]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/bsd_kern.c
d017ae5203fb76f2eb623143b8d3e42493aef797
[apple/xnu.git] / osfmk / kern / bsd_kern.c
1 /*
2 * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <mach/mach_types.h>
29 #include <mach/machine/vm_param.h>
30 #include <mach/task.h>
31
32 #include <kern/kern_types.h>
33 #include <kern/ledger.h>
34 #include <kern/processor.h>
35 #include <kern/thread.h>
36 #include <kern/task.h>
37 #include <kern/spl.h>
38 #include <kern/ast.h>
39 #include <ipc/ipc_port.h>
40 #include <ipc/ipc_object.h>
41 #include <vm/vm_map.h>
42 #include <vm/vm_kern.h>
43 #include <vm/pmap.h>
44 #include <vm/vm_protos.h> /* last */
45 #include <sys/resource.h>
46 #include <sys/signal.h>
47
48 #if MONOTONIC
49 #include <kern/monotonic.h>
50 #include <machine/monotonic.h>
51 #endif /* MONOTONIC */
52
53 #include <machine/limits.h>
54
55 #undef thread_should_halt
56
57 /* BSD KERN COMPONENT INTERFACE */
58
59 extern unsigned int not_in_kdp; /* Skip acquiring locks if we're in kdp */
60
61 thread_t get_firstthread(task_t);
62 int get_task_userstop(task_t);
63 int get_thread_userstop(thread_t);
64 boolean_t current_thread_aborted(void);
65 void task_act_iterate_wth_args(task_t, void(*)(thread_t, void *), void *);
66 kern_return_t get_signalact(task_t , thread_t *, int);
67 int fill_task_rusage(task_t task, rusage_info_current *ri);
68 int fill_task_io_rusage(task_t task, rusage_info_current *ri);
69 int fill_task_qos_rusage(task_t task, rusage_info_current *ri);
70 void fill_task_monotonic_rusage(task_t task, rusage_info_current *ri);
71 uint64_t get_task_logical_writes(task_t task);
72 void fill_task_billed_usage(task_t task, rusage_info_current *ri);
73 void task_bsdtask_kill(task_t);
74
75 extern uint64_t get_dispatchqueue_serialno_offset_from_proc(void *p);
76 extern uint64_t proc_uniqueid(void *p);
77 extern int proc_pidversion(void *p);
78
79 #if MACH_BSD
80 extern void psignal(void *, int);
81 #endif
82
83 /*
84 *
85 */
86 void *get_bsdtask_info(task_t t)
87 {
88 return(t->bsd_info);
89 }
90
91 void task_bsdtask_kill(task_t t)
92 {
93 void * bsd_info = get_bsdtask_info(t);
94 if (bsd_info != NULL) {
95 psignal(bsd_info, SIGKILL);
96 }
97 }
98 /*
99 *
100 */
101 void *get_bsdthreadtask_info(thread_t th)
102 {
103 return(th->task != TASK_NULL ? th->task->bsd_info : NULL);
104 }
105
106 /*
107 *
108 */
109 void set_bsdtask_info(task_t t,void * v)
110 {
111 t->bsd_info=v;
112 }
113
114 /*
115 *
116 */
117 void *get_bsdthread_info(thread_t th)
118 {
119 return(th->uthread);
120 }
121
122 /*
123 * XXX
124 */
125 int get_thread_lock_count(thread_t th); /* forced forward */
126 int get_thread_lock_count(thread_t th)
127 {
128 return(th->mutex_count);
129 }
130
131 /*
132 * XXX: wait for BSD to fix signal code
133 * Until then, we cannot block here. We know the task
134 * can't go away, so we make sure it is still active after
135 * retrieving the first thread for extra safety.
136 */
137 thread_t get_firstthread(task_t task)
138 {
139 thread_t thread = (thread_t)(void *)queue_first(&task->threads);
140
141 if (queue_end(&task->threads, (queue_entry_t)thread))
142 thread = THREAD_NULL;
143
144 if (!task->active)
145 return (THREAD_NULL);
146
147 return (thread);
148 }
149
150 kern_return_t
151 get_signalact(
152 task_t task,
153 thread_t *result_out,
154 int setast)
155 {
156 kern_return_t result = KERN_SUCCESS;
157 thread_t inc, thread = THREAD_NULL;
158
159 task_lock(task);
160
161 if (!task->active) {
162 task_unlock(task);
163
164 return (KERN_FAILURE);
165 }
166
167 for (inc = (thread_t)(void *)queue_first(&task->threads);
168 !queue_end(&task->threads, (queue_entry_t)inc); ) {
169 thread_mtx_lock(inc);
170 if (inc->active &&
171 (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) {
172 thread = inc;
173 break;
174 }
175 thread_mtx_unlock(inc);
176
177 inc = (thread_t)(void *)queue_next(&inc->task_threads);
178 }
179
180 if (result_out)
181 *result_out = thread;
182
183 if (thread) {
184 if (setast)
185 act_set_astbsd(thread);
186
187 thread_mtx_unlock(thread);
188 }
189 else
190 result = KERN_FAILURE;
191
192 task_unlock(task);
193
194 return (result);
195 }
196
197
198 kern_return_t
199 check_actforsig(
200 task_t task,
201 thread_t thread,
202 int setast)
203 {
204 kern_return_t result = KERN_FAILURE;
205 thread_t inc;
206
207 task_lock(task);
208
209 if (!task->active) {
210 task_unlock(task);
211
212 return (KERN_FAILURE);
213 }
214
215 for (inc = (thread_t)(void *)queue_first(&task->threads);
216 !queue_end(&task->threads, (queue_entry_t)inc); ) {
217 if (inc == thread) {
218 thread_mtx_lock(inc);
219
220 if (inc->active &&
221 (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) {
222 result = KERN_SUCCESS;
223 break;
224 }
225
226 thread_mtx_unlock(inc);
227 break;
228 }
229
230 inc = (thread_t)(void *)queue_next(&inc->task_threads);
231 }
232
233 if (result == KERN_SUCCESS) {
234 if (setast)
235 act_set_astbsd(thread);
236
237 thread_mtx_unlock(thread);
238 }
239
240 task_unlock(task);
241
242 return (result);
243 }
244
245 ledger_t get_task_ledger(task_t t)
246 {
247 return(t->ledger);
248 }
249
250 /*
251 * This is only safe to call from a thread executing in
252 * in the task's context or if the task is locked. Otherwise,
253 * the map could be switched for the task (and freed) before
254 * we go to return it here.
255 */
256 vm_map_t get_task_map(task_t t)
257 {
258 return(t->map);
259 }
260
261 vm_map_t get_task_map_reference(task_t t)
262 {
263 vm_map_t m;
264
265 if (t == NULL)
266 return VM_MAP_NULL;
267
268 task_lock(t);
269 if (!t->active) {
270 task_unlock(t);
271 return VM_MAP_NULL;
272 }
273 m = t->map;
274 vm_map_reference_swap(m);
275 task_unlock(t);
276 return m;
277 }
278
279 /*
280 *
281 */
282 ipc_space_t get_task_ipcspace(task_t t)
283 {
284 return(t->itk_space);
285 }
286
287 int get_task_numactivethreads(task_t task)
288 {
289 thread_t inc;
290 int num_active_thr=0;
291 task_lock(task);
292
293 for (inc = (thread_t)(void *)queue_first(&task->threads);
294 !queue_end(&task->threads, (queue_entry_t)inc); inc = (thread_t)(void *)queue_next(&inc->task_threads))
295 {
296 if(inc->active)
297 num_active_thr++;
298 }
299 task_unlock(task);
300 return num_active_thr;
301 }
302
303 int get_task_numacts(task_t t)
304 {
305 return(t->thread_count);
306 }
307
308 /* does this machine need 64bit register set for signal handler */
309 int is_64signalregset(void)
310 {
311 if (task_has_64Bit_data(current_task())) {
312 return(1);
313 }
314
315 return(0);
316 }
317
318 /*
319 * Swap in a new map for the task/thread pair; the old map reference is
320 * returned. Also does a pmap switch if thread provided is current thread.
321 */
322 vm_map_t
323 swap_task_map(task_t task, thread_t thread, vm_map_t map)
324 {
325 vm_map_t old_map;
326 boolean_t doswitch = (thread == current_thread()) ? TRUE : FALSE;
327
328 if (task != thread->task)
329 panic("swap_task_map");
330
331 task_lock(task);
332 mp_disable_preemption();
333
334 old_map = task->map;
335 thread->map = task->map = map;
336 vm_commit_pagezero_status(map);
337
338 if (doswitch) {
339 #if defined(__arm__) || defined(__arm64__)
340 PMAP_SWITCH_USER(thread, map, cpu_number())
341 #else
342 pmap_switch(map->pmap);
343 #endif
344 }
345 mp_enable_preemption();
346 task_unlock(task);
347
348 #if (defined(__i386__) || defined(__x86_64__)) && NCOPY_WINDOWS > 0
349 inval_copy_windows(thread);
350 #endif
351
352 return old_map;
353 }
354
355 /*
356 *
357 * This is only safe to call from a thread executing in
358 * in the task's context or if the task is locked. Otherwise,
359 * the map could be switched for the task (and freed) before
360 * we go to return it here.
361 */
362 pmap_t get_task_pmap(task_t t)
363 {
364 return(t->map->pmap);
365 }
366
367 /*
368 *
369 */
370 uint64_t get_task_resident_size(task_t task)
371 {
372 vm_map_t map;
373
374 map = (task == kernel_task) ? kernel_map: task->map;
375 return((uint64_t)pmap_resident_count(map->pmap) * PAGE_SIZE_64);
376 }
377
378 uint64_t get_task_compressed(task_t task)
379 {
380 vm_map_t map;
381
382 map = (task == kernel_task) ? kernel_map: task->map;
383 return((uint64_t)pmap_compressed(map->pmap) * PAGE_SIZE_64);
384 }
385
386 uint64_t get_task_resident_max(task_t task)
387 {
388 vm_map_t map;
389
390 map = (task == kernel_task) ? kernel_map: task->map;
391 return((uint64_t)pmap_resident_max(map->pmap) * PAGE_SIZE_64);
392 }
393
394 uint64_t get_task_purgeable_size(task_t task)
395 {
396 kern_return_t ret;
397 ledger_amount_t credit, debit;
398 uint64_t volatile_size = 0;
399
400 ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_volatile, &credit, &debit);
401 if (ret != KERN_SUCCESS) {
402 return 0;
403 }
404
405 volatile_size += (credit - debit);
406
407 ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_volatile_compressed, &credit, &debit);
408 if (ret != KERN_SUCCESS) {
409 return 0;
410 }
411
412 volatile_size += (credit - debit);
413
414 return volatile_size;
415 }
416
417 /*
418 *
419 */
420 uint64_t get_task_phys_footprint(task_t task)
421 {
422 kern_return_t ret;
423 ledger_amount_t credit, debit;
424
425 ret = ledger_get_entries(task->ledger, task_ledgers.phys_footprint, &credit, &debit);
426 if (KERN_SUCCESS == ret) {
427 return (credit - debit);
428 }
429
430 return 0;
431 }
432
433 #if CONFIG_LEDGER_INTERVAL_MAX
434 /*
435 *
436 */
437 uint64_t get_task_phys_footprint_interval_max(task_t task, int reset)
438 {
439 kern_return_t ret;
440 ledger_amount_t max;
441
442 ret = ledger_get_interval_max(task->ledger, task_ledgers.phys_footprint, &max, reset);
443
444 if(KERN_SUCCESS == ret) {
445 return max;
446 }
447
448 return 0;
449 }
450 #endif /* CONFIG_LEDGER_INTERVAL_MAX */
451
452 /*
453 *
454 */
455 uint64_t get_task_phys_footprint_lifetime_max(task_t task)
456 {
457 kern_return_t ret;
458 ledger_amount_t max;
459
460 ret = ledger_get_lifetime_max(task->ledger, task_ledgers.phys_footprint, &max);
461
462 if(KERN_SUCCESS == ret) {
463 return max;
464 }
465
466 return 0;
467 }
468
469 /*
470 *
471 */
472 uint64_t get_task_phys_footprint_limit(task_t task)
473 {
474 kern_return_t ret;
475 ledger_amount_t max;
476
477 ret = ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &max);
478 if (KERN_SUCCESS == ret) {
479 return max;
480 }
481
482 return 0;
483 }
484
485 uint64_t get_task_internal(task_t task)
486 {
487 kern_return_t ret;
488 ledger_amount_t credit, debit;
489
490 ret = ledger_get_entries(task->ledger, task_ledgers.internal, &credit, &debit);
491 if (KERN_SUCCESS == ret) {
492 return (credit - debit);
493 }
494
495 return 0;
496 }
497
498 uint64_t get_task_internal_compressed(task_t task)
499 {
500 kern_return_t ret;
501 ledger_amount_t credit, debit;
502
503 ret = ledger_get_entries(task->ledger, task_ledgers.internal_compressed, &credit, &debit);
504 if (KERN_SUCCESS == ret) {
505 return (credit - debit);
506 }
507
508 return 0;
509 }
510
511 uint64_t get_task_purgeable_nonvolatile(task_t task)
512 {
513 kern_return_t ret;
514 ledger_amount_t credit, debit;
515
516 ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_nonvolatile, &credit, &debit);
517 if (KERN_SUCCESS == ret) {
518 return (credit - debit);
519 }
520
521 return 0;
522 }
523
524 uint64_t get_task_purgeable_nonvolatile_compressed(task_t task)
525 {
526 kern_return_t ret;
527 ledger_amount_t credit, debit;
528
529 ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_nonvolatile_compressed, &credit, &debit);
530 if (KERN_SUCCESS == ret) {
531 return (credit - debit);
532 }
533
534 return 0;
535 }
536
537 uint64_t get_task_alternate_accounting(task_t task)
538 {
539 kern_return_t ret;
540 ledger_amount_t credit, debit;
541
542 ret = ledger_get_entries(task->ledger, task_ledgers.alternate_accounting, &credit, &debit);
543 if (KERN_SUCCESS == ret) {
544 return (credit - debit);
545 }
546
547 return 0;
548 }
549
550 uint64_t get_task_alternate_accounting_compressed(task_t task)
551 {
552 kern_return_t ret;
553 ledger_amount_t credit, debit;
554
555 ret = ledger_get_entries(task->ledger, task_ledgers.alternate_accounting_compressed, &credit, &debit);
556 if (KERN_SUCCESS == ret) {
557 return (credit - debit);
558 }
559
560 return 0;
561 }
562
563 uint64_t get_task_page_table(task_t task)
564 {
565 kern_return_t ret;
566 ledger_amount_t credit, debit;
567
568 ret = ledger_get_entries(task->ledger, task_ledgers.page_table, &credit, &debit);
569 if (KERN_SUCCESS == ret) {
570 return (credit - debit);
571 }
572
573 return 0;
574 }
575
576 uint64_t get_task_iokit_mapped(task_t task)
577 {
578 kern_return_t ret;
579 ledger_amount_t credit, debit;
580
581 ret = ledger_get_entries(task->ledger, task_ledgers.iokit_mapped, &credit, &debit);
582 if (KERN_SUCCESS == ret) {
583 return (credit - debit);
584 }
585
586 return 0;
587 }
588
589 uint64_t get_task_network_nonvolatile(task_t task)
590 {
591 kern_return_t ret;
592 ledger_amount_t credit, debit;
593
594 ret = ledger_get_entries(task->ledger, task_ledgers.network_nonvolatile, &credit, &debit);
595 if (KERN_SUCCESS == ret) {
596 return (credit - debit);
597 }
598
599 return 0;
600 }
601
602 uint64_t get_task_network_nonvolatile_compressed(task_t task)
603 {
604 kern_return_t ret;
605 ledger_amount_t credit, debit;
606
607 ret = ledger_get_entries(task->ledger, task_ledgers.network_nonvolatile_compressed, &credit, &debit);
608 if (KERN_SUCCESS == ret) {
609 return (credit - debit);
610 }
611
612 return 0;
613 }
614
615 uint64_t get_task_wired_mem(task_t task)
616 {
617 kern_return_t ret;
618 ledger_amount_t credit, debit;
619
620 ret = ledger_get_entries(task->ledger, task_ledgers.wired_mem, &credit, &debit);
621 if (KERN_SUCCESS == ret) {
622 return (credit - debit);
623 }
624
625 return 0;
626 }
627
628
629 uint64_t get_task_cpu_time(task_t task)
630 {
631 kern_return_t ret;
632 ledger_amount_t credit, debit;
633
634 ret = ledger_get_entries(task->ledger, task_ledgers.cpu_time, &credit, &debit);
635 if (KERN_SUCCESS == ret) {
636 return (credit - debit);
637 }
638
639 return 0;
640 }
641
642 /*
643 *
644 */
645 task_t get_threadtask(thread_t th)
646 {
647 return(th->task);
648 }
649
650 /*
651 *
652 */
653 vm_map_offset_t
654 get_map_min(
655 vm_map_t map)
656 {
657 return(vm_map_min(map));
658 }
659
660 /*
661 *
662 */
663 vm_map_offset_t
664 get_map_max(
665 vm_map_t map)
666 {
667 return(vm_map_max(map));
668 }
669 vm_map_size_t
670 get_vmmap_size(
671 vm_map_t map)
672 {
673 return(map->size);
674 }
675
676 #if CONFIG_COREDUMP
677
678 static int
679 get_vmsubmap_entries(
680 vm_map_t map,
681 vm_object_offset_t start,
682 vm_object_offset_t end)
683 {
684 int total_entries = 0;
685 vm_map_entry_t entry;
686
687 if (not_in_kdp)
688 vm_map_lock(map);
689 entry = vm_map_first_entry(map);
690 while((entry != vm_map_to_entry(map)) && (entry->vme_start < start)) {
691 entry = entry->vme_next;
692 }
693
694 while((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) {
695 if(entry->is_sub_map) {
696 total_entries +=
697 get_vmsubmap_entries(VME_SUBMAP(entry),
698 VME_OFFSET(entry),
699 (VME_OFFSET(entry) +
700 entry->vme_end -
701 entry->vme_start));
702 } else {
703 total_entries += 1;
704 }
705 entry = entry->vme_next;
706 }
707 if (not_in_kdp)
708 vm_map_unlock(map);
709 return(total_entries);
710 }
711
712 int
713 get_vmmap_entries(
714 vm_map_t map)
715 {
716 int total_entries = 0;
717 vm_map_entry_t entry;
718
719 if (not_in_kdp)
720 vm_map_lock(map);
721 entry = vm_map_first_entry(map);
722
723 while(entry != vm_map_to_entry(map)) {
724 if(entry->is_sub_map) {
725 total_entries +=
726 get_vmsubmap_entries(VME_SUBMAP(entry),
727 VME_OFFSET(entry),
728 (VME_OFFSET(entry) +
729 entry->vme_end -
730 entry->vme_start));
731 } else {
732 total_entries += 1;
733 }
734 entry = entry->vme_next;
735 }
736 if (not_in_kdp)
737 vm_map_unlock(map);
738 return(total_entries);
739 }
740 #endif /* CONFIG_COREDUMP */
741
742 /*
743 *
744 */
745 /*
746 *
747 */
748 int
749 get_task_userstop(
750 task_t task)
751 {
752 return(task->user_stop_count);
753 }
754
755 /*
756 *
757 */
758 int
759 get_thread_userstop(
760 thread_t th)
761 {
762 return(th->user_stop_count);
763 }
764
765 /*
766 *
767 */
768 boolean_t
769 get_task_pidsuspended(
770 task_t task)
771 {
772 return (task->pidsuspended);
773 }
774
775 /*
776 *
777 */
778 boolean_t
779 get_task_frozen(
780 task_t task)
781 {
782 return (task->frozen);
783 }
784
785 /*
786 *
787 */
788 boolean_t
789 thread_should_abort(
790 thread_t th)
791 {
792 return ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT);
793 }
794
795 /*
796 * This routine is like thread_should_abort() above. It checks to
797 * see if the current thread is aborted. But unlike above, it also
798 * checks to see if thread is safely aborted. If so, it returns
799 * that fact, and clears the condition (safe aborts only should
800 * have a single effect, and a poll of the abort status
801 * qualifies.
802 */
803 boolean_t
804 current_thread_aborted (
805 void)
806 {
807 thread_t th = current_thread();
808 spl_t s;
809
810 if ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT &&
811 (th->options & TH_OPT_INTMASK) != THREAD_UNINT)
812 return (TRUE);
813 if (th->sched_flags & TH_SFLAG_ABORTSAFELY) {
814 s = splsched();
815 thread_lock(th);
816 if (th->sched_flags & TH_SFLAG_ABORTSAFELY)
817 th->sched_flags &= ~TH_SFLAG_ABORTED_MASK;
818 thread_unlock(th);
819 splx(s);
820 }
821 return FALSE;
822 }
823
824 /*
825 *
826 */
827 void
828 task_act_iterate_wth_args(
829 task_t task,
830 void (*func_callback)(thread_t, void *),
831 void *func_arg)
832 {
833 thread_t inc;
834
835 task_lock(task);
836
837 for (inc = (thread_t)(void *)queue_first(&task->threads);
838 !queue_end(&task->threads, (queue_entry_t)inc); ) {
839 (void) (*func_callback)(inc, func_arg);
840 inc = (thread_t)(void *)queue_next(&inc->task_threads);
841 }
842
843 task_unlock(task);
844 }
845
846
847 #include <sys/bsdtask_info.h>
848
849 void
850 fill_taskprocinfo(task_t task, struct proc_taskinfo_internal * ptinfo)
851 {
852 vm_map_t map;
853 task_absolutetime_info_data_t tinfo;
854 thread_t thread;
855 uint32_t cswitch = 0, numrunning = 0;
856 uint32_t syscalls_unix = 0;
857 uint32_t syscalls_mach = 0;
858
859 task_lock(task);
860
861 map = (task == kernel_task)? kernel_map: task->map;
862
863 ptinfo->pti_virtual_size = map->size;
864 ptinfo->pti_resident_size =
865 (mach_vm_size_t)(pmap_resident_count(map->pmap))
866 * PAGE_SIZE_64;
867
868 ptinfo->pti_policy = ((task != kernel_task)?
869 POLICY_TIMESHARE: POLICY_RR);
870
871 tinfo.threads_user = tinfo.threads_system = 0;
872 tinfo.total_user = task->total_user_time;
873 tinfo.total_system = task->total_system_time;
874
875 queue_iterate(&task->threads, thread, thread_t, task_threads) {
876 uint64_t tval;
877 spl_t x;
878
879 if (thread->options & TH_OPT_IDLE_THREAD)
880 continue;
881
882 x = splsched();
883 thread_lock(thread);
884
885 if ((thread->state & TH_RUN) == TH_RUN)
886 numrunning++;
887 cswitch += thread->c_switch;
888 tval = timer_grab(&thread->user_timer);
889 tinfo.threads_user += tval;
890 tinfo.total_user += tval;
891
892 tval = timer_grab(&thread->system_timer);
893
894 if (thread->precise_user_kernel_time) {
895 tinfo.threads_system += tval;
896 tinfo.total_system += tval;
897 } else {
898 /* system_timer may represent either sys or user */
899 tinfo.threads_user += tval;
900 tinfo.total_user += tval;
901 }
902
903 syscalls_unix += thread->syscalls_unix;
904 syscalls_mach += thread->syscalls_mach;
905
906 thread_unlock(thread);
907 splx(x);
908 }
909
910 ptinfo->pti_total_system = tinfo.total_system;
911 ptinfo->pti_total_user = tinfo.total_user;
912 ptinfo->pti_threads_system = tinfo.threads_system;
913 ptinfo->pti_threads_user = tinfo.threads_user;
914
915 ptinfo->pti_faults = task->faults;
916 ptinfo->pti_pageins = task->pageins;
917 ptinfo->pti_cow_faults = task->cow_faults;
918 ptinfo->pti_messages_sent = task->messages_sent;
919 ptinfo->pti_messages_received = task->messages_received;
920 ptinfo->pti_syscalls_mach = task->syscalls_mach + syscalls_mach;
921 ptinfo->pti_syscalls_unix = task->syscalls_unix + syscalls_unix;
922 ptinfo->pti_csw = task->c_switch + cswitch;
923 ptinfo->pti_threadnum = task->thread_count;
924 ptinfo->pti_numrunning = numrunning;
925 ptinfo->pti_priority = task->priority;
926
927 task_unlock(task);
928 }
929
930 int
931 fill_taskthreadinfo(task_t task, uint64_t thaddr, bool thuniqueid, struct proc_threadinfo_internal * ptinfo, void * vpp, int *vidp)
932 {
933 thread_t thact;
934 int err=0;
935 mach_msg_type_number_t count;
936 thread_basic_info_data_t basic_info;
937 kern_return_t kret;
938 uint64_t addr = 0;
939
940 task_lock(task);
941
942 for (thact = (thread_t)(void *)queue_first(&task->threads);
943 !queue_end(&task->threads, (queue_entry_t)thact); ) {
944 addr = (thuniqueid) ? thact->thread_id : thact->machine.cthread_self;
945 if (addr == thaddr)
946 {
947
948 count = THREAD_BASIC_INFO_COUNT;
949 if ((kret = thread_info_internal(thact, THREAD_BASIC_INFO, (thread_info_t)&basic_info, &count)) != KERN_SUCCESS) {
950 err = 1;
951 goto out;
952 }
953 ptinfo->pth_user_time = ((basic_info.user_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.user_time.microseconds * (integer_t)NSEC_PER_USEC));
954 ptinfo->pth_system_time = ((basic_info.system_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.system_time.microseconds * (integer_t)NSEC_PER_USEC));
955
956 ptinfo->pth_cpu_usage = basic_info.cpu_usage;
957 ptinfo->pth_policy = basic_info.policy;
958 ptinfo->pth_run_state = basic_info.run_state;
959 ptinfo->pth_flags = basic_info.flags;
960 ptinfo->pth_sleep_time = basic_info.sleep_time;
961 ptinfo->pth_curpri = thact->sched_pri;
962 ptinfo->pth_priority = thact->base_pri;
963 ptinfo->pth_maxpriority = thact->max_priority;
964
965 if ((vpp != NULL) && (thact->uthread != NULL))
966 bsd_threadcdir(thact->uthread, vpp, vidp);
967 bsd_getthreadname(thact->uthread,ptinfo->pth_name);
968 err = 0;
969 goto out;
970 }
971 thact = (thread_t)(void *)queue_next(&thact->task_threads);
972 }
973 err = 1;
974
975 out:
976 task_unlock(task);
977 return(err);
978 }
979
980 int
981 fill_taskthreadlist(task_t task, void * buffer, int thcount, bool thuniqueid)
982 {
983 int numthr=0;
984 thread_t thact;
985 uint64_t * uptr;
986 uint64_t thaddr;
987
988 uptr = (uint64_t *)buffer;
989
990 task_lock(task);
991
992 for (thact = (thread_t)(void *)queue_first(&task->threads);
993 !queue_end(&task->threads, (queue_entry_t)thact); ) {
994 thaddr = (thuniqueid) ? thact->thread_id : thact->machine.cthread_self;
995 *uptr++ = thaddr;
996 numthr++;
997 if (numthr >= thcount)
998 goto out;
999 thact = (thread_t)(void *)queue_next(&thact->task_threads);
1000 }
1001
1002 out:
1003 task_unlock(task);
1004 return (int)(numthr * sizeof(uint64_t));
1005
1006 }
1007
1008 int
1009 get_numthreads(task_t task)
1010 {
1011 return(task->thread_count);
1012 }
1013
1014 /*
1015 * Gather the various pieces of info about the designated task,
1016 * and collect it all into a single rusage_info.
1017 */
1018 int
1019 fill_task_rusage(task_t task, rusage_info_current *ri)
1020 {
1021 struct task_power_info powerinfo;
1022
1023 assert(task != TASK_NULL);
1024 task_lock(task);
1025
1026 task_power_info_locked(task, &powerinfo, NULL, NULL);
1027 ri->ri_pkg_idle_wkups = powerinfo.task_platform_idle_wakeups;
1028 ri->ri_interrupt_wkups = powerinfo.task_interrupt_wakeups;
1029 ri->ri_user_time = powerinfo.total_user;
1030 ri->ri_system_time = powerinfo.total_system;
1031
1032 ledger_get_balance(task->ledger, task_ledgers.phys_footprint,
1033 (ledger_amount_t *)&ri->ri_phys_footprint);
1034 ledger_get_balance(task->ledger, task_ledgers.phys_mem,
1035 (ledger_amount_t *)&ri->ri_resident_size);
1036 ledger_get_balance(task->ledger, task_ledgers.wired_mem,
1037 (ledger_amount_t *)&ri->ri_wired_size);
1038
1039 ri->ri_pageins = task->pageins;
1040
1041 task_unlock(task);
1042 return (0);
1043 }
1044
1045 void
1046 fill_task_billed_usage(task_t task __unused, rusage_info_current *ri)
1047 {
1048 bank_billed_balance_safe(task, &ri->ri_billed_system_time, &ri->ri_billed_energy);
1049 bank_serviced_balance_safe(task, &ri->ri_serviced_system_time, &ri->ri_serviced_energy);
1050 }
1051
1052 int
1053 fill_task_io_rusage(task_t task, rusage_info_current *ri)
1054 {
1055 assert(task != TASK_NULL);
1056 task_lock(task);
1057
1058 if (task->task_io_stats) {
1059 ri->ri_diskio_bytesread = task->task_io_stats->disk_reads.size;
1060 ri->ri_diskio_byteswritten = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size);
1061 } else {
1062 /* I/O Stats unavailable */
1063 ri->ri_diskio_bytesread = 0;
1064 ri->ri_diskio_byteswritten = 0;
1065 }
1066 task_unlock(task);
1067 return (0);
1068 }
1069
1070 int
1071 fill_task_qos_rusage(task_t task, rusage_info_current *ri)
1072 {
1073 thread_t thread;
1074
1075 assert(task != TASK_NULL);
1076 task_lock(task);
1077
1078 /* Rollup QoS time of all the threads to task */
1079 queue_iterate(&task->threads, thread, thread_t, task_threads) {
1080 if (thread->options & TH_OPT_IDLE_THREAD)
1081 continue;
1082
1083 thread_update_qos_cpu_time(thread);
1084 }
1085 ri->ri_cpu_time_qos_default = task->cpu_time_eqos_stats.cpu_time_qos_default;
1086 ri->ri_cpu_time_qos_maintenance = task->cpu_time_eqos_stats.cpu_time_qos_maintenance;
1087 ri->ri_cpu_time_qos_background = task->cpu_time_eqos_stats.cpu_time_qos_background;
1088 ri->ri_cpu_time_qos_utility = task->cpu_time_eqos_stats.cpu_time_qos_utility;
1089 ri->ri_cpu_time_qos_legacy = task->cpu_time_eqos_stats.cpu_time_qos_legacy;
1090 ri->ri_cpu_time_qos_user_initiated = task->cpu_time_eqos_stats.cpu_time_qos_user_initiated;
1091 ri->ri_cpu_time_qos_user_interactive = task->cpu_time_eqos_stats.cpu_time_qos_user_interactive;
1092
1093 task_unlock(task);
1094 return (0);
1095 }
1096
1097 void
1098 fill_task_monotonic_rusage(task_t task, rusage_info_current *ri)
1099 {
1100 #if MONOTONIC
1101 if (!mt_core_supported) {
1102 return;
1103 }
1104
1105 assert(task != TASK_NULL);
1106
1107 uint64_t counts[MT_CORE_NFIXED] = {};
1108 mt_fixed_task_counts(task, counts);
1109 #ifdef MT_CORE_INSTRS
1110 ri->ri_instructions = counts[MT_CORE_INSTRS];
1111 #endif /* defined(MT_CORE_INSTRS) */
1112 ri->ri_cycles = counts[MT_CORE_CYCLES];
1113 #else /* MONOTONIC */
1114 #pragma unused(task, ri)
1115 #endif /* !MONOTONIC */
1116 }
1117
1118 uint64_t
1119 get_task_logical_writes(task_t task)
1120 {
1121 assert(task != TASK_NULL);
1122 struct ledger_entry_info lei;
1123
1124 task_lock(task);
1125 ledger_get_entry_info(task->ledger, task_ledgers.logical_writes, &lei);
1126
1127 task_unlock(task);
1128 return lei.lei_balance;
1129 }
1130
1131 uint64_t
1132 get_task_dispatchqueue_serialno_offset(task_t task)
1133 {
1134 uint64_t dq_serialno_offset = 0;
1135
1136 if (task->bsd_info) {
1137 dq_serialno_offset = get_dispatchqueue_serialno_offset_from_proc(task->bsd_info);
1138 }
1139
1140 return dq_serialno_offset;
1141 }
1142
1143 uint64_t
1144 get_task_uniqueid(task_t task)
1145 {
1146 if (task->bsd_info) {
1147 return proc_uniqueid(task->bsd_info);
1148 } else {
1149 return UINT64_MAX;
1150 }
1151 }
1152
1153 int
1154 get_task_version(task_t task)
1155 {
1156 if (task->bsd_info) {
1157 return proc_pidversion(task->bsd_info);
1158 } else {
1159 return INT_MAX;
1160 }
1161 }
1162
1163 #if CONFIG_MACF
1164 struct label *
1165 get_task_crash_label(task_t task)
1166 {
1167 return task->crash_label;
1168 }
1169 #endif