrs
655 * *
656 * ms
657 */
658 void
659 db_msr(__unused db_expr_t addr,
660 __unused int have_addr,
661 __unused db_expr_t count,
662 __unused char *modif)
663 {
664
665 uint32_t i, msrlow, msrhigh;
666
667 /* Try all of the first 4096 msrs */
668 for (i = 0; i < 4096; i++) {
669 if (!rdmsr_carefully(i, &msrlow, &msrhigh)) {
670 db_printf("%08X - %08X.%08X\n", i, msrhigh, msrlow);
671 }
672 }
673
674 /* Try all of the 4096 msrs at 0x0C000000 */
675 for (i = 0; i < 4096; i++) {
676 if (!rdmsr_carefully(0x0C000000 | i, &msrlow, &msrhigh)) {
677 db_printf("%08X - %08X.%08X\n",
678 0x0C000000 | i, msrhigh, msrlow);
679 }
680 }
681
682 /* Try all of the 4096 msrs at 0xC0000000 */
683 for (i = 0; i < 4096; i++) {
684 if (!rdmsr_carefully(0xC0000000 | i, &msrlow, &msrhigh)) {
685 db_printf("%08X - %08X.%08X\n",
686 0xC0000000 | i, msrhigh, msrlow);
687 }
688 }
689 }
690
691 #endif