]> git.saurik.com Git - apple/xnu.git/blob - bsd/hfs/hfs_resize.c
ceaa4d572b47c657daa936ac0ba696b76a5b85dc
[apple/xnu.git] / bsd / hfs / hfs_resize.c
1 /*
2 * Copyright (c) 2013-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <sys/systm.h>
29 #include <sys/kauth.h>
30 #include <sys/ubc.h>
31 #include <sys/vnode_internal.h>
32 #include <sys/mount_internal.h>
33 #include <sys/buf_internal.h>
34 #include <vfs/vfs_journal.h>
35 #include <miscfs/specfs/specdev.h>
36
37 #include "hfs.h"
38 #include "hfs_catalog.h"
39 #include "hfs_cnode.h"
40 #include "hfs_endian.h"
41 #include "hfs_btreeio.h"
42
43 #if CONFIG_PROTECT
44 #include <sys/cprotect.h>
45 #endif
46
47 /* Enable/disable debugging code for live volume resizing */
48 int hfs_resize_debug = 0;
49
50 static int hfs_file_extent_overlaps(struct hfsmount *hfsmp, u_int32_t allocLimit, struct HFSPlusCatalogFile *filerec);
51 static int hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t allocLimit, u_int32_t reclaimblks, vfs_context_t context);
52 static int hfs_extend_journal(struct hfsmount *hfsmp, u_int32_t sector_size, u_int64_t sector_count, vfs_context_t context);
53
54 /*
55 * Extend a file system.
56 */
57 int
58 hfs_extendfs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context)
59 {
60 struct proc *p = vfs_context_proc(context);
61 kauth_cred_t cred = vfs_context_ucred(context);
62 struct vnode *vp;
63 struct vnode *devvp;
64 struct buf *bp;
65 struct filefork *fp = NULL;
66 ExtendedVCB *vcb;
67 struct cat_fork forkdata;
68 u_int64_t oldsize;
69 u_int64_t newblkcnt;
70 u_int64_t prev_phys_block_count;
71 u_int32_t addblks;
72 u_int64_t sector_count;
73 u_int32_t sector_size;
74 u_int32_t phys_sector_size;
75 u_int32_t overage_blocks;
76 daddr64_t prev_fs_alt_sector;
77 daddr_t bitmapblks;
78 int lockflags = 0;
79 int error;
80 int64_t oldBitmapSize;
81
82 Boolean usedExtendFileC = false;
83 int transaction_begun = 0;
84
85 devvp = hfsmp->hfs_devvp;
86 vcb = HFSTOVCB(hfsmp);
87
88 /*
89 * - HFS Plus file systems only.
90 * - Journaling must be enabled.
91 * - No embedded volumes.
92 */
93 if ((vcb->vcbSigWord == kHFSSigWord) ||
94 (hfsmp->jnl == NULL) ||
95 (vcb->hfsPlusIOPosOffset != 0)) {
96 return (EPERM);
97 }
98 /*
99 * If extending file system by non-root, then verify
100 * ownership and check permissions.
101 */
102 if (suser(cred, NULL)) {
103 error = hfs_vget(hfsmp, kHFSRootFolderID, &vp, 0, 0);
104
105 if (error)
106 return (error);
107 error = hfs_owner_rights(hfsmp, VTOC(vp)->c_uid, cred, p, 0);
108 if (error == 0) {
109 error = hfs_write_access(vp, cred, p, false);
110 }
111 hfs_unlock(VTOC(vp));
112 vnode_put(vp);
113 if (error)
114 return (error);
115
116 error = vnode_authorize(devvp, NULL, KAUTH_VNODE_READ_DATA | KAUTH_VNODE_WRITE_DATA, context);
117 if (error)
118 return (error);
119 }
120 if (VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE, (caddr_t)&sector_size, 0, context)) {
121 return (ENXIO);
122 }
123 if (sector_size != hfsmp->hfs_logical_block_size) {
124 return (ENXIO);
125 }
126 if (VNOP_IOCTL(devvp, DKIOCGETBLOCKCOUNT, (caddr_t)&sector_count, 0, context)) {
127 return (ENXIO);
128 }
129 /* Check if partition size is correct for new file system size */
130 if ((sector_size * sector_count) < newsize) {
131 printf("hfs_extendfs: not enough space on device (vol=%s)\n", hfsmp->vcbVN);
132 return (ENOSPC);
133 }
134 error = VNOP_IOCTL(devvp, DKIOCGETPHYSICALBLOCKSIZE, (caddr_t)&phys_sector_size, 0, context);
135 if (error) {
136 if ((error != ENOTSUP) && (error != ENOTTY)) {
137 return (ENXIO);
138 }
139 /* If ioctl is not supported, force physical and logical sector size to be same */
140 phys_sector_size = sector_size;
141 }
142 oldsize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize;
143
144 /*
145 * Validate new size.
146 */
147 if ((newsize <= oldsize) || (newsize % sector_size) || (newsize % phys_sector_size)) {
148 printf("hfs_extendfs: invalid size (newsize=%qu, oldsize=%qu)\n", newsize, oldsize);
149 return (EINVAL);
150 }
151 newblkcnt = newsize / vcb->blockSize;
152 if (newblkcnt > (u_int64_t)0xFFFFFFFF) {
153 printf ("hfs_extendfs: current blockSize=%u too small for newsize=%qu\n", hfsmp->blockSize, newsize);
154 return (EOVERFLOW);
155 }
156
157 addblks = newblkcnt - vcb->totalBlocks;
158
159 if (hfs_resize_debug) {
160 printf ("hfs_extendfs: old: size=%qu, blkcnt=%u\n", oldsize, hfsmp->totalBlocks);
161 printf ("hfs_extendfs: new: size=%qu, blkcnt=%u, addblks=%u\n", newsize, (u_int32_t)newblkcnt, addblks);
162 }
163 printf("hfs_extendfs: will extend \"%s\" by %d blocks\n", vcb->vcbVN, addblks);
164
165 hfs_lock_mount (hfsmp);
166 if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) {
167 hfs_unlock_mount(hfsmp);
168 error = EALREADY;
169 goto out;
170 }
171 hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS;
172 hfs_unlock_mount (hfsmp);
173
174 /* Start with a clean journal. */
175 hfs_journal_flush(hfsmp, TRUE);
176
177 /*
178 * Enclose changes inside a transaction.
179 */
180 if (hfs_start_transaction(hfsmp) != 0) {
181 error = EINVAL;
182 goto out;
183 }
184 transaction_begun = 1;
185
186
187 /* Update the hfsmp fields for the physical information about the device */
188 prev_phys_block_count = hfsmp->hfs_logical_block_count;
189 prev_fs_alt_sector = hfsmp->hfs_fs_avh_sector;
190
191 hfsmp->hfs_logical_block_count = sector_count;
192 hfsmp->hfs_logical_bytes = (uint64_t) sector_count * (uint64_t) sector_size;
193
194 /*
195 * It is possible that the new file system is smaller than the partition size.
196 * Therefore, update offsets for AVH accordingly.
197 */
198 if (hfs_resize_debug) {
199 printf ("hfs_extendfs: old: partition_avh_sector=%qu, fs_avh_sector=%qu\n",
200 hfsmp->hfs_partition_avh_sector, hfsmp->hfs_fs_avh_sector);
201 }
202 hfsmp->hfs_partition_avh_sector = (hfsmp->hfsPlusIOPosOffset / sector_size) +
203 HFS_ALT_SECTOR(sector_size, hfsmp->hfs_logical_block_count);
204
205 hfsmp->hfs_fs_avh_sector = (hfsmp->hfsPlusIOPosOffset / sector_size) +
206 HFS_ALT_SECTOR(sector_size, (newsize/hfsmp->hfs_logical_block_size));
207 if (hfs_resize_debug) {
208 printf ("hfs_extendfs: new: partition_avh_sector=%qu, fs_avh_sector=%qu\n",
209 hfsmp->hfs_partition_avh_sector, hfsmp->hfs_fs_avh_sector);
210 }
211
212 /*
213 * Note: we take the attributes lock in case we have an attribute data vnode
214 * which needs to change size.
215 */
216 lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
217 vp = vcb->allocationsRefNum;
218 fp = VTOF(vp);
219 bcopy(&fp->ff_data, &forkdata, sizeof(forkdata));
220
221 /*
222 * Calculate additional space required (if any) by allocation bitmap.
223 */
224 oldBitmapSize = fp->ff_size;
225 bitmapblks = roundup((newblkcnt+7) / 8, vcb->vcbVBMIOSize) / vcb->blockSize;
226 if (bitmapblks > (daddr_t)fp->ff_blocks)
227 bitmapblks -= fp->ff_blocks;
228 else
229 bitmapblks = 0;
230
231 /*
232 * The allocation bitmap can contain unused bits that are beyond end of
233 * current volume's allocation blocks. Usually they are supposed to be
234 * zero'ed out but there can be cases where they might be marked as used.
235 * After extending the file system, those bits can represent valid
236 * allocation blocks, so we mark all the bits from the end of current
237 * volume to end of allocation bitmap as "free".
238 *
239 * Figure out the number of overage blocks before proceeding though,
240 * so we don't add more bytes to our I/O than necessary.
241 * First figure out the total number of blocks representable by the
242 * end of the bitmap file vs. the total number of blocks in the new FS.
243 * Then subtract away the number of blocks in the current FS. This is how much
244 * we can mark as free right now without having to grow the bitmap file.
245 */
246 overage_blocks = fp->ff_blocks * vcb->blockSize * 8;
247 overage_blocks = MIN (overage_blocks, newblkcnt);
248 overage_blocks -= vcb->totalBlocks;
249
250 BlockMarkFreeUnused(vcb, vcb->totalBlocks, overage_blocks);
251
252 if (bitmapblks > 0) {
253 daddr64_t blkno;
254 daddr_t blkcnt;
255 off_t bytesAdded;
256
257 /*
258 * Get the bitmap's current size (in allocation blocks) so we know
259 * where to start zero filling once the new space is added. We've
260 * got to do this before the bitmap is grown.
261 */
262 blkno = (daddr64_t)fp->ff_blocks;
263
264 /*
265 * Try to grow the allocation file in the normal way, using allocation
266 * blocks already existing in the file system. This way, we might be
267 * able to grow the bitmap contiguously, or at least in the metadata
268 * zone.
269 */
270 error = ExtendFileC(vcb, fp, bitmapblks * vcb->blockSize, 0,
271 kEFAllMask | kEFNoClumpMask | kEFReserveMask
272 | kEFMetadataMask | kEFContigMask, &bytesAdded);
273
274 if (error == 0) {
275 usedExtendFileC = true;
276 } else {
277 /*
278 * If the above allocation failed, fall back to allocating the new
279 * extent of the bitmap from the space we're going to add. Since those
280 * blocks don't yet belong to the file system, we have to update the
281 * extent list directly, and manually adjust the file size.
282 */
283 bytesAdded = 0;
284 error = AddFileExtent(vcb, fp, vcb->totalBlocks, bitmapblks);
285 if (error) {
286 printf("hfs_extendfs: error %d adding extents\n", error);
287 goto out;
288 }
289 fp->ff_blocks += bitmapblks;
290 VTOC(vp)->c_blocks = fp->ff_blocks;
291 VTOC(vp)->c_flag |= C_MODIFIED;
292 }
293
294 /*
295 * Update the allocation file's size to include the newly allocated
296 * blocks. Note that ExtendFileC doesn't do this, which is why this
297 * statement is outside the above "if" statement.
298 */
299 fp->ff_size += (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
300
301 /*
302 * Zero out the new bitmap blocks.
303 */
304 {
305
306 bp = NULL;
307 blkcnt = bitmapblks;
308 while (blkcnt > 0) {
309 error = (int)buf_meta_bread(vp, blkno, vcb->blockSize, NOCRED, &bp);
310 if (error) {
311 if (bp) {
312 buf_brelse(bp);
313 }
314 break;
315 }
316 bzero((char *)buf_dataptr(bp), vcb->blockSize);
317 buf_markaged(bp);
318 error = (int)buf_bwrite(bp);
319 if (error)
320 break;
321 --blkcnt;
322 ++blkno;
323 }
324 }
325 if (error) {
326 printf("hfs_extendfs: error %d clearing blocks\n", error);
327 goto out;
328 }
329 /*
330 * Mark the new bitmap space as allocated.
331 *
332 * Note that ExtendFileC will have marked any blocks it allocated, so
333 * this is only needed if we used AddFileExtent. Also note that this
334 * has to come *after* the zero filling of new blocks in the case where
335 * we used AddFileExtent (since the part of the bitmap we're touching
336 * is in those newly allocated blocks).
337 */
338 if (!usedExtendFileC) {
339 error = BlockMarkAllocated(vcb, vcb->totalBlocks, bitmapblks);
340 if (error) {
341 printf("hfs_extendfs: error %d setting bitmap\n", error);
342 goto out;
343 }
344 vcb->freeBlocks -= bitmapblks;
345 }
346 }
347
348 /*
349 * Mark the new alternate VH as allocated.
350 */
351 if (vcb->blockSize == 512)
352 error = BlockMarkAllocated(vcb, vcb->totalBlocks + addblks - 2, 2);
353 else
354 error = BlockMarkAllocated(vcb, vcb->totalBlocks + addblks - 1, 1);
355 if (error) {
356 printf("hfs_extendfs: error %d setting bitmap (VH)\n", error);
357 goto out;
358 }
359
360 /*
361 * Mark the old alternate VH as free.
362 */
363 if (vcb->blockSize == 512)
364 (void) BlockMarkFree(vcb, vcb->totalBlocks - 2, 2);
365 else
366 (void) BlockMarkFree(vcb, vcb->totalBlocks - 1, 1);
367
368 /*
369 * Adjust file system variables for new space.
370 */
371 vcb->totalBlocks += addblks;
372 vcb->freeBlocks += addblks;
373 MarkVCBDirty(vcb);
374 error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
375 if (error) {
376 printf("hfs_extendfs: couldn't flush volume headers (%d)", error);
377 /*
378 * Restore to old state.
379 */
380 if (usedExtendFileC) {
381 (void) TruncateFileC(vcb, fp, oldBitmapSize, 0, FORK_IS_RSRC(fp),
382 FTOC(fp)->c_fileid, false);
383 } else {
384 fp->ff_blocks -= bitmapblks;
385 fp->ff_size -= (u_int64_t)bitmapblks * (u_int64_t)vcb->blockSize;
386 /*
387 * No need to mark the excess blocks free since those bitmap blocks
388 * are no longer part of the bitmap. But we do need to undo the
389 * effect of the "vcb->freeBlocks -= bitmapblks" above.
390 */
391 vcb->freeBlocks += bitmapblks;
392 }
393 vcb->totalBlocks -= addblks;
394 vcb->freeBlocks -= addblks;
395 hfsmp->hfs_logical_block_count = prev_phys_block_count;
396 hfsmp->hfs_fs_avh_sector = prev_fs_alt_sector;
397 /* Do not revert hfs_partition_avh_sector because the
398 * partition size is larger than file system size
399 */
400 MarkVCBDirty(vcb);
401 if (vcb->blockSize == 512) {
402 if (BlockMarkAllocated(vcb, vcb->totalBlocks - 2, 2)) {
403 hfs_mark_inconsistent(hfsmp, HFS_ROLLBACK_FAILED);
404 }
405 } else {
406 if (BlockMarkAllocated(vcb, vcb->totalBlocks - 1, 1)) {
407 hfs_mark_inconsistent(hfsmp, HFS_ROLLBACK_FAILED);
408 }
409 }
410 goto out;
411 }
412 /*
413 * Invalidate the old alternate volume header. We are growing the filesystem so
414 * this sector must be returned to the FS as free space.
415 */
416 bp = NULL;
417 if (prev_fs_alt_sector) {
418 if (buf_meta_bread(hfsmp->hfs_devvp,
419 HFS_PHYSBLK_ROUNDDOWN(prev_fs_alt_sector, hfsmp->hfs_log_per_phys),
420 hfsmp->hfs_physical_block_size, NOCRED, &bp) == 0) {
421 journal_modify_block_start(hfsmp->jnl, bp);
422
423 bzero((char *)buf_dataptr(bp) + HFS_ALT_OFFSET(hfsmp->hfs_physical_block_size), kMDBSize);
424
425 journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL);
426 } else if (bp) {
427 buf_brelse(bp);
428 }
429 }
430
431 /*
432 * Update the metadata zone size based on current volume size
433 */
434 hfs_metadatazone_init(hfsmp, false);
435
436 /*
437 * Adjust the size of hfsmp->hfs_attrdata_vp
438 */
439 if (hfsmp->hfs_attrdata_vp) {
440 struct cnode *attr_cp;
441 struct filefork *attr_fp;
442
443 if (vnode_get(hfsmp->hfs_attrdata_vp) == 0) {
444 attr_cp = VTOC(hfsmp->hfs_attrdata_vp);
445 attr_fp = VTOF(hfsmp->hfs_attrdata_vp);
446
447 attr_cp->c_blocks = newblkcnt;
448 attr_fp->ff_blocks = newblkcnt;
449 attr_fp->ff_extents[0].blockCount = newblkcnt;
450 attr_fp->ff_size = (off_t) newblkcnt * hfsmp->blockSize;
451 ubc_setsize(hfsmp->hfs_attrdata_vp, attr_fp->ff_size);
452 vnode_put(hfsmp->hfs_attrdata_vp);
453 }
454 }
455
456 /*
457 * We only update hfsmp->allocLimit if totalBlocks actually increased.
458 */
459 if (error == 0) {
460 UpdateAllocLimit(hfsmp, hfsmp->totalBlocks);
461 }
462
463 /* Release all locks and sync up journal content before
464 * checking and extending, if required, the journal
465 */
466 if (lockflags) {
467 hfs_systemfile_unlock(hfsmp, lockflags);
468 lockflags = 0;
469 }
470 if (transaction_begun) {
471 hfs_end_transaction(hfsmp);
472 hfs_journal_flush(hfsmp, TRUE);
473 transaction_begun = 0;
474 }
475
476 /* Increase the journal size, if required. */
477 error = hfs_extend_journal(hfsmp, sector_size, sector_count, context);
478 if (error) {
479 printf ("hfs_extendfs: Could not extend journal size\n");
480 goto out_noalloc;
481 }
482
483 /* Log successful extending */
484 printf("hfs_extendfs: extended \"%s\" to %d blocks (was %d blocks)\n",
485 hfsmp->vcbVN, hfsmp->totalBlocks, (u_int32_t)(oldsize/hfsmp->blockSize));
486
487 out:
488 if (error && fp) {
489 /* Restore allocation fork. */
490 bcopy(&forkdata, &fp->ff_data, sizeof(forkdata));
491 VTOC(vp)->c_blocks = fp->ff_blocks;
492
493 }
494
495 out_noalloc:
496 hfs_lock_mount (hfsmp);
497 hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
498 hfs_unlock_mount (hfsmp);
499 if (lockflags) {
500 hfs_systemfile_unlock(hfsmp, lockflags);
501 }
502 if (transaction_begun) {
503 hfs_end_transaction(hfsmp);
504 hfs_journal_flush(hfsmp, FALSE);
505 /* Just to be sure, sync all data to the disk */
506 (void) VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
507 }
508 if (error) {
509 printf ("hfs_extentfs: failed error=%d on vol=%s\n", MacToVFSError(error), hfsmp->vcbVN);
510 }
511
512 return MacToVFSError(error);
513 }
514
515 #define HFS_MIN_SIZE (32LL * 1024LL * 1024LL)
516
517 /*
518 * Truncate a file system (while still mounted).
519 */
520 int
521 hfs_truncatefs(struct hfsmount *hfsmp, u_int64_t newsize, vfs_context_t context)
522 {
523 u_int64_t oldsize;
524 u_int32_t newblkcnt;
525 u_int32_t reclaimblks = 0;
526 int lockflags = 0;
527 int transaction_begun = 0;
528 Boolean updateFreeBlocks = false;
529 Boolean disable_sparse = false;
530 int error = 0;
531
532 hfs_lock_mount (hfsmp);
533 if (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) {
534 hfs_unlock_mount (hfsmp);
535 return (EALREADY);
536 }
537 hfsmp->hfs_flags |= HFS_RESIZE_IN_PROGRESS;
538 hfsmp->hfs_resize_blocksmoved = 0;
539 hfsmp->hfs_resize_totalblocks = 0;
540 hfsmp->hfs_resize_progress = 0;
541 hfs_unlock_mount (hfsmp);
542
543 /*
544 * - Journaled HFS Plus volumes only.
545 * - No embedded volumes.
546 */
547 if ((hfsmp->jnl == NULL) ||
548 (hfsmp->hfsPlusIOPosOffset != 0)) {
549 error = EPERM;
550 goto out;
551 }
552 oldsize = (u_int64_t)hfsmp->totalBlocks * (u_int64_t)hfsmp->blockSize;
553 newblkcnt = newsize / hfsmp->blockSize;
554 reclaimblks = hfsmp->totalBlocks - newblkcnt;
555
556 if (hfs_resize_debug) {
557 printf ("hfs_truncatefs: old: size=%qu, blkcnt=%u, freeblks=%u\n", oldsize, hfsmp->totalBlocks, hfs_freeblks(hfsmp, 1));
558 printf ("hfs_truncatefs: new: size=%qu, blkcnt=%u, reclaimblks=%u\n", newsize, newblkcnt, reclaimblks);
559 }
560
561 /* Make sure new size is valid. */
562 if ((newsize < HFS_MIN_SIZE) ||
563 (newsize >= oldsize) ||
564 (newsize % hfsmp->hfs_logical_block_size) ||
565 (newsize % hfsmp->hfs_physical_block_size)) {
566 printf ("hfs_truncatefs: invalid size (newsize=%qu, oldsize=%qu)\n", newsize, oldsize);
567 error = EINVAL;
568 goto out;
569 }
570
571 /*
572 * Make sure that the file system has enough free blocks reclaim.
573 *
574 * Before resize, the disk is divided into four zones -
575 * A. Allocated_Stationary - These are allocated blocks that exist
576 * before the new end of disk. These blocks will not be
577 * relocated or modified during resize.
578 * B. Free_Stationary - These are free blocks that exist before the
579 * new end of disk. These blocks can be used for any new
580 * allocations during resize, including allocation for relocating
581 * data from the area of disk being reclaimed.
582 * C. Allocated_To-Reclaim - These are allocated blocks that exist
583 * beyond the new end of disk. These blocks need to be reclaimed
584 * during resize by allocating equal number of blocks in Free
585 * Stationary zone and copying the data.
586 * D. Free_To-Reclaim - These are free blocks that exist beyond the
587 * new end of disk. Nothing special needs to be done to reclaim
588 * them.
589 *
590 * Total number of blocks on the disk before resize:
591 * ------------------------------------------------
592 * Total Blocks = Allocated_Stationary + Free_Stationary +
593 * Allocated_To-Reclaim + Free_To-Reclaim
594 *
595 * Total number of blocks that need to be reclaimed:
596 * ------------------------------------------------
597 * Blocks to Reclaim = Allocated_To-Reclaim + Free_To-Reclaim
598 *
599 * Note that the check below also makes sure that we have enough space
600 * to relocate data from Allocated_To-Reclaim to Free_Stationary.
601 * Therefore we do not need to check total number of blocks to relocate
602 * later in the code.
603 *
604 * The condition below gets converted to:
605 *
606 * Allocated To-Reclaim + Free To-Reclaim >= Free Stationary + Free To-Reclaim
607 *
608 * which is equivalent to:
609 *
610 * Allocated To-Reclaim >= Free Stationary
611 */
612 if (reclaimblks >= hfs_freeblks(hfsmp, 1)) {
613 printf("hfs_truncatefs: insufficient space (need %u blocks; have %u free blocks)\n", reclaimblks, hfs_freeblks(hfsmp, 1));
614 error = ENOSPC;
615 goto out;
616 }
617
618 /* Start with a clean journal. */
619 hfs_journal_flush(hfsmp, TRUE);
620
621 if (hfs_start_transaction(hfsmp) != 0) {
622 error = EINVAL;
623 goto out;
624 }
625 transaction_begun = 1;
626
627 /* Take the bitmap lock to update the alloc limit field */
628 lockflags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
629
630 /*
631 * Prevent new allocations from using the part we're trying to truncate.
632 *
633 * NOTE: allocLimit is set to the allocation block number where the new
634 * alternate volume header will be. That way there will be no files to
635 * interfere with allocating the new alternate volume header, and no files
636 * in the allocation blocks beyond (i.e. the blocks we're trying to
637 * truncate away.
638 */
639 if (hfsmp->blockSize == 512) {
640 error = UpdateAllocLimit (hfsmp, newblkcnt - 2);
641 }
642 else {
643 error = UpdateAllocLimit (hfsmp, newblkcnt - 1);
644 }
645
646 /* Sparse devices use first fit allocation which is not ideal
647 * for volume resize which requires best fit allocation. If a
648 * sparse device is being truncated, disable the sparse device
649 * property temporarily for the duration of resize. Also reset
650 * the free extent cache so that it is rebuilt as sorted by
651 * totalBlocks instead of startBlock.
652 *
653 * Note that this will affect all allocations on the volume and
654 * ideal fix would be just to modify resize-related allocations,
655 * but it will result in complexity like handling of two free
656 * extent caches sorted differently, etc. So we stick to this
657 * solution for now.
658 */
659 hfs_lock_mount (hfsmp);
660 if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) {
661 hfsmp->hfs_flags &= ~HFS_HAS_SPARSE_DEVICE;
662 ResetVCBFreeExtCache(hfsmp);
663 disable_sparse = true;
664 }
665
666 /*
667 * Update the volume free block count to reflect the total number
668 * of free blocks that will exist after a successful resize.
669 * Relocation of extents will result in no net change in the total
670 * free space on the disk. Therefore the code that allocates
671 * space for new extent and deallocates the old extent explicitly
672 * prevents updating the volume free block count. It will also
673 * prevent false disk full error when the number of blocks in
674 * an extent being relocated is more than the free blocks that
675 * will exist after the volume is resized.
676 */
677 hfsmp->freeBlocks -= reclaimblks;
678 updateFreeBlocks = true;
679 hfs_unlock_mount(hfsmp);
680
681 if (lockflags) {
682 hfs_systemfile_unlock(hfsmp, lockflags);
683 lockflags = 0;
684 }
685
686 /*
687 * Update the metadata zone size to match the new volume size,
688 * and if it too less, metadata zone might be disabled.
689 */
690 hfs_metadatazone_init(hfsmp, false);
691
692 /*
693 * If some files have blocks at or beyond the location of the
694 * new alternate volume header, recalculate free blocks and
695 * reclaim blocks. Otherwise just update free blocks count.
696 *
697 * The current allocLimit is set to the location of new alternate
698 * volume header, and reclaimblks are the total number of blocks
699 * that need to be reclaimed. So the check below is really
700 * ignoring the blocks allocated for old alternate volume header.
701 */
702 if (hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks)) {
703 /*
704 * hfs_reclaimspace will use separate transactions when
705 * relocating files (so we don't overwhelm the journal).
706 */
707 hfs_end_transaction(hfsmp);
708 transaction_begun = 0;
709
710 /* Attempt to reclaim some space. */
711 error = hfs_reclaimspace(hfsmp, hfsmp->allocLimit, reclaimblks, context);
712 if (error != 0) {
713 printf("hfs_truncatefs: couldn't reclaim space on %s (error=%d)\n", hfsmp->vcbVN, error);
714 error = ENOSPC;
715 goto out;
716 }
717 if (hfs_start_transaction(hfsmp) != 0) {
718 error = EINVAL;
719 goto out;
720 }
721 transaction_begun = 1;
722
723 /* Check if we're clear now. */
724 error = hfs_isallocated(hfsmp, hfsmp->allocLimit, reclaimblks);
725 if (error != 0) {
726 printf("hfs_truncatefs: didn't reclaim enough space on %s (error=%d)\n", hfsmp->vcbVN, error);
727 error = EAGAIN; /* tell client to try again */
728 goto out;
729 }
730 }
731
732 /*
733 * Note: we take the attributes lock in case we have an attribute data vnode
734 * which needs to change size.
735 */
736 lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE | SFL_EXTENTS | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
737
738 /*
739 * Allocate last 1KB for alternate volume header.
740 */
741 error = BlockMarkAllocated(hfsmp, hfsmp->allocLimit, (hfsmp->blockSize == 512) ? 2 : 1);
742 if (error) {
743 printf("hfs_truncatefs: Error %d allocating new alternate volume header\n", error);
744 goto out;
745 }
746
747 /*
748 * Mark the old alternate volume header as free.
749 * We don't bother shrinking allocation bitmap file.
750 */
751 if (hfsmp->blockSize == 512)
752 (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 2, 2);
753 else
754 (void) BlockMarkFree(hfsmp, hfsmp->totalBlocks - 1, 1);
755
756 /* Don't invalidate the old AltVH yet. It is still valid until the partition size is updated ! */
757
758 /* Log successful shrinking. */
759 printf("hfs_truncatefs: shrank \"%s\" to %d blocks (was %d blocks)\n",
760 hfsmp->vcbVN, newblkcnt, hfsmp->totalBlocks);
761
762 /*
763 * Adjust file system variables and flush them to disk.
764 *
765 * Note that although the logical block size is updated here, it is only
766 * done for the benefit/convenience of the partition management software. The
767 * logical block count change has not yet actually been propagated to
768 * the disk device yet (and we won't get any notification when it does).
769 */
770 hfsmp->totalBlocks = newblkcnt;
771 hfsmp->hfs_logical_block_count = newsize / hfsmp->hfs_logical_block_size;
772 hfsmp->hfs_logical_bytes = (uint64_t) hfsmp->hfs_logical_block_count * (uint64_t) hfsmp->hfs_logical_block_size;
773
774 /*
775 * At this point, a smaller HFS file system exists in a larger volume.
776 * As per volume format, the alternate volume header is located 1024 bytes
777 * before end of the partition. So, until the partition is also resized,
778 * a valid alternate volume header will need to be updated at 1024 bytes
779 * before end of the volume. Under normal circumstances, a file system
780 * resize is always followed by a volume resize, so we also need to
781 * write a copy of the new alternate volume header at 1024 bytes before
782 * end of the new file system.
783 */
784 if (hfs_resize_debug) {
785 printf ("hfs_truncatefs: old: partition_avh_sector=%qu, fs_avh_sector=%qu\n",
786 hfsmp->hfs_partition_avh_sector, hfsmp->hfs_fs_avh_sector);
787 }
788 hfsmp->hfs_fs_avh_sector = HFS_ALT_SECTOR(hfsmp->hfs_logical_block_size, hfsmp->hfs_logical_block_count);
789 /* Note hfs_partition_avh_sector stays unchanged! partition size has not yet been modified */
790 if (hfs_resize_debug) {
791 printf ("hfs_truncatefs: new: partition_avh_sector=%qu, fs_avh_sector=%qu\n",
792 hfsmp->hfs_partition_avh_sector, hfsmp->hfs_fs_avh_sector);
793 }
794
795 MarkVCBDirty(hfsmp);
796 error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
797 if (error) {
798 panic("hfs_truncatefs: unexpected error flushing volume header (%d)\n", error);
799 }
800
801 /*
802 * Adjust the size of hfsmp->hfs_attrdata_vp
803 */
804 if (hfsmp->hfs_attrdata_vp) {
805 struct cnode *cp;
806 struct filefork *fp;
807
808 if (vnode_get(hfsmp->hfs_attrdata_vp) == 0) {
809 cp = VTOC(hfsmp->hfs_attrdata_vp);
810 fp = VTOF(hfsmp->hfs_attrdata_vp);
811
812 cp->c_blocks = newblkcnt;
813 fp->ff_blocks = newblkcnt;
814 fp->ff_extents[0].blockCount = newblkcnt;
815 fp->ff_size = (off_t) newblkcnt * hfsmp->blockSize;
816 ubc_setsize(hfsmp->hfs_attrdata_vp, fp->ff_size);
817 vnode_put(hfsmp->hfs_attrdata_vp);
818 }
819 }
820
821 out:
822 /*
823 * Update the allocLimit to acknowledge the last one or two blocks now.
824 * Add it to the tree as well if necessary.
825 */
826 UpdateAllocLimit (hfsmp, hfsmp->totalBlocks);
827
828 hfs_lock_mount (hfsmp);
829 if (disable_sparse == true) {
830 /* Now that resize is completed, set the volume to be sparse
831 * device again so that all further allocations will be first
832 * fit instead of best fit. Reset free extent cache so that
833 * it is rebuilt.
834 */
835 hfsmp->hfs_flags |= HFS_HAS_SPARSE_DEVICE;
836 ResetVCBFreeExtCache(hfsmp);
837 }
838
839 if (error && (updateFreeBlocks == true)) {
840 hfsmp->freeBlocks += reclaimblks;
841 }
842
843 if (hfsmp->nextAllocation >= hfsmp->allocLimit) {
844 hfsmp->nextAllocation = hfsmp->hfs_metazone_end + 1;
845 }
846 hfsmp->hfs_flags &= ~HFS_RESIZE_IN_PROGRESS;
847 hfs_unlock_mount (hfsmp);
848
849 /* On error, reset the metadata zone for original volume size */
850 if (error && (updateFreeBlocks == true)) {
851 hfs_metadatazone_init(hfsmp, false);
852 }
853
854 if (lockflags) {
855 hfs_systemfile_unlock(hfsmp, lockflags);
856 }
857 if (transaction_begun) {
858 hfs_end_transaction(hfsmp);
859 hfs_journal_flush(hfsmp, FALSE);
860 /* Just to be sure, sync all data to the disk */
861 (void) VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
862 }
863
864 if (error) {
865 printf ("hfs_truncatefs: failed error=%d on vol=%s\n", MacToVFSError(error), hfsmp->vcbVN);
866 }
867
868 return MacToVFSError(error);
869 }
870
871
872 /*
873 * Invalidate the physical block numbers associated with buffer cache blocks
874 * in the given extent of the given vnode.
875 */
876 struct hfs_inval_blk_no {
877 daddr64_t sectorStart;
878 daddr64_t sectorCount;
879 };
880 static int
881 hfs_invalidate_block_numbers_callback(buf_t bp, void *args_in)
882 {
883 daddr64_t blkno;
884 struct hfs_inval_blk_no *args;
885
886 blkno = buf_blkno(bp);
887 args = args_in;
888
889 if (blkno >= args->sectorStart && blkno < args->sectorStart+args->sectorCount)
890 buf_setblkno(bp, buf_lblkno(bp));
891
892 return BUF_RETURNED;
893 }
894 static void
895 hfs_invalidate_sectors(struct vnode *vp, daddr64_t sectorStart, daddr64_t sectorCount)
896 {
897 struct hfs_inval_blk_no args;
898 args.sectorStart = sectorStart;
899 args.sectorCount = sectorCount;
900
901 buf_iterate(vp, hfs_invalidate_block_numbers_callback, BUF_SCAN_DIRTY|BUF_SCAN_CLEAN, &args);
902 }
903
904
905 /*
906 * Copy the contents of an extent to a new location. Also invalidates the
907 * physical block number of any buffer cache block in the copied extent
908 * (so that if the block is written, it will go through VNOP_BLOCKMAP to
909 * determine the new physical block number).
910 *
911 * At this point, for regular files, we hold the truncate lock exclusive
912 * and the cnode lock exclusive.
913 */
914 static int
915 hfs_copy_extent(
916 struct hfsmount *hfsmp,
917 struct vnode *vp, /* The file whose extent is being copied. */
918 u_int32_t oldStart, /* The start of the source extent. */
919 u_int32_t newStart, /* The start of the destination extent. */
920 u_int32_t blockCount, /* The number of allocation blocks to copy. */
921 vfs_context_t context)
922 {
923 int err = 0;
924 size_t bufferSize;
925 void *buffer = NULL;
926 struct vfsioattr ioattr;
927 buf_t bp = NULL;
928 off_t resid;
929 size_t ioSize;
930 u_int32_t ioSizeSectors; /* Device sectors in this I/O */
931 daddr64_t srcSector, destSector;
932 u_int32_t sectorsPerBlock = hfsmp->blockSize / hfsmp->hfs_logical_block_size;
933 #if CONFIG_PROTECT
934 int cpenabled = 0;
935 #endif
936
937 /*
938 * Sanity check that we have locked the vnode of the file we're copying.
939 *
940 * But since hfs_systemfile_lock() doesn't actually take the lock on
941 * the allocation file if a journal is active, ignore the check if the
942 * file being copied is the allocation file.
943 */
944 struct cnode *cp = VTOC(vp);
945 if (cp != hfsmp->hfs_allocation_cp && cp->c_lockowner != current_thread())
946 panic("hfs_copy_extent: vp=%p (cp=%p) not owned?\n", vp, cp);
947
948 #if CONFIG_PROTECT
949 /*
950 * Prepare the CP blob and get it ready for use, if necessary.
951 *
952 * Note that we specifically *exclude* system vnodes (catalog, bitmap, extents, EAs),
953 * because they are implicitly protected via the media key on iOS. As such, they
954 * must not be relocated except with the media key. So it is OK to not pass down
955 * a special cpentry to the IOMedia/LwVM code for handling.
956 */
957 if (!vnode_issystem (vp) && vnode_isreg(vp) && cp_fs_protected (hfsmp->hfs_mp)) {
958 int cp_err = 0;
959 /*
960 * Ideally, the file whose extents we are about to manipulate is using the
961 * newer offset-based IVs so that we can manipulate it regardless of the
962 * current lock state. However, we must maintain support for older-style
963 * EAs.
964 *
965 * For the older EA case, the IV was tied to the device LBA for file content.
966 * This means that encrypted data cannot be moved from one location to another
967 * in the filesystem without garbling the IV data. As a result, we need to
968 * access the file's plaintext because we cannot do our AES-symmetry trick
969 * here. This requires that we attempt a key-unwrap here (via cp_handle_relocate)
970 * to make forward progress. If the keys are unavailable then we will
971 * simply stop the resize in its tracks here since we cannot move
972 * this extent at this time.
973 */
974 if ((cp->c_cpentry->cp_flags & CP_OFF_IV_ENABLED) == 0) {
975 cp_err = cp_handle_relocate(cp, hfsmp);
976 }
977
978 if (cp_err) {
979 printf ("hfs_copy_extent: cp_handle_relocate failed (%d) \n", cp_err);
980 return cp_err;
981 }
982
983 cpenabled = 1;
984 }
985 #endif
986
987
988 /*
989 * Determine the I/O size to use
990 *
991 * NOTE: Many external drives will result in an ioSize of 128KB.
992 * TODO: Should we use a larger buffer, doing several consecutive
993 * reads, then several consecutive writes?
994 */
995 vfs_ioattr(hfsmp->hfs_mp, &ioattr);
996 bufferSize = MIN(ioattr.io_maxreadcnt, ioattr.io_maxwritecnt);
997 if (kmem_alloc(kernel_map, (vm_offset_t*) &buffer, bufferSize))
998 return ENOMEM;
999
1000 /* Get a buffer for doing the I/O */
1001 bp = buf_alloc(hfsmp->hfs_devvp);
1002 buf_setdataptr(bp, (uintptr_t)buffer);
1003
1004 resid = (off_t) blockCount * (off_t) hfsmp->blockSize;
1005 srcSector = (daddr64_t) oldStart * hfsmp->blockSize / hfsmp->hfs_logical_block_size;
1006 destSector = (daddr64_t) newStart * hfsmp->blockSize / hfsmp->hfs_logical_block_size;
1007 while (resid > 0) {
1008 ioSize = MIN(bufferSize, (size_t) resid);
1009 ioSizeSectors = ioSize / hfsmp->hfs_logical_block_size;
1010
1011 /* Prepare the buffer for reading */
1012 buf_reset(bp, B_READ);
1013 buf_setsize(bp, ioSize);
1014 buf_setcount(bp, ioSize);
1015 buf_setblkno(bp, srcSector);
1016 buf_setlblkno(bp, srcSector);
1017
1018 /*
1019 * Note that because this is an I/O to the device vp
1020 * it is correct to have lblkno and blkno both point to the
1021 * start sector being read from. If it were being issued against the
1022 * underlying file then that would be different.
1023 */
1024
1025 /* Attach the new CP blob to the buffer if needed */
1026 #if CONFIG_PROTECT
1027 if (cpenabled) {
1028 if (cp->c_cpentry->cp_flags & CP_OFF_IV_ENABLED) {
1029 /* attach the RELOCATION_INFLIGHT flag for the underlying call to VNOP_STRATEGY */
1030 cp->c_cpentry->cp_flags |= CP_RELOCATION_INFLIGHT;
1031 buf_setcpaddr(bp, hfsmp->hfs_resize_cpentry);
1032 }
1033 else {
1034 /*
1035 * Use the cnode's cp key. This file is tied to the
1036 * LBAs of the physical blocks that it occupies.
1037 */
1038 buf_setcpaddr (bp, cp->c_cpentry);
1039 }
1040
1041 /* Initialize the content protection file offset to start at 0 */
1042 buf_setcpoff (bp, 0);
1043 }
1044 #endif
1045
1046 /* Do the read */
1047 err = VNOP_STRATEGY(bp);
1048 if (!err)
1049 err = buf_biowait(bp);
1050 if (err) {
1051 #if CONFIG_PROTECT
1052 /* Turn the flag off in error cases. */
1053 if (cpenabled) {
1054 cp->c_cpentry->cp_flags &= ~CP_RELOCATION_INFLIGHT;
1055 }
1056 #endif
1057 printf("hfs_copy_extent: Error %d from VNOP_STRATEGY (read)\n", err);
1058 break;
1059 }
1060
1061 /* Prepare the buffer for writing */
1062 buf_reset(bp, B_WRITE);
1063 buf_setsize(bp, ioSize);
1064 buf_setcount(bp, ioSize);
1065 buf_setblkno(bp, destSector);
1066 buf_setlblkno(bp, destSector);
1067 if (vnode_issystem(vp) && journal_uses_fua(hfsmp->jnl))
1068 buf_markfua(bp);
1069
1070 #if CONFIG_PROTECT
1071 /* Attach the CP to the buffer if needed */
1072 if (cpenabled) {
1073 if (cp->c_cpentry->cp_flags & CP_OFF_IV_ENABLED) {
1074 buf_setcpaddr(bp, hfsmp->hfs_resize_cpentry);
1075 }
1076 else {
1077 /*
1078 * Use the cnode's CP key. This file is still tied
1079 * to the LBAs of the physical blocks that it occupies.
1080 */
1081 buf_setcpaddr (bp, cp->c_cpentry);
1082 }
1083 /*
1084 * The last STRATEGY call may have updated the cp file offset behind our
1085 * back, so we cannot trust it. Re-initialize the content protection
1086 * file offset back to 0 before initiating the write portion of this I/O.
1087 */
1088 buf_setcpoff (bp, 0);
1089 }
1090 #endif
1091
1092 /* Do the write */
1093 vnode_startwrite(hfsmp->hfs_devvp);
1094 err = VNOP_STRATEGY(bp);
1095 if (!err) {
1096 err = buf_biowait(bp);
1097 }
1098 #if CONFIG_PROTECT
1099 /* Turn the flag off regardless once the strategy call finishes. */
1100 if (cpenabled) {
1101 cp->c_cpentry->cp_flags &= ~CP_RELOCATION_INFLIGHT;
1102 }
1103 #endif
1104 if (err) {
1105 printf("hfs_copy_extent: Error %d from VNOP_STRATEGY (write)\n", err);
1106 break;
1107 }
1108
1109 resid -= ioSize;
1110 srcSector += ioSizeSectors;
1111 destSector += ioSizeSectors;
1112 }
1113 if (bp)
1114 buf_free(bp);
1115 if (buffer)
1116 kmem_free(kernel_map, (vm_offset_t)buffer, bufferSize);
1117
1118 /* Make sure all writes have been flushed to disk. */
1119 if (vnode_issystem(vp) && !journal_uses_fua(hfsmp->jnl)) {
1120 err = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
1121 if (err) {
1122 printf("hfs_copy_extent: DKIOCSYNCHRONIZECACHE failed (%d)\n", err);
1123 err = 0; /* Don't fail the copy. */
1124 }
1125 }
1126
1127 if (!err)
1128 hfs_invalidate_sectors(vp, (daddr64_t)oldStart*sectorsPerBlock, (daddr64_t)blockCount*sectorsPerBlock);
1129
1130 return err;
1131 }
1132
1133
1134 /* Structure to store state of reclaiming extents from a
1135 * given file. hfs_reclaim_file()/hfs_reclaim_xattr()
1136 * initializes the values in this structure which are then
1137 * used by code that reclaims and splits the extents.
1138 */
1139 struct hfs_reclaim_extent_info {
1140 struct vnode *vp;
1141 u_int32_t fileID;
1142 u_int8_t forkType;
1143 u_int8_t is_dirlink; /* Extent belongs to directory hard link */
1144 u_int8_t is_sysfile; /* Extent belongs to system file */
1145 u_int8_t is_xattr; /* Extent belongs to extent-based xattr */
1146 u_int8_t extent_index;
1147 int lockflags; /* Locks that reclaim and split code should grab before modifying the extent record */
1148 u_int32_t blocks_relocated; /* Total blocks relocated for this file till now */
1149 u_int32_t recStartBlock; /* File allocation block number (FABN) for current extent record */
1150 u_int32_t cur_blockCount; /* Number of allocation blocks that have been checked for reclaim */
1151 struct filefork *catalog_fp; /* If non-NULL, extent is from catalog record */
1152 union record {
1153 HFSPlusExtentRecord overflow;/* Extent record from overflow extents btree */
1154 HFSPlusAttrRecord xattr; /* Attribute record for large EAs */
1155 } record;
1156 HFSPlusExtentDescriptor *extents; /* Pointer to current extent record being processed.
1157 * For catalog extent record, points to the correct
1158 * extent information in filefork. For overflow extent
1159 * record, or xattr record, points to extent record
1160 * in the structure above
1161 */
1162 struct cat_desc *dirlink_desc;
1163 struct cat_attr *dirlink_attr;
1164 struct filefork *dirlink_fork; /* For directory hard links, fp points actually to this */
1165 struct BTreeIterator *iterator; /* Shared read/write iterator, hfs_reclaim_file/xattr()
1166 * use it for reading and hfs_reclaim_extent()/hfs_split_extent()
1167 * use it for writing updated extent record
1168 */
1169 struct FSBufferDescriptor btdata; /* Shared btdata for reading/writing extent record, same as iterator above */
1170 u_int16_t recordlen;
1171 int overflow_count; /* For debugging, counter for overflow extent record */
1172 FCB *fcb; /* Pointer to the current btree being traversed */
1173 };
1174
1175 /*
1176 * Split the current extent into two extents, with first extent
1177 * to contain given number of allocation blocks. Splitting of
1178 * extent creates one new extent entry which can result in
1179 * shifting of many entries through all the extent records of a
1180 * file, and/or creating a new extent record in the overflow
1181 * extent btree.
1182 *
1183 * Example:
1184 * The diagram below represents two consecutive extent records,
1185 * for simplicity, lets call them record X and X+1 respectively.
1186 * Interesting extent entries have been denoted by letters.
1187 * If the letter is unchanged before and after split, it means
1188 * that the extent entry was not modified during the split.
1189 * A '.' means that the entry remains unchanged after the split
1190 * and is not relevant for our example. A '0' means that the
1191 * extent entry is empty.
1192 *
1193 * If there isn't sufficient contiguous free space to relocate
1194 * an extent (extent "C" below), we will have to break the one
1195 * extent into multiple smaller extents, and relocate each of
1196 * the smaller extents individually. The way we do this is by
1197 * finding the largest contiguous free space that is currently
1198 * available (N allocation blocks), and then convert extent "C"
1199 * into two extents, C1 and C2, that occupy exactly the same
1200 * allocation blocks as extent C. Extent C1 is the first
1201 * N allocation blocks of extent C, and extent C2 is the remainder
1202 * of extent C. Then we can relocate extent C1 since we know
1203 * we have enough contiguous free space to relocate it in its
1204 * entirety. We then repeat the process starting with extent C2.
1205 *
1206 * In record X, only the entries following entry C are shifted, and
1207 * the original entry C is replaced with two entries C1 and C2 which
1208 * are actually two extent entries for contiguous allocation blocks.
1209 *
1210 * Note that the entry E from record X is shifted into record X+1 as
1211 * the new first entry. Since the first entry of record X+1 is updated,
1212 * the FABN will also get updated with the blockCount of entry E.
1213 * This also results in shifting of all extent entries in record X+1.
1214 * Note that the number of empty entries after the split has been
1215 * changed from 3 to 2.
1216 *
1217 * Before:
1218 * record X record X+1
1219 * ---------------------===--------- ---------------------------------
1220 * | A | . | . | . | B | C | D | E | | F | . | . | . | G | 0 | 0 | 0 |
1221 * ---------------------===--------- ---------------------------------
1222 *
1223 * After:
1224 * ---------------------=======----- ---------------------------------
1225 * | A | . | . | . | B | C1| C2| D | | E | F | . | . | . | G | 0 | 0 |
1226 * ---------------------=======----- ---------------------------------
1227 *
1228 * C1.startBlock = C.startBlock
1229 * C1.blockCount = N
1230 *
1231 * C2.startBlock = C.startBlock + N
1232 * C2.blockCount = C.blockCount - N
1233 *
1234 * FABN = old FABN - E.blockCount
1235 *
1236 * Inputs:
1237 * extent_info - This is the structure that contains state about
1238 * the current file, extent, and extent record that
1239 * is being relocated. This structure is shared
1240 * among code that traverses through all the extents
1241 * of the file, code that relocates extents, and
1242 * code that splits the extent.
1243 * newBlockCount - The blockCount of the extent to be split after
1244 * successfully split operation.
1245 * Output:
1246 * Zero on success, non-zero on failure.
1247 */
1248 static int
1249 hfs_split_extent(struct hfs_reclaim_extent_info *extent_info, uint32_t newBlockCount)
1250 {
1251 int error = 0;
1252 int index = extent_info->extent_index;
1253 int i;
1254 HFSPlusExtentDescriptor shift_extent; /* Extent entry that should be shifted into next extent record */
1255 HFSPlusExtentDescriptor last_extent;
1256 HFSPlusExtentDescriptor *extents; /* Pointer to current extent record being manipulated */
1257 HFSPlusExtentRecord *extents_rec = NULL;
1258 HFSPlusExtentKey *extents_key = NULL;
1259 HFSPlusAttrRecord *xattr_rec = NULL;
1260 HFSPlusAttrKey *xattr_key = NULL;
1261 struct BTreeIterator iterator;
1262 struct FSBufferDescriptor btdata;
1263 uint16_t reclen;
1264 uint32_t read_recStartBlock; /* Starting allocation block number to read old extent record */
1265 uint32_t write_recStartBlock; /* Starting allocation block number to insert newly updated extent record */
1266 Boolean create_record = false;
1267 Boolean is_xattr;
1268 struct cnode *cp;
1269
1270 is_xattr = extent_info->is_xattr;
1271 extents = extent_info->extents;
1272 cp = VTOC(extent_info->vp);
1273
1274 if (newBlockCount == 0) {
1275 if (hfs_resize_debug) {
1276 printf ("hfs_split_extent: No splitting required for newBlockCount=0\n");
1277 }
1278 return error;
1279 }
1280
1281 if (hfs_resize_debug) {
1282 printf ("hfs_split_extent: Split record:%u recStartBlock=%u %u:(%u,%u) for %u blocks\n", extent_info->overflow_count, extent_info->recStartBlock, index, extents[index].startBlock, extents[index].blockCount, newBlockCount);
1283 }
1284
1285 /* Extents overflow btree can not have more than 8 extents.
1286 * No split allowed if the 8th extent is already used.
1287 */
1288 if ((extent_info->fileID == kHFSExtentsFileID) && (extents[kHFSPlusExtentDensity - 1].blockCount != 0)) {
1289 printf ("hfs_split_extent: Maximum 8 extents allowed for extents overflow btree, cannot split further.\n");
1290 error = ENOSPC;
1291 goto out;
1292 }
1293
1294 /* Determine the starting allocation block number for the following
1295 * overflow extent record, if any, before the current record
1296 * gets modified.
1297 */
1298 read_recStartBlock = extent_info->recStartBlock;
1299 for (i = 0; i < kHFSPlusExtentDensity; i++) {
1300 if (extents[i].blockCount == 0) {
1301 break;
1302 }
1303 read_recStartBlock += extents[i].blockCount;
1304 }
1305
1306 /* Shift and split */
1307 if (index == kHFSPlusExtentDensity-1) {
1308 /* The new extent created after split will go into following overflow extent record */
1309 shift_extent.startBlock = extents[index].startBlock + newBlockCount;
1310 shift_extent.blockCount = extents[index].blockCount - newBlockCount;
1311
1312 /* Last extent in the record will be split, so nothing to shift */
1313 } else {
1314 /* Splitting of extents can result in at most of one
1315 * extent entry to be shifted into following overflow extent
1316 * record. So, store the last extent entry for later.
1317 */
1318 shift_extent = extents[kHFSPlusExtentDensity-1];
1319 if ((hfs_resize_debug) && (shift_extent.blockCount != 0)) {
1320 printf ("hfs_split_extent: Save 7:(%u,%u) to shift into overflow record\n", shift_extent.startBlock, shift_extent.blockCount);
1321 }
1322
1323 /* Start shifting extent information from the end of the extent
1324 * record to the index where we want to insert the new extent.
1325 * Note that kHFSPlusExtentDensity-1 is already saved above, and
1326 * does not need to be shifted. The extent entry that is being
1327 * split does not get shifted.
1328 */
1329 for (i = kHFSPlusExtentDensity-2; i > index; i--) {
1330 if (hfs_resize_debug) {
1331 if (extents[i].blockCount) {
1332 printf ("hfs_split_extent: Shift %u:(%u,%u) to %u:(%u,%u)\n", i, extents[i].startBlock, extents[i].blockCount, i+1, extents[i].startBlock, extents[i].blockCount);
1333 }
1334 }
1335 extents[i+1] = extents[i];
1336 }
1337 }
1338
1339 if (index == kHFSPlusExtentDensity-1) {
1340 /* The second half of the extent being split will be the overflow
1341 * entry that will go into following overflow extent record. The
1342 * value has been stored in 'shift_extent' above, so there is
1343 * nothing to be done here.
1344 */
1345 } else {
1346 /* Update the values in the second half of the extent being split
1347 * before updating the first half of the split. Note that the
1348 * extent to split or first half of the split is at index 'index'
1349 * and a new extent or second half of the split will be inserted at
1350 * 'index+1' or into following overflow extent record.
1351 */
1352 extents[index+1].startBlock = extents[index].startBlock + newBlockCount;
1353 extents[index+1].blockCount = extents[index].blockCount - newBlockCount;
1354 }
1355 /* Update the extent being split, only the block count will change */
1356 extents[index].blockCount = newBlockCount;
1357
1358 if (hfs_resize_debug) {
1359 printf ("hfs_split_extent: Split %u:(%u,%u) and ", index, extents[index].startBlock, extents[index].blockCount);
1360 if (index != kHFSPlusExtentDensity-1) {
1361 printf ("%u:(%u,%u)\n", index+1, extents[index+1].startBlock, extents[index+1].blockCount);
1362 } else {
1363 printf ("overflow:(%u,%u)\n", shift_extent.startBlock, shift_extent.blockCount);
1364 }
1365 }
1366
1367 /* Write out information about the newly split extent to the disk */
1368 if (extent_info->catalog_fp) {
1369 /* (extent_info->catalog_fp != NULL) means the newly split
1370 * extent exists in the catalog record. This means that
1371 * the cnode was updated. Therefore, to write out the changes,
1372 * mark the cnode as modified. We cannot call hfs_update()
1373 * in this function because the caller hfs_reclaim_extent()
1374 * is holding the catalog lock currently.
1375 */
1376 cp->c_flag |= C_MODIFIED;
1377 } else {
1378 /* The newly split extent is for large EAs or is in overflow
1379 * extent record, so update it directly in the btree using the
1380 * iterator information from the shared extent_info structure
1381 */
1382 error = BTReplaceRecord(extent_info->fcb, extent_info->iterator,
1383 &(extent_info->btdata), extent_info->recordlen);
1384 if (error) {
1385 printf ("hfs_split_extent: fileID=%u BTReplaceRecord returned error=%d\n", extent_info->fileID, error);
1386 goto out;
1387 }
1388 }
1389
1390 /* No extent entry to be shifted into another extent overflow record */
1391 if (shift_extent.blockCount == 0) {
1392 if (hfs_resize_debug) {
1393 printf ("hfs_split_extent: No extent entry to be shifted into overflow records\n");
1394 }
1395 error = 0;
1396 goto out;
1397 }
1398
1399 /* The overflow extent entry has to be shifted into an extent
1400 * overflow record. This means that we might have to shift
1401 * extent entries from all subsequent overflow records by one.
1402 * We start iteration from the first record to the last record,
1403 * and shift the extent entry from one record to another.
1404 * We might have to create a new extent record for the last
1405 * extent entry for the file.
1406 */
1407
1408 /* Initialize iterator to search the next record */
1409 bzero(&iterator, sizeof(iterator));
1410 if (is_xattr) {
1411 /* Copy the key from the iterator that was used to update the modified attribute record. */
1412 xattr_key = (HFSPlusAttrKey *)&(iterator.key);
1413 bcopy((HFSPlusAttrKey *)&(extent_info->iterator->key), xattr_key, sizeof(HFSPlusAttrKey));
1414 /* Note: xattr_key->startBlock will be initialized later in the iteration loop */
1415
1416 MALLOC(xattr_rec, HFSPlusAttrRecord *,
1417 sizeof(HFSPlusAttrRecord), M_TEMP, M_WAITOK);
1418 if (xattr_rec == NULL) {
1419 error = ENOMEM;
1420 goto out;
1421 }
1422 btdata.bufferAddress = xattr_rec;
1423 btdata.itemSize = sizeof(HFSPlusAttrRecord);
1424 btdata.itemCount = 1;
1425 extents = xattr_rec->overflowExtents.extents;
1426 } else {
1427 /* Initialize the extent key for the current file */
1428 extents_key = (HFSPlusExtentKey *) &(iterator.key);
1429 extents_key->keyLength = kHFSPlusExtentKeyMaximumLength;
1430 extents_key->forkType = extent_info->forkType;
1431 extents_key->fileID = extent_info->fileID;
1432 /* Note: extents_key->startBlock will be initialized later in the iteration loop */
1433
1434 MALLOC(extents_rec, HFSPlusExtentRecord *,
1435 sizeof(HFSPlusExtentRecord), M_TEMP, M_WAITOK);
1436 if (extents_rec == NULL) {
1437 error = ENOMEM;
1438 goto out;
1439 }
1440 btdata.bufferAddress = extents_rec;
1441 btdata.itemSize = sizeof(HFSPlusExtentRecord);
1442 btdata.itemCount = 1;
1443 extents = extents_rec[0];
1444 }
1445
1446 /* The overflow extent entry has to be shifted into an extent
1447 * overflow record. This means that we might have to shift
1448 * extent entries from all subsequent overflow records by one.
1449 * We start iteration from the first record to the last record,
1450 * examine one extent record in each iteration and shift one
1451 * extent entry from one record to another. We might have to
1452 * create a new extent record for the last extent entry for the
1453 * file.
1454 *
1455 * If shift_extent.blockCount is non-zero, it means that there is
1456 * an extent entry that needs to be shifted into the next
1457 * overflow extent record. We keep on going till there are no such
1458 * entries left to be shifted. This will also change the starting
1459 * allocation block number of the extent record which is part of
1460 * the key for the extent record in each iteration. Note that
1461 * because the extent record key is changing while we are searching,
1462 * the record can not be updated directly, instead it has to be
1463 * deleted and inserted again.
1464 */
1465 while (shift_extent.blockCount) {
1466 if (hfs_resize_debug) {
1467 printf ("hfs_split_extent: Will shift (%u,%u) into overflow record with startBlock=%u\n", shift_extent.startBlock, shift_extent.blockCount, read_recStartBlock);
1468 }
1469
1470 /* Search if there is any existing overflow extent record
1471 * that matches the current file and the logical start block
1472 * number.
1473 *
1474 * For this, the logical start block number in the key is
1475 * the value calculated based on the logical start block
1476 * number of the current extent record and the total number
1477 * of blocks existing in the current extent record.
1478 */
1479 if (is_xattr) {
1480 xattr_key->startBlock = read_recStartBlock;
1481 } else {
1482 extents_key->startBlock = read_recStartBlock;
1483 }
1484 error = BTSearchRecord(extent_info->fcb, &iterator, &btdata, &reclen, &iterator);
1485 if (error) {
1486 if (error != btNotFound) {
1487 printf ("hfs_split_extent: fileID=%u startBlock=%u BTSearchRecord error=%d\n", extent_info->fileID, read_recStartBlock, error);
1488 goto out;
1489 }
1490 /* No matching record was found, so create a new extent record.
1491 * Note: Since no record was found, we can't rely on the
1492 * btree key in the iterator any longer. This will be initialized
1493 * later before we insert the record.
1494 */
1495 create_record = true;
1496 }
1497
1498 /* The extra extent entry from the previous record is being inserted
1499 * as the first entry in the current extent record. This will change
1500 * the file allocation block number (FABN) of the current extent
1501 * record, which is the startBlock value from the extent record key.
1502 * Since one extra entry is being inserted in the record, the new
1503 * FABN for the record will less than old FABN by the number of blocks
1504 * in the new extent entry being inserted at the start. We have to
1505 * do this before we update read_recStartBlock to point at the
1506 * startBlock of the following record.
1507 */
1508 write_recStartBlock = read_recStartBlock - shift_extent.blockCount;
1509 if (hfs_resize_debug) {
1510 if (create_record) {
1511 printf ("hfs_split_extent: No records found for startBlock=%u, will create new with startBlock=%u\n", read_recStartBlock, write_recStartBlock);
1512 }
1513 }
1514
1515 /* Now update the read_recStartBlock to account for total number
1516 * of blocks in this extent record. It will now point to the
1517 * starting allocation block number for the next extent record.
1518 */
1519 for (i = 0; i < kHFSPlusExtentDensity; i++) {
1520 if (extents[i].blockCount == 0) {
1521 break;
1522 }
1523 read_recStartBlock += extents[i].blockCount;
1524 }
1525
1526 if (create_record == true) {
1527 /* Initialize new record content with only one extent entry */
1528 bzero(extents, sizeof(HFSPlusExtentRecord));
1529 /* The new record will contain only one extent entry */
1530 extents[0] = shift_extent;
1531 /* There are no more overflow extents to be shifted */
1532 shift_extent.startBlock = shift_extent.blockCount = 0;
1533
1534 if (is_xattr) {
1535 /* BTSearchRecord above returned btNotFound,
1536 * but since the attribute btree is never empty
1537 * if we are trying to insert new overflow
1538 * record for the xattrs, the extents_key will
1539 * contain correct data. So we don't need to
1540 * re-initialize it again like below.
1541 */
1542
1543 /* Initialize the new xattr record */
1544 xattr_rec->recordType = kHFSPlusAttrExtents;
1545 xattr_rec->overflowExtents.reserved = 0;
1546 reclen = sizeof(HFSPlusAttrExtents);
1547 } else {
1548 /* BTSearchRecord above returned btNotFound,
1549 * which means that extents_key content might
1550 * not correspond to the record that we are
1551 * trying to create, especially when the extents
1552 * overflow btree is empty. So we reinitialize
1553 * the extents_key again always.
1554 */
1555 extents_key->keyLength = kHFSPlusExtentKeyMaximumLength;
1556 extents_key->forkType = extent_info->forkType;
1557 extents_key->fileID = extent_info->fileID;
1558
1559 /* Initialize the new extent record */
1560 reclen = sizeof(HFSPlusExtentRecord);
1561 }
1562 } else {
1563 /* The overflow extent entry from previous record will be
1564 * the first entry in this extent record. If the last
1565 * extent entry in this record is valid, it will be shifted
1566 * into the following extent record as its first entry. So
1567 * save the last entry before shifting entries in current
1568 * record.
1569 */
1570 last_extent = extents[kHFSPlusExtentDensity-1];
1571
1572 /* Shift all entries by one index towards the end */
1573 for (i = kHFSPlusExtentDensity-2; i >= 0; i--) {
1574 extents[i+1] = extents[i];
1575 }
1576
1577 /* Overflow extent entry saved from previous record
1578 * is now the first entry in the current record.
1579 */
1580 extents[0] = shift_extent;
1581
1582 if (hfs_resize_debug) {
1583 printf ("hfs_split_extent: Shift overflow=(%u,%u) to record with updated startBlock=%u\n", shift_extent.startBlock, shift_extent.blockCount, write_recStartBlock);
1584 }
1585
1586 /* The last entry from current record will be the
1587 * overflow entry which will be the first entry for
1588 * the following extent record.
1589 */
1590 shift_extent = last_extent;
1591
1592 /* Since the key->startBlock is being changed for this record,
1593 * it should be deleted and inserted with the new key.
1594 */
1595 error = BTDeleteRecord(extent_info->fcb, &iterator);
1596 if (error) {
1597 printf ("hfs_split_extent: fileID=%u startBlock=%u BTDeleteRecord error=%d\n", extent_info->fileID, read_recStartBlock, error);
1598 goto out;
1599 }
1600 if (hfs_resize_debug) {
1601 printf ("hfs_split_extent: Deleted extent record with startBlock=%u\n", (is_xattr ? xattr_key->startBlock : extents_key->startBlock));
1602 }
1603 }
1604
1605 /* Insert the newly created or modified extent record */
1606 bzero(&iterator.hint, sizeof(iterator.hint));
1607 if (is_xattr) {
1608 xattr_key->startBlock = write_recStartBlock;
1609 } else {
1610 extents_key->startBlock = write_recStartBlock;
1611 }
1612 error = BTInsertRecord(extent_info->fcb, &iterator, &btdata, reclen);
1613 if (error) {
1614 printf ("hfs_split_extent: fileID=%u, startBlock=%u BTInsertRecord error=%d\n", extent_info->fileID, write_recStartBlock, error);
1615 goto out;
1616 }
1617 if (hfs_resize_debug) {
1618 printf ("hfs_split_extent: Inserted extent record with startBlock=%u\n", write_recStartBlock);
1619 }
1620 }
1621
1622 out:
1623 /*
1624 * Extents overflow btree or attributes btree headers might have
1625 * been modified during the split/shift operation, so flush the
1626 * changes to the disk while we are inside journal transaction.
1627 * We should only be able to generate I/O that modifies the B-Tree
1628 * header nodes while we're in the middle of a journal transaction.
1629 * Otherwise it might result in panic during unmount.
1630 */
1631 BTFlushPath(extent_info->fcb);
1632
1633 if (extents_rec) {
1634 FREE (extents_rec, M_TEMP);
1635 }
1636 if (xattr_rec) {
1637 FREE (xattr_rec, M_TEMP);
1638 }
1639 return error;
1640 }
1641
1642
1643 /*
1644 * Relocate an extent if it lies beyond the expected end of volume.
1645 *
1646 * This function is called for every extent of the file being relocated.
1647 * It allocates space for relocation, copies the data, deallocates
1648 * the old extent, and update corresponding on-disk extent. If the function
1649 * does not find contiguous space to relocate an extent, it splits the
1650 * extent in smaller size to be able to relocate it out of the area of
1651 * disk being reclaimed. As an optimization, if an extent lies partially
1652 * in the area of the disk being reclaimed, it is split so that we only
1653 * have to relocate the area that was overlapping with the area of disk
1654 * being reclaimed.
1655 *
1656 * Note that every extent is relocated in its own transaction so that
1657 * they do not overwhelm the journal. This function handles the extent
1658 * record that exists in the catalog record, extent record from overflow
1659 * extents btree, and extents for large EAs.
1660 *
1661 * Inputs:
1662 * extent_info - This is the structure that contains state about
1663 * the current file, extent, and extent record that
1664 * is being relocated. This structure is shared
1665 * among code that traverses through all the extents
1666 * of the file, code that relocates extents, and
1667 * code that splits the extent.
1668 */
1669 static int
1670 hfs_reclaim_extent(struct hfsmount *hfsmp, const u_long allocLimit, struct hfs_reclaim_extent_info *extent_info, vfs_context_t context)
1671 {
1672 int error = 0;
1673 int index;
1674 struct cnode *cp;
1675 u_int32_t oldStartBlock;
1676 u_int32_t oldBlockCount;
1677 u_int32_t newStartBlock;
1678 u_int32_t newBlockCount;
1679 u_int32_t roundedBlockCount;
1680 uint16_t node_size;
1681 uint32_t remainder_blocks;
1682 u_int32_t alloc_flags;
1683 int blocks_allocated = false;
1684
1685 index = extent_info->extent_index;
1686 cp = VTOC(extent_info->vp);
1687
1688 oldStartBlock = extent_info->extents[index].startBlock;
1689 oldBlockCount = extent_info->extents[index].blockCount;
1690
1691 if (0 && hfs_resize_debug) {
1692 printf ("hfs_reclaim_extent: Examine record:%u recStartBlock=%u, %u:(%u,%u)\n", extent_info->overflow_count, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount);
1693 }
1694
1695 /* If the current extent lies completely within allocLimit,
1696 * it does not require any relocation.
1697 */
1698 if ((oldStartBlock + oldBlockCount) <= allocLimit) {
1699 extent_info->cur_blockCount += oldBlockCount;
1700 return error;
1701 }
1702
1703 /* Every extent should be relocated in its own transaction
1704 * to make sure that we don't overflow the journal buffer.
1705 */
1706 error = hfs_start_transaction(hfsmp);
1707 if (error) {
1708 return error;
1709 }
1710 extent_info->lockflags = hfs_systemfile_lock(hfsmp, extent_info->lockflags, HFS_EXCLUSIVE_LOCK);
1711
1712 /* Check if the extent lies partially in the area to reclaim,
1713 * i.e. it starts before allocLimit and ends beyond allocLimit.
1714 * We have already skipped extents that lie completely within
1715 * allocLimit in the check above, so we only check for the
1716 * startBlock. If it lies partially, split it so that we
1717 * only relocate part of the extent.
1718 */
1719 if (oldStartBlock < allocLimit) {
1720 newBlockCount = allocLimit - oldStartBlock;
1721
1722 if (hfs_resize_debug) {
1723 int idx = extent_info->extent_index;
1724 printf ("hfs_reclaim_extent: Split straddling extent %u:(%u,%u) for %u blocks\n", idx, extent_info->extents[idx].startBlock, extent_info->extents[idx].blockCount, newBlockCount);
1725 }
1726
1727 /* If the extent belongs to a btree, check and trim
1728 * it to be multiple of the node size.
1729 */
1730 if (extent_info->is_sysfile) {
1731 node_size = get_btree_nodesize(extent_info->vp);
1732 /* If the btree node size is less than the block size,
1733 * splitting this extent will not split a node across
1734 * different extents. So we only check and trim if
1735 * node size is more than the allocation block size.
1736 */
1737 if (node_size > hfsmp->blockSize) {
1738 remainder_blocks = newBlockCount % (node_size / hfsmp->blockSize);
1739 if (remainder_blocks) {
1740 newBlockCount -= remainder_blocks;
1741 if (hfs_resize_debug) {
1742 printf ("hfs_reclaim_extent: Round-down newBlockCount to be multiple of nodeSize, node_allocblks=%u, old=%u, new=%u\n", node_size/hfsmp->blockSize, newBlockCount + remainder_blocks, newBlockCount);
1743 }
1744 }
1745 }
1746 /* The newBlockCount is zero because of rounding-down so that
1747 * btree nodes are not split across extents. Therefore this
1748 * straddling extent across resize-boundary does not require
1749 * splitting. Skip over to relocating of complete extent.
1750 */
1751 if (newBlockCount == 0) {
1752 if (hfs_resize_debug) {
1753 printf ("hfs_reclaim_extent: After round-down newBlockCount=0, skip split, relocate full extent\n");
1754 }
1755 goto relocate_full_extent;
1756 }
1757 }
1758
1759 /* Split the extents into two parts --- the first extent lies
1760 * completely within allocLimit and therefore does not require
1761 * relocation. The second extent will require relocation which
1762 * will be handled when the caller calls this function again
1763 * for the next extent.
1764 */
1765 error = hfs_split_extent(extent_info, newBlockCount);
1766 if (error == 0) {
1767 /* Split success, no relocation required */
1768 goto out;
1769 }
1770 /* Split failed, so try to relocate entire extent */
1771 if (hfs_resize_debug) {
1772 int idx = extent_info->extent_index;
1773 printf ("hfs_reclaim_extent: Split straddling extent %u:(%u,%u) for %u blocks failed, relocate full extent\n", idx, extent_info->extents[idx].startBlock, extent_info->extents[idx].blockCount, newBlockCount);
1774 }
1775 }
1776
1777 relocate_full_extent:
1778 /* At this point, the current extent requires relocation.
1779 * We will try to allocate space equal to the size of the extent
1780 * being relocated first to try to relocate it without splitting.
1781 * If the allocation fails, we will try to allocate contiguous
1782 * blocks out of metadata zone. If that allocation also fails,
1783 * then we will take a whatever contiguous block run is returned
1784 * by the allocation, split the extent into two parts, and then
1785 * relocate the first splitted extent.
1786 */
1787 alloc_flags = HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS;
1788 if (extent_info->is_sysfile) {
1789 alloc_flags |= HFS_ALLOC_METAZONE;
1790 }
1791
1792 error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount, alloc_flags,
1793 &newStartBlock, &newBlockCount);
1794 if ((extent_info->is_sysfile == false) &&
1795 ((error == dskFulErr) || (error == ENOSPC))) {
1796 /* For non-system files, try reallocating space in metadata zone */
1797 alloc_flags |= HFS_ALLOC_METAZONE;
1798 error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
1799 alloc_flags, &newStartBlock, &newBlockCount);
1800 }
1801 if ((error == dskFulErr) || (error == ENOSPC)) {
1802 /*
1803 * We did not find desired contiguous space for this
1804 * extent, when we asked for it, including the metazone allocations.
1805 * At this point we are not worrying about getting contiguity anymore.
1806 *
1807 * HOWEVER, if we now allow blocks to be used which were recently
1808 * de-allocated, we may find a contiguous range (though this seems
1809 * unlikely). As a result, assume that we will have to split the
1810 * current extent into two pieces, but if we are able to satisfy
1811 * the request with a single extent, detect that as well.
1812 */
1813 alloc_flags &= ~HFS_ALLOC_FORCECONTIG;
1814 alloc_flags |= HFS_ALLOC_FLUSHTXN;
1815
1816 error = BlockAllocate(hfsmp, 1, oldBlockCount, oldBlockCount,
1817 alloc_flags, &newStartBlock, &newBlockCount);
1818 if (error) {
1819 printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) BlockAllocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
1820 goto out;
1821 }
1822
1823 /*
1824 * Allowing recently deleted extents may now allow us to find
1825 * a single contiguous extent in the amount & size desired. If so,
1826 * do NOT split this extent into two pieces. This is technically a
1827 * check for "< oldBlockCount", but we use != to highlight the point
1828 * that the special case is when they're equal. The allocator should
1829 * never vend back more blocks than were requested.
1830 */
1831 if (newBlockCount != oldBlockCount) {
1832 blocks_allocated = true;
1833
1834 /* The number of blocks allocated is less than the requested
1835 * number of blocks. For btree extents, check and trim the
1836 * extent to be multiple of the node size.
1837 */
1838 if (extent_info->is_sysfile) {
1839 node_size = get_btree_nodesize(extent_info->vp);
1840 if (node_size > hfsmp->blockSize) {
1841 remainder_blocks = newBlockCount % (node_size / hfsmp->blockSize);
1842 if (remainder_blocks) {
1843 roundedBlockCount = newBlockCount - remainder_blocks;
1844 /* Free tail-end blocks of the newly allocated extent */
1845 BlockDeallocate(hfsmp, newStartBlock + roundedBlockCount,
1846 newBlockCount - roundedBlockCount,
1847 HFS_ALLOC_SKIPFREEBLKS);
1848 newBlockCount = roundedBlockCount;
1849 if (hfs_resize_debug) {
1850 printf ("hfs_reclaim_extent: Fixing extent block count, node_blks=%u, old=%u, new=%u\n", node_size/hfsmp->blockSize, newBlockCount + remainder_blocks, newBlockCount);
1851 }
1852 if (newBlockCount == 0) {
1853 printf ("hfs_reclaim_extent: Not enough contiguous blocks available to relocate fileID=%d\n", extent_info->fileID);
1854 error = ENOSPC;
1855 goto out;
1856 }
1857 }
1858 }
1859 }
1860
1861 /* The number of blocks allocated is less than the number of
1862 * blocks requested, so split this extent --- the first extent
1863 * will be relocated as part of this function call and the caller
1864 * will handle relocating the second extent by calling this
1865 * function again for the second extent.
1866 */
1867 error = hfs_split_extent(extent_info, newBlockCount);
1868 if (error) {
1869 printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) split error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
1870 goto out;
1871 }
1872 oldBlockCount = newBlockCount;
1873 } /* end oldBlockCount != newBlockCount */
1874 } /* end allocation request for any available free space */
1875
1876 if (error) {
1877 printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) contig BlockAllocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
1878 goto out;
1879 }
1880 blocks_allocated = true;
1881
1882 /* Copy data from old location to new location */
1883 error = hfs_copy_extent(hfsmp, extent_info->vp, oldStartBlock,
1884 newStartBlock, newBlockCount, context);
1885 if (error) {
1886 printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u)=>(%u,%u) hfs_copy_extent error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount, error);
1887 goto out;
1888 }
1889
1890 /* Update the extent record with the new start block information */
1891 extent_info->extents[index].startBlock = newStartBlock;
1892
1893 /* Sync the content back to the disk */
1894 if (extent_info->catalog_fp) {
1895 /* Update the extents in catalog record */
1896 if (extent_info->is_dirlink) {
1897 error = cat_update_dirlink(hfsmp, extent_info->forkType,
1898 extent_info->dirlink_desc, extent_info->dirlink_attr,
1899 &(extent_info->dirlink_fork->ff_data));
1900 } else {
1901 cp->c_flag |= C_MODIFIED;
1902 /* If this is a system file, sync volume headers on disk */
1903 if (extent_info->is_sysfile) {
1904 error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
1905 }
1906 }
1907 } else {
1908 /* Replace record for extents overflow or extents-based xattrs */
1909 error = BTReplaceRecord(extent_info->fcb, extent_info->iterator,
1910 &(extent_info->btdata), extent_info->recordlen);
1911 }
1912 if (error) {
1913 printf ("hfs_reclaim_extent: fileID=%u, update record error=%u\n", extent_info->fileID, error);
1914 goto out;
1915 }
1916
1917 /* Deallocate the old extent */
1918 error = BlockDeallocate(hfsmp, oldStartBlock, oldBlockCount, HFS_ALLOC_SKIPFREEBLKS);
1919 if (error) {
1920 printf ("hfs_reclaim_extent: fileID=%u start=%u, %u:(%u,%u) BlockDeallocate error=%d\n", extent_info->fileID, extent_info->recStartBlock, index, oldStartBlock, oldBlockCount, error);
1921 goto out;
1922 }
1923 extent_info->blocks_relocated += newBlockCount;
1924
1925 if (hfs_resize_debug) {
1926 printf ("hfs_reclaim_extent: Relocated record:%u %u:(%u,%u) to (%u,%u)\n", extent_info->overflow_count, index, oldStartBlock, oldBlockCount, newStartBlock, newBlockCount);
1927 }
1928
1929 out:
1930 if (error != 0) {
1931 if (blocks_allocated == true) {
1932 BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS);
1933 }
1934 } else {
1935 /* On success, increment the total allocation blocks processed */
1936 extent_info->cur_blockCount += newBlockCount;
1937 }
1938
1939 hfs_systemfile_unlock(hfsmp, extent_info->lockflags);
1940
1941 /* For a non-system file, if an extent entry from catalog record
1942 * was modified, sync the in-memory changes to the catalog record
1943 * on disk before ending the transaction.
1944 */
1945 if ((extent_info->catalog_fp) &&
1946 (extent_info->is_sysfile == false)) {
1947 (void) hfs_update(extent_info->vp, MNT_WAIT);
1948 }
1949
1950 hfs_end_transaction(hfsmp);
1951
1952 return error;
1953 }
1954
1955 /* Report intermediate progress during volume resize */
1956 static void
1957 hfs_truncatefs_progress(struct hfsmount *hfsmp)
1958 {
1959 u_int32_t cur_progress = 0;
1960
1961 hfs_resize_progress(hfsmp, &cur_progress);
1962 if (cur_progress > (hfsmp->hfs_resize_progress + 9)) {
1963 printf("hfs_truncatefs: %d%% done...\n", cur_progress);
1964 hfsmp->hfs_resize_progress = cur_progress;
1965 }
1966 return;
1967 }
1968
1969 /*
1970 * Reclaim space at the end of a volume for given file and forktype.
1971 *
1972 * This routine attempts to move any extent which contains allocation blocks
1973 * at or after "allocLimit." A separate transaction is used for every extent
1974 * that needs to be moved. If there is not contiguous space available for
1975 * moving an extent, it can be split into smaller extents. The contents of
1976 * any moved extents are read and written via the volume's device vnode --
1977 * NOT via "vp." During the move, moved blocks which are part of a transaction
1978 * have their physical block numbers invalidated so they will eventually be
1979 * written to their new locations.
1980 *
1981 * This function is also called for directory hard links. Directory hard links
1982 * are regular files with no data fork and resource fork that contains alias
1983 * information for backward compatibility with pre-Leopard systems. However
1984 * non-Mac OS X implementation can add/modify data fork or resource fork
1985 * information to directory hard links, so we check, and if required, relocate
1986 * both data fork and resource fork.
1987 *
1988 * Inputs:
1989 * hfsmp The volume being resized.
1990 * vp The vnode for the system file.
1991 * fileID ID of the catalog record that needs to be relocated
1992 * forktype The type of fork that needs relocated,
1993 * kHFSResourceForkType for resource fork,
1994 * kHFSDataForkType for data fork
1995 * allocLimit Allocation limit for the new volume size,
1996 * do not use this block or beyond. All extents
1997 * that use this block or any blocks beyond this limit
1998 * will be relocated.
1999 *
2000 * Side Effects:
2001 * hfsmp->hfs_resize_blocksmoved is incremented by the number of allocation
2002 * blocks that were relocated.
2003 */
2004 static int
2005 hfs_reclaim_file(struct hfsmount *hfsmp, struct vnode *vp, u_int32_t fileID,
2006 u_int8_t forktype, u_long allocLimit, vfs_context_t context)
2007 {
2008 int error = 0;
2009 struct hfs_reclaim_extent_info *extent_info;
2010 int i;
2011 int lockflags = 0;
2012 struct cnode *cp;
2013 struct filefork *fp;
2014 int took_truncate_lock = false;
2015 int release_desc = false;
2016 HFSPlusExtentKey *key;
2017
2018 /* If there is no vnode for this file, then there's nothing to do. */
2019 if (vp == NULL) {
2020 return 0;
2021 }
2022
2023 cp = VTOC(vp);
2024
2025 if (hfs_resize_debug) {
2026 const char *filename = (const char *) cp->c_desc.cd_nameptr;
2027 int namelen = cp->c_desc.cd_namelen;
2028
2029 if (filename == NULL) {
2030 filename = "";
2031 namelen = 0;
2032 }
2033 printf("hfs_reclaim_file: reclaiming '%.*s'\n", namelen, filename);
2034 }
2035
2036 MALLOC(extent_info, struct hfs_reclaim_extent_info *,
2037 sizeof(struct hfs_reclaim_extent_info), M_TEMP, M_WAITOK);
2038 if (extent_info == NULL) {
2039 return ENOMEM;
2040 }
2041 bzero(extent_info, sizeof(struct hfs_reclaim_extent_info));
2042 extent_info->vp = vp;
2043 extent_info->fileID = fileID;
2044 extent_info->forkType = forktype;
2045 extent_info->is_sysfile = vnode_issystem(vp);
2046 if (vnode_isdir(vp) && (cp->c_flag & C_HARDLINK)) {
2047 extent_info->is_dirlink = true;
2048 }
2049 /* We always need allocation bitmap and extent btree lock */
2050 lockflags = SFL_BITMAP | SFL_EXTENTS;
2051 if ((fileID == kHFSCatalogFileID) || (extent_info->is_dirlink == true)) {
2052 lockflags |= SFL_CATALOG;
2053 } else if (fileID == kHFSAttributesFileID) {
2054 lockflags |= SFL_ATTRIBUTE;
2055 } else if (fileID == kHFSStartupFileID) {
2056 lockflags |= SFL_STARTUP;
2057 }
2058 extent_info->lockflags = lockflags;
2059 extent_info->fcb = VTOF(hfsmp->hfs_extents_vp);
2060
2061 /* Flush data associated with current file on disk.
2062 *
2063 * If the current vnode is directory hard link, no flushing of
2064 * journal or vnode is required. The current kernel does not
2065 * modify data/resource fork of directory hard links, so nothing
2066 * will be in the cache. If a directory hard link is newly created,
2067 * the resource fork data is written directly using devvp and
2068 * the code that actually relocates data (hfs_copy_extent()) also
2069 * uses devvp for its I/O --- so they will see a consistent copy.
2070 */
2071 if (extent_info->is_sysfile) {
2072 /* If the current vnode is system vnode, flush journal
2073 * to make sure that all data is written to the disk.
2074 */
2075 error = hfs_journal_flush(hfsmp, TRUE);
2076 if (error) {
2077 printf ("hfs_reclaim_file: journal_flush returned %d\n", error);
2078 goto out;
2079 }
2080 } else if (extent_info->is_dirlink == false) {
2081 /* Flush all blocks associated with this regular file vnode.
2082 * Normally there should not be buffer cache blocks for regular
2083 * files, but for objects like symlinks, we can have buffer cache
2084 * blocks associated with the vnode. Therefore we call
2085 * buf_flushdirtyblks() also.
2086 */
2087 buf_flushdirtyblks(vp, 0, BUF_SKIP_LOCKED, "hfs_reclaim_file");
2088
2089 hfs_unlock(cp);
2090 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
2091 took_truncate_lock = true;
2092 (void) cluster_push(vp, 0);
2093 error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
2094 if (error) {
2095 goto out;
2096 }
2097
2098 /* If the file no longer exists, nothing left to do */
2099 if (cp->c_flag & C_NOEXISTS) {
2100 error = 0;
2101 goto out;
2102 }
2103
2104 /* Wait for any in-progress writes to this vnode to complete, so that we'll
2105 * be copying consistent bits. (Otherwise, it's possible that an async
2106 * write will complete to the old extent after we read from it. That
2107 * could lead to corruption.)
2108 */
2109 error = vnode_waitforwrites(vp, 0, 0, 0, "hfs_reclaim_file");
2110 if (error) {
2111 goto out;
2112 }
2113 }
2114
2115 if (hfs_resize_debug) {
2116 printf("hfs_reclaim_file: === Start reclaiming %sfork for %sid=%u ===\n", (forktype ? "rsrc" : "data"), (extent_info->is_dirlink ? "dirlink" : "file"), fileID);
2117 }
2118
2119 if (extent_info->is_dirlink) {
2120 MALLOC(extent_info->dirlink_desc, struct cat_desc *,
2121 sizeof(struct cat_desc), M_TEMP, M_WAITOK);
2122 MALLOC(extent_info->dirlink_attr, struct cat_attr *,
2123 sizeof(struct cat_attr), M_TEMP, M_WAITOK);
2124 MALLOC(extent_info->dirlink_fork, struct filefork *,
2125 sizeof(struct filefork), M_TEMP, M_WAITOK);
2126 if ((extent_info->dirlink_desc == NULL) ||
2127 (extent_info->dirlink_attr == NULL) ||
2128 (extent_info->dirlink_fork == NULL)) {
2129 error = ENOMEM;
2130 goto out;
2131 }
2132
2133 /* Lookup catalog record for directory hard link and
2134 * create a fake filefork for the value looked up from
2135 * the disk.
2136 */
2137 fp = extent_info->dirlink_fork;
2138 bzero(extent_info->dirlink_fork, sizeof(struct filefork));
2139 extent_info->dirlink_fork->ff_cp = cp;
2140 lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
2141 error = cat_lookup_dirlink(hfsmp, fileID, forktype,
2142 extent_info->dirlink_desc, extent_info->dirlink_attr,
2143 &(extent_info->dirlink_fork->ff_data));
2144 hfs_systemfile_unlock(hfsmp, lockflags);
2145 if (error) {
2146 printf ("hfs_reclaim_file: cat_lookup_dirlink for fileID=%u returned error=%u\n", fileID, error);
2147 goto out;
2148 }
2149 release_desc = true;
2150 } else {
2151 fp = VTOF(vp);
2152 }
2153
2154 extent_info->catalog_fp = fp;
2155 extent_info->recStartBlock = 0;
2156 extent_info->extents = extent_info->catalog_fp->ff_extents;
2157 /* Relocate extents from the catalog record */
2158 for (i = 0; i < kHFSPlusExtentDensity; ++i) {
2159 if (fp->ff_extents[i].blockCount == 0) {
2160 break;
2161 }
2162 extent_info->extent_index = i;
2163 error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
2164 if (error) {
2165 printf ("hfs_reclaim_file: fileID=%u #%d %u:(%u,%u) hfs_reclaim_extent error=%d\n", fileID, extent_info->overflow_count, i, fp->ff_extents[i].startBlock, fp->ff_extents[i].blockCount, error);
2166 goto out;
2167 }
2168 }
2169
2170 /* If the number of allocation blocks processed for reclaiming
2171 * are less than total number of blocks for the file, continuing
2172 * working on overflow extents record.
2173 */
2174 if (fp->ff_blocks <= extent_info->cur_blockCount) {
2175 if (0 && hfs_resize_debug) {
2176 printf ("hfs_reclaim_file: Nothing more to relocate, offset=%d, ff_blocks=%u, cur_blockCount=%u\n", i, fp->ff_blocks, extent_info->cur_blockCount);
2177 }
2178 goto out;
2179 }
2180
2181 if (hfs_resize_debug) {
2182 printf ("hfs_reclaim_file: Will check overflow records, offset=%d, ff_blocks=%u, cur_blockCount=%u\n", i, fp->ff_blocks, extent_info->cur_blockCount);
2183 }
2184
2185 MALLOC(extent_info->iterator, struct BTreeIterator *, sizeof(struct BTreeIterator), M_TEMP, M_WAITOK);
2186 if (extent_info->iterator == NULL) {
2187 error = ENOMEM;
2188 goto out;
2189 }
2190 bzero(extent_info->iterator, sizeof(struct BTreeIterator));
2191 key = (HFSPlusExtentKey *) &(extent_info->iterator->key);
2192 key->keyLength = kHFSPlusExtentKeyMaximumLength;
2193 key->forkType = forktype;
2194 key->fileID = fileID;
2195 key->startBlock = extent_info->cur_blockCount;
2196
2197 extent_info->btdata.bufferAddress = extent_info->record.overflow;
2198 extent_info->btdata.itemSize = sizeof(HFSPlusExtentRecord);
2199 extent_info->btdata.itemCount = 1;
2200
2201 extent_info->catalog_fp = NULL;
2202
2203 /* Search the first overflow extent with expected startBlock as 'cur_blockCount' */
2204 lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
2205 error = BTSearchRecord(extent_info->fcb, extent_info->iterator,
2206 &(extent_info->btdata), &(extent_info->recordlen),
2207 extent_info->iterator);
2208 hfs_systemfile_unlock(hfsmp, lockflags);
2209 while (error == 0) {
2210 extent_info->overflow_count++;
2211 extent_info->recStartBlock = key->startBlock;
2212 extent_info->extents = extent_info->record.overflow;
2213 for (i = 0; i < kHFSPlusExtentDensity; i++) {
2214 if (extent_info->record.overflow[i].blockCount == 0) {
2215 goto out;
2216 }
2217 extent_info->extent_index = i;
2218 error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
2219 if (error) {
2220 printf ("hfs_reclaim_file: fileID=%u #%d %u:(%u,%u) hfs_reclaim_extent error=%d\n", fileID, extent_info->overflow_count, i, extent_info->record.overflow[i].startBlock, extent_info->record.overflow[i].blockCount, error);
2221 goto out;
2222 }
2223 }
2224
2225 /* Look for more overflow records */
2226 lockflags = hfs_systemfile_lock(hfsmp, lockflags, HFS_EXCLUSIVE_LOCK);
2227 error = BTIterateRecord(extent_info->fcb, kBTreeNextRecord,
2228 extent_info->iterator, &(extent_info->btdata),
2229 &(extent_info->recordlen));
2230 hfs_systemfile_unlock(hfsmp, lockflags);
2231 if (error) {
2232 break;
2233 }
2234 /* Stop when we encounter a different file or fork. */
2235 if ((key->fileID != fileID) || (key->forkType != forktype)) {
2236 break;
2237 }
2238 }
2239 if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
2240 error = 0;
2241 }
2242
2243 out:
2244 /* If any blocks were relocated, account them and report progress */
2245 if (extent_info->blocks_relocated) {
2246 hfsmp->hfs_resize_blocksmoved += extent_info->blocks_relocated;
2247 hfs_truncatefs_progress(hfsmp);
2248 if (fileID < kHFSFirstUserCatalogNodeID) {
2249 printf ("hfs_reclaim_file: Relocated %u blocks from fileID=%u on \"%s\"\n",
2250 extent_info->blocks_relocated, fileID, hfsmp->vcbVN);
2251 }
2252 }
2253 if (extent_info->iterator) {
2254 FREE(extent_info->iterator, M_TEMP);
2255 }
2256 if (release_desc == true) {
2257 cat_releasedesc(extent_info->dirlink_desc);
2258 }
2259 if (extent_info->dirlink_desc) {
2260 FREE(extent_info->dirlink_desc, M_TEMP);
2261 }
2262 if (extent_info->dirlink_attr) {
2263 FREE(extent_info->dirlink_attr, M_TEMP);
2264 }
2265 if (extent_info->dirlink_fork) {
2266 FREE(extent_info->dirlink_fork, M_TEMP);
2267 }
2268 if ((extent_info->blocks_relocated != 0) && (extent_info->is_sysfile == false)) {
2269 (void) hfs_update(vp, MNT_WAIT);
2270 }
2271 if (took_truncate_lock) {
2272 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
2273 }
2274 if (extent_info) {
2275 FREE(extent_info, M_TEMP);
2276 }
2277 if (hfs_resize_debug) {
2278 printf("hfs_reclaim_file: === Finished relocating %sfork for fileid=%u (error=%d) ===\n", (forktype ? "rsrc" : "data"), fileID, error);
2279 }
2280
2281 return error;
2282 }
2283
2284
2285 /*
2286 * This journal_relocate callback updates the journal info block to point
2287 * at the new journal location. This write must NOT be done using the
2288 * transaction. We must write the block immediately. We must also force
2289 * it to get to the media so that the new journal location will be seen by
2290 * the replay code before we can safely let journaled blocks be written
2291 * to their normal locations.
2292 *
2293 * The tests for journal_uses_fua below are mildly hacky. Since the journal
2294 * and the file system are both on the same device, I'm leveraging what
2295 * the journal has decided about FUA.
2296 */
2297 struct hfs_journal_relocate_args {
2298 struct hfsmount *hfsmp;
2299 vfs_context_t context;
2300 u_int32_t newStartBlock;
2301 u_int32_t newBlockCount;
2302 };
2303
2304 static errno_t
2305 hfs_journal_relocate_callback(void *_args)
2306 {
2307 int error;
2308 struct hfs_journal_relocate_args *args = _args;
2309 struct hfsmount *hfsmp = args->hfsmp;
2310 buf_t bp;
2311 JournalInfoBlock *jibp;
2312
2313 error = buf_meta_bread(hfsmp->hfs_devvp,
2314 hfsmp->vcbJinfoBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
2315 hfsmp->blockSize, vfs_context_ucred(args->context), &bp);
2316 if (error) {
2317 printf("hfs_journal_relocate_callback: failed to read JIB (%d)\n", error);
2318 if (bp) {
2319 buf_brelse(bp);
2320 }
2321 return error;
2322 }
2323 jibp = (JournalInfoBlock*) buf_dataptr(bp);
2324 jibp->offset = SWAP_BE64((u_int64_t)args->newStartBlock * hfsmp->blockSize);
2325 jibp->size = SWAP_BE64((u_int64_t)args->newBlockCount * hfsmp->blockSize);
2326 if (journal_uses_fua(hfsmp->jnl))
2327 buf_markfua(bp);
2328 error = buf_bwrite(bp);
2329 if (error) {
2330 printf("hfs_journal_relocate_callback: failed to write JIB (%d)\n", error);
2331 return error;
2332 }
2333 if (!journal_uses_fua(hfsmp->jnl)) {
2334 error = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, args->context);
2335 if (error) {
2336 printf("hfs_journal_relocate_callback: DKIOCSYNCHRONIZECACHE failed (%d)\n", error);
2337 error = 0; /* Don't fail the operation. */
2338 }
2339 }
2340
2341 return error;
2342 }
2343
2344
2345 /* Type of resize operation in progress */
2346 #define HFS_RESIZE_TRUNCATE 1
2347 #define HFS_RESIZE_EXTEND 2
2348
2349 /*
2350 * Core function to relocate the journal file. This function takes the
2351 * journal size of the newly relocated journal --- the caller can
2352 * provide a new journal size if they want to change the size of
2353 * the journal. The function takes care of updating the journal info
2354 * block and all other data structures correctly.
2355 *
2356 * Note: This function starts a transaction and grabs the btree locks.
2357 */
2358 static int
2359 hfs_relocate_journal_file(struct hfsmount *hfsmp, u_int32_t jnl_size, int resize_type, vfs_context_t context)
2360 {
2361 int error;
2362 int journal_err;
2363 int lockflags;
2364 u_int32_t oldStartBlock;
2365 u_int32_t newStartBlock;
2366 u_int32_t oldBlockCount;
2367 u_int32_t newBlockCount;
2368 u_int32_t jnlBlockCount;
2369 u_int32_t alloc_skipfreeblks;
2370 struct cat_desc journal_desc;
2371 struct cat_attr journal_attr;
2372 struct cat_fork journal_fork;
2373 struct hfs_journal_relocate_args callback_args;
2374
2375 /* Calculate the number of allocation blocks required for the journal */
2376 jnlBlockCount = howmany(jnl_size, hfsmp->blockSize);
2377
2378 /*
2379 * During truncatefs(), the volume free block count is updated
2380 * before relocating data and reflects the total number of free
2381 * blocks that will exist on volume after the resize is successful.
2382 * This means that the allocation blocks required for relocation
2383 * have already been reserved and accounted for in the free block
2384 * count. Therefore, block allocation and deallocation routines
2385 * can skip the free block check by passing HFS_ALLOC_SKIPFREEBLKS
2386 * flag.
2387 *
2388 * This special handling is not required when the file system
2389 * is being extended as we want all the allocated and deallocated
2390 * blocks to be accounted for correctly.
2391 */
2392 if (resize_type == HFS_RESIZE_TRUNCATE) {
2393 alloc_skipfreeblks = HFS_ALLOC_SKIPFREEBLKS;
2394 } else {
2395 alloc_skipfreeblks = 0;
2396 }
2397
2398 error = hfs_start_transaction(hfsmp);
2399 if (error) {
2400 printf("hfs_relocate_journal_file: hfs_start_transaction returned %d\n", error);
2401 return error;
2402 }
2403 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
2404
2405 error = BlockAllocate(hfsmp, 1, jnlBlockCount, jnlBlockCount,
2406 HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_FLUSHTXN | alloc_skipfreeblks,
2407 &newStartBlock, &newBlockCount);
2408 if (error) {
2409 printf("hfs_relocate_journal_file: BlockAllocate returned %d\n", error);
2410 goto fail;
2411 }
2412 if (newBlockCount != jnlBlockCount) {
2413 printf("hfs_relocate_journal_file: newBlockCount != jnlBlockCount (%u, %u)\n", newBlockCount, jnlBlockCount);
2414 goto free_fail;
2415 }
2416
2417 error = cat_idlookup(hfsmp, hfsmp->hfs_jnlfileid, 1, 0, &journal_desc, &journal_attr, &journal_fork);
2418 if (error) {
2419 printf("hfs_relocate_journal_file: cat_idlookup returned %d\n", error);
2420 goto free_fail;
2421 }
2422
2423 oldStartBlock = journal_fork.cf_extents[0].startBlock;
2424 oldBlockCount = journal_fork.cf_extents[0].blockCount;
2425 error = BlockDeallocate(hfsmp, oldStartBlock, oldBlockCount, alloc_skipfreeblks);
2426 if (error) {
2427 printf("hfs_relocate_journal_file: BlockDeallocate returned %d\n", error);
2428 goto free_fail;
2429 }
2430
2431 /* Update the catalog record for .journal */
2432 journal_fork.cf_size = newBlockCount * hfsmp->blockSize;
2433 journal_fork.cf_extents[0].startBlock = newStartBlock;
2434 journal_fork.cf_extents[0].blockCount = newBlockCount;
2435 journal_fork.cf_blocks = newBlockCount;
2436 error = cat_update(hfsmp, &journal_desc, &journal_attr, &journal_fork, NULL);
2437 cat_releasedesc(&journal_desc); /* all done with cat descriptor */
2438 if (error) {
2439 printf("hfs_relocate_journal_file: cat_update returned %d\n", error);
2440 goto free_fail;
2441 }
2442
2443 /*
2444 * If the journal is part of the file system, then tell the journal
2445 * code about the new location. If the journal is on an external
2446 * device, then just keep using it as-is.
2447 */
2448 if (hfsmp->jvp == hfsmp->hfs_devvp) {
2449 callback_args.hfsmp = hfsmp;
2450 callback_args.context = context;
2451 callback_args.newStartBlock = newStartBlock;
2452 callback_args.newBlockCount = newBlockCount;
2453
2454 error = journal_relocate(hfsmp->jnl, (off_t)newStartBlock*hfsmp->blockSize,
2455 (off_t)newBlockCount*hfsmp->blockSize, 0,
2456 hfs_journal_relocate_callback, &callback_args);
2457 if (error) {
2458 /* NOTE: journal_relocate will mark the journal invalid. */
2459 printf("hfs_relocate_journal_file: journal_relocate returned %d\n", error);
2460 goto fail;
2461 }
2462 if (hfs_resize_debug) {
2463 printf ("hfs_relocate_journal_file: Successfully relocated journal from (%u,%u) to (%u,%u)\n", oldStartBlock, oldBlockCount, newStartBlock, newBlockCount);
2464 }
2465 hfsmp->jnl_start = newStartBlock;
2466 hfsmp->jnl_size = (off_t)newBlockCount * hfsmp->blockSize;
2467 }
2468
2469 hfs_systemfile_unlock(hfsmp, lockflags);
2470 error = hfs_end_transaction(hfsmp);
2471 if (error) {
2472 printf("hfs_relocate_journal_file: hfs_end_transaction returned %d\n", error);
2473 }
2474
2475 return error;
2476
2477 free_fail:
2478 journal_err = BlockDeallocate(hfsmp, newStartBlock, newBlockCount, HFS_ALLOC_SKIPFREEBLKS);
2479 if (journal_err) {
2480 printf("hfs_relocate_journal_file: BlockDeallocate returned %d\n", error);
2481 hfs_mark_inconsistent(hfsmp, HFS_ROLLBACK_FAILED);
2482 }
2483 fail:
2484 hfs_systemfile_unlock(hfsmp, lockflags);
2485 (void) hfs_end_transaction(hfsmp);
2486 if (hfs_resize_debug) {
2487 printf ("hfs_relocate_journal_file: Error relocating journal file (error=%d)\n", error);
2488 }
2489 return error;
2490 }
2491
2492
2493 /*
2494 * Relocate the journal file when the file system is being truncated.
2495 * We do not down-size the journal when the file system size is
2496 * reduced, so we always provide the current journal size to the
2497 * relocate code.
2498 */
2499 static int
2500 hfs_reclaim_journal_file(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
2501 {
2502 int error = 0;
2503 u_int32_t startBlock;
2504 u_int32_t blockCount = hfsmp->jnl_size / hfsmp->blockSize;
2505
2506 /*
2507 * Figure out the location of the .journal file. When the journal
2508 * is on an external device, we need to look up the .journal file.
2509 */
2510 if (hfsmp->jvp == hfsmp->hfs_devvp) {
2511 startBlock = hfsmp->jnl_start;
2512 blockCount = hfsmp->jnl_size / hfsmp->blockSize;
2513 } else {
2514 u_int32_t fileid;
2515 u_int32_t old_jnlfileid;
2516 struct cat_attr attr;
2517 struct cat_fork fork;
2518
2519 /*
2520 * The cat_lookup inside GetFileInfo will fail because hfs_jnlfileid
2521 * is set, and it is trying to hide the .journal file. So temporarily
2522 * unset the field while calling GetFileInfo.
2523 */
2524 old_jnlfileid = hfsmp->hfs_jnlfileid;
2525 hfsmp->hfs_jnlfileid = 0;
2526 fileid = GetFileInfo(hfsmp, kHFSRootFolderID, ".journal", &attr, &fork);
2527 hfsmp->hfs_jnlfileid = old_jnlfileid;
2528 if (fileid != old_jnlfileid) {
2529 printf("hfs_reclaim_journal_file: cannot find .journal file!\n");
2530 return EIO;
2531 }
2532
2533 startBlock = fork.cf_extents[0].startBlock;
2534 blockCount = fork.cf_extents[0].blockCount;
2535 }
2536
2537 if (startBlock + blockCount <= allocLimit) {
2538 /* The journal file does not require relocation */
2539 return 0;
2540 }
2541
2542 error = hfs_relocate_journal_file(hfsmp, blockCount * hfsmp->blockSize, HFS_RESIZE_TRUNCATE, context);
2543 if (error == 0) {
2544 hfsmp->hfs_resize_blocksmoved += blockCount;
2545 hfs_truncatefs_progress(hfsmp);
2546 printf ("hfs_reclaim_journal_file: Relocated %u blocks from journal on \"%s\"\n",
2547 blockCount, hfsmp->vcbVN);
2548 }
2549
2550 return error;
2551 }
2552
2553
2554 /*
2555 * Move the journal info block to a new location. We have to make sure the
2556 * new copy of the journal info block gets to the media first, then change
2557 * the field in the volume header and the catalog record.
2558 */
2559 static int
2560 hfs_reclaim_journal_info_block(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
2561 {
2562 int error;
2563 int journal_err;
2564 int lockflags;
2565 u_int32_t oldBlock;
2566 u_int32_t newBlock;
2567 u_int32_t blockCount;
2568 struct cat_desc jib_desc;
2569 struct cat_attr jib_attr;
2570 struct cat_fork jib_fork;
2571 buf_t old_bp, new_bp;
2572
2573 if (hfsmp->vcbJinfoBlock <= allocLimit) {
2574 /* The journal info block does not require relocation */
2575 return 0;
2576 }
2577
2578 error = hfs_start_transaction(hfsmp);
2579 if (error) {
2580 printf("hfs_reclaim_journal_info_block: hfs_start_transaction returned %d\n", error);
2581 return error;
2582 }
2583 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
2584
2585 error = BlockAllocate(hfsmp, 1, 1, 1,
2586 HFS_ALLOC_METAZONE | HFS_ALLOC_FORCECONTIG | HFS_ALLOC_SKIPFREEBLKS | HFS_ALLOC_FLUSHTXN,
2587 &newBlock, &blockCount);
2588 if (error) {
2589 printf("hfs_reclaim_journal_info_block: BlockAllocate returned %d\n", error);
2590 goto fail;
2591 }
2592 if (blockCount != 1) {
2593 printf("hfs_reclaim_journal_info_block: blockCount != 1 (%u)\n", blockCount);
2594 goto free_fail;
2595 }
2596
2597 /* Copy the old journal info block content to the new location */
2598 error = buf_meta_bread(hfsmp->hfs_devvp,
2599 hfsmp->vcbJinfoBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
2600 hfsmp->blockSize, vfs_context_ucred(context), &old_bp);
2601 if (error) {
2602 printf("hfs_reclaim_journal_info_block: failed to read JIB (%d)\n", error);
2603 if (old_bp) {
2604 buf_brelse(old_bp);
2605 }
2606 goto free_fail;
2607 }
2608 new_bp = buf_getblk(hfsmp->hfs_devvp,
2609 newBlock * (hfsmp->blockSize/hfsmp->hfs_logical_block_size),
2610 hfsmp->blockSize, 0, 0, BLK_META);
2611 bcopy((char*)buf_dataptr(old_bp), (char*)buf_dataptr(new_bp), hfsmp->blockSize);
2612 buf_brelse(old_bp);
2613 if (journal_uses_fua(hfsmp->jnl))
2614 buf_markfua(new_bp);
2615 error = buf_bwrite(new_bp);
2616 if (error) {
2617 printf("hfs_reclaim_journal_info_block: failed to write new JIB (%d)\n", error);
2618 goto free_fail;
2619 }
2620 if (!journal_uses_fua(hfsmp->jnl)) {
2621 error = VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, context);
2622 if (error) {
2623 printf("hfs_reclaim_journal_info_block: DKIOCSYNCHRONIZECACHE failed (%d)\n", error);
2624 /* Don't fail the operation. */
2625 }
2626 }
2627
2628 /* Deallocate the old block once the new one has the new valid content */
2629 error = BlockDeallocate(hfsmp, hfsmp->vcbJinfoBlock, 1, HFS_ALLOC_SKIPFREEBLKS);
2630 if (error) {
2631 printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error);
2632 goto free_fail;
2633 }
2634
2635
2636 /* Update the catalog record for .journal_info_block */
2637 error = cat_idlookup(hfsmp, hfsmp->hfs_jnlinfoblkid, 1, 0, &jib_desc, &jib_attr, &jib_fork);
2638 if (error) {
2639 printf("hfs_reclaim_journal_info_block: cat_idlookup returned %d\n", error);
2640 goto fail;
2641 }
2642 oldBlock = jib_fork.cf_extents[0].startBlock;
2643 jib_fork.cf_size = hfsmp->blockSize;
2644 jib_fork.cf_extents[0].startBlock = newBlock;
2645 jib_fork.cf_extents[0].blockCount = 1;
2646 jib_fork.cf_blocks = 1;
2647 error = cat_update(hfsmp, &jib_desc, &jib_attr, &jib_fork, NULL);
2648 cat_releasedesc(&jib_desc); /* all done with cat descriptor */
2649 if (error) {
2650 printf("hfs_reclaim_journal_info_block: cat_update returned %d\n", error);
2651 goto fail;
2652 }
2653
2654 /* Update the pointer to the journal info block in the volume header. */
2655 hfsmp->vcbJinfoBlock = newBlock;
2656 error = hfs_flushvolumeheader(hfsmp, MNT_WAIT, HFS_ALTFLUSH);
2657 if (error) {
2658 printf("hfs_reclaim_journal_info_block: hfs_flushvolumeheader returned %d\n", error);
2659 goto fail;
2660 }
2661 hfs_systemfile_unlock(hfsmp, lockflags);
2662 error = hfs_end_transaction(hfsmp);
2663 if (error) {
2664 printf("hfs_reclaim_journal_info_block: hfs_end_transaction returned %d\n", error);
2665 }
2666 error = hfs_journal_flush(hfsmp, FALSE);
2667 if (error) {
2668 printf("hfs_reclaim_journal_info_block: journal_flush returned %d\n", error);
2669 }
2670
2671 /* Account for the block relocated and print progress */
2672 hfsmp->hfs_resize_blocksmoved += 1;
2673 hfs_truncatefs_progress(hfsmp);
2674 if (!error) {
2675 printf ("hfs_reclaim_journal_info: Relocated 1 block from journal info on \"%s\"\n",
2676 hfsmp->vcbVN);
2677 if (hfs_resize_debug) {
2678 printf ("hfs_reclaim_journal_info_block: Successfully relocated journal info block from (%u,%u) to (%u,%u)\n", oldBlock, blockCount, newBlock, blockCount);
2679 }
2680 }
2681 return error;
2682
2683 free_fail:
2684 journal_err = BlockDeallocate(hfsmp, newBlock, blockCount, HFS_ALLOC_SKIPFREEBLKS);
2685 if (journal_err) {
2686 printf("hfs_reclaim_journal_info_block: BlockDeallocate returned %d\n", error);
2687 hfs_mark_inconsistent(hfsmp, HFS_ROLLBACK_FAILED);
2688 }
2689
2690 fail:
2691 hfs_systemfile_unlock(hfsmp, lockflags);
2692 (void) hfs_end_transaction(hfsmp);
2693 if (hfs_resize_debug) {
2694 printf ("hfs_reclaim_journal_info_block: Error relocating journal info block (error=%d)\n", error);
2695 }
2696 return error;
2697 }
2698
2699
2700 static u_int64_t
2701 calculate_journal_size(struct hfsmount *hfsmp, u_int32_t sector_size, u_int64_t sector_count)
2702 {
2703 u_int64_t journal_size;
2704 u_int32_t journal_scale;
2705
2706 #define DEFAULT_JOURNAL_SIZE (8*1024*1024)
2707 #define MAX_JOURNAL_SIZE (512*1024*1024)
2708
2709 /* Calculate the journal size for this volume. We want
2710 * at least 8 MB of journal for each 100 GB of disk space.
2711 * We cap the size at 512 MB, unless the allocation block
2712 * size is larger, in which case, we use one allocation
2713 * block.
2714 */
2715 journal_scale = (sector_size * sector_count) / ((u_int64_t)100 * 1024 * 1024 * 1024);
2716 journal_size = DEFAULT_JOURNAL_SIZE * (journal_scale + 1);
2717 if (journal_size > MAX_JOURNAL_SIZE) {
2718 journal_size = MAX_JOURNAL_SIZE;
2719 }
2720 if (journal_size < hfsmp->blockSize) {
2721 journal_size = hfsmp->blockSize;
2722 }
2723 return journal_size;
2724 }
2725
2726
2727 /*
2728 * Calculate the expected journal size based on current partition size.
2729 * If the size of the current journal is less than the calculated size,
2730 * force journal relocation with the new journal size.
2731 */
2732 static int
2733 hfs_extend_journal(struct hfsmount *hfsmp, u_int32_t sector_size, u_int64_t sector_count, vfs_context_t context)
2734 {
2735 int error = 0;
2736 u_int64_t calc_journal_size;
2737
2738 if (hfsmp->jvp != hfsmp->hfs_devvp) {
2739 if (hfs_resize_debug) {
2740 printf("hfs_extend_journal: not resizing the journal because it is on an external device.\n");
2741 }
2742 return 0;
2743 }
2744
2745 calc_journal_size = calculate_journal_size(hfsmp, sector_size, sector_count);
2746 if (calc_journal_size <= hfsmp->jnl_size) {
2747 /* The journal size requires no modification */
2748 goto out;
2749 }
2750
2751 if (hfs_resize_debug) {
2752 printf ("hfs_extend_journal: journal old=%u, new=%qd\n", hfsmp->jnl_size, calc_journal_size);
2753 }
2754
2755 /* Extend the journal to the new calculated size */
2756 error = hfs_relocate_journal_file(hfsmp, calc_journal_size, HFS_RESIZE_EXTEND, context);
2757 if (error == 0) {
2758 printf ("hfs_extend_journal: Extended journal size to %u bytes on \"%s\"\n",
2759 hfsmp->jnl_size, hfsmp->vcbVN);
2760 }
2761 out:
2762 return error;
2763 }
2764
2765
2766 /*
2767 * This function traverses through all extended attribute records for a given
2768 * fileID, and calls function that reclaims data blocks that exist in the
2769 * area of the disk being reclaimed which in turn is responsible for allocating
2770 * new space, copying extent data, deallocating new space, and if required,
2771 * splitting the extent.
2772 *
2773 * Note: The caller has already acquired the cnode lock on the file. Therefore
2774 * we are assured that no other thread would be creating/deleting/modifying
2775 * extended attributes for this file.
2776 *
2777 * Side Effects:
2778 * hfsmp->hfs_resize_blocksmoved is incremented by the number of allocation
2779 * blocks that were relocated.
2780 *
2781 * Returns:
2782 * 0 on success, non-zero on failure.
2783 */
2784 static int
2785 hfs_reclaim_xattr(struct hfsmount *hfsmp, struct vnode *vp, u_int32_t fileID, u_int32_t allocLimit, vfs_context_t context)
2786 {
2787 int error = 0;
2788 struct hfs_reclaim_extent_info *extent_info;
2789 int i;
2790 HFSPlusAttrKey *key;
2791 int *lockflags;
2792
2793 if (hfs_resize_debug) {
2794 printf("hfs_reclaim_xattr: === Start reclaiming xattr for id=%u ===\n", fileID);
2795 }
2796
2797 MALLOC(extent_info, struct hfs_reclaim_extent_info *,
2798 sizeof(struct hfs_reclaim_extent_info), M_TEMP, M_WAITOK);
2799 if (extent_info == NULL) {
2800 return ENOMEM;
2801 }
2802 bzero(extent_info, sizeof(struct hfs_reclaim_extent_info));
2803 extent_info->vp = vp;
2804 extent_info->fileID = fileID;
2805 extent_info->is_xattr = true;
2806 extent_info->is_sysfile = vnode_issystem(vp);
2807 extent_info->fcb = VTOF(hfsmp->hfs_attribute_vp);
2808 lockflags = &(extent_info->lockflags);
2809 *lockflags = SFL_ATTRIBUTE | SFL_BITMAP;
2810
2811 /* Initialize iterator from the extent_info structure */
2812 MALLOC(extent_info->iterator, struct BTreeIterator *,
2813 sizeof(struct BTreeIterator), M_TEMP, M_WAITOK);
2814 if (extent_info->iterator == NULL) {
2815 error = ENOMEM;
2816 goto out;
2817 }
2818 bzero(extent_info->iterator, sizeof(struct BTreeIterator));
2819
2820 /* Build attribute key */
2821 key = (HFSPlusAttrKey *)&(extent_info->iterator->key);
2822 error = hfs_buildattrkey(fileID, NULL, key);
2823 if (error) {
2824 goto out;
2825 }
2826
2827 /* Initialize btdata from extent_info structure. Note that the
2828 * buffer pointer actually points to the xattr record from the
2829 * extent_info structure itself.
2830 */
2831 extent_info->btdata.bufferAddress = &(extent_info->record.xattr);
2832 extent_info->btdata.itemSize = sizeof(HFSPlusAttrRecord);
2833 extent_info->btdata.itemCount = 1;
2834
2835 /*
2836 * Sync all extent-based attribute data to the disk.
2837 *
2838 * All extent-based attribute data I/O is performed via cluster
2839 * I/O using a virtual file that spans across entire file system
2840 * space.
2841 */
2842 hfs_lock_truncate(VTOC(hfsmp->hfs_attrdata_vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
2843 (void)cluster_push(hfsmp->hfs_attrdata_vp, 0);
2844 error = vnode_waitforwrites(hfsmp->hfs_attrdata_vp, 0, 0, 0, "hfs_reclaim_xattr");
2845 hfs_unlock_truncate(VTOC(hfsmp->hfs_attrdata_vp), HFS_LOCK_DEFAULT);
2846 if (error) {
2847 goto out;
2848 }
2849
2850 /* Search for extended attribute for current file. This
2851 * will place the iterator before the first matching record.
2852 */
2853 *lockflags = hfs_systemfile_lock(hfsmp, *lockflags, HFS_EXCLUSIVE_LOCK);
2854 error = BTSearchRecord(extent_info->fcb, extent_info->iterator,
2855 &(extent_info->btdata), &(extent_info->recordlen),
2856 extent_info->iterator);
2857 hfs_systemfile_unlock(hfsmp, *lockflags);
2858 if (error) {
2859 if (error != btNotFound) {
2860 goto out;
2861 }
2862 /* btNotFound is expected here, so just mask it */
2863 error = 0;
2864 }
2865
2866 while (1) {
2867 /* Iterate to the next record */
2868 *lockflags = hfs_systemfile_lock(hfsmp, *lockflags, HFS_EXCLUSIVE_LOCK);
2869 error = BTIterateRecord(extent_info->fcb, kBTreeNextRecord,
2870 extent_info->iterator, &(extent_info->btdata),
2871 &(extent_info->recordlen));
2872 hfs_systemfile_unlock(hfsmp, *lockflags);
2873
2874 /* Stop the iteration if we encounter end of btree or xattr with different fileID */
2875 if (error || key->fileID != fileID) {
2876 if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
2877 error = 0;
2878 }
2879 break;
2880 }
2881
2882 /* We only care about extent-based EAs */
2883 if ((extent_info->record.xattr.recordType != kHFSPlusAttrForkData) &&
2884 (extent_info->record.xattr.recordType != kHFSPlusAttrExtents)) {
2885 continue;
2886 }
2887
2888 if (extent_info->record.xattr.recordType == kHFSPlusAttrForkData) {
2889 extent_info->overflow_count = 0;
2890 extent_info->extents = extent_info->record.xattr.forkData.theFork.extents;
2891 } else if (extent_info->record.xattr.recordType == kHFSPlusAttrExtents) {
2892 extent_info->overflow_count++;
2893 extent_info->extents = extent_info->record.xattr.overflowExtents.extents;
2894 }
2895
2896 extent_info->recStartBlock = key->startBlock;
2897 for (i = 0; i < kHFSPlusExtentDensity; i++) {
2898 if (extent_info->extents[i].blockCount == 0) {
2899 break;
2900 }
2901 extent_info->extent_index = i;
2902 error = hfs_reclaim_extent(hfsmp, allocLimit, extent_info, context);
2903 if (error) {
2904 printf ("hfs_reclaim_xattr: fileID=%u hfs_reclaim_extent error=%d\n", fileID, error);
2905 goto out;
2906 }
2907 }
2908 }
2909
2910 out:
2911 /* If any blocks were relocated, account them and report progress */
2912 if (extent_info->blocks_relocated) {
2913 hfsmp->hfs_resize_blocksmoved += extent_info->blocks_relocated;
2914 hfs_truncatefs_progress(hfsmp);
2915 }
2916 if (extent_info->iterator) {
2917 FREE(extent_info->iterator, M_TEMP);
2918 }
2919 if (extent_info) {
2920 FREE(extent_info, M_TEMP);
2921 }
2922 if (hfs_resize_debug) {
2923 printf("hfs_reclaim_xattr: === Finished relocating xattr for fileid=%u (error=%d) ===\n", fileID, error);
2924 }
2925 return error;
2926 }
2927
2928 /*
2929 * Reclaim any extent-based extended attributes allocation blocks from
2930 * the area of the disk that is being truncated.
2931 *
2932 * The function traverses the attribute btree to find out the fileIDs
2933 * of the extended attributes that need to be relocated. For every
2934 * file whose large EA requires relocation, it looks up the cnode and
2935 * calls hfs_reclaim_xattr() to do all the work for allocating
2936 * new space, copying data, deallocating old space, and if required,
2937 * splitting the extents.
2938 *
2939 * Inputs:
2940 * allocLimit - starting block of the area being reclaimed
2941 *
2942 * Returns:
2943 * returns 0 on success, non-zero on failure.
2944 */
2945 static int
2946 hfs_reclaim_xattrspace(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
2947 {
2948 int error = 0;
2949 FCB *fcb;
2950 struct BTreeIterator *iterator = NULL;
2951 struct FSBufferDescriptor btdata;
2952 HFSPlusAttrKey *key;
2953 HFSPlusAttrRecord rec;
2954 int lockflags = 0;
2955 cnid_t prev_fileid = 0;
2956 struct vnode *vp;
2957 int need_relocate;
2958 int btree_operation;
2959 u_int32_t files_moved = 0;
2960 u_int32_t prev_blocksmoved;
2961 int i;
2962
2963 fcb = VTOF(hfsmp->hfs_attribute_vp);
2964 /* Store the value to print total blocks moved by this function in end */
2965 prev_blocksmoved = hfsmp->hfs_resize_blocksmoved;
2966
2967 if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
2968 return ENOMEM;
2969 }
2970 bzero(iterator, sizeof(*iterator));
2971 key = (HFSPlusAttrKey *)&iterator->key;
2972 btdata.bufferAddress = &rec;
2973 btdata.itemSize = sizeof(rec);
2974 btdata.itemCount = 1;
2975
2976 need_relocate = false;
2977 btree_operation = kBTreeFirstRecord;
2978 /* Traverse the attribute btree to find extent-based EAs to reclaim */
2979 while (1) {
2980 lockflags = hfs_systemfile_lock(hfsmp, SFL_ATTRIBUTE, HFS_SHARED_LOCK);
2981 error = BTIterateRecord(fcb, btree_operation, iterator, &btdata, NULL);
2982 hfs_systemfile_unlock(hfsmp, lockflags);
2983 if (error) {
2984 if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
2985 error = 0;
2986 }
2987 break;
2988 }
2989 btree_operation = kBTreeNextRecord;
2990
2991 /* If the extents of current fileID were already relocated, skip it */
2992 if (prev_fileid == key->fileID) {
2993 continue;
2994 }
2995
2996 /* Check if any of the extents in the current record need to be relocated */
2997 need_relocate = false;
2998 switch(rec.recordType) {
2999 case kHFSPlusAttrForkData:
3000 for (i = 0; i < kHFSPlusExtentDensity; i++) {
3001 if (rec.forkData.theFork.extents[i].blockCount == 0) {
3002 break;
3003 }
3004 if ((rec.forkData.theFork.extents[i].startBlock +
3005 rec.forkData.theFork.extents[i].blockCount) > allocLimit) {
3006 need_relocate = true;
3007 break;
3008 }
3009 }
3010 break;
3011
3012 case kHFSPlusAttrExtents:
3013 for (i = 0; i < kHFSPlusExtentDensity; i++) {
3014 if (rec.overflowExtents.extents[i].blockCount == 0) {
3015 break;
3016 }
3017 if ((rec.overflowExtents.extents[i].startBlock +
3018 rec.overflowExtents.extents[i].blockCount) > allocLimit) {
3019 need_relocate = true;
3020 break;
3021 }
3022 }
3023 break;
3024 };
3025
3026 /* Continue iterating to next attribute record */
3027 if (need_relocate == false) {
3028 continue;
3029 }
3030
3031 /* Look up the vnode for corresponding file. The cnode
3032 * will be locked which will ensure that no one modifies
3033 * the xattrs when we are relocating them.
3034 *
3035 * We want to allow open-unlinked files to be moved,
3036 * so provide allow_deleted == 1 for hfs_vget().
3037 */
3038 if (hfs_vget(hfsmp, key->fileID, &vp, 0, 1) != 0) {
3039 continue;
3040 }
3041
3042 error = hfs_reclaim_xattr(hfsmp, vp, key->fileID, allocLimit, context);
3043 hfs_unlock(VTOC(vp));
3044 vnode_put(vp);
3045 if (error) {
3046 printf ("hfs_reclaim_xattrspace: Error relocating xattrs for fileid=%u (error=%d)\n", key->fileID, error);
3047 break;
3048 }
3049 prev_fileid = key->fileID;
3050 files_moved++;
3051 }
3052
3053 if (files_moved) {
3054 printf("hfs_reclaim_xattrspace: Relocated %u xattr blocks from %u files on \"%s\"\n",
3055 (hfsmp->hfs_resize_blocksmoved - prev_blocksmoved),
3056 files_moved, hfsmp->vcbVN);
3057 }
3058
3059 kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
3060 return error;
3061 }
3062
3063 /*
3064 * Reclaim blocks from regular files.
3065 *
3066 * This function iterates over all the record in catalog btree looking
3067 * for files with extents that overlap into the space we're trying to
3068 * free up. If a file extent requires relocation, it looks up the vnode
3069 * and calls function to relocate the data.
3070 *
3071 * Returns:
3072 * Zero on success, non-zero on failure.
3073 */
3074 static int
3075 hfs_reclaim_filespace(struct hfsmount *hfsmp, u_int32_t allocLimit, vfs_context_t context)
3076 {
3077 int error;
3078 FCB *fcb;
3079 struct BTreeIterator *iterator = NULL;
3080 struct FSBufferDescriptor btdata;
3081 int btree_operation;
3082 int lockflags;
3083 struct HFSPlusCatalogFile filerec;
3084 struct vnode *vp;
3085 struct vnode *rvp;
3086 struct filefork *datafork;
3087 u_int32_t files_moved = 0;
3088 u_int32_t prev_blocksmoved;
3089
3090 #if CONFIG_PROTECT
3091 int keys_generated = 0;
3092 #endif
3093
3094 fcb = VTOF(hfsmp->hfs_catalog_vp);
3095 /* Store the value to print total blocks moved by this function at the end */
3096 prev_blocksmoved = hfsmp->hfs_resize_blocksmoved;
3097
3098 if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
3099 error = ENOMEM;
3100 goto reclaim_filespace_done;
3101 }
3102
3103 #if CONFIG_PROTECT
3104 /*
3105 * For content-protected filesystems, we may need to relocate files that
3106 * are encrypted. If they use the new-style offset-based IVs, then
3107 * we can move them regardless of the lock state. We create a temporary
3108 * key here that we use to read/write the data, then we discard it at the
3109 * end of the function.
3110 */
3111 if (cp_fs_protected (hfsmp->hfs_mp)) {
3112 int needs = 0;
3113 error = cp_needs_tempkeys(hfsmp, &needs);
3114
3115 if ((error == 0) && (needs)) {
3116 error = cp_entry_gentempkeys(&hfsmp->hfs_resize_cpentry, hfsmp);
3117 if (error == 0) {
3118 keys_generated = 1;
3119 }
3120 }
3121
3122 if (error) {
3123 printf("hfs_reclaimspace: Error generating temporary keys for resize (%d)\n", error);
3124 goto reclaim_filespace_done;
3125 }
3126 }
3127
3128 #endif
3129
3130 bzero(iterator, sizeof(*iterator));
3131
3132 btdata.bufferAddress = &filerec;
3133 btdata.itemSize = sizeof(filerec);
3134 btdata.itemCount = 1;
3135
3136 btree_operation = kBTreeFirstRecord;
3137 while (1) {
3138 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
3139 error = BTIterateRecord(fcb, btree_operation, iterator, &btdata, NULL);
3140 hfs_systemfile_unlock(hfsmp, lockflags);
3141 if (error) {
3142 if (error == fsBTRecordNotFoundErr || error == fsBTEndOfIterationErr) {
3143 error = 0;
3144 }
3145 break;
3146 }
3147 btree_operation = kBTreeNextRecord;
3148
3149 if (filerec.recordType != kHFSPlusFileRecord) {
3150 continue;
3151 }
3152
3153 /* Check if any of the extents require relocation */
3154 if (hfs_file_extent_overlaps(hfsmp, allocLimit, &filerec) == false) {
3155 continue;
3156 }
3157
3158 /* We want to allow open-unlinked files to be moved, so allow_deleted == 1 */
3159 if (hfs_vget(hfsmp, filerec.fileID, &vp, 0, 1) != 0) {
3160 if (hfs_resize_debug) {
3161 printf("hfs_reclaim_filespace: hfs_vget(%u) failed.\n", filerec.fileID);
3162 }
3163 continue;
3164 }
3165
3166 /* If data fork exists or item is a directory hard link, relocate blocks */
3167 datafork = VTOF(vp);
3168 if ((datafork && datafork->ff_blocks > 0) || vnode_isdir(vp)) {
3169 error = hfs_reclaim_file(hfsmp, vp, filerec.fileID,
3170 kHFSDataForkType, allocLimit, context);
3171 if (error) {
3172 printf ("hfs_reclaimspace: Error reclaiming datafork blocks of fileid=%u (error=%d)\n", filerec.fileID, error);
3173 hfs_unlock(VTOC(vp));
3174 vnode_put(vp);
3175 break;
3176 }
3177 }
3178
3179 /* If resource fork exists or item is a directory hard link, relocate blocks */
3180 if (((VTOC(vp)->c_blocks - (datafork ? datafork->ff_blocks : 0)) > 0) || vnode_isdir(vp)) {
3181 if (vnode_isdir(vp)) {
3182 /* Resource fork vnode lookup is invalid for directory hard link.
3183 * So we fake data fork vnode as resource fork vnode.
3184 */
3185 rvp = vp;
3186 } else {
3187 error = hfs_vgetrsrc(hfsmp, vp, &rvp);
3188 if (error) {
3189 printf ("hfs_reclaimspace: Error looking up rvp for fileid=%u (error=%d)\n", filerec.fileID, error);
3190 hfs_unlock(VTOC(vp));
3191 vnode_put(vp);
3192 break;
3193 }
3194 VTOC(rvp)->c_flag |= C_NEED_RVNODE_PUT;
3195 }
3196
3197 error = hfs_reclaim_file(hfsmp, rvp, filerec.fileID,
3198 kHFSResourceForkType, allocLimit, context);
3199 if (error) {
3200 printf ("hfs_reclaimspace: Error reclaiming rsrcfork blocks of fileid=%u (error=%d)\n", filerec.fileID, error);
3201 hfs_unlock(VTOC(vp));
3202 vnode_put(vp);
3203 break;
3204 }
3205 }
3206
3207 /* The file forks were relocated successfully, now drop the
3208 * cnode lock and vnode reference, and continue iterating to
3209 * next catalog record.
3210 */
3211 hfs_unlock(VTOC(vp));
3212 vnode_put(vp);
3213 files_moved++;
3214 }
3215
3216 if (files_moved) {
3217 printf("hfs_reclaim_filespace: Relocated %u blocks from %u files on \"%s\"\n",
3218 (hfsmp->hfs_resize_blocksmoved - prev_blocksmoved),
3219 files_moved, hfsmp->vcbVN);
3220 }
3221
3222 reclaim_filespace_done:
3223 if (iterator) {
3224 kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
3225 }
3226
3227 #if CONFIG_PROTECT
3228 if (keys_generated) {
3229 cp_entry_destroy(hfsmp->hfs_resize_cpentry);
3230 hfsmp->hfs_resize_cpentry = NULL;
3231 }
3232 #endif
3233 return error;
3234 }
3235
3236 /*
3237 * Reclaim space at the end of a file system.
3238 *
3239 * Inputs -
3240 * allocLimit - start block of the space being reclaimed
3241 * reclaimblks - number of allocation blocks to reclaim
3242 */
3243 static int
3244 hfs_reclaimspace(struct hfsmount *hfsmp, u_int32_t allocLimit, u_int32_t reclaimblks, vfs_context_t context)
3245 {
3246 int error = 0;
3247
3248 /*
3249 * Preflight the bitmap to find out total number of blocks that need
3250 * relocation.
3251 *
3252 * Note: Since allocLimit is set to the location of new alternate volume
3253 * header, the check below does not account for blocks allocated for old
3254 * alternate volume header.
3255 */
3256 error = hfs_count_allocated(hfsmp, allocLimit, reclaimblks, &(hfsmp->hfs_resize_totalblocks));
3257 if (error) {
3258 printf ("hfs_reclaimspace: Unable to determine total blocks to reclaim error=%d\n", error);
3259 return error;
3260 }
3261 if (hfs_resize_debug) {
3262 printf ("hfs_reclaimspace: Total number of blocks to reclaim = %u\n", hfsmp->hfs_resize_totalblocks);
3263 }
3264
3265 /* Just to be safe, sync the content of the journal to the disk before we proceed */
3266 hfs_journal_flush(hfsmp, TRUE);
3267
3268 /* First, relocate journal file blocks if they're in the way.
3269 * Doing this first will make sure that journal relocate code
3270 * gets access to contiguous blocks on disk first. The journal
3271 * file has to be contiguous on the disk, otherwise resize will
3272 * fail.
3273 */
3274 error = hfs_reclaim_journal_file(hfsmp, allocLimit, context);
3275 if (error) {
3276 printf("hfs_reclaimspace: hfs_reclaim_journal_file failed (%d)\n", error);
3277 return error;
3278 }
3279
3280 /* Relocate journal info block blocks if they're in the way. */
3281 error = hfs_reclaim_journal_info_block(hfsmp, allocLimit, context);
3282 if (error) {
3283 printf("hfs_reclaimspace: hfs_reclaim_journal_info_block failed (%d)\n", error);
3284 return error;
3285 }
3286
3287 /* Relocate extents of the Extents B-tree if they're in the way.
3288 * Relocating extents btree before other btrees is important as
3289 * this will provide access to largest contiguous block range on
3290 * the disk for relocating extents btree. Note that extents btree
3291 * can only have maximum of 8 extents.
3292 */
3293 error = hfs_reclaim_file(hfsmp, hfsmp->hfs_extents_vp, kHFSExtentsFileID,
3294 kHFSDataForkType, allocLimit, context);
3295 if (error) {
3296 printf("hfs_reclaimspace: reclaim extents b-tree returned %d\n", error);
3297 return error;
3298 }
3299
3300 /* Relocate extents of the Allocation file if they're in the way. */
3301 error = hfs_reclaim_file(hfsmp, hfsmp->hfs_allocation_vp, kHFSAllocationFileID,
3302 kHFSDataForkType, allocLimit, context);
3303 if (error) {
3304 printf("hfs_reclaimspace: reclaim allocation file returned %d\n", error);
3305 return error;
3306 }
3307
3308 /* Relocate extents of the Catalog B-tree if they're in the way. */
3309 error = hfs_reclaim_file(hfsmp, hfsmp->hfs_catalog_vp, kHFSCatalogFileID,
3310 kHFSDataForkType, allocLimit, context);
3311 if (error) {
3312 printf("hfs_reclaimspace: reclaim catalog b-tree returned %d\n", error);
3313 return error;
3314 }
3315
3316 /* Relocate extents of the Attributes B-tree if they're in the way. */
3317 error = hfs_reclaim_file(hfsmp, hfsmp->hfs_attribute_vp, kHFSAttributesFileID,
3318 kHFSDataForkType, allocLimit, context);
3319 if (error) {
3320 printf("hfs_reclaimspace: reclaim attribute b-tree returned %d\n", error);
3321 return error;
3322 }
3323
3324 /* Relocate extents of the Startup File if there is one and they're in the way. */
3325 error = hfs_reclaim_file(hfsmp, hfsmp->hfs_startup_vp, kHFSStartupFileID,
3326 kHFSDataForkType, allocLimit, context);
3327 if (error) {
3328 printf("hfs_reclaimspace: reclaim startup file returned %d\n", error);
3329 return error;
3330 }
3331
3332 /*
3333 * We need to make sure the alternate volume header gets flushed if we moved
3334 * any extents in the volume header. But we need to do that before
3335 * shrinking the size of the volume, or else the journal code will panic
3336 * with an invalid (too large) block number.
3337 *
3338 * Note that blks_moved will be set if ANY extent was moved, even
3339 * if it was just an overflow extent. In this case, the journal_flush isn't
3340 * strictly required, but shouldn't hurt.
3341 */
3342 if (hfsmp->hfs_resize_blocksmoved) {
3343 hfs_journal_flush(hfsmp, TRUE);
3344 }
3345
3346 /* Reclaim extents from catalog file records */
3347 error = hfs_reclaim_filespace(hfsmp, allocLimit, context);
3348 if (error) {
3349 printf ("hfs_reclaimspace: hfs_reclaim_filespace returned error=%d\n", error);
3350 return error;
3351 }
3352
3353 /* Reclaim extents from extent-based extended attributes, if any */
3354 error = hfs_reclaim_xattrspace(hfsmp, allocLimit, context);
3355 if (error) {
3356 printf ("hfs_reclaimspace: hfs_reclaim_xattrspace returned error=%d\n", error);
3357 return error;
3358 }
3359
3360 return error;
3361 }
3362
3363
3364 /*
3365 * Check if there are any extents (including overflow extents) that overlap
3366 * into the disk space that is being reclaimed.
3367 *
3368 * Output -
3369 * true - One of the extents need to be relocated
3370 * false - No overflow extents need to be relocated, or there was an error
3371 */
3372 static int
3373 hfs_file_extent_overlaps(struct hfsmount *hfsmp, u_int32_t allocLimit, struct HFSPlusCatalogFile *filerec)
3374 {
3375 struct BTreeIterator * iterator = NULL;
3376 struct FSBufferDescriptor btdata;
3377 HFSPlusExtentRecord extrec;
3378 HFSPlusExtentKey *extkeyptr;
3379 FCB *fcb;
3380 int overlapped = false;
3381 int i, j;
3382 int error;
3383 int lockflags = 0;
3384 u_int32_t endblock;
3385
3386 /* Check if data fork overlaps the target space */
3387 for (i = 0; i < kHFSPlusExtentDensity; ++i) {
3388 if (filerec->dataFork.extents[i].blockCount == 0) {
3389 break;
3390 }
3391 endblock = filerec->dataFork.extents[i].startBlock +
3392 filerec->dataFork.extents[i].blockCount;
3393 if (endblock > allocLimit) {
3394 overlapped = true;
3395 goto out;
3396 }
3397 }
3398
3399 /* Check if resource fork overlaps the target space */
3400 for (j = 0; j < kHFSPlusExtentDensity; ++j) {
3401 if (filerec->resourceFork.extents[j].blockCount == 0) {
3402 break;
3403 }
3404 endblock = filerec->resourceFork.extents[j].startBlock +
3405 filerec->resourceFork.extents[j].blockCount;
3406 if (endblock > allocLimit) {
3407 overlapped = true;
3408 goto out;
3409 }
3410 }
3411
3412 /* Return back if there are no overflow extents for this file */
3413 if ((i < kHFSPlusExtentDensity) && (j < kHFSPlusExtentDensity)) {
3414 goto out;
3415 }
3416
3417 if (kmem_alloc(kernel_map, (vm_offset_t *)&iterator, sizeof(*iterator))) {
3418 return 0;
3419 }
3420 bzero(iterator, sizeof(*iterator));
3421 extkeyptr = (HFSPlusExtentKey *)&iterator->key;
3422 extkeyptr->keyLength = kHFSPlusExtentKeyMaximumLength;
3423 extkeyptr->forkType = 0;
3424 extkeyptr->fileID = filerec->fileID;
3425 extkeyptr->startBlock = 0;
3426
3427 btdata.bufferAddress = &extrec;
3428 btdata.itemSize = sizeof(extrec);
3429 btdata.itemCount = 1;
3430
3431 fcb = VTOF(hfsmp->hfs_extents_vp);
3432
3433 lockflags = hfs_systemfile_lock(hfsmp, SFL_EXTENTS, HFS_SHARED_LOCK);
3434
3435 /* This will position the iterator just before the first overflow
3436 * extent record for given fileID. It will always return btNotFound,
3437 * so we special case the error code.
3438 */
3439 error = BTSearchRecord(fcb, iterator, &btdata, NULL, iterator);
3440 if (error && (error != btNotFound)) {
3441 goto out;
3442 }
3443
3444 /* BTIterateRecord() might return error if the btree is empty, and
3445 * therefore we return that the extent does not overflow to the caller
3446 */
3447 error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
3448 while (error == 0) {
3449 /* Stop when we encounter a different file. */
3450 if (extkeyptr->fileID != filerec->fileID) {
3451 break;
3452 }
3453 /* Check if any of the forks exist in the target space. */
3454 for (i = 0; i < kHFSPlusExtentDensity; ++i) {
3455 if (extrec[i].blockCount == 0) {
3456 break;
3457 }
3458 endblock = extrec[i].startBlock + extrec[i].blockCount;
3459 if (endblock > allocLimit) {
3460 overlapped = true;
3461 goto out;
3462 }
3463 }
3464 /* Look for more records. */
3465 error = BTIterateRecord(fcb, kBTreeNextRecord, iterator, &btdata, NULL);
3466 }
3467
3468 out:
3469 if (lockflags) {
3470 hfs_systemfile_unlock(hfsmp, lockflags);
3471 }
3472 if (iterator) {
3473 kmem_free(kernel_map, (vm_offset_t)iterator, sizeof(*iterator));
3474 }
3475 return overlapped;
3476 }
3477
3478
3479 /*
3480 * Calculate the progress of a file system resize operation.
3481 */
3482 __private_extern__
3483 int
3484 hfs_resize_progress(struct hfsmount *hfsmp, u_int32_t *progress)
3485 {
3486 if ((hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) == 0) {
3487 return (ENXIO);
3488 }
3489
3490 if (hfsmp->hfs_resize_totalblocks > 0) {
3491 *progress = (u_int32_t)((hfsmp->hfs_resize_blocksmoved * 100ULL) / hfsmp->hfs_resize_totalblocks);
3492 } else {
3493 *progress = 0;
3494 }
3495
3496 return (0);
3497 }