]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/sys_pipe.c
cf0e5f2b02a26d55ee9abd05e69141c7dacbc287
[apple/xnu.git] / bsd / kern / sys_pipe.c
1 /*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19 /*
20 * Copyright (c) 2003-2014 Apple Inc. All rights reserved.
21 *
22 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
23 *
24 * This file contains Original Code and/or Modifications of Original Code
25 * as defined in and that are subject to the Apple Public Source License
26 * Version 2.0 (the 'License'). You may not use this file except in
27 * compliance with the License. The rights granted to you under the License
28 * may not be used to create, or enable the creation or redistribution of,
29 * unlawful or unlicensed copies of an Apple operating system, or to
30 * circumvent, violate, or enable the circumvention or violation of, any
31 * terms of an Apple operating system software license agreement.
32 *
33 * Please obtain a copy of the License at
34 * http://www.opensource.apple.com/apsl/ and read it before using this file.
35 *
36 * The Original Code and all software distributed under the License are
37 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
38 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
39 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
40 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
41 * Please see the License for the specific language governing rights and
42 * limitations under the License.
43 *
44 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
45 */
46 /*
47 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
48 * support for mandatory and extensible security protections. This notice
49 * is included in support of clause 2.2 (b) of the Apple Public License,
50 * Version 2.0.
51 */
52
53 /*
54 * This file contains a high-performance replacement for the socket-based
55 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
56 * all features of sockets, but does do everything that pipes normally
57 * do.
58 *
59 * Pipes are implemented as circular buffers. Following are the valid states in pipes operations
60 *
61 * _________________________________
62 * 1. |_________________________________| r=w, c=0
63 *
64 * _________________________________
65 * 2. |__r:::::wc_______________________| r <= w , c > 0
66 *
67 * _________________________________
68 * 3. |::::wc_____r:::::::::::::::::::::| r>w , c > 0
69 *
70 * _________________________________
71 * 4. |:::::::wrc:::::::::::::::::::::::| w=r, c = Max size
72 *
73 *
74 * Nomenclature:-
75 * a-z define the steps in a program flow
76 * 1-4 are the states as defined aboe
77 * Action: is what file operation is done on the pipe
78 *
79 * Current:None Action: initialize with size M=200
80 * a. State 1 ( r=0, w=0, c=0)
81 *
82 * Current: a Action: write(100) (w < M)
83 * b. State 2 (r=0, w=100, c=100)
84 *
85 * Current: b Action: write(100) (w = M-w)
86 * c. State 4 (r=0,w=0,c=200)
87 *
88 * Current: b Action: read(70) ( r < c )
89 * d. State 2(r=70,w=100,c=30)
90 *
91 * Current: d Action: write(75) ( w < (m-w))
92 * e. State 2 (r=70,w=175,c=105)
93 *
94 * Current: d Action: write(110) ( w > (m-w))
95 * f. State 3 (r=70,w=10,c=140)
96 *
97 * Current: d Action: read(30) (r >= c )
98 * g. State 1 (r=100,w=100,c=0)
99 *
100 */
101
102 /*
103 * This code create half duplex pipe buffers for facilitating file like
104 * operations on pipes. The initial buffer is very small, but this can
105 * dynamically change to larger sizes based on usage. The buffer size is never
106 * reduced. The total amount of kernel memory used is governed by maxpipekva.
107 * In case of dynamic expansion limit is reached, the output thread is blocked
108 * until the pipe buffer empties enough to continue.
109 *
110 * In order to limit the resource use of pipes, two sysctls exist:
111 *
112 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
113 * address space available to us in pipe_map.
114 *
115 * Memory usage may be monitored through the sysctls
116 * kern.ipc.pipes, kern.ipc.pipekva.
117 *
118 */
119
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/filedesc.h>
123 #include <sys/kernel.h>
124 #include <sys/vnode.h>
125 #include <sys/proc_internal.h>
126 #include <sys/kauth.h>
127 #include <sys/file_internal.h>
128 #include <sys/stat.h>
129 #include <sys/ioctl.h>
130 #include <sys/fcntl.h>
131 #include <sys/malloc.h>
132 #include <sys/syslog.h>
133 #include <sys/unistd.h>
134 #include <sys/resourcevar.h>
135 #include <sys/aio_kern.h>
136 #include <sys/signalvar.h>
137 #include <sys/pipe.h>
138 #include <sys/sysproto.h>
139 #include <sys/proc_info.h>
140
141 #include <security/audit/audit.h>
142
143 #include <sys/kdebug.h>
144
145 #include <kern/zalloc.h>
146 #include <kern/kalloc.h>
147 #include <vm/vm_kern.h>
148 #include <libkern/OSAtomic.h>
149 #include <libkern/section_keywords.h>
150
151 #if CONFIG_MACF
152 #include <security/mac_framework.h>
153 #endif
154
155 #define f_flag f_fglob->fg_flag
156 #define f_msgcount f_fglob->fg_msgcount
157 #define f_cred f_fglob->fg_cred
158 #define f_ops f_fglob->fg_ops
159 #define f_offset f_fglob->fg_offset
160 #define f_data f_fglob->fg_data
161
162 /*
163 * interfaces to the outside world exported through file operations
164 */
165 static int pipe_read(struct fileproc *fp, struct uio *uio,
166 int flags, vfs_context_t ctx);
167 static int pipe_write(struct fileproc *fp, struct uio *uio,
168 int flags, vfs_context_t ctx);
169 static int pipe_close(struct fileglob *fg, vfs_context_t ctx);
170 static int pipe_select(struct fileproc *fp, int which, void * wql,
171 vfs_context_t ctx);
172 static int pipe_kqfilter(struct fileproc *fp, struct knote *kn,
173 struct kevent_internal_s *kev, vfs_context_t ctx);
174 static int pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data,
175 vfs_context_t ctx);
176 static int pipe_drain(struct fileproc *fp, vfs_context_t ctx);
177
178 static const struct fileops pipeops = {
179 .fo_type = DTYPE_PIPE,
180 .fo_read = pipe_read,
181 .fo_write = pipe_write,
182 .fo_ioctl = pipe_ioctl,
183 .fo_select = pipe_select,
184 .fo_close = pipe_close,
185 .fo_kqfilter = pipe_kqfilter,
186 .fo_drain = pipe_drain,
187 };
188
189 static void filt_pipedetach(struct knote *kn);
190
191 static int filt_piperead(struct knote *kn, long hint);
192 static int filt_pipereadtouch(struct knote *kn, struct kevent_internal_s *kev);
193 static int filt_pipereadprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
194
195 static int filt_pipewrite(struct knote *kn, long hint);
196 static int filt_pipewritetouch(struct knote *kn, struct kevent_internal_s *kev);
197 static int filt_pipewriteprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
198
199 SECURITY_READ_ONLY_EARLY(struct filterops) pipe_rfiltops = {
200 .f_isfd = 1,
201 .f_detach = filt_pipedetach,
202 .f_event = filt_piperead,
203 .f_touch = filt_pipereadtouch,
204 .f_process = filt_pipereadprocess,
205 };
206
207 SECURITY_READ_ONLY_EARLY(struct filterops) pipe_wfiltops = {
208 .f_isfd = 1,
209 .f_detach = filt_pipedetach,
210 .f_event = filt_pipewrite,
211 .f_touch = filt_pipewritetouch,
212 .f_process = filt_pipewriteprocess,
213 };
214
215 static int nbigpipe; /* for compatibility sake. no longer used */
216 static int amountpipes; /* total number of pipes in system */
217 static int amountpipekva; /* total memory used by pipes */
218
219 int maxpipekva __attribute__((used)) = PIPE_KVAMAX; /* allowing 16MB max. */
220
221 #if PIPE_SYSCTLS
222 SYSCTL_DECL(_kern_ipc);
223
224 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RD | CTLFLAG_LOCKED,
225 &maxpipekva, 0, "Pipe KVA limit");
226 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW | CTLFLAG_LOCKED,
227 &maxpipekvawired, 0, "Pipe KVA wired limit");
228 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD | CTLFLAG_LOCKED,
229 &amountpipes, 0, "Current # of pipes");
230 SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD | CTLFLAG_LOCKED,
231 &nbigpipe, 0, "Current # of big pipes");
232 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD | CTLFLAG_LOCKED,
233 &amountpipekva, 0, "Pipe KVA usage");
234 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD | CTLFLAG_LOCKED,
235 &amountpipekvawired, 0, "Pipe wired KVA usage");
236 #endif
237
238 static void pipeclose(struct pipe *cpipe);
239 static void pipe_free_kmem(struct pipe *cpipe);
240 static int pipe_create(struct pipe **cpipep);
241 static int pipespace(struct pipe *cpipe, int size);
242 static int choose_pipespace(unsigned long current, unsigned long expected);
243 static int expand_pipespace(struct pipe *p, int target_size);
244 static void pipeselwakeup(struct pipe *cpipe, struct pipe *spipe);
245 static __inline int pipeio_lock(struct pipe *cpipe, int catch);
246 static __inline void pipeio_unlock(struct pipe *cpipe);
247
248 extern int postpipeevent(struct pipe *, int);
249 extern void evpipefree(struct pipe *cpipe);
250
251 static lck_grp_t *pipe_mtx_grp;
252 static lck_attr_t *pipe_mtx_attr;
253 static lck_grp_attr_t *pipe_mtx_grp_attr;
254
255 static zone_t pipe_zone;
256
257 #define MAX_PIPESIZE(pipe) ( MAX(PIPE_SIZE, (pipe)->pipe_buffer.size) )
258
259 #define PIPE_GARBAGE_AGE_LIMIT 5000 /* In milliseconds */
260 #define PIPE_GARBAGE_QUEUE_LIMIT 32000
261
262 struct pipe_garbage {
263 struct pipe *pg_pipe;
264 struct pipe_garbage *pg_next;
265 uint64_t pg_timestamp;
266 };
267
268 static zone_t pipe_garbage_zone;
269 static struct pipe_garbage *pipe_garbage_head = NULL;
270 static struct pipe_garbage *pipe_garbage_tail = NULL;
271 static uint64_t pipe_garbage_age_limit = PIPE_GARBAGE_AGE_LIMIT;
272 static int pipe_garbage_count = 0;
273 static lck_mtx_t *pipe_garbage_lock;
274 static void pipe_garbage_collect(struct pipe *cpipe);
275
276 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
277
278 /* initial setup done at time of sysinit */
279 void
280 pipeinit(void)
281 {
282 nbigpipe = 0;
283 vm_size_t zone_size;
284
285 zone_size = 8192 * sizeof(struct pipe);
286 pipe_zone = zinit(sizeof(struct pipe), zone_size, 4096, "pipe zone");
287
288
289 /* allocate lock group attribute and group for pipe mutexes */
290 pipe_mtx_grp_attr = lck_grp_attr_alloc_init();
291 pipe_mtx_grp = lck_grp_alloc_init("pipe", pipe_mtx_grp_attr);
292
293 /* allocate the lock attribute for pipe mutexes */
294 pipe_mtx_attr = lck_attr_alloc_init();
295
296 /*
297 * Set up garbage collection for dead pipes
298 */
299 zone_size = (PIPE_GARBAGE_QUEUE_LIMIT + 20) *
300 sizeof(struct pipe_garbage);
301 pipe_garbage_zone = (zone_t)zinit(sizeof(struct pipe_garbage),
302 zone_size, 4096, "pipe garbage zone");
303 pipe_garbage_lock = lck_mtx_alloc_init(pipe_mtx_grp, pipe_mtx_attr);
304 }
305
306 #ifndef CONFIG_EMBEDDED
307 /* Bitmap for things to touch in pipe_touch() */
308 #define PIPE_ATIME 0x00000001 /* time of last access */
309 #define PIPE_MTIME 0x00000002 /* time of last modification */
310 #define PIPE_CTIME 0x00000004 /* time of last status change */
311
312 static void
313 pipe_touch(struct pipe *tpipe, int touch)
314 {
315 struct timespec now;
316
317 nanotime(&now);
318
319 if (touch & PIPE_ATIME) {
320 tpipe->st_atimespec.tv_sec = now.tv_sec;
321 tpipe->st_atimespec.tv_nsec = now.tv_nsec;
322 }
323
324 if (touch & PIPE_MTIME) {
325 tpipe->st_mtimespec.tv_sec = now.tv_sec;
326 tpipe->st_mtimespec.tv_nsec = now.tv_nsec;
327 }
328
329 if (touch & PIPE_CTIME) {
330 tpipe->st_ctimespec.tv_sec = now.tv_sec;
331 tpipe->st_ctimespec.tv_nsec = now.tv_nsec;
332 }
333 }
334 #endif
335
336 static const unsigned int pipesize_blocks[] = {512, 1024, 2048, 4096, 4096 * 2, PIPE_SIZE, PIPE_SIZE * 4 };
337
338 /*
339 * finds the right size from possible sizes in pipesize_blocks
340 * returns the size which matches max(current,expected)
341 */
342 static int
343 choose_pipespace(unsigned long current, unsigned long expected)
344 {
345 int i = sizeof(pipesize_blocks) / sizeof(unsigned int) - 1;
346 unsigned long target;
347
348 /*
349 * assert that we always get an atomic transaction sized pipe buffer,
350 * even if the system pipe buffer high-water mark has been crossed.
351 */
352 assert(PIPE_BUF == pipesize_blocks[0]);
353
354 if (expected > current) {
355 target = expected;
356 } else {
357 target = current;
358 }
359
360 while (i > 0 && pipesize_blocks[i - 1] > target) {
361 i = i - 1;
362 }
363
364 return pipesize_blocks[i];
365 }
366
367
368 /*
369 * expand the size of pipe while there is data to be read,
370 * and then free the old buffer once the current buffered
371 * data has been transferred to new storage.
372 * Required: PIPE_LOCK and io lock to be held by caller.
373 * returns 0 on success or no expansion possible
374 */
375 static int
376 expand_pipespace(struct pipe *p, int target_size)
377 {
378 struct pipe tmp, oldpipe;
379 int error;
380 tmp.pipe_buffer.buffer = 0;
381
382 if (p->pipe_buffer.size >= (unsigned) target_size) {
383 return 0; /* the existing buffer is max size possible */
384 }
385
386 /* create enough space in the target */
387 error = pipespace(&tmp, target_size);
388 if (error != 0) {
389 return error;
390 }
391
392 oldpipe.pipe_buffer.buffer = p->pipe_buffer.buffer;
393 oldpipe.pipe_buffer.size = p->pipe_buffer.size;
394
395 memcpy(tmp.pipe_buffer.buffer, p->pipe_buffer.buffer, p->pipe_buffer.size);
396 if (p->pipe_buffer.cnt > 0 && p->pipe_buffer.in <= p->pipe_buffer.out) {
397 /* we are in State 3 and need extra copying for read to be consistent */
398 memcpy(&tmp.pipe_buffer.buffer[p->pipe_buffer.size], p->pipe_buffer.buffer, p->pipe_buffer.size);
399 p->pipe_buffer.in += p->pipe_buffer.size;
400 }
401
402 p->pipe_buffer.buffer = tmp.pipe_buffer.buffer;
403 p->pipe_buffer.size = tmp.pipe_buffer.size;
404
405
406 pipe_free_kmem(&oldpipe);
407 return 0;
408 }
409
410 /*
411 * The pipe system call for the DTYPE_PIPE type of pipes
412 *
413 * returns:
414 * FREAD | fd0 | -->[struct rpipe] --> |~~buffer~~| \
415 * (pipe_mutex)
416 * FWRITE | fd1 | -->[struct wpipe] --X /
417 */
418
419 /* ARGSUSED */
420 int
421 pipe(proc_t p, __unused struct pipe_args *uap, int32_t *retval)
422 {
423 struct fileproc *rf, *wf;
424 struct pipe *rpipe, *wpipe;
425 lck_mtx_t *pmtx;
426 int fd, error;
427
428 if ((pmtx = lck_mtx_alloc_init(pipe_mtx_grp, pipe_mtx_attr)) == NULL) {
429 return ENOMEM;
430 }
431
432 rpipe = wpipe = NULL;
433 if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
434 error = ENFILE;
435 goto freepipes;
436 }
437 /*
438 * allocate the space for the normal I/O direction up
439 * front... we'll delay the allocation for the other
440 * direction until a write actually occurs (most likely it won't)...
441 */
442 error = pipespace(rpipe, choose_pipespace(rpipe->pipe_buffer.size, 0));
443 if (error) {
444 goto freepipes;
445 }
446
447 TAILQ_INIT(&rpipe->pipe_evlist);
448 TAILQ_INIT(&wpipe->pipe_evlist);
449
450 error = falloc(p, &rf, &fd, vfs_context_current());
451 if (error) {
452 goto freepipes;
453 }
454 retval[0] = fd;
455
456 /*
457 * for now we'll create half-duplex pipes(refer returns section above).
458 * this is what we've always supported..
459 */
460 rf->f_flag = FREAD;
461 rf->f_data = (caddr_t)rpipe;
462 rf->f_ops = &pipeops;
463
464 error = falloc(p, &wf, &fd, vfs_context_current());
465 if (error) {
466 fp_free(p, retval[0], rf);
467 goto freepipes;
468 }
469 wf->f_flag = FWRITE;
470 wf->f_data = (caddr_t)wpipe;
471 wf->f_ops = &pipeops;
472
473 rpipe->pipe_peer = wpipe;
474 wpipe->pipe_peer = rpipe;
475 /* both structures share the same mutex */
476 rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
477
478 retval[1] = fd;
479 #if CONFIG_MACF
480 /*
481 * XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX
482 *
483 * struct pipe represents a pipe endpoint. The MAC label is shared
484 * between the connected endpoints. As a result mac_pipe_label_init() and
485 * mac_pipe_label_associate() should only be called on one of the endpoints
486 * after they have been connected.
487 */
488 mac_pipe_label_init(rpipe);
489 mac_pipe_label_associate(kauth_cred_get(), rpipe);
490 wpipe->pipe_label = rpipe->pipe_label;
491 #endif
492 proc_fdlock_spin(p);
493 procfdtbl_releasefd(p, retval[0], NULL);
494 procfdtbl_releasefd(p, retval[1], NULL);
495 fp_drop(p, retval[0], rf, 1);
496 fp_drop(p, retval[1], wf, 1);
497 proc_fdunlock(p);
498
499
500 return 0;
501
502 freepipes:
503 pipeclose(rpipe);
504 pipeclose(wpipe);
505 lck_mtx_free(pmtx, pipe_mtx_grp);
506
507 return error;
508 }
509
510 int
511 pipe_stat(struct pipe *cpipe, void *ub, int isstat64)
512 {
513 #if CONFIG_MACF
514 int error;
515 #endif
516 int pipe_size = 0;
517 int pipe_count;
518 struct stat *sb = (struct stat *)0; /* warning avoidance ; protected by isstat64 */
519 struct stat64 * sb64 = (struct stat64 *)0; /* warning avoidance ; protected by isstat64 */
520
521 if (cpipe == NULL) {
522 return EBADF;
523 }
524 PIPE_LOCK(cpipe);
525
526 #if CONFIG_MACF
527 error = mac_pipe_check_stat(kauth_cred_get(), cpipe);
528 if (error) {
529 PIPE_UNLOCK(cpipe);
530 return error;
531 }
532 #endif
533 if (cpipe->pipe_buffer.buffer == 0) {
534 /* must be stat'ing the write fd */
535 if (cpipe->pipe_peer) {
536 /* the peer still exists, use it's info */
537 pipe_size = MAX_PIPESIZE(cpipe->pipe_peer);
538 pipe_count = cpipe->pipe_peer->pipe_buffer.cnt;
539 } else {
540 pipe_count = 0;
541 }
542 } else {
543 pipe_size = MAX_PIPESIZE(cpipe);
544 pipe_count = cpipe->pipe_buffer.cnt;
545 }
546 /*
547 * since peer's buffer is setup ouside of lock
548 * we might catch it in transient state
549 */
550 if (pipe_size == 0) {
551 pipe_size = MAX(PIPE_SIZE, pipesize_blocks[0]);
552 }
553
554 if (isstat64 != 0) {
555 sb64 = (struct stat64 *)ub;
556
557 bzero(sb64, sizeof(*sb64));
558 sb64->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
559 sb64->st_blksize = pipe_size;
560 sb64->st_size = pipe_count;
561 sb64->st_blocks = (sb64->st_size + sb64->st_blksize - 1) / sb64->st_blksize;
562
563 sb64->st_uid = kauth_getuid();
564 sb64->st_gid = kauth_getgid();
565
566 sb64->st_atimespec.tv_sec = cpipe->st_atimespec.tv_sec;
567 sb64->st_atimespec.tv_nsec = cpipe->st_atimespec.tv_nsec;
568
569 sb64->st_mtimespec.tv_sec = cpipe->st_mtimespec.tv_sec;
570 sb64->st_mtimespec.tv_nsec = cpipe->st_mtimespec.tv_nsec;
571
572 sb64->st_ctimespec.tv_sec = cpipe->st_ctimespec.tv_sec;
573 sb64->st_ctimespec.tv_nsec = cpipe->st_ctimespec.tv_nsec;
574
575 /*
576 * Return a relatively unique inode number based on the current
577 * address of this pipe's struct pipe. This number may be recycled
578 * relatively quickly.
579 */
580 sb64->st_ino = (ino64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);
581 } else {
582 sb = (struct stat *)ub;
583
584 bzero(sb, sizeof(*sb));
585 sb->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
586 sb->st_blksize = pipe_size;
587 sb->st_size = pipe_count;
588 sb->st_blocks = (sb->st_size + sb->st_blksize - 1) / sb->st_blksize;
589
590 sb->st_uid = kauth_getuid();
591 sb->st_gid = kauth_getgid();
592
593 sb->st_atimespec.tv_sec = cpipe->st_atimespec.tv_sec;
594 sb->st_atimespec.tv_nsec = cpipe->st_atimespec.tv_nsec;
595
596 sb->st_mtimespec.tv_sec = cpipe->st_mtimespec.tv_sec;
597 sb->st_mtimespec.tv_nsec = cpipe->st_mtimespec.tv_nsec;
598
599 sb->st_ctimespec.tv_sec = cpipe->st_ctimespec.tv_sec;
600 sb->st_ctimespec.tv_nsec = cpipe->st_ctimespec.tv_nsec;
601
602 /*
603 * Return a relatively unique inode number based on the current
604 * address of this pipe's struct pipe. This number may be recycled
605 * relatively quickly.
606 */
607 sb->st_ino = (ino_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);
608 }
609 PIPE_UNLOCK(cpipe);
610
611 /*
612 * POSIX: Left as 0: st_dev, st_nlink, st_rdev, st_flags, st_gen,
613 * st_uid, st_gid.
614 *
615 * XXX (st_dev) should be unique, but there is no device driver that
616 * XXX is associated with pipes, since they are implemented via a
617 * XXX struct fileops indirection rather than as FS objects.
618 */
619 return 0;
620 }
621
622
623 /*
624 * Allocate kva for pipe circular buffer, the space is pageable
625 * This routine will 'realloc' the size of a pipe safely, if it fails
626 * it will retain the old buffer.
627 * If it fails it will return ENOMEM.
628 */
629 static int
630 pipespace(struct pipe *cpipe, int size)
631 {
632 vm_offset_t buffer;
633
634 if (size <= 0) {
635 return EINVAL;
636 }
637
638 if ((buffer = (vm_offset_t)kalloc(size)) == 0) {
639 return ENOMEM;
640 }
641
642 /* free old resources if we're resizing */
643 pipe_free_kmem(cpipe);
644 cpipe->pipe_buffer.buffer = (caddr_t)buffer;
645 cpipe->pipe_buffer.size = size;
646 cpipe->pipe_buffer.in = 0;
647 cpipe->pipe_buffer.out = 0;
648 cpipe->pipe_buffer.cnt = 0;
649
650 OSAddAtomic(1, &amountpipes);
651 OSAddAtomic(cpipe->pipe_buffer.size, &amountpipekva);
652
653 return 0;
654 }
655
656 /*
657 * initialize and allocate VM and memory for pipe
658 */
659 static int
660 pipe_create(struct pipe **cpipep)
661 {
662 struct pipe *cpipe;
663 cpipe = (struct pipe *)zalloc(pipe_zone);
664
665 if ((*cpipep = cpipe) == NULL) {
666 return ENOMEM;
667 }
668
669 /*
670 * protect so pipespace or pipeclose don't follow a junk pointer
671 * if pipespace() fails.
672 */
673 bzero(cpipe, sizeof *cpipe);
674
675 #ifndef CONFIG_EMBEDDED
676 /* Initial times are all the time of creation of the pipe */
677 pipe_touch(cpipe, PIPE_ATIME | PIPE_MTIME | PIPE_CTIME);
678 #endif
679 return 0;
680 }
681
682
683 /*
684 * lock a pipe for I/O, blocking other access
685 */
686 static inline int
687 pipeio_lock(struct pipe *cpipe, int catch)
688 {
689 int error;
690 while (cpipe->pipe_state & PIPE_LOCKFL) {
691 cpipe->pipe_state |= PIPE_LWANT;
692 error = msleep(cpipe, PIPE_MTX(cpipe), catch ? (PRIBIO | PCATCH) : PRIBIO,
693 "pipelk", 0);
694 if (error != 0) {
695 return error;
696 }
697 }
698 cpipe->pipe_state |= PIPE_LOCKFL;
699 return 0;
700 }
701
702 /*
703 * unlock a pipe I/O lock
704 */
705 static inline void
706 pipeio_unlock(struct pipe *cpipe)
707 {
708 cpipe->pipe_state &= ~PIPE_LOCKFL;
709 if (cpipe->pipe_state & PIPE_LWANT) {
710 cpipe->pipe_state &= ~PIPE_LWANT;
711 wakeup(cpipe);
712 }
713 }
714
715 /*
716 * wakeup anyone whos blocked in select
717 */
718 static void
719 pipeselwakeup(struct pipe *cpipe, struct pipe *spipe)
720 {
721 if (cpipe->pipe_state & PIPE_SEL) {
722 cpipe->pipe_state &= ~PIPE_SEL;
723 selwakeup(&cpipe->pipe_sel);
724 }
725 if (cpipe->pipe_state & PIPE_KNOTE) {
726 KNOTE(&cpipe->pipe_sel.si_note, 1);
727 }
728
729 postpipeevent(cpipe, EV_RWBYTES);
730
731 if (spipe && (spipe->pipe_state & PIPE_ASYNC) && spipe->pipe_pgid) {
732 if (spipe->pipe_pgid < 0) {
733 gsignal(-spipe->pipe_pgid, SIGIO);
734 } else {
735 proc_signal(spipe->pipe_pgid, SIGIO);
736 }
737 }
738 }
739
740 /*
741 * Read n bytes from the buffer. Semantics are similar to file read.
742 * returns: number of bytes read from the buffer
743 */
744 /* ARGSUSED */
745 static int
746 pipe_read(struct fileproc *fp, struct uio *uio, __unused int flags,
747 __unused vfs_context_t ctx)
748 {
749 struct pipe *rpipe = (struct pipe *)fp->f_data;
750 int error;
751 int nread = 0;
752 u_int size;
753
754 PIPE_LOCK(rpipe);
755 ++rpipe->pipe_busy;
756
757 error = pipeio_lock(rpipe, 1);
758 if (error) {
759 goto unlocked_error;
760 }
761
762 #if CONFIG_MACF
763 error = mac_pipe_check_read(kauth_cred_get(), rpipe);
764 if (error) {
765 goto locked_error;
766 }
767 #endif
768
769
770 while (uio_resid(uio)) {
771 /*
772 * normal pipe buffer receive
773 */
774 if (rpipe->pipe_buffer.cnt > 0) {
775 /*
776 * # bytes to read is min( bytes from read pointer until end of buffer,
777 * total unread bytes,
778 * user requested byte count)
779 */
780 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
781 if (size > rpipe->pipe_buffer.cnt) {
782 size = rpipe->pipe_buffer.cnt;
783 }
784 // LP64todo - fix this!
785 if (size > (u_int) uio_resid(uio)) {
786 size = (u_int) uio_resid(uio);
787 }
788
789 PIPE_UNLOCK(rpipe); /* we still hold io lock.*/
790 error = uiomove(
791 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
792 size, uio);
793 PIPE_LOCK(rpipe);
794 if (error) {
795 break;
796 }
797
798 rpipe->pipe_buffer.out += size;
799 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) {
800 rpipe->pipe_buffer.out = 0;
801 }
802
803 rpipe->pipe_buffer.cnt -= size;
804
805 /*
806 * If there is no more to read in the pipe, reset
807 * its pointers to the beginning. This improves
808 * cache hit stats.
809 */
810 if (rpipe->pipe_buffer.cnt == 0) {
811 rpipe->pipe_buffer.in = 0;
812 rpipe->pipe_buffer.out = 0;
813 }
814 nread += size;
815 } else {
816 /*
817 * detect EOF condition
818 * read returns 0 on EOF, no need to set error
819 */
820 if (rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) {
821 break;
822 }
823
824 /*
825 * If the "write-side" has been blocked, wake it up now.
826 */
827 if (rpipe->pipe_state & PIPE_WANTW) {
828 rpipe->pipe_state &= ~PIPE_WANTW;
829 wakeup(rpipe);
830 }
831
832 /*
833 * Break if some data was read in previous iteration.
834 */
835 if (nread > 0) {
836 break;
837 }
838
839 /*
840 * Unlock the pipe buffer for our remaining processing.
841 * We will either break out with an error or we will
842 * sleep and relock to loop.
843 */
844 pipeio_unlock(rpipe);
845
846 /*
847 * Handle non-blocking mode operation or
848 * wait for more data.
849 */
850 if (fp->f_flag & FNONBLOCK) {
851 error = EAGAIN;
852 } else {
853 rpipe->pipe_state |= PIPE_WANTR;
854 error = msleep(rpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, "piperd", 0);
855 if (error == 0) {
856 error = pipeio_lock(rpipe, 1);
857 }
858 }
859 if (error) {
860 goto unlocked_error;
861 }
862 }
863 }
864 #if CONFIG_MACF
865 locked_error:
866 #endif
867 pipeio_unlock(rpipe);
868
869 unlocked_error:
870 --rpipe->pipe_busy;
871
872 /*
873 * PIPE_WANT processing only makes sense if pipe_busy is 0.
874 */
875 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
876 rpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTW);
877 wakeup(rpipe);
878 } else if (rpipe->pipe_buffer.cnt < rpipe->pipe_buffer.size) {
879 /*
880 * Handle write blocking hysteresis.
881 */
882 if (rpipe->pipe_state & PIPE_WANTW) {
883 rpipe->pipe_state &= ~PIPE_WANTW;
884 wakeup(rpipe);
885 }
886 }
887
888 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) > 0) {
889 pipeselwakeup(rpipe, rpipe->pipe_peer);
890 }
891
892 #ifndef CONFIG_EMBEDDED
893 /* update last read time */
894 pipe_touch(rpipe, PIPE_ATIME);
895 #endif
896
897 PIPE_UNLOCK(rpipe);
898
899 return error;
900 }
901
902 /*
903 * perform a write of n bytes into the read side of buffer. Since
904 * pipes are unidirectional a write is meant to be read by the otherside only.
905 */
906 static int
907 pipe_write(struct fileproc *fp, struct uio *uio, __unused int flags,
908 __unused vfs_context_t ctx)
909 {
910 int error = 0;
911 int orig_resid;
912 int pipe_size;
913 struct pipe *wpipe, *rpipe;
914 // LP64todo - fix this!
915 orig_resid = uio_resid(uio);
916 int space;
917
918 rpipe = (struct pipe *)fp->f_data;
919
920 PIPE_LOCK(rpipe);
921 wpipe = rpipe->pipe_peer;
922
923 /*
924 * detect loss of pipe read side, issue SIGPIPE if lost.
925 */
926 if (wpipe == NULL || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
927 PIPE_UNLOCK(rpipe);
928 return EPIPE;
929 }
930 #if CONFIG_MACF
931 error = mac_pipe_check_write(kauth_cred_get(), wpipe);
932 if (error) {
933 PIPE_UNLOCK(rpipe);
934 return error;
935 }
936 #endif
937 ++wpipe->pipe_busy;
938
939 pipe_size = 0;
940
941 /*
942 * need to allocate some storage... we delay the allocation
943 * until the first write on fd[0] to avoid allocating storage for both
944 * 'pipe ends'... most pipes are half-duplex with the writes targeting
945 * fd[1], so allocating space for both ends is a waste...
946 */
947
948 if (wpipe->pipe_buffer.buffer == 0 || (
949 (unsigned)orig_resid > wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt &&
950 amountpipekva < maxpipekva)) {
951 pipe_size = choose_pipespace(wpipe->pipe_buffer.size, wpipe->pipe_buffer.cnt + orig_resid);
952 }
953 if (pipe_size) {
954 /*
955 * need to do initial allocation or resizing of pipe
956 * holding both structure and io locks.
957 */
958 if ((error = pipeio_lock(wpipe, 1)) == 0) {
959 if (wpipe->pipe_buffer.cnt == 0) {
960 error = pipespace(wpipe, pipe_size);
961 } else {
962 error = expand_pipespace(wpipe, pipe_size);
963 }
964
965 pipeio_unlock(wpipe);
966
967 /* allocation failed */
968 if (wpipe->pipe_buffer.buffer == 0) {
969 error = ENOMEM;
970 }
971 }
972 if (error) {
973 /*
974 * If an error occurred unbusy and return, waking up any pending
975 * readers.
976 */
977 --wpipe->pipe_busy;
978 if ((wpipe->pipe_busy == 0) &&
979 (wpipe->pipe_state & PIPE_WANT)) {
980 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
981 wakeup(wpipe);
982 }
983 PIPE_UNLOCK(rpipe);
984 return error;
985 }
986 }
987
988 while (uio_resid(uio)) {
989 retrywrite:
990 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
991
992 /* Writes of size <= PIPE_BUF must be atomic. */
993 if ((space < uio_resid(uio)) && (orig_resid <= PIPE_BUF)) {
994 space = 0;
995 }
996
997 if (space > 0) {
998 if ((error = pipeio_lock(wpipe, 1)) == 0) {
999 int size; /* Transfer size */
1000 int segsize; /* first segment to transfer */
1001
1002 if (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) {
1003 pipeio_unlock(wpipe);
1004 error = EPIPE;
1005 break;
1006 }
1007 /*
1008 * If a process blocked in pipeio_lock, our
1009 * value for space might be bad... the mutex
1010 * is dropped while we're blocked
1011 */
1012 if (space > (int)(wpipe->pipe_buffer.size -
1013 wpipe->pipe_buffer.cnt)) {
1014 pipeio_unlock(wpipe);
1015 goto retrywrite;
1016 }
1017
1018 /*
1019 * Transfer size is minimum of uio transfer
1020 * and free space in pipe buffer.
1021 */
1022 // LP64todo - fix this!
1023 if (space > uio_resid(uio)) {
1024 size = uio_resid(uio);
1025 } else {
1026 size = space;
1027 }
1028 /*
1029 * First segment to transfer is minimum of
1030 * transfer size and contiguous space in
1031 * pipe buffer. If first segment to transfer
1032 * is less than the transfer size, we've got
1033 * a wraparound in the buffer.
1034 */
1035 segsize = wpipe->pipe_buffer.size -
1036 wpipe->pipe_buffer.in;
1037 if (segsize > size) {
1038 segsize = size;
1039 }
1040
1041 /* Transfer first segment */
1042
1043 PIPE_UNLOCK(rpipe);
1044 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1045 segsize, uio);
1046 PIPE_LOCK(rpipe);
1047
1048 if (error == 0 && segsize < size) {
1049 /*
1050 * Transfer remaining part now, to
1051 * support atomic writes. Wraparound
1052 * happened. (State 3)
1053 */
1054 if (wpipe->pipe_buffer.in + segsize !=
1055 wpipe->pipe_buffer.size) {
1056 panic("Expected pipe buffer "
1057 "wraparound disappeared");
1058 }
1059
1060 PIPE_UNLOCK(rpipe);
1061 error = uiomove(
1062 &wpipe->pipe_buffer.buffer[0],
1063 size - segsize, uio);
1064 PIPE_LOCK(rpipe);
1065 }
1066 /*
1067 * readers never know to read until count is updated.
1068 */
1069 if (error == 0) {
1070 wpipe->pipe_buffer.in += size;
1071 if (wpipe->pipe_buffer.in >
1072 wpipe->pipe_buffer.size) {
1073 if (wpipe->pipe_buffer.in !=
1074 size - segsize +
1075 wpipe->pipe_buffer.size) {
1076 panic("Expected "
1077 "wraparound bad");
1078 }
1079 wpipe->pipe_buffer.in = size -
1080 segsize;
1081 }
1082
1083 wpipe->pipe_buffer.cnt += size;
1084 if (wpipe->pipe_buffer.cnt >
1085 wpipe->pipe_buffer.size) {
1086 panic("Pipe buffer overflow");
1087 }
1088 }
1089 pipeio_unlock(wpipe);
1090 }
1091 if (error) {
1092 break;
1093 }
1094 } else {
1095 /*
1096 * If the "read-side" has been blocked, wake it up now.
1097 */
1098 if (wpipe->pipe_state & PIPE_WANTR) {
1099 wpipe->pipe_state &= ~PIPE_WANTR;
1100 wakeup(wpipe);
1101 }
1102 /*
1103 * don't block on non-blocking I/O
1104 * we'll do the pipeselwakeup on the way out
1105 */
1106 if (fp->f_flag & FNONBLOCK) {
1107 error = EAGAIN;
1108 break;
1109 }
1110
1111 /*
1112 * If read side wants to go away, we just issue a signal
1113 * to ourselves.
1114 */
1115 if (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) {
1116 error = EPIPE;
1117 break;
1118 }
1119
1120 /*
1121 * We have no more space and have something to offer,
1122 * wake up select/poll.
1123 */
1124 pipeselwakeup(wpipe, wpipe);
1125
1126 wpipe->pipe_state |= PIPE_WANTW;
1127
1128 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipewr", 0);
1129
1130 if (error != 0) {
1131 break;
1132 }
1133 }
1134 }
1135 --wpipe->pipe_busy;
1136
1137 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1138 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1139 wakeup(wpipe);
1140 }
1141 if (wpipe->pipe_buffer.cnt > 0) {
1142 /*
1143 * If there are any characters in the buffer, we wake up
1144 * the reader if it was blocked waiting for data.
1145 */
1146 if (wpipe->pipe_state & PIPE_WANTR) {
1147 wpipe->pipe_state &= ~PIPE_WANTR;
1148 wakeup(wpipe);
1149 }
1150 /*
1151 * wake up thread blocked in select/poll or post the notification
1152 */
1153 pipeselwakeup(wpipe, wpipe);
1154 }
1155
1156 #ifndef CONFIG_EMBEDDED
1157 /* Update modification, status change (# of bytes in pipe) times */
1158 pipe_touch(rpipe, PIPE_MTIME | PIPE_CTIME);
1159 pipe_touch(wpipe, PIPE_MTIME | PIPE_CTIME);
1160 #endif
1161 PIPE_UNLOCK(rpipe);
1162
1163 return error;
1164 }
1165
1166 /*
1167 * we implement a very minimal set of ioctls for compatibility with sockets.
1168 */
1169 /* ARGSUSED 3 */
1170 static int
1171 pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data,
1172 __unused vfs_context_t ctx)
1173 {
1174 struct pipe *mpipe = (struct pipe *)fp->f_data;
1175 #if CONFIG_MACF
1176 int error;
1177 #endif
1178
1179 PIPE_LOCK(mpipe);
1180
1181 #if CONFIG_MACF
1182 error = mac_pipe_check_ioctl(kauth_cred_get(), mpipe, cmd);
1183 if (error) {
1184 PIPE_UNLOCK(mpipe);
1185
1186 return error;
1187 }
1188 #endif
1189
1190 switch (cmd) {
1191 case FIONBIO:
1192 PIPE_UNLOCK(mpipe);
1193 return 0;
1194
1195 case FIOASYNC:
1196 if (*(int *)data) {
1197 mpipe->pipe_state |= PIPE_ASYNC;
1198 } else {
1199 mpipe->pipe_state &= ~PIPE_ASYNC;
1200 }
1201 PIPE_UNLOCK(mpipe);
1202 return 0;
1203
1204 case FIONREAD:
1205 *(int *)data = mpipe->pipe_buffer.cnt;
1206 PIPE_UNLOCK(mpipe);
1207 return 0;
1208
1209 case TIOCSPGRP:
1210 mpipe->pipe_pgid = *(int *)data;
1211
1212 PIPE_UNLOCK(mpipe);
1213 return 0;
1214
1215 case TIOCGPGRP:
1216 *(int *)data = mpipe->pipe_pgid;
1217
1218 PIPE_UNLOCK(mpipe);
1219 return 0;
1220 }
1221 PIPE_UNLOCK(mpipe);
1222 return ENOTTY;
1223 }
1224
1225
1226 static int
1227 pipe_select(struct fileproc *fp, int which, void *wql, vfs_context_t ctx)
1228 {
1229 struct pipe *rpipe = (struct pipe *)fp->f_data;
1230 struct pipe *wpipe;
1231 int retnum = 0;
1232
1233 if (rpipe == NULL || rpipe == (struct pipe *)-1) {
1234 return retnum;
1235 }
1236
1237 PIPE_LOCK(rpipe);
1238
1239 wpipe = rpipe->pipe_peer;
1240
1241
1242 #if CONFIG_MACF
1243 /*
1244 * XXX We should use a per thread credential here; minimally, the
1245 * XXX process credential should have a persistent reference on it
1246 * XXX before being passed in here.
1247 */
1248 if (mac_pipe_check_select(vfs_context_ucred(ctx), rpipe, which)) {
1249 PIPE_UNLOCK(rpipe);
1250 return 0;
1251 }
1252 #endif
1253 switch (which) {
1254 case FREAD:
1255 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1256 (rpipe->pipe_buffer.cnt > 0) ||
1257 (rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
1258 retnum = 1;
1259 } else {
1260 rpipe->pipe_state |= PIPE_SEL;
1261 selrecord(vfs_context_proc(ctx), &rpipe->pipe_sel, wql);
1262 }
1263 break;
1264
1265 case FWRITE:
1266 if (wpipe) {
1267 wpipe->pipe_state |= PIPE_WSELECT;
1268 }
1269 if (wpipe == NULL || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) ||
1270 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1271 (MAX_PIPESIZE(wpipe) - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) {
1272 retnum = 1;
1273 } else {
1274 wpipe->pipe_state |= PIPE_SEL;
1275 selrecord(vfs_context_proc(ctx), &wpipe->pipe_sel, wql);
1276 }
1277 break;
1278 case 0:
1279 rpipe->pipe_state |= PIPE_SEL;
1280 selrecord(vfs_context_proc(ctx), &rpipe->pipe_sel, wql);
1281 break;
1282 }
1283 PIPE_UNLOCK(rpipe);
1284
1285 return retnum;
1286 }
1287
1288
1289 /* ARGSUSED 1 */
1290 static int
1291 pipe_close(struct fileglob *fg, __unused vfs_context_t ctx)
1292 {
1293 struct pipe *cpipe;
1294
1295 proc_fdlock_spin(vfs_context_proc(ctx));
1296 cpipe = (struct pipe *)fg->fg_data;
1297 fg->fg_data = NULL;
1298 proc_fdunlock(vfs_context_proc(ctx));
1299 if (cpipe) {
1300 pipeclose(cpipe);
1301 }
1302
1303 return 0;
1304 }
1305
1306 static void
1307 pipe_free_kmem(struct pipe *cpipe)
1308 {
1309 if (cpipe->pipe_buffer.buffer != NULL) {
1310 OSAddAtomic(-(cpipe->pipe_buffer.size), &amountpipekva);
1311 OSAddAtomic(-1, &amountpipes);
1312 kfree(cpipe->pipe_buffer.buffer,
1313 cpipe->pipe_buffer.size);
1314 cpipe->pipe_buffer.buffer = NULL;
1315 cpipe->pipe_buffer.size = 0;
1316 }
1317 }
1318
1319 /*
1320 * shutdown the pipe
1321 */
1322 static void
1323 pipeclose(struct pipe *cpipe)
1324 {
1325 struct pipe *ppipe;
1326
1327 if (cpipe == NULL) {
1328 return;
1329 }
1330 /* partially created pipes won't have a valid mutex. */
1331 if (PIPE_MTX(cpipe) != NULL) {
1332 PIPE_LOCK(cpipe);
1333 }
1334
1335
1336 /*
1337 * If the other side is blocked, wake it up saying that
1338 * we want to close it down.
1339 */
1340 cpipe->pipe_state &= ~PIPE_DRAIN;
1341 cpipe->pipe_state |= PIPE_EOF;
1342 pipeselwakeup(cpipe, cpipe);
1343
1344 while (cpipe->pipe_busy) {
1345 cpipe->pipe_state |= PIPE_WANT;
1346
1347 wakeup(cpipe);
1348 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1349 }
1350
1351 #if CONFIG_MACF
1352 /*
1353 * Free the shared pipe label only after the two ends are disconnected.
1354 */
1355 if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL) {
1356 mac_pipe_label_destroy(cpipe);
1357 }
1358 #endif
1359
1360 /*
1361 * Disconnect from peer
1362 */
1363 if ((ppipe = cpipe->pipe_peer) != NULL) {
1364 ppipe->pipe_state &= ~(PIPE_DRAIN);
1365 ppipe->pipe_state |= PIPE_EOF;
1366
1367 pipeselwakeup(ppipe, ppipe);
1368 wakeup(ppipe);
1369
1370 if (cpipe->pipe_state & PIPE_KNOTE) {
1371 KNOTE(&ppipe->pipe_sel.si_note, 1);
1372 }
1373
1374 postpipeevent(ppipe, EV_RCLOSED);
1375
1376 ppipe->pipe_peer = NULL;
1377 }
1378 evpipefree(cpipe);
1379
1380 /*
1381 * free resources
1382 */
1383 if (PIPE_MTX(cpipe) != NULL) {
1384 if (ppipe != NULL) {
1385 /*
1386 * since the mutex is shared and the peer is still
1387 * alive, we need to release the mutex, not free it
1388 */
1389 PIPE_UNLOCK(cpipe);
1390 } else {
1391 /*
1392 * peer is gone, so we're the sole party left with
1393 * interest in this mutex... unlock and free it
1394 */
1395 PIPE_UNLOCK(cpipe);
1396 lck_mtx_free(PIPE_MTX(cpipe), pipe_mtx_grp);
1397 }
1398 }
1399 pipe_free_kmem(cpipe);
1400 if (cpipe->pipe_state & PIPE_WSELECT) {
1401 pipe_garbage_collect(cpipe);
1402 } else {
1403 zfree(pipe_zone, cpipe);
1404 pipe_garbage_collect(NULL);
1405 }
1406 }
1407
1408 /*ARGSUSED*/
1409 static int
1410 filt_piperead_common(struct knote *kn, struct pipe *rpipe)
1411 {
1412 struct pipe *wpipe;
1413 int retval;
1414
1415 /*
1416 * we're being called back via the KNOTE post
1417 * we made in pipeselwakeup, and we already hold the mutex...
1418 */
1419
1420 wpipe = rpipe->pipe_peer;
1421 kn->kn_data = rpipe->pipe_buffer.cnt;
1422 if ((rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) ||
1423 (wpipe == NULL) || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
1424 kn->kn_flags |= EV_EOF;
1425 retval = 1;
1426 } else {
1427 int64_t lowwat = 1;
1428 if (kn->kn_sfflags & NOTE_LOWAT) {
1429 if (rpipe->pipe_buffer.size && kn->kn_sdata > MAX_PIPESIZE(rpipe)) {
1430 lowwat = MAX_PIPESIZE(rpipe);
1431 } else if (kn->kn_sdata > lowwat) {
1432 lowwat = kn->kn_sdata;
1433 }
1434 }
1435 retval = kn->kn_data >= lowwat;
1436 }
1437 return retval;
1438 }
1439
1440 static int
1441 filt_piperead(struct knote *kn, long hint)
1442 {
1443 #pragma unused(hint)
1444 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1445
1446 return filt_piperead_common(kn, rpipe);
1447 }
1448
1449 static int
1450 filt_pipereadtouch(struct knote *kn, struct kevent_internal_s *kev)
1451 {
1452 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1453 int retval;
1454
1455 PIPE_LOCK(rpipe);
1456
1457 /* accept new inputs (and save the low water threshold and flag) */
1458 kn->kn_sdata = kev->data;
1459 kn->kn_sfflags = kev->fflags;
1460
1461 /* identify if any events are now fired */
1462 retval = filt_piperead_common(kn, rpipe);
1463
1464 PIPE_UNLOCK(rpipe);
1465
1466 return retval;
1467 }
1468
1469 static int
1470 filt_pipereadprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
1471 {
1472 #pragma unused(data)
1473 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1474 int retval;
1475
1476 PIPE_LOCK(rpipe);
1477 retval = filt_piperead_common(kn, rpipe);
1478 if (retval) {
1479 *kev = kn->kn_kevent;
1480 if (kn->kn_flags & EV_CLEAR) {
1481 kn->kn_fflags = 0;
1482 kn->kn_data = 0;
1483 }
1484 }
1485 PIPE_UNLOCK(rpipe);
1486
1487 return retval;
1488 }
1489
1490 /*ARGSUSED*/
1491 static int
1492 filt_pipewrite_common(struct knote *kn, struct pipe *rpipe)
1493 {
1494 struct pipe *wpipe;
1495
1496 /*
1497 * we're being called back via the KNOTE post
1498 * we made in pipeselwakeup, and we already hold the mutex...
1499 */
1500 wpipe = rpipe->pipe_peer;
1501
1502 if ((wpipe == NULL) || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) {
1503 kn->kn_data = 0;
1504 kn->kn_flags |= EV_EOF;
1505 return 1;
1506 }
1507 kn->kn_data = MAX_PIPESIZE(wpipe) - wpipe->pipe_buffer.cnt;
1508
1509 int64_t lowwat = PIPE_BUF;
1510 if (kn->kn_sfflags & NOTE_LOWAT) {
1511 if (wpipe->pipe_buffer.size && kn->kn_sdata > MAX_PIPESIZE(wpipe)) {
1512 lowwat = MAX_PIPESIZE(wpipe);
1513 } else if (kn->kn_sdata > lowwat) {
1514 lowwat = kn->kn_sdata;
1515 }
1516 }
1517
1518 return kn->kn_data >= lowwat;
1519 }
1520
1521 /*ARGSUSED*/
1522 static int
1523 filt_pipewrite(struct knote *kn, long hint)
1524 {
1525 #pragma unused(hint)
1526 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1527
1528 return filt_pipewrite_common(kn, rpipe);
1529 }
1530
1531
1532 static int
1533 filt_pipewritetouch(struct knote *kn, struct kevent_internal_s *kev)
1534 {
1535 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1536 int res;
1537
1538 PIPE_LOCK(rpipe);
1539
1540 /* accept new kevent data (and save off lowat threshold and flag) */
1541 kn->kn_sfflags = kev->fflags;
1542 kn->kn_sdata = kev->data;
1543
1544 /* determine if any event is now deemed fired */
1545 res = filt_pipewrite_common(kn, rpipe);
1546
1547 PIPE_UNLOCK(rpipe);
1548
1549 return res;
1550 }
1551
1552 static int
1553 filt_pipewriteprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
1554 {
1555 #pragma unused(data)
1556 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1557 int res;
1558
1559 PIPE_LOCK(rpipe);
1560 res = filt_pipewrite_common(kn, rpipe);
1561 if (res) {
1562 *kev = kn->kn_kevent;
1563 if (kn->kn_flags & EV_CLEAR) {
1564 kn->kn_fflags = 0;
1565 kn->kn_data = 0;
1566 }
1567 }
1568 PIPE_UNLOCK(rpipe);
1569
1570 return res;
1571 }
1572
1573 /*ARGSUSED*/
1574 static int
1575 pipe_kqfilter(__unused struct fileproc *fp, struct knote *kn,
1576 __unused struct kevent_internal_s *kev, __unused vfs_context_t ctx)
1577 {
1578 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1579 int res;
1580
1581 PIPE_LOCK(cpipe);
1582 #if CONFIG_MACF
1583 /*
1584 * XXX We should use a per thread credential here; minimally, the
1585 * XXX process credential should have a persistent reference on it
1586 * XXX before being passed in here.
1587 */
1588 if (mac_pipe_check_kqfilter(vfs_context_ucred(ctx), kn, cpipe) != 0) {
1589 PIPE_UNLOCK(cpipe);
1590 kn->kn_flags = EV_ERROR;
1591 kn->kn_data = EPERM;
1592 return 0;
1593 }
1594 #endif
1595
1596 switch (kn->kn_filter) {
1597 case EVFILT_READ:
1598 kn->kn_filtid = EVFILTID_PIPE_R;
1599
1600 /* determine initial state */
1601 res = filt_piperead_common(kn, cpipe);
1602 break;
1603
1604 case EVFILT_WRITE:
1605 kn->kn_filtid = EVFILTID_PIPE_W;
1606
1607 if (cpipe->pipe_peer == NULL) {
1608 /*
1609 * other end of pipe has been closed
1610 */
1611 PIPE_UNLOCK(cpipe);
1612 kn->kn_flags = EV_ERROR;
1613 kn->kn_data = EPIPE;
1614 return 0;
1615 }
1616 if (cpipe->pipe_peer) {
1617 cpipe = cpipe->pipe_peer;
1618 }
1619
1620 /* determine inital state */
1621 res = filt_pipewrite_common(kn, cpipe);
1622 break;
1623 default:
1624 PIPE_UNLOCK(cpipe);
1625 kn->kn_flags = EV_ERROR;
1626 kn->kn_data = EINVAL;
1627 return 0;
1628 }
1629
1630 if (KNOTE_ATTACH(&cpipe->pipe_sel.si_note, kn)) {
1631 cpipe->pipe_state |= PIPE_KNOTE;
1632 }
1633
1634 PIPE_UNLOCK(cpipe);
1635 return res;
1636 }
1637
1638 static void
1639 filt_pipedetach(struct knote *kn)
1640 {
1641 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1642
1643 PIPE_LOCK(cpipe);
1644
1645 if (kn->kn_filter == EVFILT_WRITE) {
1646 if (cpipe->pipe_peer == NULL) {
1647 PIPE_UNLOCK(cpipe);
1648 return;
1649 }
1650 cpipe = cpipe->pipe_peer;
1651 }
1652 if (cpipe->pipe_state & PIPE_KNOTE) {
1653 if (KNOTE_DETACH(&cpipe->pipe_sel.si_note, kn)) {
1654 cpipe->pipe_state &= ~PIPE_KNOTE;
1655 }
1656 }
1657 PIPE_UNLOCK(cpipe);
1658 }
1659
1660 int
1661 fill_pipeinfo(struct pipe * cpipe, struct pipe_info * pinfo)
1662 {
1663 #if CONFIG_MACF
1664 int error;
1665 #endif
1666 struct timespec now;
1667 struct vinfo_stat * ub;
1668 int pipe_size = 0;
1669 int pipe_count;
1670
1671 if (cpipe == NULL) {
1672 return EBADF;
1673 }
1674 PIPE_LOCK(cpipe);
1675
1676 #if CONFIG_MACF
1677 error = mac_pipe_check_stat(kauth_cred_get(), cpipe);
1678 if (error) {
1679 PIPE_UNLOCK(cpipe);
1680 return error;
1681 }
1682 #endif
1683 if (cpipe->pipe_buffer.buffer == 0) {
1684 /*
1685 * must be stat'ing the write fd
1686 */
1687 if (cpipe->pipe_peer) {
1688 /*
1689 * the peer still exists, use it's info
1690 */
1691 pipe_size = MAX_PIPESIZE(cpipe->pipe_peer);
1692 pipe_count = cpipe->pipe_peer->pipe_buffer.cnt;
1693 } else {
1694 pipe_count = 0;
1695 }
1696 } else {
1697 pipe_size = MAX_PIPESIZE(cpipe);
1698 pipe_count = cpipe->pipe_buffer.cnt;
1699 }
1700 /*
1701 * since peer's buffer is setup ouside of lock
1702 * we might catch it in transient state
1703 */
1704 if (pipe_size == 0) {
1705 pipe_size = PIPE_SIZE;
1706 }
1707
1708 ub = &pinfo->pipe_stat;
1709
1710 bzero(ub, sizeof(*ub));
1711 ub->vst_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
1712 ub->vst_blksize = pipe_size;
1713 ub->vst_size = pipe_count;
1714 if (ub->vst_blksize != 0) {
1715 ub->vst_blocks = (ub->vst_size + ub->vst_blksize - 1) / ub->vst_blksize;
1716 }
1717 ub->vst_nlink = 1;
1718
1719 ub->vst_uid = kauth_getuid();
1720 ub->vst_gid = kauth_getgid();
1721
1722 nanotime(&now);
1723 ub->vst_atime = now.tv_sec;
1724 ub->vst_atimensec = now.tv_nsec;
1725
1726 ub->vst_mtime = now.tv_sec;
1727 ub->vst_mtimensec = now.tv_nsec;
1728
1729 ub->vst_ctime = now.tv_sec;
1730 ub->vst_ctimensec = now.tv_nsec;
1731
1732 /*
1733 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
1734 * XXX (st_dev, st_ino) should be unique.
1735 */
1736
1737 pinfo->pipe_handle = (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);
1738 pinfo->pipe_peerhandle = (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)(cpipe->pipe_peer));
1739 pinfo->pipe_status = cpipe->pipe_state;
1740
1741 PIPE_UNLOCK(cpipe);
1742
1743 return 0;
1744 }
1745
1746
1747 static int
1748 pipe_drain(struct fileproc *fp, __unused vfs_context_t ctx)
1749 {
1750 /* Note: fdlock already held */
1751 struct pipe *ppipe, *cpipe = (struct pipe *)(fp->f_fglob->fg_data);
1752
1753 if (cpipe) {
1754 PIPE_LOCK(cpipe);
1755 cpipe->pipe_state |= PIPE_DRAIN;
1756 cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1757 wakeup(cpipe);
1758
1759 /* Must wake up peer: a writer sleeps on the read side */
1760 if ((ppipe = cpipe->pipe_peer)) {
1761 ppipe->pipe_state |= PIPE_DRAIN;
1762 ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1763 wakeup(ppipe);
1764 }
1765
1766 PIPE_UNLOCK(cpipe);
1767 return 0;
1768 }
1769
1770 return 1;
1771 }
1772
1773
1774 /*
1775 * When a thread sets a write-select on a pipe, it creates an implicit,
1776 * untracked dependency between that thread and the peer of the pipe
1777 * on which the select is set. If the peer pipe is closed and freed
1778 * before the select()ing thread wakes up, the system will panic as
1779 * it attempts to unwind the dangling select(). To avoid that panic,
1780 * we notice whenever a dangerous select() is set on a pipe, and
1781 * defer the final deletion of the pipe until that select()s are all
1782 * resolved. Since we can't currently detect exactly when that
1783 * resolution happens, we use a simple garbage collection queue to
1784 * reap the at-risk pipes 'later'.
1785 */
1786 static void
1787 pipe_garbage_collect(struct pipe *cpipe)
1788 {
1789 uint64_t old, now;
1790 struct pipe_garbage *pgp;
1791
1792 /* Convert msecs to nsecs and then to abstime */
1793 old = pipe_garbage_age_limit * 1000000;
1794 nanoseconds_to_absolutetime(old, &old);
1795
1796 lck_mtx_lock(pipe_garbage_lock);
1797
1798 /* Free anything that's been on the queue for <mumble> seconds */
1799 now = mach_absolute_time();
1800 old = now - old;
1801 while ((pgp = pipe_garbage_head) && pgp->pg_timestamp < old) {
1802 pipe_garbage_head = pgp->pg_next;
1803 if (pipe_garbage_head == NULL) {
1804 pipe_garbage_tail = NULL;
1805 }
1806 pipe_garbage_count--;
1807 zfree(pipe_zone, pgp->pg_pipe);
1808 zfree(pipe_garbage_zone, pgp);
1809 }
1810
1811 /* Add the new pipe (if any) to the tail of the garbage queue */
1812 if (cpipe) {
1813 cpipe->pipe_state = PIPE_DEAD;
1814 pgp = (struct pipe_garbage *)zalloc(pipe_garbage_zone);
1815 if (pgp == NULL) {
1816 /*
1817 * We're too low on memory to garbage collect the
1818 * pipe. Freeing it runs the risk of panicing the
1819 * system. All we can do is leak it and leave
1820 * a breadcrumb behind. The good news, such as it
1821 * is, is that this will probably never happen.
1822 * We will probably hit the panic below first.
1823 */
1824 printf("Leaking pipe %p - no room left in the queue",
1825 cpipe);
1826 lck_mtx_unlock(pipe_garbage_lock);
1827 return;
1828 }
1829
1830 pgp->pg_pipe = cpipe;
1831 pgp->pg_timestamp = now;
1832 pgp->pg_next = NULL;
1833
1834 if (pipe_garbage_tail) {
1835 pipe_garbage_tail->pg_next = pgp;
1836 }
1837 pipe_garbage_tail = pgp;
1838 if (pipe_garbage_head == NULL) {
1839 pipe_garbage_head = pipe_garbage_tail;
1840 }
1841
1842 if (pipe_garbage_count++ >= PIPE_GARBAGE_QUEUE_LIMIT) {
1843 panic("Length of pipe garbage queue exceeded %d",
1844 PIPE_GARBAGE_QUEUE_LIMIT);
1845 }
1846 }
1847 lck_mtx_unlock(pipe_garbage_lock);
1848 }